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Abstract 

This article combines the most fierce concept "Internet Plus" in modern era , From the perspective of "Internet Plus", it discusses 
the protection mode, tries to explore the key points for the new model to construct “Internet + intangible cultural heritage 
protection”, provides reasonable practical guidance, and finally creates innovative ideas and methods for the protection of 
intangible cultural heritage. Simultaneously it makes academic contributions to the innovation and inheritance of Chinese 
intangible cultural heritage. 
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Abstract 

Following [7], we introduce the nested Inverse Gaussian Mixed-Effects model to analyze right-skewed and continuous 
longitudinal data. The nested random effects don’t follow a specific parameter distribution and rely only on the first two 
moments assumptions in our model. We apply the truly orthodox best linear unbiased predictor (BLUP) approach to estimate the 
nested random effects. We derive an optimal estimating equation for the regression parameters under the case of known BLUP of 
random effects. A real example for Framingham cholesterol data is presented to illustrate our proposed methodology. 
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1. Introduction 

Skewed continuous longitudinal data frequently appear in many areas of research. Various skew normal models 
have been proposed to analyze skewed longitudinal data in recent years. For example, [5] for linear mixed models 
by substituting the skew-normal assumption of random effects for the normal assumption; [9] for Bayesian partial 
linear model; [1] for Skew-normal antedependence models; [8] for mixed effects model with the skew-normal and 
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skew-t assumption of the distribution of responses and random effects. However, these approaches are generally 
computationally intensive.  

The inverse Gaussian regression model is a powerful method for analyzing right-skewed continuous data. 
Following [6] and [7], we consider a class of nested Inverse Gaussian Mixed-Effects Model for right-skewed and 
continuous longitudinal data. [7] introduced the nested Tweedie mixed model based on an orthodox BLUP approach. 
Similarly, this orthodox BLUP approach to our models is still computationally simple and efficient. In addition, our 
approach consolidates conditional and marginal modeling interpretations. 

2. Inverse Gaussian Mixed-Effects Model 

2.1. The model 

The inverse Gaussian distribution has the following probability density function 

2
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where 0   is the mean and 2 0   is the shape parameter ([3]). Therefore, we simply denote 2IG( )Y    when 
a random variable Y  is distributed as the inverse Gaussian distribution with mean   and shape parameter 2 . Also, 
we have E( )Y   and 2 3Var( )Y   . According to [7], the inverse Gaussian distribution belongs to the power-
variance Tweedie family, thus we have 2 2

3Tw ( ) IG( )      , where Tw  denotes the Tweedie family.  
Let ijY be the outcome of the i th participant measured at time point ijt  ( 1 1 )ii n j n       .Let  

111 1 1( )
n

T
n n nnY Y Y Y      Y  denote the response vector. Suppose that ( )T T T W U V is the vector of the 

positive random effects where U  and V  represent 1( )T
nU U   and 

111 1 1( )
n

T
n n nnV V V V      , respectively. In 

our paper, we call the random effects  iU  and ijV  for 1 1 ii n j n        as the first nested and second nested 
random effect, respectively. Similar to [7], we assume that 

(i).  1 i nU U U     are independent and identically distributed with the following first two moments  
 2E( ) 1and var( )i iU U     

(ii). Given  U , the first two moment structure of V are given by 
 2E( ) and var( )ij i ij iV U V U    U U  

(iii). Given W , 
111 1 1 nn n nnY Y Y Y       are conditionally independent with the following probability density 

function  
 2 2IG( ) 1 1ij ij ij ij iY V V i n j n           W ò  
where exp( )T

ij ij  x  in which 1(1 )T
ij ij l ijx x    x  is the covariate vector and 0 1( )T

l        is the 
coefficient vector. Clearly,  each ijY  W  depends only on ij , ijV  and 2ò . 

2.2.  Moment structure 

Here, we derive the moment structure of the response as follows. By using the law of total expectation and the 
law of total variance, the marginal means and variances of the response ijY  are ( )ij ijE Y  and 

2 3 2 2 2( ) ( )ij ij ijVar Y      ò , respectively. In addition, it is easy to interpret our conditional and marginal 
modelling approach ([4]).  Therefore, we can obtain the marginal  variance-covariance matrix of the response as 
follows 
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3. Estimating Model Parameters 

The explicit expression of the BLUP of the first nested random effects based on [7]  can be derived as  

 

Similarly, the BLUP of the second nested random effects has the following explicit expression 

 

3.1. Estimating regression parameters 

To make inference on regression parameters   and dispersion parameters 2 , 2  and 2ò , we first construct the 
estimating equation for  ; while the estimating expressions for 2 , 2  and 2ò  are presented in the later section. 
After a tedious calculation, we can obtain the following estimating equation  for the regression parameters  : 
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It follows from [7] that this estimating function for   is optimal.  Further, we can obtain the sensitivity matrix ( )S   
for   by calculating  ( )S E  

 


    . It follows from [7] that the solution of the estimating equation   0    tend to 
a multivariate normal distribution. To solve   0   , according to Newton scoring algorithm [2], we implement 
the following iterative formula 

 1( ) ,S        

where  the sensitivity matrix ( )S   has the following explicit expression  

 

where 2 2( )ij ij ij     ò .  

3.2. Estimating  dispersion parameters 

Here, we implement the method of adjusted Pearson estimator to estimate the dispersion parameters 2 , 2  and 
2ò . It follows from [7] that the explicit expressions of the unbiased estimators of dispersion parameters  are  
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4. Framingham Cholesterol Data 

To illustrate our proposed methodologies, we reanalyzed this longitudinal data. The cholesterol levels are 
measured at 0, 2, 4, 6, 8 and 10 years for 133 participants (60 men and 73 women) ([5]). Our scientific interest of 
this study is to assess the effects of gender, baseline age and visiting time on the cholesterol levels. More 
specifically, let ijY  denote the cholesterol level of the i th participant measured at the j th time for 1 ,133i    and 

1 ,6j   , where 100ij ijY Y  . It can be seen from Figure 1 that the right-skewed shape of the cholesterol levels 
can be captured well via inverse Gaussian distribution; therefore, we considered the following model:  

2 2

0 1 2 3

IG( )
log( ) Sex Age t

ij ij ij ij

ij i i ij

Y V V
    

  
     

W ò  

Where Sexi  takes 1 for male or 0 for female, Agei denotes the i th participant’s baseline age, (time 5) 10ijt    .  

 

Fig.1. The histogram, smoother density of cholesterol level and density of inverse Gaussian distribution 

For comparison, the Framingham cholesterol data are fitted by our proposed model described in Section 2 and  
the skewed normal mixed model proposed by [5], respectively. Table 1 display the estimates as well as the 
corresponding standard errors of regression and dispersion parameter. The covariate Age and Time have the positive 
significant effect on the cholesterol level under both models.   
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Table 1. Parameter estimates for Framingham cholesterol data. 

 

Parameter 
Our  proposed model Lin & Lee 

Estimate SEa Estimate SE 

Intercept 0.5447 0.0740 1.2898 0.1731 

Sex -0.0027 0.0267 -0.0382 0.0614   

Age 0.0072 0.0017 0.0151 0.0036 

Time 0.1215 0.0098 0.2341 0.0273 
2  0.0220    

2ò  0.0008    
2  0.0071    

 
a: standard error.  

5. Conclusion 

In this paper, we have introduced the inverse Gaussian regression model with nest random effects for positive 
and right-skewed continuous longitudinal data. The explicit expressions of BLUPs of random effects and sensitivity 
matrix for the regression parameters are available in our estimated approach . In addition, our method relaxes the 
distributional assumption of random effects and depends only on  the first two moments assumptions of the random 
effects; therefore,  these assumptions cover a wide range of parametric distributions. The Framingham cholesterol 
example demonstrated the usefulness of our approach.  
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