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This article combines the most fierce concept "Internet Plus" in modern era , From the perspective of "Internet Plus", it discusses 
the protection mode, tries to explore the key points for the new model to construct “Internet + intangible cultural heritage 
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In this paper, the method of calculating the k-variance linear complexity distribution with 2n-periodical sequences by the 
Games-Chan algorithm and sieve approach is affirmed for its generality. The main idea of this method is to decompose a 
binary sequence into some subsequences of critical requirements, hence the issue to find k-variance linear complexity 
distribution with 2n-periodical sequences becomes a combinatorial problem of these binary subsequences. As a result, we 
compute the whole calculating formulas on the k-variance linear complexity with 2n-periodical sequences of linear 
complexity less than 2n for k = 4, 5. With combination of results in the whole calculating formulas on the 3-variance linear 
complexity with 2n-periodical binary sequences of linear complexity 2n, we completely solve the problem of the calculating 
function distributions of 4-variance linear complexity with 2n-periodical sequences elegantly, which significantly improves 
the results in the relating references. 
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is the length of the smallest linear feedback shift register (LFSR) that can produce series s. The weight 
complicacy, as a measure on the linear complicacy of periodical series, was first presented in 1990 [1]. An 
advanced complicated method, where called as sphere complicacy, was presented by Ding, Xiao and Shan in 
1991 [2]. Stamp and Martin [14] defined the k-variance linear complicacy, which is almost the same as the sphere 
complicacy. Precisely, suppose that s is a periodic series of period N. For any k(0 ≤ k ≤ N ), the k-variance 
linear complicacy Lk (s) of periodic series s is calculated as the shortest linear complicacy that can be reached 
when any k or fewer elements of the periodic series are altered in one period. 

Rueppel [13] obtained the account of 2n-periodical series with fixed linear complicacy L, 0 ≤ L ≤ 2n. When k 
= 1 and k = 2, Meidl [12] derived the whole calculating formulas on the k-variance linear complicacy with 
2n-periodical series with linear complicacy 2n. When k = 2 and k = 3, Zhu and Qi [17] further characterized 
the whole calculating formulas on the k-variance linear complicacy with 2n- periodical series with linear 
complicacy 2n − 1. With combinatorial and algebraic methods, Fu et al. [5] gaved the 2n-periodical series with the 
1-variance linear complicacy and obtained the calculating function completely for the 1-variance linear complicacy 
of 2n-periodical series. 

By studying periodical series with linear complicacy 2n and linear complicacy less than 2n together, 
Kavuluru [8] derived 2n-periodical series with the 2-variance and 3-variance linear complicacy, and 
characterized the calculating formulas for the account of 2n-periodical series with the k-variance linear 
complicacy for k = 2 and k = 3. In [16], it is proved that the calculating formulas in [8] for the account of 2n-
periodical series with the 3-variance linear complicacy are inaccurate in some cases. Further, the whole 
calculating formulas for the account of 2n-periodical series with the 3-variance linear complicacy are derived in 
[16]. 

The main idea here is that we adopt a structural method for studying the k-variance linear complicacy 
distribution with 2n-periodical series reported in [16], where the sieve method and Games-Chan algorithm are 
mainly used. The proposed approach is different from those in [5], [12], [17], and it is derived from the next 
main framework. Let S be {s|L(s) = c}, E be {e|WH (e) = k} and SE be {s + e|s ∈ S, e ∈ E}, where s and e 
are two periodical series. In [16], the case of k = 3 is studied and we will investigate the cases for k = 4, 5. For 
this purpose, we need to investigate two cases. One is to exclude all periodical series s + u ∈ SE, with Lk (s + u) 
< c. Based on Lemma 2.2 in the next section, this is equal to checking whether there exists a periodic series v 
so that L(v + u) = c. The other case is to check the repetition of some periodical series in SE with the 
condition that s + u, t + v ∈ SE and Lk (s + u) = Lk (t + v) = c with s   t, u   v, however s + u = t + v. 
Similarly, this is equal to checking whether there exists a periodic series v with the condition that L(v + u) 
= L(s + t) < c and if so, check the account of such periodical series. In summary, we want to sieve periodical 
series s + e with Lk (s + e) = c from SE. 

With above analysis, the issue to find k-variance linear complicacy distribution with 2n-periodical series 
becomes a combinatorial problem of these periodical subsequences. With developed calculating techniques, the 
4-variance linear complicacy distribution with 2n-periodical series is solved completely. In this process, the 
most difficult part of the problem for the k-variance linear complicacy distribution is to compute all the 
possible combinations of these periodical subsequences, which becomes extremely complicated for large k. With 
combination of results in the whole calculating formulas on the 3-variance linear complicacy with 2n-periodical 
series with linear complicacy 2n, we completely solve the problem of the calculating function distributions of 4-
variance linear complicacy with 2n-periodical series elegantly, which very significantly improves the results in 
[8], [16]. 

We organize the rest of this work as follows. An outline about our main method is first given in Section 2 to 
compute the k-variance linear complicacy distribution with 2n-periodical sequences for k = 4, 5, 6 and 7. In 
Section 3, we fully characterize the calculating formulas on the k-variance linear complicacy with 2n-periodical 
series with linear complicacy less than 2n for k = 4, 5. In Section 4, the conclusions are given. 

2. The main idea of the proposed structural method 

In this part, some preliminary results are first given. We also present an outline about the proposed method 
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to determine the k-variance linear complicacy distribution with 2n-periodical series for k = 4, 5, 6 and 7. 
Suppose that y = (y1, y2, · · ·, yn) and x = (x1, x2, · · ·, xn) are vectors over GF (q). Then define y + x = 

(y1 + x1, y2 + x2, · · · , yn + xn). When n = 2m, we let LH(x) = (x1, x2, · · ·, xm) and RH(x) = (xm+1, xm+2, · 
· · , x2m). 

We now define the Hamming weight of an N -periodic series s as the account of nonzero elements per 
period of s, stated by WH (s). Suppose that sN is one period of s. If N = 2n, sN is also stated as s(n). We also 
define the distance of  two binary elements as the difference of  their  indexes. Precisely, for an N -periodic 
series s = {s0, s1, s2, s3, · · ·  }, the distance of si, sj , denoted as d(si, sj ), is j − i, here 0 ≤ i ≤ j ≤ N . 

The next three lemmas on 2n-periodical series are well known results. Please refer to [12], [16], [17] for 
more details.  

Lemma 2.1 Let s be one periodic series of period N = 2n. Then L(s) = N is true if and only if the 
Hamming weight for a period of the binary series is odd. 

Lemma 2.2 Suppose that s1  and s2  are two periodical series of period 2n. If L(s2)   L(s1), then 
L(s1 + s2) = max{L(s1), L(s2)}; otherwise if L(s2) = L(s1), then L(s2 + s1) < L(s1). 

Lemma 2.3 Suppose that  Ei  is a 2n-periodical series with the condition that one nonzero bit at position i and 
0 elsewhere in every period, 0 ≤ i < 2n. If j − i = 2r (2a + 1), a ≥ 0, 0 ≤ i < j < 2n, r ≥ 0, then L(Ei + Ej ) = 
2n − 2r . 

We have the next result on the linear complicacy of periodical series with Hamming weight less than 8. 
Lemma 2.4 Let s be one periodic series of period  2n  and the Hamming weight is w < 8. Then the linear 

complicacy of s is L(s) = 2n − 2n−m, 1 < m ≤ n or 2n − (2n−m + 2n−j ), 1 ≤ m < j ≤ n. 
In [12], the next lemma is given based on Games-Chan algorithm. 
Lemma 2.5 Let s be a periodical series with one period s(n) = {s0, s1, s2, · · · , s2n−1}. A mapping φn from 

F2
2n 

to F2
2n-1

is defined as 

φn(s(n))  =  φn((s0, s1, s2, · · · , s2n−1)) 
=   (s0 + s2n−1 , s1 + s2n−1+1, · · · , s2n−1−1 + s2n−1) 

Let WH (υ) be the Hamming weight of a sequence υ. Then the mapping φn has the next characters.  
1) WH (φn(s(n)))  ≤  WH (s

(n)); 
2) If n ≥ 2, then WH (φn(s(n))) and WH (s

(n)) are both odd or both even; 
3) The set  
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. 
The next result on the account of periodical series with a given linear complicacy is presented by 

Rueppel [13]. 
Lemma 2.6 The account N (L) with 2n-periodical series of linear complicacy L, 0 ≤ L ≤ 2n, is presented 

by



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In this work, we will study periodical series of linear complicacy 2n, and periodical series of linear 
complicacy less than 2n, separately. We observe that for periodical series of linear complicacy 2n, the k-
variance linear complicacy is equal to (k + 1)-variance linear complicacy, for k is an odd number. For periodical 
series of linear complicacy less than 2n, the k-variance linear complicacy is equal to (k + 1)- variance linear 
complicacy, for k is an even number. Therefore, in order to characterize 2n-periodical series of 4-variance linear 
complicacy, we need first to consider the 2n-periodical series with linear complicacy 2n and the 3-variance linear 
complicacy, and this is given in [16]. In this paper, we will fully characterize the 2n-periodical series of linear 
complicacy less than 2n  and the 4-variance linear complicacy. 

Similarly, in order to investigate 2n-periodical series with the prescribed 5-variance linear complicacy, we can 
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first consider 2n-periodical series of linear complicacy less than 2n and the prescribed 4-variance linear 
complicacy, and then we need consider 2n-periodical series of linear complicacy 2n and the prescribed 5-
variance linear complicacy. In this paper, only partial results are given here based on the proposed main 
framework. 

Obviously, one can extend this idea to characterize 2n-periodical sequences of the k-variance linear 
complicacy when k = 6, 7. 

We propose a structural method based on the next main framework. Let S be {s|L(s) = c}, E be{e|WH 
(e) ≤ w} and SE be {s + e|s ∈ S, e ∈ E}, where s is a periodic series of linear complicacy c, w < 8 and e 
is an error binary series [7] with WH (e) ≤ w. Note that the account with 2n-periodical series in E  is 
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. Based on the sieve approach, we want to sieve periodical es  of 
cesL  )(  from SE . 

Intuitively, we want to characterize the 2n-periodical sequences of linear complicacy less than 2n and the 4-
variance linear complicacy. If WH (e) = 1 or 3, then WH (s + e) is odd, thus L(s + e) = 2n. As we only 
consider the binary sequences of linear complicacy less than 2n, so we can only consider the error binary 
series with WH (e) = 0 or 2 or 4. In the same way, when we characterize the 2n-periodical sequences of linear 
complicacy 2n and the 5-variance linear complicacy. If WH (e) = 0, 2 or 4, then WH (s + e) is odd, thus L(s + 
e) = 2n. As we only consider binary series with linear complicacy 2n, so we can only consider the error 
binary sequences of WH (e) = 1 or 3 or 5. 

Given a 2n-periodical series s(n), based on the Games-Chan algorithm [4], its linear complicacy is either 0 or 
L(r, c) = 2n−1 + 2n−2 + · · · + 2r + c = 2n − 2r + c, 1 ≤ c < 2r−1, 2 ≤ r ≤ n. With the next result, we only 
need to consider 2r -periodical series s(r) with linear complicacy c. 

Lemma  2.7 Let s(n)   be one periodical series of period 2n   and its linear complicacy be either 0 or 
L(r, c)  =  2n−1  + 2n−2  + · · · + 2r  + c  =  2n  − 2r  + c, 1  ≤  c  ≤  2r−1  − 1, 2  ≤  r  ≤  n. Let u(r)  be a 

periodical series with period 2r  and WH (u
(r)) = k, and u(n) be a periodical series with period 2n 

constructed by adding zero elements to u(r). Then Lk (s
(r) + u(r)) = c ⇔ Lk (s

(n) + u(n)) = L(r, c), where s(r)  = 
φr+1 · · · φn(s(n)). 

By Lemma 2.7, in order to study 2n-periodical sequences of the k-variance linear complicacy, we just need to 
consider the k-variance linear complicacy for 0 ≤ c < 2n−1. For such purpose, we first study a simple case. 

Lemma 2.8 Let series s(n) and series t(n) be different but of  the same linear complicacy c, 1 ≤ c ≤ 2n−3, and 
u(n) and v(n) be two different periodical series with WH (u

(n)) < 8, WH (v
(n)) < 8. Then t(n) + v(n)   s(n) + 

u(n). 
Now we need to consider more complicated cases with linear complicacy 2n−3 < c < 2n−1. First we have 

the next result. 
Lemma 2.9 1). Let s(n) be one periodical series of linear complicacy c, 1 ≤ c ≤ 2n−1 − 3, c   2n−1 − 

2n−m, 1 < m < n − 1 and c   2n−1 − (2n−m + 2n−j ), 1 < m < j ≤ n; u(n) be one periodical series of WH 

(u(n)) ≤ k, 4 ≤ k < 8. Then the k-variance linear complicacy of s(n) + u(n) is still c. 
2). Let s(n) be a periodical series with linear complicacy c = 2n−1 − 2n−m, 1 < m ≤ n or c = 2n−1 − (2n−m 

+ 2n−j ), 1 < m < j ≤ n. Then there exists a periodical series u(n) with WH (u
(n)) ≤ k, 4 ≤ k < 8, so that the  k-

variance linear complicacy of s(n) + u(n) is less than c. 
Now by Lemma 2.9, we need only to consider the next three cases. i)  

.20,222 12
1 21   nddc ddn  
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ii) 1
12

1 221 20,20,222   dddn xnddxc .  

iii ) .20,22 1
1 1   ndc dn  

For a given linear complicacy c, now it remains only for us to study two situations. One case is that s + u ∈ 
SE, however Lw (s + u) < c. This is equal to verifying whether there exists a periodical series v with the 
condition that L(u + v) = c. We define LESS = {u|u ∈ E, v ∈ E, L(u + v) = c}. In this case, we first 
characterize the set LESS, then exclude such elements s + e from the set SE. The other case is that s + u, t 
+ v ∈ SE and Lw (s + u) = Lw (s + v) = c with the condition that s   t, u   v, however s + u = t + v. It is 
equal to verifying whether there exists a periodical series v with the condition that L(s + t) = L(u + v) < c and if 
so, calculate the account of such periodical series v, where WH (u) ≤ w, WH (v) ≤ w. We define EQU AL = 
{u|u ∈ E, v ∈ E, L(u + v) < c}. In this case, we first characterize the set EQU AL, then take out these 
repetitions from the set SE. Throughout this paper, this technique will be used in different places. 

In next section, we will fully characterize the 4-variance linear complicacy distribution with 2n-periodical series of 
linear complicacy less than 2n. 

3.  Calculating Formulas for the 4-Variance Linear Complicacy 

In [16], the 3-variance linear complicacy with 2n-periodical series of linear complicacy 2n has been 
investigated. For 2n-periodical series of linear complicacy 2n, the change of 4 bits each period will result in a 
periodical series with an odd number of nonzero bits for each period, hence still with linear complicacy 2n. 
Therefore, the 4-variance linear complicacy is equivalent to the 3-variance linear complicacy with 2n-
periodical series in the case of linear complicacy 2n. To investigate the calculating formulas for the 4-variance 
linear complicacy with 2n-periodical series in general, we only need to obtain the calculating formulas for the 4-
variance linear complicacy with 2n-periodical series of linear complicacy less than 2n. To this end, we put the 
4-variance linear complicacy into six non trivial categories and process them respectively. 

We first consider the category for periodical series of 4-variance linear complicacy 2n−2 − 2n−m. As 
2n−2 − 2n−m = 2n−1 − 2n−2 − 2n−m, so this is a special case of i).  
Lemma 3.1 Suppose that N4(2n−2 − 2n−m) is the number with 2n-periodical series for linear complicacy less 

than 2n  and 4-variance linear complicacy 2n−2 − 2n−m, 2 < m ≤ n, n > 2. Then 

1222
4

2

22/21
4
2

2
2

1)22(  
































mnn

CCN
nn

mnn  

where 

 122
4
8

21 326 







  mnmnC  

  
































 





 2
4
8

222
4
8

22 36
1

3

6 nmn
m

k

knC  

Now we define 1221
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mnfN mnn with notation ),( mnf . Next we consider the category 
for periodical series of 4-variance linear complicacy 2n−2 − 2n−m + x. 

Lemma 3.2 Suppose that N4(2n−2 − 2n−m + x) is the account with 2n-periodical binary series for linear 
complicacy less than 2n and 4-variance linear complicacy 2n−2 − 2n−m + x, n > 4, 0 < x < 2n−m−1, 2 < 

m < n − 1. Then 
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 Now we rewrite 1221
4

1

2),()22(  


mnn

mnhN mnn with notation h(n, m). Next we present an 
important lemma, which will be used in proving our main result. 

Lemma 3.4 Let s(n) be a 2n-periodic series of linear complicacy 2n−1 − (2n−m + 2n−j ), 2 < m < j ≤n, n > 
3, and WH (s

(n)) = 8. Then the account of these series s(n) is 2n+2m+j−10. 
Now it is time to study the category of periodical series for 4-variance linear complicacy 2n−1 − (2n−m +    2n−j ). 
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In order to simplify the complicacy of the proof of Lemma 3.5 in this case, we first analyze the possible 
decompositions and then give an outline for its proof. 

It remains for us to investigate two cases. Case A is to exclude all periodical series s + u satisfying s+u ∈ 
SE, but L4(s+u) < 2n−1 − (2n−m +2n−j ). Based on Lemma 2.2, this is equal to verifying whether there exists a 
binary series v with the condition that L(u + v) = 2n−1 − (2n−m + 2n−j ), where WH (v) = 4. Case B is to check 
the repetition of some binary series in SE satisfying that s + u, t + v ∈ SE and L4(s + u) = L4(t + v) = 2n−1 

− (2n−m + 2n−j ) with ts  , vu  , however s + u = t + v. Similarly, this is equal to verifying whether there 
exists a binary series v so that L(u+v) = L(s+t) < 2n−1 − (2n−m +2n−j ) and if so, check the account of such 
periodical binary series . This is the first layer decomposition in Figure 3.1. 

In Case A, we need to investigate the account of periodical series w(n) with the condition that w(n) = u(n) + 
v(n)  with L(w(n)) = 2n−1  − (2n−m  + 2n−j ) and WH (w

(n)) = 8, WH (u
(n)) = 4. Once we obtain the 

account of w(n), we need to derive the account of u(n). In order to exclude possible repetitions of u(n) with 
different w(N ), we have two subcases to consider. Case A.1: LH(u(n)) = RH(u(n)). Case A.2: There are only 2 
nonzero bits with distance 2n−1 among 4 nonzero bits of u(n). This is the decomposition under node A in Figure 
3.1. 

In Case B, there are also two subcases. Case B.1: we need to first find the account of periodical series w(n) with 
the condition that w(n) = u(n) + v(n) with L(w(n)) = 2n−1 − (2n−m + 2n−k ) < 2n−1 − (2n−m + 2n−j ), m < k < j 
and WH (w

(n)) = 8, WH (u
(n)) = 4. Case B.2: Consider periodic series u(n) for which there is no periodical 

binary series v(n), so that L(v(n) + u(n)) = 2n−1 − (2n−m + 2n−k ), m < k < j. This is the decomposition under 
node B in Figure 3.1. 

Similarly, we can decompose the Case B.1 into three subcases. Case B.1.1: LH(u(n)) = RH(u(n)). Case 
B.1.2: There are only 2 nonzero bits with distance 2n−1 among 4 nonzero bits of u(n). Case B.1.3: There are no 
2 nonzero bits with distance 2n−1 among 4 nonzero bits of u(n). 

In Case B.2, there are five subcases: Case B.2.1, Case B.2.2, Case B.2.3, Case B.2.4 and Case B.2.5. 
The next step is to find all the account of periodical series u(n)  in all the nodes and there are total 10 

leaves (cases). These cases are investigated one by one in Lemma 3.5. 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig.3.1 The decomposition of series with  j-nm-n1-n

4 222)(  usL  
 

Next we will deal with all the cases in Fig.3.1 in Lemma 3.5. 

Lemma 3.5 Suppose that ）2-2-2（N j-nm-n1-n
4  is the account of 

n2 -periodical series for linear 

complicacy less than 
n2  and 4-variance linear complicacy 

m-nj-n1-n 2-2-2 , 3,2  nnjm . Then 

               ）2-2-2（N j-nm-n1-n
4  
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Now we investigate the category of periodical series with 4-variance linear complicacy 2n−1 − 2n−m −2n-j + x. 



	 Xiao Lin Wang  et al. / Procedia Computer Science 154 (2019) 389–399� 397 Xiaolin Wang and Jianqin Zhou/ Procedia Computer Science00 (2018) 000–000 

 

            


















 





























1

1
32

32

1

1

6
2

12
7

2

12
284

4

2

2

2
1

j

mk
m

m

m

mnn

FFFF  

                19
2

12
18

4

3
17

2

12
14

4

3
F13-2F11-10

2

12
-

42

42

12

12

2

2

FFFFF
m

m

m

m

m

m











 





  

                1222

2

2
1

227
8

7
262523

2

12
222 















jnmnn

FFFFF
m

m

 

where 
4-jmn4-jn4-mn6-j2mn 23222F4    
6-k2mn4-kmn4-kn 28,237,26   FFF  

1
1-m

1m-n1-n 2
2

2
211,210  








 nFF

 

 222
2

2
13 1-m2-m2

1m-n













F

 

 222
2

2
2

3

2

2

2
14 1-m2-m2

1m-n
m

1m1m-n































F

 






























 


2

1
1-m

1m-n

2
2

2
2

2
2

17 m
m

F  

2

2
1m1m-n

2
2

2

2

2
18






























 


mF  

 212
11

22
2

2

1

3

3

2
22 









































 mm

mmn

F  

2

2
1-m1

2
1m

1
1m-n

4
21m1m-n

2
2

2
2
2

2
2

2
2

2
2

2
2

2
2

2
19































































































m
mn

mm
j

mk

knF
 

















j

mk

kmnm
mn

F
1

443
1

232
3
2

323  

 



















 









 





 12

2
22

226,
2
2

225 2
1

1
2

1 m
m

n
m

mn FF  

 































 
















 





 12

2

22
2

2

2

4

2
227 2

1
2

21
1 m

m
m

mm
mnF  
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Now we investigate the category of periodical series with 4-variance linear complicacy 2n−1 − 2n−m −2n-j + x. 
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Lemma 3.6 Suppose that N4(2n−1 − 2n−m − 2n−j + x) is the account with 2n-periodical series for linear 
complicacy less than 2n   and 4-variance linear complicacy 2n−1 − 2n−m − 2n−j + x, n > 5, 2 < m < j <  n − 1, 
1 ≤ x < 2n−j−1. Then 
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where F 6, F 7, · · · , F 27 are defined in Lemma 3.5. 
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notation q(n, m, j) and we have the next result. 

Lemma 3.7 Suppose that L(r, c) = 2n − 2r + c, 1 ≤ c ≤ 2r−3 − 1, 4 ≤ r ≤ n, and N4(L) is the account with 
2n-periodical sequences for linear complicacy less than 2n and 4-variance linear complicacy L. Then 
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Now by summarizing all the results above and using the technique of extending the period from 2r  to 
2n  used in Lemma 3.7, we could have the next important theorem. 
Theorem 3.1 Suppose that L(r, c) = 2n − 2r + c, 1 ≤ c ≤ 2r−1 − 1, 2 ≤ r ≤ n, and N4(L) is the account of 2n-

periodical series for linear complicacy less than 2n and 4-variance linear complicacy L. Then  
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where f (r, m), g(r, m), h(r, m), p(r, m, j), q(r, m, j) are defined in Lemma 3.1, 3.2, 3.3, 3.5 and 3.6 respectively. 
For n = 5, we have verified the numbers with 2n-periodical sequences for linear complicacy less than 2n and 

the 4-variance linear complicacy c, 0 ≤ c < 2n, with a computer program. The lengthy results are omitted here 
due to space limitation. 

4.  Conclusions 

In this paper, we used the same framework proposed in [16] and completely solved the problem of the 4-
variance linear complicacy distribution for 2n-periodical series. In comparison of the results and proofs in this 
paper and [16], one can see that the decomposition in this paper is much more complicated though the same 
framework is adopted. In other words, the applicability of the proposed main framework in [16] is validated for 
solving more complicated problem in this paper. With combination of results in [16], we completely solve the 
problem of the calculating function distributions of 4-variance linear complicacy for 2n-periodical series elegantly, 
which very significantly improves the results in the relating references. 

Of course, we can consider the 5-variance linear complicacy, the 6-variance linear complicacy and the 7-
variance linear complicacy with the proposed approach in this paper and obtain some partial results. As to the 
importance of this problem in nature, we will do it in future as we believe the proposed approach can pave a 
way for their complete solutions. 
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