
Accepted Manuscript

Label-Aware Distributed Ensemble Learning: A Simplified Distributed Classifier Training
Model for Big Data

Shadi Khalifa, Patrick Martin, Rebecca Young

PII: S2214-5796(17)30317-9
DOI: https://doi.org/10.1016/j.bdr.2018.11.001
Reference: BDR 109

To appear in: Big Data Research

Received date: 27 October 2017
Revised date: 24 October 2018
Accepted date: 12 November 2018

Please cite this article in press as: S. Khalifa et al., Label-Aware Distributed Ensemble Learning: A Simplified Distributed Classifier
Training Model for Big Data, Big Data Res. (2018), https://doi.org/10.1016/j.bdr.2018.11.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing
this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is
published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.bdr.2018.11.001

BIG DATA RESEARCH 00 (2018) 000–000

Available online at www.sciencedirect.com

ScienceDirect

Journal homepage: http://www.elsevier.com/locate/bdr

* Corresponding author. Shadi Khalifa, Queen’s Unviersity, ON, Canada.
E-mail address: khalifa@cs.queensu.ca

Peer review under responsibility of xxxxx.
xxxx-xxxx/$ – see front matter © 2018 xxx. Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/

Label-Aware Distributed Ensemble Learning: A Simplified Distributed
Classifier Training Model for Big Data

Shadi Khalifaa, Patrick Martina, Rebecca Youngb
aSchool of Computing, Queen's University, , Kingston, ON, Canada
bIBM, Markham, ON, Canada

A R T I C L E I N F O

Article history:
Received 00 December 00
Received in revised form 00 January 00
Accepted 00 February 00

Keywords:
Big Data
Analytics
Distributed
Machine Learning
Classification

A B S T R A C T

Label-Aware Distributed Ensemble Learning (LADEL) is a programming model and an associated
implementation for distributing any classifier training to handle Big Data. It only requires users to specify
the training data source, the classification algorithm and the desired parallelization level. First, a distributed
stratified sampling algorithm is proposed to generate stratified samples from large, pre-partitioned datasets
in a shared-nothing architecture. It executes in a single pass over the data and minimizes inter-machine
communication. Second, the specified classification algorithm training is parallelized and executed on any
number of heterogeneous machines. Finally, the trained classifiers are aggregated to produce the final
classifier.
Data miners can use LADEL to run any classification algorithm on any distributed framework, without any
experience in parallel and distributed systems. The proposed LADEL model can be implemented on any
distributed framework (Drill, Spark, Hadoop, etc.) to speed up the development of its data mining
capabilities. It is also generic and can be used to distribute the training of any classification algorithm of
any sequential single-node data mining library (Weka, R, scikit-learn, etc.). Distributed frameworks can
implement LADEL to distribute the execution of existing data mining libraries without rewriting the
algorithms to run in parallel.
As a proof-of-concept, the LADEL model is implemented on Apache Drill to distribute the training
execution of Weka’s classification algorithms. Our empirical studies show that LADEL classifiers have
similar and sometimes even better accuracy to the single-node classifiers and they have a significantly faster
training and scoring times.

© 2018 xxxxxxxx. Elsevier . All rights reserved.

1. Introduction

Data mining is the process of discovering hidden patterns in data and
using these patterns to predict the likelihood of future events. Several
problems can be addressed using data mining like:
• Classification: Predict the category (discrete) of a new data point.
• Regression: Predict the value (continuous) of a new data point.
• Clustering: Split data points into categories.
• Association Rules: Find relationships between attributes.

In this work, we focus on the Classification problem and ways of making
it Big Data ready. Classification is a supervised learning approach
consisting of two phases: (1) Training: a classifier is built using historical
labeled data (i.e data with known category) and (2) Scoring: the trained
classifier is used to predict the category of new data points (i.e with

unknown category). With the large volume of Big Data, classifier training
time and memory requirements are a real challenge.

Scalable distributed data mining libraries like Apache Mahout [1],
Cloudera Oryx [2], Oxdata H2O [3], MLlib [4] [5] and Deeplearning4j [6]
implement distributed versions of the classification algorithms to run on
Hadoop [7] and Spark [8]. Distributing classifier training significantly
reduces the training time and enables digesting of Big Data. However, the
approach used by scalable libraries requires rewriting the classification
algorithms to execute in parallel. The rewriting process is complex, time-
consuming and the quality of the modified algorithm depends entirely on
the contributors’ expertise. Thus, scalable libraries fail to support as many
algorithms as sequential single-node libraries like R [9], Weka [10], scikit-
learn [11] and RapidMiner [12]. Rewriting the algorithms makes scalable
libraries hard to maintain and extend as it does not provide a unified model

2 BIG DATA RESEARCH 00 (2018) 000–000

for distributing the algorithms, rather it uses a custom distributed
implementation for each one [13].

Given the existing data mining libraries, data miners are left with two
choices. First, they may sacrifice prediction accuracy for a faster training
execution. To elaborate, users can leverage a distributed data mining library
and benefit from the faster distributed training execution. However, this
limits users to a small number of classification algorithms that might not
provide the best accuracy since there is no one algorithm that outperforms
all others for all situations [14]. Second, they may sacrifice the training
execution time for a better prediction accuracy. They can use a sequential
single-node data mining library and utilize the larger number of supported
classification algorithms to achieve the highest accuracy but be limited to
the single node processing capabilities. Fig. 1 illustrates the limited number
of classification algorithms supported by scalable distributed libraries like
Mahout and MLlib compared to sequential single-node libraries like Weka.

Fig. 1 – Classification algorithms supported by Weka & Spark MLlib.

To get out of this dilemma, several papers were published on extending

single-node data mining libraries to support MapReduce [15].
DistributedWekaBase [16], DistributedWekaHadoop [17] and
DistributedWekaSpark [13] [18] extend Weka to access the Hadoop
Distributed File System (HDFS) [19], Hadoop and Spark, respectively.
Another solution is RHadoop [20] which allows running R code on Hadoop
and gives access to HDFS.

The approach used in the published work on distributing sequential

single-node algorithms operates as follows. First, the training data is
partitioned into several sequential splits distributed across the cluster nodes.
Second, each Slave node runs the training algorithm on the local data
split(s) to train an intermediate classifier. Finally, a vote-based ensemble is
created of the trained intermediate classifiers at the Master node as

illustrated in Fig. 2. In the scoring phase, the vote-based ensemble works
by having each classifier in the ensemble predict the category of the new
data point, then the category with the majority vote is selected as the
ensemble’s final prediction.

Distributing sequential single-node algorithms gives them the ability to
scale to digest Big Data. It also provides data miners parallel versions of
the richer set of classification algorithms supported by the single-node
libraries. Unfortunately, the published work in this area suffers from a
major pitfall. As far as we know, no other work evaluates the effects of their
algorithm distribution approach on the classifier’s prediction accuracy nor
proposes any measures for maintaining the prediction accuracy after
distributing the classifier’s training.

In this paper, we make the following contributions. First, we evaluate the
prediction accuracy of published work on distributing single-node
classification algorithms. Second, we propose the Distributed Stratified
Sampling (DSS) algorithm for generating stratified samples from large, pre-
partitioned datasets in a shared-nothing architecture without recombining
the partitions. It executes in a single pass over the data and minimizes inter-
machine communication. The DSS algorithm ensures that each ensemble
classifier is trained on records of all class labels. Finally, we propose the
unified Label-Aware Distributed Ensemble Learning (LADEL) model for
distributing the training of any sequential single-node classification
algorithm on any distributed framework. LADEL eliminates the need to
rewrite classification algorithms using a distributed framework. It also
maintains the classifier’s prediction accuracy after distributing its training.

As a proof-of-concept, we use the proposed LADEL model to implement
the distributed Weka-on-Drill (codename QDrill) that extends the Apache
Drill distributed framework [21] with data mining capabilities. We choose
Apache Drill as it provides end-users with an easy-to-use SQL interface
which requires minimum learning compared to Scala or Java used in Spark
and Hadoop, respectively. We choose Weka [10] because it is a well-
established widely used data mining library with an extensive set of
classification algorithms.

It should be noted that the LADEL model can distribute the training of
any single-node library on any distributed framework (i.e LADEL can
implement Weka-on-Spark, Weka-on-Hadoop, R-on-Spark, etc.). The
distributed training time depends on the underlying distributed framework
that is used. This means that a LADEL Weka-on-Spark implementation
results in faster training compared to a LADEL Weka-on-Drill
implementation, simply because Spark is faster than Drill. On the other
hand, a LADEL Weka-on-Spark implementation provides more algorithms
to choose from compared to the natively distributed Spark MLlib while
maintaining similar processing speeds.

As far as we know, our work is the first to consider the effects of
distributing classifier training on the prediction accuracy and the first to
design measures to prevent distributed classifier training from affecting the
classifier’s prediction accuracy.

The rest of the paper is organized as follows: Section 2 introduces the
distributed classifier training approach and highlights the key pitfalls in the
related work. Following that, the Label-Aware Distributed Ensemble
Learning (LADEL) model is presented in section 3. Evaluation follows in
section 4. Finally, section 5 has the conclusions and future work.

2. Distributed Classifier Training: Benefits and Pitfalls

The main issue with many sequential single-node classification
algorithms is that their training cannot be distributed, unless the algorithm
is rewritten, because they need the entire dataset loaded in-memory to train

Fig. 2 – Distributed classifier Ensemble training
(Diamond icons represent classifiers).

BIG DATA RESEARCH 00 (2017) 000–000 3

the classifier. Distributed Classifier Ensembles offer a solution to this
problem. In this section, we first introduce the original single-node
Classifier Ensemble approach. Second, we illustrate the modifications done
to the single-node Classifier Ensemble approach to allow distributed
training. Finally, we highlight the pitfalls caused by these modifications and
show how they affect the overall Ensemble prediction accuracy.

2.1. Single-Node Classifier Ensembles

The Classifier Ensemble method trains several classifiers on the training
dataset and then groups all trained classifiers into a more powerful
classifier. Classifier Ensembles allow classifiers in the Ensemble to
mitigate the faults of the individual classifiers. An Ensemble allows taking
the majority vote of the individual classifier results, thus eliminating the
risk of picking a bad classifier. In recent years, there has been a growing
attention aimed at building Classifier Ensembles of better performance with
the same or better accuracy [22].

Previous research was conducted to exploit the local behavior of
different algorithms to enhance the accuracy of the overall Ensemble [14].
Now, it is established that an Ensemble of a large enough set of diverse
unstable well-trained classifiers of more than random accuracy has the
same or better prediction accuracy than a single classifier [23] [24] [25]
[26]. The reasons behind this are:
• A large enough set of classifiers where a classifier’s mistakes get

corrected by the other classifiers in the Ensemble [14].
• A Diverse set of classifiers means that the Ensemble classifiers should

make uncorrelated errors with respect to one another. That is, each
classifier in the Ensemble misclassifies a different set of records [27].
Unfortunately, the problem of how to measure classifier diversity is still
an open research topic. However, several approaches can be used for
classifier diversification [22] [26] [28]:
o Different training set records. Each classifier is trained on a

different bootstrap sample of the training data records. This
approach is convenient in the cases of a shortage or excess of
learning examples. In case of a shortage of records, different joint
random subsets can be generated from the data. In case of an excess
amount of data that cannot fit in memory, disjoint subsets that fit
in memory can be generated. The most popular techniques are
Bootstrap Aggregating (Bagging) [29] and Boosting [30].

o Different training set attributes (columns/features). Each classifier
is trained on the entire set of training records but on a sub-set of
the columns [31] [32].

o Different labels. Each classifier is designed to classify only a sub-
set of the problem labels. For example, a multi-class classification
problem can be decomposed into a set of binary classification
problems [33].

o Different algorithm parameters. Each classifier is initialized with
a different set of values for its parameters and thus have a different
local optimum [22].

o Different algorithms. Each classifier is built using a different
algorithm that is good at handling a sub-set of the problem patterns.
This approach takes advantage of the different biases of each
algorithm [34].

• Unstable means that a classifier’s accuracy depends on the training
dataset. Changing the training dataset results in a different model of a
different accuracy. Unstable classifiers are Multilayer Perceptron,
Decision Trees and Linear Regression [35].

• Well-trained means that the training dataset needs to be large enough to
ensure the classifier has seen all different patterns.

• More than random accuracy is required for the classifiers to increase the
likelihood of making the correct decision according to the Condorcet
Jury Theorem [36].

2.2. Distributed Classifier Ensembles

The Classifier Ensemble approach trains multiple classifiers
independently before joining them to create the final classifier. This parallel
nature of Classifier Ensembles makes it well-suited for our problem of
distributing sequential single-node classification algorithms across many
computing nodes. However, the original Bagging algorithm [29] used to
create Classifier Ensembles cannot be directly implemented for our
problem.

The original Bagging algorithm is a sequential single-node algorithm.
It runs on a single node and requires having all training data on a single
node. It then works by having each of the Ensemble classifiers trained on a
bootstrap sample of the training dataset of the same number of records as
the original full training set. For example, given a training dataset of 1k
records occupying 1TB, Bagging creates 5 training datasets to train 5
classifiers in the Ensemble where each training dataset is of size 1k records
and uses 1TB of disk space. With Big Data, training using a single multi-
gigabyte dataset is impractical as it does not fit in memory, so using
Bagging to create multiple datasets of sizes equal to the original dataset,
one for each classifier, is therefore impractical.

The Bagging-like approach [27] addresses this challenge by training the
Ensemble classifiers on disjoint partitions of the training dataset that can fit
in memory, where these partitions, if combined, will have the size of the
original training dataset. This way all data is used in training to yield a better
accuracy than if sampled [37]. Training the Ensemble classifiers on
partitions of the original dataset provides a diverse set of classifiers which
improves the Ensemble accuracy. The Bagging-like approach is less
complex and faster than the original Bagging approach. Empirical studies
[27] also show that Bagging-like Ensembles have prediction accuracy
similar to that of Bagging Ensembles [29] and can exceed the prediction
accuracy of sequential single-node classifiers trained on the entire training
dataset.

Published work on distributing sequential single-node algorithms like
DistributedWekaHadoop [17], DistributedWekaSpark [13] [18] and
RHadoop [20] implement the Bagging-like approach to realize distributed
training of their classifier Ensembles. Training data is uploaded to the
HDFS causing it to get sequentially split into 64MB disjoint partitions
which then are distributed across the cluster nodes. Slave nodes then run
the sequential single-node training algorithm on the local data split(s) to
train an intermediate classifier. Finally, a vote-based Ensemble is created
of the trained intermediate classifiers at the Master node.

2.3. Distributed Ensembles Pitfalls

Empirical studies [27] show that the Bagging-like disjoint partitioning
approach for splitting the training dataset among the Ensemble classifiers
makes each classifier biased towards its own training dataset. This creates
two pitfalls in the published work on distributing sequential single-node
classification algorithms.

The first pitfall is when the training dataset is ordered by the class label
attribute such that records belonging to one class label come together as
illustrated in Fig. 3a compared to the unordered dataset in Fig. 3b. While

4 BIG DATA RESEARCH 00 (2018) 000–000

having a dataset ordered by the class label attribute might not be very
common, a more common scenario that causes the same problem is having
a continuous chunk of many records belonging mostly to the same class
label. With this kind of dataset, when HDFS partitions the dataset
sequentially into 64MB splits it can cause splits to mostly contain records
belonging to only one class. Using these splits to train classifiers results in
classifiers that always predict the same class since each classifier is trained
on only one class which renders the entire Ensemble useless.

Att1 … Attn label Att1 … Attn label
 C0 C0
 C0 C1
 C0 C0

 C1 C0
 C1 C1
a) Ordered training dataset b) Unordered training dataset

Fig. 3 – Training datasets (a) Ordered - (b) Unordered

The second pitfall occurs when the training dataset is highly skewed
with a small number of records belonging to a minority class. In this
scenario, some Ensemble classifiers will not have any records of the
minority class in their training dataset, causing them to always fail in
recognizing records belonging to this minority class.

The two pitfalls can be avoided if the disjoint training partitions are
made to represent the original training dataset. In other words, the two
pitfalls can be avoided by making sure that each partition contains records
belonging to all class labels including minority classes. By achieving this,
classifiers become well-trained and able to recognize records belonging to
all class labels. Each Ensemble classifier is still biased towards its own
training dataset, but an individual classifier’s bias becomes an advantage
when the classifiers are combined in an Ensemble where a protocol of
knowledge sharing is established.

3. The Label-Aware Distributed Ensemble Learning
(LADEL) Model

The Label-Aware Distributed Ensemble Learning (LADEL) model is
an extension to the Bagging-Like Ensemble model introduced in the
previous section. It aims to avoid the above pitfalls of Distributed
Ensembles by ensuring that the distributed classifier prediction accuracy
remains similar to that of the sequential single-node classifier.

The LADEL model provides a unified model for distributing all
sequential single-node classification algorithms without rewriting them,
rather than having a custom distributed implementation for each algorithm
as in Spark MLlib. Having a unified model significantly reduces the
development time for creating distributed classifiers and supports more
algorithms.

Data miners can use the LADEL model to distribute the training of any
sequential single-node classification algorithm on any distributed
framework (Drill, Spark, Hadoop, etc.), without any experience in parallel
and distributed systems. This represents an advantage over solutions like
TensorFlow [38] which have a limited set of algorithms and require users
to manually specify the cluster details, which can be tedious in large
clusters.

3.1. Execution Model

The execution process takes a training data source, a name of a
classification algorithm along with its arguments and a desired
parallelization level, and produces a trained classifier. The following
process illustrated in Fig. 4 happens behind the scenes:
• First, the training data is divided into a set of partitions whose class

distribution matches that of the complete dataset using the proposed
Distributed Stratified Sampling (DSS) approach. That is, the percentage
of records belonging to each class label is equal across all partitions and
is equal to that of the original training dataset.

• Second, a sequential single-node classification algorithm is executed on
each data partition in parallel to produce intermediate classifiers. The
number of intermediate classifiers is determined by the parallelization
level specified by the user. This brings the classifier training (i.e
processing) to where data exists.

• Finally, the intermediate classifiers are moved to a single node where
they are aggregated using the Voting technique. The aggregated model
is then returned to the user to use for scoring. The distributed learning
approach allows handling Big Data that is too large to fit in the memory
of a single node while maintaining the prediction accuracy.

Fig. 4 – LADEL execution overview.

3.2. Distributed Stratified Sampling (DSS)

The Disjoint Partitioning (DP) approach used in the literature for
creating distributed classifier Ensembles works by having each training
record exist in only one partition where a partition can fit in memory. DP
has a major shortcoming when dealing with ordered and highly skewed
datasets [27]. The DP partitions do not include records of all class labels.
This results in poorly trained Ensemble classifiers. Utilizing Stratified
Sampling instead of the Simple Random Sampling used in DP can solve
this problem by ensuring that each partition has records of all class labels.

The original sequential single-node Stratified Sampling illustrated in
Fig. 5 works by having all data on a single machine. The algorithm goes
through the entire dataset (Population) twice. First, it divides the dataset
into several separate strata (categories) based on the class label attribute.
Second, each stratum is sampled as an independent sub-population, out of
which individual records are randomly selected for the different partitions.
Stratified Sampling ensures that each partition has records of all class labels
and that each partition follows the same class label distribution as the
original dataset. Thus, all Ensemble classifiers are trained on all class

BIG DATA RESEARCH 00 (2017) 000–000 5

labels, allowing the Ensemble to maintain a good accuracy even with
ordered and highly skewed datasets with minority classes.

Fig. 5 – Sequential single-node stratified sampling.

Big Data, with its large volumes, renders sequential single-node

Stratified Sampling impractical. Big Data does not fit in the memory of a
single node and is usually randomly partitioned when uploaded to a
distributed filesystem like HDFS. These partitions likely do not include
records of all class labels so building classifiers from these partitions results
in a poorly trained Ensemble classifiers.

Recombining the distributed Big Data for repartitioning using
sequential single-node Stratified Sampling is expensive in terms of disk and
network usage and processing time. The proposed Distributed Stratified
Sampling (DSS) addresses these issues.

DSS creates stratified partitions in parallel from the distributed
filesystem partitions without recombining them. The DSS algorithm,
illustrated in Fig. 6, runs independently on each machine in the cluster in a
shared-nothing architecture. It executes in a single pass over the data and
minimizes inter-machine communication. DSS consists of two phases,
namely: Local and Global sampling, which works as follows.

Given P distributed filesystem partitions, the Local phase runs in
parallel on each machine separately. First, the DSS creates strata based on
the records’ class labels on each machine. Second, it runs a round-robin
selector of size P on each stratum on each machine. Third, for each round-
robin cycle, one record is kept for the current machine and one record is
sent to each of the (P-1) other machines in cluster.

In the Global phase, each machine combines its remaining records with
the records sent to it from the other machines to create the training partition
for its local intermediate classifier. This new partition contains records of
all class labels required for producing a well-trained classifier.

Fig. 6 – Distributed stratified sampling.

The DSS algorithm run-time is the summation of the time taken to

conduct the Local sampling in parallel to create the local strata and the time
to do the Global sampling in parallel to exchange data records. The DSS
run-time is given by:

Where R is the total number of records, P is the number of partitions,
C is the number of class labels and Rc,p is the number of records belonging

to class label C in partition P. DSS is scalable and its run-time decreases
as the number of partitions increases. On the other hand, recombining the
distributed Big Data for repartitioning using sequential single-node
Stratified Sampling has a run-time of which is orders of magnitude
longer than the DSS run-time.

Approaches such as the Efficient Sample Generator [39] provide a
general, single-pass algorithm for generating samples from large, block-
partitioned datasets stored in a distributed filesystem. However, they do not
support stratified sampling nor disjoint partitioning required for building
well-trained distributed Ensembles.

3.3. Implementation

The LADEL model can distribute the training of any single-node
library on any distributed framework. As a proof-of-concept, we use the
proposed LADEL model to implement a cloud-ready distributed Weka-on-
Drill solution (codename QDrill). The Weka-on-Drill extends Apache Drill
[21], a distributed SQL query engine for non-relational storage, with data
mining capabilities. We choose Apache Drill as it provides end-users with
an easy-to-use SQL interface which requires minimum learning compared
to Scala or Java used in Spark and Hadoop, respectively. We choose Weka
[10] because it is a well-established widely used data mining library with
an extensive set of classification algorithms. The implementation is
available as the enhanced QDrill stand-alone, free and open-source solution
[40] [41] and as an IBM SPSS Modeler plugin with a GUI on the IBM SPSS
Predictive Analytics Gallery [42].

3.3.1. Architecture

Apache Drill is powerful in terms of accessing and joining data from

heterogeneous sources using its Storage Adaptor, which is usually a
cumbersome task when done in data mining libraries. On the other hand,
Drill does not have any data mining capabilities. Developing data mining
algorithms for Drill is time consuming and so would likely be limited to a
handful of algorithms, nothing compared to those available in the well-
established data mining libraries. Our Weka-on-Drill implementation
solves these issues by using Drill to load and join data from heterogeneous
sources and using the pre-existing classification algorithms of the well-
established Weka data mining library to train and score the classifiers but
in a distributed fashion.

The full system architecture is illustrated in Fig. 7, showing the
unmodified components of Drill (UI and JDBC/ODBC connection), the
modified (Distributed Query Planner, Query Execution Engine and the
Storage Adapter) and the newly added (Analytics Adapter).

We add the Analytics Adaptor to Drill to optimize and provide access to
the various data mining libraries. The Analytics Adaptor works with

Fig. 7 – LADEL Weka-on-Drill architecture.

6 BIG DATA RESEARCH 00 (2018) 000–000

Analytics Plugins for various data mining libraries, which transform the
data loaded by Drill to a data structure understandable by the data mining
libraries. This way, algorithms from more than one library can be used
together, leaving it to the Analytics Adaptor to resolve the inter-library data
format conversion. In addition, the plugins invoke the data mining library
APIs to train and score classifiers.

In this proof-of-concept, we implement the Weka Analytics plugin. The
plugin provides access to WEKA’s classification algorithms and converts
the data loaded by Drill to the ARFF format required by WEKA.

To train a new classifier using Weka-on-Drill, users submit the training
data source, the classification algorithm along with its arguments and the
desired parallelization level to the Master node. First, the Master node runs
the DSS algorithm on the Slave nodes to create stratified partitions. Second,
the Master node uses the Weka Analytics plugin on the Slave nodes to run
Weka’s sequential single-node classification algorithms on the stratified
partitions on each Slave node. Finally, intermediate classifiers trained on
the Slave nodes are aggregated at the Master node to produce the final
classifier.

3.3.2. Classifier Interoperability

Our Weka-on-Drill implementation adds a Model Storage plugin to
Drill’s Storage Adapter to write and read data mining models (i.e trained
classifiers). The Model Storage plugin can store and load Weka’s models
from any data store supported by Drill. This allows classifier
interoperability where a classifier trained using Weka-on-Drill can be used
for scoring on Weka-on-Spark or Weka-on-Hadoop or even on the
sequential single-node Weka.

3.3.3. Distributed Analytics Query Language (DAQL) Interface

Extracting patterns from data is the main aim of data miners. They do
not wish to learn new complex programming paradigms and languages. Our
LADEL Weka-on-Drill implementation (QDrill) provides a high-level
SQL-based interface which is compiled by the run-time system to the low-
level primitives required for the parallel execution. Using a SQL-based
interface to access data mining functionalities make the distribution of the
data mining tasks transparent to the user.
 We modify Drill’s Distributed Query Planner and Query Execution
Engine to introduce a number of new Keywords for running distributed
Analytics operations. The name “Distributed Analytics Query Language
(DAQL)” is given to the modified SQL syntax to reflect its Analytics
capabilities. DAQL allows invoking classification algorithms from within
Drill’s standard SQL query statements. Interested readers can see our other
work [41] for more details on the DAQL language.

The statements in Fig. 8 train a Weka classifier in a distributed fashion
using the proposed LADEL model. The first statement changes the storage
location to a writable location. The second statement tells Drill’s Storage
Adaptor to use the introduced Model Storage plugin to save the classifier
after training. The third statement consists of three nested DAQL statement:
• The inner statement invokes the DSS partitioning algorithm using our
qdm_DSS function with arguments: the number of partitions
<num parts>, the record’s attributes <columns> and the record’s
label <label_column>, respectively. This statement fetches the
training data from any Drill-supported data store using the FROM clause.
The FROM clause can also have a join between two heterogeneous data
sources. The WHERE clause specifies conditions on the records to fetch.

• The middle statement uses our qdm_ensemble_weka function to
train a classifier on each data partition using the GROUP BY clause to
send records belonging to different partitions to the different Slave
Nodes. Our qdm_ensemble_weka function defines the classifier
algorithm, sets its arguments, specifies the data columns to use for
training and specifies the label column, respectively.

• The outer statement uses our qdm_ensemble_weka function to
aggregate the classifiers trained on the Slave Nodes into an Ensemble.
Finally, the statement uses our TRAIN MODEL clause to save the
Ensemble under <model name>.

1> USE dfs.tmp;

2> ALTER SESSION SET `store.format`='model';

3> TRAIN MODEL <Model Name> AS

 SELECT qdm_ensemble_weka(mymodel)

 FROM (SELECT qdm_ensemble_weka(‘<Algorithm>',‘<Args>',

 data.columns, data.label_column) as mymodel

 FROM (SELECT columns, qdm_DSS(<Num Parts>,

 columns, label_column) as partition

 FROM `<Data Source>`

 WHERE <Conditions>

) as data

 GROUP BY data.partition);

Fig. 8 –DAQL statement for training a classifier.

3.3.4. IBM SPSS Modeler Graphical Interface

Fig. 9 – IBM SPSS Modeler Graphical Interface.

Our Weka-on-Drill inherits the Drill’s JDBC/ODBC interface. This

allows connecting any program or Business Intelligence tool to our solution
and instantaneously adding analytical capabilities to that program or
extending its capabilities, as within the IBM SPSS Modeler. The Modeler
plugin [43] is written in the R language and has an easy-to-use GUI
interface illustrated in Fig. 9. The plugin uses Drill’s JDBC/ODBC
interface to send data and configuration to our Weka-on-Drill solution. Our
solution then uses the LADEL model to distribute the training of the
specified classification algorithm and returns the trained model back to
Modeler. The trained classifier can be used in Modeler like any other
classifier trained within Modeler. This shows the capability of the proposed
solution to work in conjunction with other analytics solutions.

BIG DATA RESEARCH 00 (2017) 000–000 7

4. Evaluation

In this section, we evaluate three approaches for training a classifier.
We do not evaluate the training time of the different approaches since it is
already well established that some distributed frameworks are faster than
others and because the LADEL model can be ported to any distributed
framework (e.g Spark, Hadoop, etc.). Instead, we focus on evaluating the
prediction accuracy of classifiers trained using the different approaches.

The first approach uses our LADEL proof-of-concept implementation
on the Apache Drill 1.2 distributed framework and the weka-dev-3.7.13
sequential single-node data mining library. Code is available for free and is
open-source [40]. The second approach uses an implementation of weka-
dev-3.7.13 vote-based distributed Ensemble learning representing the
published work on distributing sequential single-node classification
algorithms [13] [17] [20]. The third approach uses the original sequential
single-node weka-dev-3.7.13 classification algorithm (no Ensemble)
running on a single machine trained on the entire training dataset. The third
approach represents the baseline for our evaluation.

Algorithms: The Hoeffding Tree and the Multilayer Perceptron
(Neural Networks and Deep Learning) algorithms are used in the
evaluations here. Both algorithms are frequently used to address various
classification problems. They both require loading the entire training
dataset in-memory to do the training, thus both require a complete rewrite
to run in parallel. Other algorithms like C4.5 decision tree, KNN, Random
Tree, Decision Table, Decision Stump, REP Tree, PART decision list,
Support Vector Machine, and Linear Regression suffer from the same
distribution problem. We only include evaluations for Hoeffding Tree and
the Multilayer Perceptron as they represent LADEL’s worst and best cases
in terms of training time, respectively and LADEL’s best and worst cases
in terms of accuracy, respectively, and to keep charts easy to read.

Dataset: At the beginning of our experiments we ran on 4 datasets:
KDD Cup 1999 [44], SUSY [45], HEPMASS ALL [46] and HIGGS [45].
The results were very similar but consumed enormous amounts of time to
run on the different algorithms with different dataset configurations and so
we decided to only use the HIGGS dataset for the remainder of the
experiments.

Since we always compare with the single classifier performance, only
the dataset characteristics matter. We tested the LADEL's effectiveness in
different scenarios using datasets that are artificially generated from the
HIGGS dataset. The original unordered HIGGS dataset was modified to
create three extra datasets to test LADEL in a controlled environment.
These are Ordered dataset, 1:2 skewed dataset, and 1:10 skewed dataset.
The generated datasets are described later in each analysis.

The HIGGS real-life dataset from the UCI repository is used with the
characteristics summarized in Table 1. A separate set of records, not
included in the training, is used for validating the accuracy of the trained
classifier. We modify the dataset, both training and validation sets, by
removing records with missing values and converting nominal values to
numeric so that any data mining algorithm can work on them. We do not
use any other pre-processing operations, data transformation or feature
selection to prevent bias in the results.

Table 1 – HIGGS Data Sets Characteristics Summary.
Training
Records

Validation
Records

Attributes

Class
Labels

Labels
Distribution

Size
[GB]

7,158,118 3,385,684 28 2 Balanced
1:1

4.65

Environment Setup: We use the Amazon EC2 T2.Large [47] Ubuntu
instances with two cores (3.3GHz each), 8GB RAM, 8GB Swap space and
a 100GB Solid State Disk. Our cluster for evaluating LADEL and existing
vote-based Ensemble solutions uses 10 of these nodes providing up to 40
threads, 20 cores, 80GB of RAM and 700GB of distributed HDFS storage
space that is configured to have three replicas per block. For this
configuration, the HIGGS dataset is Big Data since its data structure cannot
fit in a node’s memory. The single machine for evaluating the original
sequential single-node classification algorithm has two cores (3.3GHz
each), 24GB RAM and 50GB disk space which is big enough to hold the
entire dataset in memory.

4.1. Distributed Ensembles Evaluation

In this analysis, we investigate the appropriate size of a distributed
Ensemble for producing predictions of the same, or better accuracy than a
sequential single-node classifier trained on the entire training dataset, while
reducing the training and scoring time. A distributed Ensemble is built by
training classifiers on splits of the training data on multiple Slave nodes.
The classifiers are then grouped together in a vote-based Ensemble on the
Master node.

4.1.1. Training Time

In terms of training time, adding more classifiers to the Ensemble leads
to increasing the training parallelization which leads to a shorter training
time as illustrated in Fig. 10. Our empirical studies show that using
distributed Ensembles with any classification algorithm and any number of
partitions consumes at most 30% the time required for training a sequential
single-node classifier on the entire training dataset (HoeffdingTree: 7.2min-
MultilayerPerceptron: 14.14hrs). It should be noted here that with some
classification algorithms (e.g Hoeffding Tree) having too many Ensemble
classifiers (e.g. 1000) leads to competition for the computational resources
which slightly increases the training time.

Fig. 10 – Ratio of the distributed Ensemble training time to that of a
sequential single-node classifier.

4.1.2. Scoring Time

In terms of scoring time, the scoring time of an Ensemble is directly
proportional to the number of its classifiers as illustrated in Fig. 11. As the
number of Ensemble classifiers increases, the more classifiers need to score
each new data point before voting for the final classification. In Fig.11, the
trained distributed Ensemble is deployed on a single machine and used to
score the validation data records. As can be seen in Fig. 11, using

8 BIG DATA RESEARCH 00 (2018) 000–000

Ensembles significantly increases the scoring time compared to having a
single classifier when running on a single machine.

 To reduce the scoring time, the Ensemble is copied to 10 nodes and
the validation data is split across them to parallelize the scoring operations.
Distributing the scoring operation across 10 machines does reduce the
scoring time and it becomes shorter than that of a single classifier running
on a single machine as illustrated in Fig. 12. However, distributing the
scoring operation does not help when the number of the Ensemble
classifiers becomes too large (e.g. 1000). Distributed scoring on 10
machines for very large Ensembles can consume 18X the scoring time of a
sequential single-node classifier running on a single machine since still
each record needs to be scored against 1000 classifiers then a vote need to
be made among the 1000 scores.

Fig. 12 – Log ratio of the distributed scoring time on 10 machines of
an Ensemble to that of a single classifier on a single machine.

4.1.3. Prediction Accuracy

Fig. 13 – Prediction error of the LADEL Ensemble compared to that
of a sequential single-node classifier trained on all data.

The Ensemble error percentage Ee is calculated as ,
where Me is the number of records misclassified by the Ensemble, Ms is the
number of records misclassified by the Single Classifier and V is the total
number of validation records.

 In terms of prediction accuracy, the LADEL Ensembles achieve
accuracies significantly better (16.84% less misclassifications for
Hoeffding Tree with 20 partitions) than that of a sequential single-node
classifier trained on the entire training dataset as illustrated in Fig. 13. The
LADEL Ensembles create a diverse set of weak classifiers that overcome
each other’s misclassifications, thus achieving better accuracies.

The Ensembles’ accuracy, however, decreases as the number of
Ensemble classifiers increases since the number of records per training data
partition decreases. For example, in the case of 1000 partitions, there are
only 7,134 records per partition that is 3,567 records per class label per
partition. Our interpretation is that the amount of records becomes not
enough to adequately train the classifiers, which leads to the increase in the
prediction error.

4.1.4. Observations

 A LADEL distributed classifier Ensemble achieves accuracies that are
similar or better than that of a single-node classifier trained on the entire
training dataset. As per our experiments, this statement holds for all Weka’s
algorithms and is consistent with previous research [23] [27] [48].

The number of Ensemble classifiers to use depends on the number of
records in the training dataset. It is better to have more classifiers with
bigger datasets to speed up the training without affecting the Ensemble’s
accuracy. Having too many classifiers, each trained on fewer records results
in a poorly trained classifier. From our observation here, we find that having
from 20 to 40 classifiers results in the best accuracy for the HIGGS dataset.
With 20 to 40 classifiers, both the training and scoring times are acceptable.
Having more classifiers leads to reducing the training time but causes
lowering the accuracy and increasing the scoring time

4.2. Prediction Accuracy Evaluation for LADEL Versus Regular
Vote-Based Ensembles

In this analysis, the proposed LADEL Ensemble is evaluated against
regular vote-based Ensembles commonly used in the literature for
distributing sequential single-node classification algorithms [13] [17] [20].
Evaluation is done for the two pitfalls introduced earlier. First, we study the
Ensembles’ prediction accuracy when given a training dataset ordered by
the class label attribute. Second, we study the effect of the training dataset
skewness on the Ensembles’ prediction accuracy.

4.2.1. Ordered Training Dataset Evaluation

In this evaluation, the HIGGS dataset records are ordered by the class
label attribute. The ordered dataset is uploaded to the HDFS, split into
64MB splits and automatically distributed among the cluster 10 nodes.

As illustrated in Fig. 14, creating a distributed Ensemble using the
proposed LADEL model results in a significantly better accuracy compared
to a single classifier trained on the entire training dataset (14% less
misclassifications for Hoeffding Tree). It also results in a significantly
better accuracy compared to regular vote-based distributed Ensembles
commonly used in the literature for distributing sequential single-node
classification algorithms (17.65% less misclassifications for Multilayer
Perceptron). For the Hoeffding Tree, both the single classifier and the

Fig. 11 – Log ratio of the single machine scoring time of an
Ensemble to that of a single classifier on a single machine.

BIG DATA RESEARCH 00 (2017) 000–000 9

regular vote-based distributed Ensemble misclassify almost 50% of the
validation records. The LADEL Ensemble with its well-trained classifiers
lower that error to 33%.

Fig. 14 – Prediction error of single classifier, vote-based distributed
Ensemble and LADEL Ensemble on ordered datasets.

The deficiency of regular vote-based distributed Ensembles is

highlighted when using the Hoeffding Tree algorithm. The Hoeffding Tree
Ensemble should benefit from the diversity in its suboptimal trees (i.e.
make errors on different validation records) to produce accuracies better
than that of a single classifier [27]. As shown in Fig. 14, there was no
accuracy gain when using the regular vote-based distributed Ensemble
because its trees are each trained on a single class label.

 Using the regular vote-based distributed Ensemble approaches can
even lead to significantly worse accuracies compared to a sequential single-
node classifier trained on the entire training dataset which is the case for
the Multilayer Perceptron (16.37% more misclassifications). The Ensemble
classifiers get trained on records belonging to only one class label due to
the way HDFS splits the training dataset. The lack of training records
representing all class labels creates a classifier that always predicts the class
label it is trained on which significantly reduces the Ensemble accuracy.
This scenario is very common and the LADEL model is designed to handle
this scenario by having records belonging to all class labels in all data splits.

4.2.2. Skewed Training Dataset Evaluation

In this analysis, we investigate the effect of training dataset skewness
towards one of the class labels on the classifiers’ prediction accuracy. Three
scenarios are considered in this analysis. The first scenario uses the original
balanced HIGGS dataset [1:1] which has an equal number of records
belonging to each class. The second scenario [1:2] reduces the number of
records belonging to class 0 to half the number of records belonging to class
1. The third scenario [1:10] further reduces the number of records belonging
to class 0 to one tenth the number of records belonging to class 1. The
skewed datasets are then uploaded to HDFS, split into 64MB splits and
automatically distributed among the cluster 10 nodes.

The main observation from the analysis illustrated in Fig. 15 is that as
the training dataset becomes more biased towards one of the class labels,
that is one of the class labels becomes less represented, the classifier
accuracy decreases as it becomes more biased towards choosing the more
represented class label when predicting.

The LADEL model ensures that each data split contains records
belonging to all class labels no matter how little a class label is represented
in the original training dataset. Thus, all LADEL Ensemble classifiers are
trained on all class labels, allowing the LADEL Ensemble to maintain a

good accuracy even with highly skewed datasets with minority classes.
That is why the LADEL error does not go above 4% of that of a single
classifier (Multilayer Perceptron [1:10]) while the regular vote-based
distributed Ensemble approaches reported in literature exceed 16%
(Multilayer Perceptron [1:2]).

The experiment (Multilayer Perceptron [1:10]) was repeated using
Simple Random Sampling (SRS) which yielded a 47.02% error rate while
taking the same time as DSS. With SRS, all minority class records are
misclassified because the majority of the ensemble classifiers are not
trained on records belonging to the minority class. This shows that DSS
leads to higher accuracy in more situations than SRS.

With skewed datasets with minority classes, it is recommended to have
as few Ensemble classifiers as possible to ensure that there are enough
records belonging to the minority class in each training data split to
adequately train the classifiers.

4.3. Distributed Stratified Sampling Overhead

The prediction accuracy maintained by the LADEL model comes at a
price. Distributed training using LADEL includes the cost of the DSS
algorithm to create stratified partitions to assure that each Ensemble
classifier has records belonging to all class labels. Using DSS increases the
training time compared to other vote-based distributed Ensemble learning
approaches as illustrated in Fig. 16.

(a) Hoeffding Tree

(b) Multilayer Preceptron

Fig. 15 – Prediction error of single classifier, vote-based distributed
Ensemble and LADEL Ensemble on skewed training datasets.

10 BIG DATA RESEARCH 00 (2018) 000–000

Fig. 16 – Training time with and without DSS.

5. Conclusions and Future Work

In this article, we introduce the LADEL model for distributing the
training of classifier Ensembles while avoiding the pitfalls suffered by other
vote-based distributed Ensembles. The LADEL model is easy to use, even
for data miners without experience with parallel and distributed systems,
since it hides the details of parallelization. It significantly reduces the
development time for creating distributed classification algorithms and
adds scalability to a large set of classification algorithms that are either
unimplemented in distributed data mining libraries or unusable for Big Data
in their sequential single-node implementation. The LADEL model relies
on the proposed Distributed Stratified Sampling (DSS) algorithm to
generate stratified samples from large, pre-partitioned datasets in a shared-
nothing architecture. It executes in a single pass over the data and
minimizes inter-machine communication.

An open-source proof-of-concept LADEL implementation is built on
the Apache Drill distributed framework and the Weka sequential single-
node data mining library. The proof-of-concept allows distributing the
training of all Weka’s classification algorithms on Apache Drill without
rewriting the algorithms. The LADEL model, however, can be
implemented on any distributed framework to distribute the training of any
sequential single-node data mining library.

The empirical study shows that LADEL Ensembles can have
classification accuracy that is similar and sometimes better than having a
single classifier trained on the entire training dataset. The DSS algorithm
implemented in the LADEL model guarantees having records representing
all class labels in the training partitions. The empirical study also shows
that other vote-based distributed Ensembles reported in literature tend to
have significantly worse classification accuracies with ordered datasets
compared to the single classifier due to the lack of records representing all
class labels in its classifiers’ training data.

For the future work, the prediction accuracy of distributed regression
Ensembles and distributed clustering approaches is to be evaluated. This
evaluation is then to be used to devise models for distributing regression
and clustering that maintains their accuracies.

Acknowledgements

This work is supported by IBM Canada Centre for Advanced Studies,
Ontario Research Fund (ORF) and National Science and Engineering
Research Council (NSERC).

The authors would like to thank the Center for Machine Learning and
Intelligent Systems, Bren School of Information and Computer Science,

University of California, Irvine, for their publicly available Machine
Learning Repository [http://archive.ics.uci.edu/ml] from which data sets
were used in this work.

References

[1] "Mahout," [Online]. Available: https://mahout.apache.org/.

[2] "Oryx," [Online]. Available: https://github.com/cloudera/oryx.

[3] "H2O," [Online]. Available: http://0xdata.com/h2o-2/.

[4] "MlLib," [Online]. Available: https://spark.apache.org/mllib/.

[5] E. Sparks, A. Talwalkar, V. Smith, X. Pan, J. Gonzales, T. Kraska,
M. Jordan and M. Franklin, "MLI: An API for Distributed Machine
Learning," in IEEE 13th Int’l Conf. on Data Mining (ICDM), 2013.

[6] "Deeplearning4j," [Online]. Available: http://deeplearning4j.org/.

[7] T. White, Hadoop: The Definitive Guide (1st ed.), O'Reilly Media,
Inc., 2009.

[8] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker and I.
Stoica., "Spark: cluster computing with working sets.," in 2nd
USENIX Conf. on Hot topics in cloud computing (HotCloud'10),
2010.

[9] "R," [Online]. Available: https://www.r-project.org/.

[10] "Weka," [Online]. Available:
http://www.cs.waikato.ac.nz/ml/weka/.

[11] "scikit-learn," [Online]. Available: http://scikit-learn.org/stable/.

[12] "RapidMiner," [Online]. Available: https://rapidminer.com/.

[13] A.-K. Koliopoulos, P. Yiapanis, F. Tekiner, G. Nenadic and J.
Keane., "A Parallel Distributed Weka Framework for Big Data
Mining using Spark.," in IEEE International Congress on Big Data,
2015.

[14] M. Fernández-Delgado, E. Cernadas, S. Barro and D. Amorim, "Do
we need hundreds of classifiers to solve real world classification
problems?," Journal of Machine Learning Research, vol. 15, pp.
3133-3181., 2014.

[15] J. Dean and S. Ghemawat, "MapReduce: simplified data processing
on large clusters," in Symp. on Operating Systems Design &
Implementation (OSDI'04), 2004.

[16] "DistributedWekaBase," [Online]. Available: http://goo.gl/wcJrCa.

[17] "DistributedWekaHadoop," [Online]. Available:
http://goo.gl/69lVLE.

[18] "DistributedWekaSpark," [Online]. Available:
http://goo.gl/sWngFD.

[19] K. Shvachko, H. Kuang, S. Radia and R. Chansler, "The Hadoop
Distributed File System," in IEEE 26th Symp. on Mass Storage Sys.
and Technologies (MSST '10), 2010.

[20] "RHadoop," [Online]. Available: https://goo.gl/CsZad3.

[21] "Apache Drill," [Online]. Available: https://drill.apache.org/.

[22] M. Wozniak, M. Graña and E. Corchado, "A survey of multiple
classifier systems as hybrid systems," Information Fusion, vol. 16,
pp. 3-17, 2014.

[23] L. K. Hansen and P. Salamon, "Neural Network Ensembles," IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol.
12, no. 10, pp. 993-1001, 1990.

BIG DATA RESEARCH 00 (2017) 000–000 11

[24] A. Krogh and J. Vedelsby, "Neural Network Ensembles, Cross
Validation, and Active Learning," Advances in Neural Information
Processing Systems , vol. 7, pp. 231-238, 1995.

[25] D. Optiz and J. Shavlik, "Generating Accurate and Diverse
Members of a Neural-Network Ensemble," Advances in Neural
Information Processing Systems, vol. 8, pp. 535-541, 1996.

[26] L. Rokach, "Ensemble-based classifiers," Artificial Intelligence
Review, vol. 33, no. 1, pp. 1-39, 2010.

[27] N. Chawla, T. Moore, L. Hall, K. Bowyer, P. Kegelmeyer and C.
Springer, "Distributed learning with bagging-like performance,"
Pattern Recognition Letters, vol. 24, pp. 455-471, 2003.

[28] G. Brown, J. Wyatt, R. Harris and X. Yao, "Diversity creation
methods: a survey and categorisation," Information Fusion, vol. 6,
no. 1, p. 5–20, 2005.

[29] L. Breiman, "Bagging predictors," Machine Learning, vol. 24, no.
2, pp. 123-140, 1996.

[30] Y. Freund, "Boosting a weak learning algorithm by majority," in
the 3rd annual workshop on Computational learning theory (COLT
'90), 1990.

[31] R. Bryll, R. Gutierrez-Osuna and F. Quek, "Attribute bagging:
improving accuracy of classifier ensembles by using random
feature subsets," Pattern Recognition, vol. 36, no. 6, p. 1291–1302,
2003.

[32] K. M. Ting, J. R. Wells, S. C. Tan, S. W. Teng and G. I. Webb,
"Feature-subspace aggregating: ensembles for stable and unstable
learners," Machine Learning, vol. 82, p. 375–397, 2011.

[33] M. Galar, A. Fernández, E. Barrenechea, H. Bustince and F.
Herrera, "An overview of ensemble methods for binary classifiers
in multi-class problems: Experimental study on one-vs-one and
one-vs-all schemes," Pattern Recognition, vol. 44, 2011.

[34] D. H. Wolpert, "The supervised learning no-free-lunch Theorems,"
in 6th Online World Conf. on Soft Computing in Industrial
Applications, 2001.

[35] D. Opitz and R. Maclin, "Popular ensemble methods: An empirical
study," Journal of Artificial Intelligence Research, p. 169–198,

1999.

[36] L. Shapley and B. Grofman, "Optimizing group judgmental
accuracy in the presence of interdependencies," Public Choice, vol.
43, no. 3, p. 329–333, 1984.

[37] C. Perlich, F. Provost and J. S. Simonoff, "Tree induction vs.
logistic regression: a learning-curve analysis," Jornal of Machine
Learning Research, pp. 211-255, 2003.

[38] "TensorFlow," [Online]. Available: https://www.tensorflow.org.

[39] S. Schelter, J. Soto, V. Markl, D. Burdick, B. Reinwald and A.
Evfimievski, "Efficient sample generation for scalable meta
learning," in IEEE 31st International Conference on Data
Engineering, Seoul, 2015.

[40] "QDrill," [Online]. Available: https://github.com/skhalifa/QDrill.

[41] S. Khalifa, "Achieving Consumable Big Data Analytics by
Distributing Data Mining Algorithms," PhD Thesis. Queen's
Universtiy, Canada, 2017.

[42] "IBM SPSS Predictive Analytics Gallery," [Online]. Available:
http://ibmpredictiveanalytics.github.io/.

[43] "QDrill," [Online]. Available:
https://github.com/IBMPredictiveAnalytics/QDrill.

[44] "KDD Cup 1999 UCI Data Data Set," [Online]. Available:
http://archive.ics.uci.edu/ml/datasets/kdd+cup+1999+data.

[45] P. Baldi, P. Sadowski and D. Whiteson, "Searching for Exotic
Particles in High-energy Physics with Deep Learning," Nature
Communications, vol. 5, 2014.

[46] "HEPMASS UCI Data Set," [Online]. Available:
https://archive.ics.uci.edu/ml/datasets/HEPMASS.

[47] "Amazon EC2 instance types," [Online]. Available:
https://aws.amazon.com/ec2/instance-types/.

[48] R. E. Schapire, Y. Freund, P. Barlett and W. S. Lee, "Boosting the
margin: A new explanation for the effectiveness of voting
methods," in 14th Int’l Conf. on Machine Learning (ICML '97),
1997.

