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A B S T R A C T 

Label-Aware Distributed Ensemble Learning (LADEL) is a programming model and an associated 
implementation for distributing any classifier training to handle Big Data. It only requires users to specify 
the training data source, the classification algorithm and the desired parallelization level. First, a distributed 
stratified sampling algorithm is proposed to generate stratified samples from large, pre-partitioned datasets 
in a shared-nothing architecture. It executes in a single pass over the data and minimizes inter-machine 
communication. Second, the specified classification algorithm training is parallelized and executed on any 
number of heterogeneous machines. Finally, the trained classifiers are aggregated to produce the final 
classifier.  
Data miners can use LADEL to run any classification algorithm on any distributed framework, without any 
experience in parallel and distributed systems. The proposed LADEL model can be implemented on any 
distributed framework (Drill, Spark, Hadoop, etc.) to speed up the development of its data mining 
capabilities. It is also generic and can be used to distribute the training of any classification algorithm of 
any sequential single-node data mining library (Weka, R, scikit-learn, etc.). Distributed frameworks can 
implement LADEL to distribute the execution of existing data mining libraries without rewriting the 
algorithms to run in parallel.   
As a proof-of-concept, the LADEL model is implemented on Apache Drill to distribute the training 
execution of Weka’s classification algorithms. Our empirical studies show that LADEL classifiers have 
similar and sometimes even better accuracy to the single-node classifiers and they have a significantly faster 
training and scoring times. 

© 2018 xxxxxxxx. Elsevier . All rights reserved.  
 

1. Introduction 

Data mining is the process of discovering hidden patterns in data and 
using these patterns to predict the likelihood of future events. Several 
problems can be addressed using data mining like: 
• Classification: Predict the category (discrete) of a new data point. 
• Regression: Predict the value (continuous) of a new data point. 
• Clustering: Split data points into categories. 
• Association Rules: Find relationships between attributes. 

In this work, we focus on the Classification problem and ways of making 
it Big Data ready. Classification is a supervised learning approach 
consisting of two phases: (1) Training: a classifier is built using historical 
labeled data (i.e data with known category) and (2) Scoring: the trained 
classifier is used to predict the category of new data points (i.e with 

unknown category). With the large volume of Big Data, classifier training 
time and memory requirements are a real challenge.  

Scalable distributed data mining libraries like Apache Mahout [1], 
Cloudera Oryx [2], Oxdata H2O [3], MLlib [4] [5] and Deeplearning4j [6] 
implement distributed versions of the classification algorithms to run on 
Hadoop [7] and Spark [8]. Distributing classifier training significantly 
reduces the training time and enables digesting of Big Data. However, the 
approach used by scalable libraries requires rewriting the classification 
algorithms to execute in parallel. The rewriting process is complex, time- 
consuming and the quality of the modified algorithm depends entirely on 
the contributors’ expertise. Thus, scalable libraries fail to support as many 
algorithms as sequential single-node libraries like R [9], Weka [10], scikit-
learn [11] and RapidMiner [12]. Rewriting the algorithms makes scalable 
libraries hard to maintain and extend as it does not provide a unified model 
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for distributing the algorithms, rather it uses a custom distributed 
implementation for each one [13].  

Given the existing data mining libraries, data miners are left with two 
choices. First, they may sacrifice prediction accuracy for a faster training 
execution. To elaborate, users can leverage a distributed data mining library 
and benefit from the faster distributed training execution. However, this 
limits users to a small number of classification algorithms that might not 
provide the best accuracy since there is no one algorithm that outperforms 
all others for all situations [14]. Second, they may sacrifice the training 
execution time for a better prediction accuracy. They can use a sequential 
single-node data mining library and utilize the larger number of supported 
classification algorithms to achieve the highest accuracy but be limited to 
the single node processing capabilities. Fig. 1 illustrates the limited number 
of classification algorithms supported by scalable distributed libraries like 
Mahout and MLlib compared to sequential single-node libraries like Weka. 

 
Fig. 1 – Classification algorithms supported by Weka & Spark MLlib.

 
To get out of this dilemma, several papers were published on extending 

single-node data mining libraries to support MapReduce [15]. 
DistributedWekaBase [16], DistributedWekaHadoop [17] and 
DistributedWekaSpark [13] [18]  extend Weka to access the Hadoop 
Distributed File System (HDFS) [19], Hadoop and Spark, respectively. 
Another solution is RHadoop [20] which allows running R code on Hadoop 
and gives access to HDFS.  

 
The approach used in the published work on distributing sequential 

single-node algorithms operates as follows. First, the training data is 
partitioned into several sequential splits distributed across the cluster nodes. 
Second, each Slave node runs the training algorithm on the local data 
split(s) to train an intermediate classifier. Finally, a vote-based ensemble is 
created of the trained intermediate classifiers at the Master node as 

illustrated in Fig. 2. In the scoring phase, the vote-based ensemble works 
by having each classifier in the ensemble predict the category of the new 
data point, then the category with the majority vote is selected as the 
ensemble’s final prediction.  

Distributing sequential single-node algorithms gives them the ability to 
scale to digest Big Data. It also provides data miners parallel versions of 
the richer set of classification algorithms supported by the single-node 
libraries. Unfortunately, the published work in this area suffers from a 
major pitfall. As far as we know, no other work evaluates the effects of their 
algorithm distribution approach on the classifier’s prediction accuracy nor 
proposes any measures for maintaining the prediction accuracy after 
distributing the classifier’s training.  

In this paper, we make the following contributions. First, we evaluate the 
prediction accuracy of published work on distributing single-node 
classification algorithms. Second, we propose the Distributed Stratified 
Sampling (DSS) algorithm for generating stratified samples from large, pre-
partitioned datasets in a shared-nothing architecture without recombining 
the partitions. It executes in a single pass over the data and minimizes inter-
machine communication. The DSS algorithm ensures that each ensemble 
classifier is trained on records of all class labels. Finally, we propose the 
unified Label-Aware Distributed Ensemble Learning (LADEL) model for 
distributing the training of any sequential single-node classification 
algorithm on any distributed framework. LADEL eliminates the need to 
rewrite classification algorithms using a distributed framework. It also 
maintains the classifier’s prediction accuracy after distributing its training.  

As a proof-of-concept, we use the proposed LADEL model to implement 
the distributed Weka-on-Drill (codename QDrill) that extends the Apache 
Drill distributed framework [21] with data mining capabilities. We choose 
Apache Drill as it provides end-users with an easy-to-use SQL interface 
which requires minimum learning compared to Scala or Java used in Spark 
and Hadoop, respectively. We choose Weka [10] because it is a well-
established widely used data mining library with an extensive set of 
classification algorithms.  

It should be noted that the LADEL model can distribute the training of 
any single-node library on any distributed framework (i.e LADEL can 
implement Weka-on-Spark, Weka-on-Hadoop, R-on-Spark, etc.). The 
distributed training time depends on the underlying distributed framework 
that is used. This means that a LADEL Weka-on-Spark implementation 
results in faster training compared to a LADEL Weka-on-Drill 
implementation, simply because Spark is faster than Drill. On the other 
hand, a LADEL Weka-on-Spark implementation provides more algorithms 
to choose from compared to the natively distributed Spark MLlib while 
maintaining similar processing speeds.  

As far as we know, our work is the first to consider the effects of 
distributing classifier training on the prediction accuracy and the first to 
design measures to prevent distributed classifier training from affecting the 
classifier’s prediction accuracy. 

The rest of the paper is organized as follows: Section 2 introduces the 
distributed classifier training approach and highlights the key pitfalls in the 
related work. Following that, the Label-Aware Distributed Ensemble 
Learning (LADEL) model is presented in section 3. Evaluation follows in 
section 4. Finally, section 5 has the conclusions and future work. 

2. Distributed Classifier Training: Benefits and Pitfalls 

The main issue with many sequential single-node classification 
algorithms is that their training cannot be distributed, unless the algorithm 
is rewritten, because they need the entire dataset loaded in-memory to train 

Fig. 2 –  Distributed classifier Ensemble training  
(Diamond icons represent classifiers). 
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the classifier. Distributed Classifier Ensembles offer a solution to this 
problem. In this section, we first introduce the original single-node 
Classifier Ensemble approach. Second, we illustrate the modifications done 
to the single-node Classifier Ensemble approach to allow distributed 
training. Finally, we highlight the pitfalls caused by these modifications and 
show how they affect the overall Ensemble prediction accuracy. 

2.1. Single-Node Classifier Ensembles 

The Classifier Ensemble method trains several classifiers on the training 
dataset and then groups all trained classifiers into a more powerful 
classifier. Classifier Ensembles allow classifiers in the Ensemble to 
mitigate the faults of the individual classifiers. An Ensemble allows taking 
the majority vote of the individual classifier results, thus eliminating the 
risk of picking a bad classifier. In recent years, there has been a growing 
attention aimed at building Classifier Ensembles of better performance with 
the same or better accuracy [22].  

Previous research was conducted to exploit the local behavior of 
different algorithms to enhance the accuracy of the overall Ensemble [14]. 
Now, it is established that an Ensemble of a large enough set of diverse 
unstable well-trained classifiers of more than random accuracy has the 
same or better prediction accuracy than a single classifier [23] [24] [25] 
[26]. The reasons behind this are: 
• A large enough set of classifiers where a classifier’s mistakes get 

corrected by the other classifiers in the Ensemble [14]. 
• A Diverse set of classifiers means that the Ensemble classifiers should 

make uncorrelated errors with respect to one another. That is, each 
classifier in the Ensemble misclassifies a different set of records [27]. 
Unfortunately, the problem of how to measure classifier diversity is still 
an open research topic. However, several approaches can be used for 
classifier diversification [22] [26] [28]: 
o Different training set records. Each classifier is trained on a 

different bootstrap sample of the training data records. This 
approach is convenient in the cases of a shortage or excess of 
learning examples. In case of a shortage of records, different joint 
random subsets can be generated from the data. In case of an excess 
amount of data that cannot fit in memory, disjoint subsets that fit 
in memory can be generated. The most popular techniques are 
Bootstrap Aggregating (Bagging) [29] and Boosting [30]. 

o Different training set attributes (columns/features). Each classifier 
is trained on the entire set of training records but on a sub-set of 
the columns [31] [32]. 

o Different labels. Each classifier is designed to classify only a sub-
set of the problem labels. For example, a multi-class classification 
problem can be decomposed into a set of binary classification 
problems [33]. 

o Different algorithm parameters. Each classifier is initialized with 
a different set of values for its parameters and thus have a different 
local optimum [22]. 

o Different algorithms. Each classifier is built using a different 
algorithm that is good at handling a sub-set of the problem patterns. 
This approach takes advantage of the different biases of each 
algorithm [34]. 

• Unstable means that a classifier’s accuracy depends on the training 
dataset. Changing the training dataset results in a different model of a 
different accuracy. Unstable classifiers are Multilayer Perceptron, 
Decision Trees and Linear Regression [35].  

• Well-trained means that the training dataset needs to be large enough to 
ensure the classifier has seen all different patterns.  

• More than random accuracy is required for the classifiers to increase the 
likelihood of making the correct decision according to the Condorcet 
Jury Theorem [36]. 

2.2. Distributed Classifier Ensembles 

The Classifier Ensemble approach trains multiple classifiers 
independently before joining them to create the final classifier. This parallel 
nature of Classifier Ensembles makes it well-suited for our problem of 
distributing sequential single-node classification algorithms across many 
computing nodes. However, the original Bagging algorithm [29] used to 
create Classifier Ensembles cannot be directly implemented for our 
problem.  

The original Bagging algorithm is a sequential single-node algorithm. 
It runs on a single node and requires having all training data on a single 
node. It then works by having each of the Ensemble classifiers trained on a 
bootstrap sample of the training dataset of the same number of records as 
the original full training set. For example, given a training dataset of 1k 
records occupying 1TB, Bagging creates 5 training datasets to train 5 
classifiers in the Ensemble where each training dataset is of size 1k records 
and uses 1TB of disk space. With Big Data, training using a single multi-
gigabyte dataset is impractical as it does not fit in memory, so using 
Bagging to create multiple datasets of sizes equal to the original dataset, 
one for each classifier, is therefore impractical.   

The Bagging-like approach [27] addresses this challenge by training the 
Ensemble classifiers on disjoint partitions of the training dataset that can fit 
in memory, where these partitions, if combined, will have the size of the 
original training dataset. This way all data is used in training to yield a better 
accuracy than if sampled [37]. Training the Ensemble classifiers on 
partitions of the original dataset provides a diverse set of classifiers which 
improves the Ensemble accuracy. The Bagging-like approach is less 
complex and faster than the original Bagging approach. Empirical studies 
[27] also show that Bagging-like Ensembles have prediction accuracy 
similar to that of Bagging Ensembles [29] and can exceed the prediction 
accuracy of sequential single-node classifiers trained on the entire training 
dataset.  

Published work on distributing sequential single-node algorithms like 
DistributedWekaHadoop [17], DistributedWekaSpark [13] [18] and 
RHadoop [20] implement the Bagging-like approach to realize distributed 
training of their classifier Ensembles. Training data is uploaded to the 
HDFS causing it to get sequentially split into 64MB disjoint partitions 
which then are distributed across the cluster nodes. Slave nodes then run 
the sequential single-node training algorithm on the local data split(s) to 
train an intermediate classifier. Finally, a vote-based Ensemble is created 
of the trained intermediate classifiers at the Master node. 

2.3. Distributed Ensembles Pitfalls 

Empirical studies [27] show that the Bagging-like disjoint partitioning 
approach for splitting the training dataset among the Ensemble classifiers 
makes each classifier biased towards its own training dataset. This creates 
two pitfalls in the published work on distributing sequential single-node 
classification algorithms. 

The first pitfall is when the training dataset is ordered by the class label 
attribute such that records belonging to one class label come together as 
illustrated in Fig. 3a compared to the unordered dataset in Fig. 3b. While 
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having a dataset ordered by the class label attribute might not be very 
common, a more common scenario that causes the same problem is having 
a continuous chunk of many records belonging mostly to the same class 
label. With this kind of dataset, when HDFS partitions the dataset 
sequentially into 64MB splits it can cause splits to mostly contain records 
belonging to only one class. Using these splits to train classifiers results in 
classifiers that always predict the same class since each classifier is trained 
on only one class which renders the entire Ensemble useless.  

 
Att1 … Attn label  Att1 … Attn label
   C0    C0
   C0    C1
   C0    C0
   ...    ...
   C1    C0
   C1    C1
a) Ordered training dataset  b) Unordered training dataset 

 
 

Fig. 3 – Training datasets (a) Ordered - (b) Unordered 

The second pitfall occurs when the training dataset is highly skewed 
with a small number of records belonging to a minority class. In this 
scenario, some Ensemble classifiers will not have any records of the 
minority class in their training dataset, causing them to always fail in 
recognizing records belonging to this minority class. 

The two pitfalls can be avoided if the disjoint training partitions are 
made to represent the original training dataset. In other words, the two 
pitfalls can be avoided by making sure that each partition contains records 
belonging to all class labels including minority classes. By achieving this, 
classifiers become well-trained and able to recognize records belonging to 
all class labels. Each Ensemble classifier is still biased towards its own 
training dataset, but an individual classifier’s bias becomes an advantage 
when the classifiers are combined in an Ensemble where a protocol of 
knowledge sharing is established.  

3. The Label-Aware Distributed Ensemble Learning 
(LADEL) Model 

The Label-Aware Distributed Ensemble Learning (LADEL) model is 
an extension to the Bagging-Like Ensemble model introduced in the 
previous section. It aims to avoid the above pitfalls of Distributed 
Ensembles by ensuring that the distributed classifier prediction accuracy 
remains similar to that of the sequential single-node classifier. 

The LADEL model provides a unified model for distributing all 
sequential single-node classification algorithms without rewriting them, 
rather than having a custom distributed implementation for each algorithm 
as in Spark MLlib. Having a unified model significantly reduces the 
development time for creating distributed classifiers and supports more 
algorithms.  

Data miners can use the LADEL model to distribute the training of any 
sequential single-node classification algorithm on any distributed 
framework (Drill, Spark, Hadoop, etc.), without any experience in parallel 
and distributed systems. This represents an advantage over solutions like 
TensorFlow [38] which have a limited set of algorithms and require users 
to manually specify the cluster details, which can be tedious in large 
clusters. 

3.1. Execution Model 

The execution process takes a training data source, a name of a 
classification algorithm along with its arguments and a desired 
parallelization level, and produces a trained classifier. The following 
process illustrated in Fig. 4 happens behind the scenes: 
• First, the training data is divided into a set of partitions whose class 

distribution matches that of the complete dataset using the proposed 
Distributed Stratified Sampling (DSS) approach. That is, the percentage 
of records belonging to each class label is equal across all partitions and 
is equal to that of the original training dataset.  

• Second, a sequential single-node classification algorithm is executed on 
each data partition in parallel to produce intermediate classifiers. The 
number of intermediate classifiers is determined by the parallelization 
level specified by the user. This brings the classifier training (i.e 
processing) to where data exists. 

• Finally, the intermediate classifiers are moved to a single node where 
they are aggregated using the Voting technique. The aggregated model 
is then returned to the user to use for scoring. The distributed learning 
approach allows handling Big Data that is too large to fit in the memory 
of a single node while maintaining the prediction accuracy. 

 
Fig. 4 – LADEL execution overview. 

3.2. Distributed Stratified Sampling (DSS) 

The Disjoint Partitioning (DP) approach used in the literature for 
creating distributed classifier Ensembles works by having each training 
record exist in only one partition where a partition can fit in memory. DP 
has a major shortcoming when dealing with ordered and highly skewed 
datasets [27]. The DP partitions do not include records of all class labels. 
This results in poorly trained Ensemble classifiers. Utilizing Stratified 
Sampling instead of the Simple Random Sampling used in DP can solve 
this problem by ensuring that each partition has records of all class labels. 

The original sequential single-node Stratified Sampling illustrated in 
Fig. 5 works by having all data on a single machine. The algorithm goes 
through the entire dataset (Population) twice. First, it divides the dataset 
into several separate strata (categories) based on the class label attribute. 
Second, each stratum is sampled as an independent sub-population, out of 
which individual records are randomly selected for the different partitions. 
Stratified Sampling ensures that each partition has records of all class labels 
and that each partition follows the same class label distribution as the 
original dataset. Thus, all Ensemble classifiers are trained on all class 
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labels, allowing the Ensemble to maintain a good accuracy even with 
ordered and highly skewed datasets with minority classes. 

  
Fig. 5 – Sequential single-node stratified sampling. 

 
Big Data, with its large volumes, renders sequential single-node 

Stratified Sampling impractical. Big Data does not fit in the memory of a 
single node and is usually randomly partitioned when uploaded to a 
distributed filesystem like HDFS. These partitions likely do not include 
records of all class labels so building classifiers from these partitions results 
in a poorly trained Ensemble classifiers.  

Recombining the distributed Big Data for repartitioning using 
sequential single-node Stratified Sampling is expensive in terms of disk and 
network usage and processing time. The proposed Distributed Stratified 
Sampling (DSS) addresses these issues.  

DSS creates stratified partitions in parallel from the distributed 
filesystem partitions without recombining them. The DSS algorithm, 
illustrated in Fig. 6, runs independently on each machine in the cluster in a 
shared-nothing architecture. It executes in a single pass over the data and 
minimizes inter-machine communication. DSS consists of two phases, 
namely: Local and Global sampling, which works as follows.  

Given P distributed filesystem partitions, the Local phase runs in 
parallel on each machine separately. First, the DSS creates strata based on 
the records’ class labels on each machine. Second, it runs a round-robin 
selector of size P on each stratum on each machine. Third, for each round-
robin cycle, one record is kept for the current machine and one record is 
sent to each of the (P-1) other machines in cluster.  

In the Global phase, each machine combines its remaining records with 
the records sent to it from the other machines to create the training partition 
for its local intermediate classifier. This new partition contains records of 
all class labels required for producing a well-trained classifier. 

 
Fig. 6 – Distributed stratified sampling. 

 
The DSS algorithm run-time is the summation of the time taken to 

conduct the Local sampling in parallel to create the local strata and the time 
to do the Global sampling in parallel to exchange data records. The DSS 
run-time is given by: 

 

Where R is the total number of records, P is the number of partitions, 
C is the number of class labels and Rc,p is the number of records belonging 

to class label C in partition P. DSS is scalable and its run-time decreases 
as the number of partitions increases. On the other hand, recombining the 
distributed Big Data for repartitioning using sequential single-node 
Stratified Sampling has a run-time of  which is orders of magnitude 
longer than the DSS run-time. 

Approaches such as the Efficient Sample Generator [39] provide a 
general, single-pass algorithm for generating samples from large, block-
partitioned datasets stored in a distributed filesystem. However, they do not 
support stratified sampling nor disjoint partitioning required for building 
well-trained distributed Ensembles. 

3.3. Implementation 

The LADEL model can distribute the training of any single-node 
library on any distributed framework. As a proof-of-concept, we use the 
proposed LADEL model to implement a cloud-ready distributed Weka-on-
Drill solution (codename QDrill). The Weka-on-Drill extends Apache Drill 
[21], a distributed SQL query engine for non-relational storage, with data 
mining capabilities. We choose Apache Drill as it provides end-users with 
an easy-to-use SQL interface which requires minimum learning compared 
to Scala or Java used in Spark and Hadoop, respectively. We choose Weka 
[10] because it is a well-established widely used data mining library with 
an extensive set of classification algorithms. The implementation is 
available as the enhanced QDrill stand-alone, free and open-source solution 
[40] [41] and as an IBM SPSS Modeler plugin with a GUI on the IBM SPSS 
Predictive Analytics Gallery [42]. 

3.3.1. Architecture 

  
Apache Drill is powerful in terms of accessing and joining data from 

heterogeneous sources using its Storage Adaptor, which is usually a 
cumbersome task when done in data mining libraries. On the other hand, 
Drill does not have any data mining capabilities. Developing data mining 
algorithms for Drill is time consuming and so would likely be limited to a 
handful of algorithms, nothing compared to those available in the well-
established data mining libraries. Our Weka-on-Drill implementation 
solves these issues by using Drill to load and join data from heterogeneous 
sources and using the pre-existing classification algorithms of the well-
established Weka data mining library to train and score the classifiers but 
in a distributed fashion.  

The full system architecture is illustrated in Fig. 7, showing the 
unmodified components of Drill (UI and JDBC/ODBC connection), the 
modified (Distributed Query Planner, Query Execution Engine and the 
Storage Adapter) and the newly added (Analytics Adapter). 

We add the Analytics Adaptor to Drill to optimize and provide access to 
the various data mining libraries. The Analytics Adaptor works with 

 
Fig. 7 – LADEL Weka-on-Drill architecture. 
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Analytics Plugins for various data mining libraries, which transform the 
data loaded by Drill to a data structure understandable by the data mining 
libraries. This way, algorithms from more than one library can be used 
together, leaving it to the Analytics Adaptor to resolve the inter-library data 
format conversion. In addition, the plugins invoke the data mining library 
APIs to train and score classifiers.  

In this proof-of-concept, we implement the Weka Analytics plugin. The 
plugin provides access to WEKA’s classification algorithms and converts 
the data loaded by Drill to the ARFF format required by WEKA.  

To train a new classifier using Weka-on-Drill, users submit the training 
data source, the classification algorithm along with its arguments and the 
desired parallelization level to the Master node. First, the Master node runs 
the DSS algorithm on the Slave nodes to create stratified partitions. Second, 
the Master node uses the Weka Analytics plugin on the Slave nodes to run 
Weka’s sequential single-node classification algorithms on the stratified 
partitions on each Slave node. Finally, intermediate classifiers trained on 
the Slave nodes are aggregated at the Master node to produce the final 
classifier. 

3.3.2. Classifier Interoperability 

Our Weka-on-Drill implementation adds a Model Storage plugin to 
Drill’s Storage Adapter to write and read data mining models (i.e trained 
classifiers). The Model Storage plugin can store and load Weka’s models 
from any data store supported by Drill. This allows classifier 
interoperability where a classifier trained using Weka-on-Drill can be used 
for scoring on Weka-on-Spark or Weka-on-Hadoop or even on the 
sequential single-node Weka. 

3.3.3. Distributed Analytics Query Language (DAQL) Interface 

Extracting patterns from data is the main aim of data miners. They do 
not wish to learn new complex programming paradigms and languages. Our 
LADEL Weka-on-Drill implementation (QDrill) provides a high-level 
SQL-based interface which is compiled by the run-time system to the low-
level primitives required for the parallel execution. Using a SQL-based 
interface to access data mining functionalities make the distribution of the 
data mining tasks transparent to the user. 
 We modify Drill’s Distributed Query Planner and Query Execution 
Engine to introduce a number of new Keywords for running distributed 
Analytics operations. The name “Distributed Analytics Query Language 
(DAQL)” is given to the modified SQL syntax to reflect its Analytics 
capabilities. DAQL allows invoking classification algorithms from within 
Drill’s standard SQL query statements. Interested readers can see our other 
work [41] for more details on the DAQL language. 

The statements in Fig. 8 train a Weka classifier in a distributed fashion 
using the proposed LADEL model. The first statement changes the storage 
location to a writable location. The second statement tells Drill’s Storage 
Adaptor to use the introduced Model Storage plugin to save the classifier 
after training. The third statement consists of three nested DAQL statement:  
• The inner statement invokes the DSS partitioning algorithm using our 
qdm_DSS function with arguments: the number of partitions               
<num parts>, the record’s attributes <columns> and the record’s 
label <label_column>, respectively. This statement fetches the 
training data from any Drill-supported data store using the FROM clause. 
The FROM clause can also have a join between two heterogeneous data 
sources. The WHERE clause specifies conditions on the records to fetch.  

• The middle statement uses our qdm_ensemble_weka function to 
train a classifier on each data partition using the GROUP BY clause to 
send records belonging to different partitions to the different Slave 
Nodes. Our qdm_ensemble_weka function defines the classifier 
algorithm, sets its arguments, specifies the data columns to use for 
training and specifies the label column, respectively.  

• The outer statement uses our qdm_ensemble_weka function to 
aggregate the classifiers trained on the Slave Nodes into an Ensemble. 
Finally, the statement uses our TRAIN MODEL clause to save the 
Ensemble under <model name>. 

 

1> USE dfs.tmp; 

2> ALTER SESSION SET `store.format`='model'; 

3> TRAIN MODEL <Model Name> AS  

  SELECT qdm_ensemble_weka(mymodel) 

  FROM (SELECT qdm_ensemble_weka(‘<Algorithm>',‘<Args>',   

             data.columns, data.label_column) as mymodel  

        FROM (SELECT columns, qdm_DSS(<Num Parts>,  

                    columns, label_column) as partition  

               FROM `<Data Source>` 

               WHERE <Conditions> 

        ) as data 

       GROUP BY data.partition); 

Fig. 8 –DAQL statement for training a classifier. 

3.3.4. IBM SPSS Modeler Graphical Interface 

 
Fig. 9 – IBM SPSS Modeler Graphical Interface. 

 
Our Weka-on-Drill inherits the Drill’s JDBC/ODBC interface. This 

allows connecting any program or Business Intelligence tool to our solution 
and instantaneously adding analytical capabilities to that program or 
extending its capabilities, as within the IBM SPSS Modeler. The Modeler 
plugin [43] is written in the R language and has an easy-to-use GUI 
interface illustrated in Fig. 9. The plugin uses Drill’s JDBC/ODBC 
interface to send data and configuration to our Weka-on-Drill solution. Our 
solution then uses the LADEL model to distribute the training of the 
specified classification algorithm and returns the trained model back to 
Modeler. The trained classifier can be used in Modeler like any other 
classifier trained within Modeler. This shows the capability of the proposed 
solution to work in conjunction with other analytics solutions. 
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4. Evaluation 

In this section, we evaluate three approaches for training a classifier. 
We do not evaluate the training time of the different approaches since it is 
already well established that some distributed frameworks are faster than 
others and because the LADEL model can be ported to any distributed 
framework (e.g Spark, Hadoop, etc.). Instead, we focus on evaluating the 
prediction accuracy of classifiers trained using the different approaches. 

The first approach uses our LADEL proof-of-concept implementation 
on the Apache Drill 1.2 distributed framework and the weka-dev-3.7.13 
sequential single-node data mining library. Code is available for free and is 
open-source [40]. The second approach uses an implementation of weka-
dev-3.7.13 vote-based distributed Ensemble learning representing the 
published work on distributing sequential single-node classification 
algorithms [13] [17] [20]. The third approach uses the original sequential 
single-node weka-dev-3.7.13 classification algorithm (no Ensemble) 
running on a single machine trained on the entire training dataset. The third 
approach represents the baseline for our evaluation. 

Algorithms: The Hoeffding Tree and the Multilayer Perceptron 
(Neural Networks and Deep Learning) algorithms are used in the 
evaluations here. Both algorithms are frequently used to address various 
classification problems. They both require loading the entire training 
dataset in-memory to do the training, thus both require a complete rewrite 
to run in parallel. Other algorithms like C4.5 decision tree, KNN, Random 
Tree, Decision Table, Decision Stump, REP Tree, PART decision list, 
Support Vector Machine, and Linear Regression suffer from the same 
distribution problem.  We only include evaluations for Hoeffding Tree and 
the Multilayer Perceptron as they represent LADEL’s worst and best cases 
in terms of training time, respectively and LADEL’s best and worst cases 
in terms of accuracy, respectively, and to keep charts easy to read.   

Dataset: At the beginning of our experiments we ran on 4 datasets: 
KDD Cup 1999 [44], SUSY [45], HEPMASS ALL [46] and HIGGS [45]. 
The results were very similar but consumed enormous amounts of time to 
run on the different algorithms with different dataset configurations and so 
we decided to only use the HIGGS dataset for the remainder of the 
experiments.  

Since we always compare with the single classifier performance, only 
the dataset characteristics matter. We tested the LADEL's effectiveness in 
different scenarios using datasets that are artificially generated from the 
HIGGS dataset. The original unordered HIGGS dataset was modified to 
create three extra datasets to test LADEL in a controlled environment. 
These are Ordered dataset, 1:2 skewed dataset, and 1:10 skewed dataset. 
The generated datasets are described later in each analysis.   

The HIGGS real-life dataset from the UCI repository is used with the 
characteristics summarized in Table 1. A separate set of records, not 
included in the training, is used for validating the accuracy of the trained 
classifier. We modify the dataset, both training and validation sets, by 
removing records with missing values and converting nominal values to 
numeric so that any data mining algorithm can work on them. We do not 
use any other pre-processing operations, data transformation or feature 
selection to prevent bias in the results. 

Table 1 – HIGGS Data Sets Characteristics Summary. 
# Training 
Records 

# Validation 
Records 

# 
Attributes

# Class 
Labels 

Labels 
Distribution

Size 
[GB] 

7,158,118 3,385,684 28 2 Balanced 
1:1 

4.65 

 

Environment Setup: We use the Amazon EC2 T2.Large [47] Ubuntu 
instances with two cores (3.3GHz each), 8GB RAM, 8GB Swap space and 
a 100GB Solid State Disk. Our cluster for evaluating LADEL and existing 
vote-based Ensemble solutions uses 10 of these nodes providing up to 40 
threads, 20 cores, 80GB of RAM and 700GB of distributed HDFS storage 
space that is configured to have three replicas per block. For this 
configuration, the HIGGS dataset is Big Data since its data structure cannot 
fit in a node’s memory. The single machine for evaluating the original 
sequential single-node classification algorithm has two cores (3.3GHz 
each), 24GB RAM and 50GB disk space which is big enough to hold the 
entire dataset in memory. 

4.1. Distributed Ensembles Evaluation 

In this analysis, we investigate the appropriate size of a distributed 
Ensemble for producing predictions of the same, or better accuracy than a 
sequential single-node classifier trained on the entire training dataset, while 
reducing the training and scoring time. A distributed Ensemble is built by 
training classifiers on splits of the training data on multiple Slave nodes. 
The classifiers are then grouped together in a vote-based Ensemble on the 
Master node. 

4.1.1. Training Time 

In terms of training time, adding more classifiers to the Ensemble leads 
to increasing the training parallelization which leads to a shorter training 
time as illustrated in Fig. 10. Our empirical studies show that using 
distributed Ensembles with any classification algorithm and any number of 
partitions consumes at most 30% the time required for training a sequential 
single-node classifier on the entire training dataset (HoeffdingTree: 7.2min- 
MultilayerPerceptron: 14.14hrs). It should be noted here that with some 
classification algorithms (e.g Hoeffding Tree) having too many Ensemble 
classifiers (e.g. 1000) leads to competition for the computational resources 
which slightly increases the training time. 

Fig. 10 –   Ratio of the distributed Ensemble training time to that of a 
sequential single-node classifier. 

4.1.2. Scoring Time 

In terms of scoring time, the scoring time of an Ensemble is directly 
proportional to the number of its classifiers as illustrated in Fig. 11. As the 
number of Ensemble classifiers increases, the more classifiers need to score 
each new data point before voting for the final classification. In Fig.11, the 
trained distributed Ensemble is deployed on a single machine and used to 
score the validation data records. As can be seen in Fig. 11, using 
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Ensembles significantly increases the scoring time compared to having a 
single classifier when running on a single machine.  

 To reduce the scoring time, the Ensemble is copied to 10 nodes and 
the validation data is split across them to parallelize the scoring operations. 
Distributing the scoring operation across 10 machines does reduce the 
scoring time and it becomes shorter than that of a single classifier running 
on a single machine as illustrated in Fig. 12. However, distributing the 
scoring operation does not help when the number of the Ensemble 
classifiers becomes too large (e.g. 1000). Distributed scoring on 10 
machines for very large Ensembles can consume 18X the scoring time of a 
sequential single-node classifier running on a single machine since still 
each record needs to be scored against 1000 classifiers then a vote need to 
be made among the 1000 scores. 

Fig. 12 –   Log ratio of the distributed scoring time on 10 machines of 
an Ensemble to that of a single classifier on a single machine.  

4.1.3. Prediction Accuracy 

Fig. 13 –   Prediction error of the LADEL Ensemble compared to that 
of a sequential single-node classifier trained on all data.  

The Ensemble error percentage Ee is calculated as , 
where Me is the number of records misclassified by the Ensemble, Ms is the 
number of records misclassified by the Single Classifier and V is the total 
number of validation records. 

 In terms of prediction accuracy, the LADEL Ensembles achieve 
accuracies significantly better (16.84% less misclassifications for 
Hoeffding Tree with 20 partitions) than that of a sequential single-node 
classifier trained on the entire training dataset as illustrated in Fig. 13. The 
LADEL Ensembles create a diverse set of weak classifiers that overcome 
each other’s misclassifications, thus achieving better accuracies. 

The Ensembles’ accuracy, however, decreases as the number of 
Ensemble classifiers increases since the number of records per training data 
partition decreases. For example, in the case of 1000 partitions, there are 
only 7,134 records per partition that is 3,567 records per class label per 
partition. Our interpretation is that the amount of records becomes not 
enough to adequately train the classifiers, which leads to the increase in the 
prediction error. 

4.1.4.  Observations 

 A LADEL distributed classifier Ensemble achieves accuracies that are 
similar or better than that of a single-node classifier trained on the entire 
training dataset. As per our experiments, this statement holds for all Weka’s 
algorithms and is consistent with previous research [23] [27] [48].  

The number of Ensemble classifiers to use depends on the number of 
records in the training dataset. It is better to have more classifiers with 
bigger datasets to speed up the training without affecting the Ensemble’s 
accuracy. Having too many classifiers, each trained on fewer records results 
in a poorly trained classifier. From our observation here, we find that having 
from 20 to 40 classifiers results in the best accuracy for the HIGGS dataset. 
With 20 to 40 classifiers, both the training and scoring times are acceptable. 
Having more classifiers leads to reducing the training time but causes 
lowering the accuracy and increasing the scoring time 

4.2. Prediction Accuracy Evaluation for LADEL Versus Regular 
Vote-Based Ensembles  

In this analysis, the proposed LADEL Ensemble is evaluated against 
regular vote-based Ensembles commonly used in the literature for 
distributing sequential single-node classification algorithms [13] [17] [20]. 
Evaluation is done for the two pitfalls introduced earlier. First, we study the 
Ensembles’ prediction accuracy when given a training dataset ordered by 
the class label attribute. Second, we study the effect of the training dataset 
skewness on the Ensembles’ prediction accuracy. 

4.2.1. Ordered Training Dataset Evaluation 

In this evaluation, the HIGGS dataset records are ordered by the class 
label attribute. The ordered dataset is uploaded to the HDFS, split into 
64MB splits and automatically distributed among the cluster 10 nodes.  

As illustrated in Fig. 14, creating a distributed Ensemble using the 
proposed LADEL model results in a significantly better accuracy compared 
to a single classifier trained on the entire training dataset (14% less 
misclassifications for Hoeffding Tree). It also results in a significantly 
better accuracy compared to regular vote-based distributed Ensembles 
commonly used in the literature for distributing sequential single-node 
classification algorithms (17.65% less misclassifications for Multilayer 
Perceptron). For the Hoeffding Tree, both the single classifier and the 

Fig. 11 –   Log ratio of the single machine scoring time of an 
Ensemble to that of a single classifier on a single machine.  
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regular vote-based distributed Ensemble misclassify almost 50% of the 
validation records. The LADEL Ensemble with its well-trained classifiers 
lower that error to 33%. 

 

Fig. 14 –   Prediction error of single classifier, vote-based distributed 
Ensemble and LADEL Ensemble on ordered datasets. 

 
The deficiency of regular vote-based distributed Ensembles is 

highlighted when using the Hoeffding Tree algorithm. The Hoeffding Tree 
Ensemble should benefit from the diversity in its suboptimal trees (i.e. 
make errors on different validation records) to produce accuracies better 
than that of a single classifier [27]. As shown in Fig. 14, there was no 
accuracy gain when using the regular vote-based distributed Ensemble 
because its trees are each trained on a single class label. 

 Using the regular vote-based distributed Ensemble approaches can 
even lead to significantly worse accuracies compared to a sequential single-
node classifier trained on the entire training dataset which is the case for 
the Multilayer Perceptron (16.37% more misclassifications). The Ensemble 
classifiers get trained on records belonging to only one class label due to 
the way HDFS splits the training dataset. The lack of training records 
representing all class labels creates a classifier that always predicts the class 
label it is trained on which significantly reduces the Ensemble accuracy. 
This scenario is very common and the LADEL model is designed to handle 
this scenario by having records belonging to all class labels in all data splits.  

4.2.2. Skewed Training Dataset Evaluation 

In this analysis, we investigate the effect of training dataset skewness 
towards one of the class labels on the classifiers’ prediction accuracy. Three 
scenarios are considered in this analysis. The first scenario uses the original 
balanced HIGGS dataset [1:1] which has an equal number of records 
belonging to each class. The second scenario [1:2] reduces the number of 
records belonging to class 0 to half the number of records belonging to class 
1. The third scenario [1:10] further reduces the number of records belonging 
to class 0 to one tenth the number of records belonging to class 1. The 
skewed datasets are then uploaded to HDFS, split into 64MB splits and 
automatically distributed among the cluster 10 nodes. 

The main observation from the analysis illustrated in Fig. 15 is that as 
the training dataset becomes more biased towards one of the class labels, 
that is one of the class labels becomes less represented, the classifier 
accuracy decreases as it becomes more biased towards choosing the more 
represented class label when predicting.  

The LADEL model ensures that each data split contains records 
belonging to all class labels no matter how little a class label is represented 
in the original training dataset. Thus, all LADEL Ensemble classifiers are 
trained on all class labels, allowing the LADEL Ensemble to maintain a 

good accuracy even with highly skewed datasets with minority classes. 
That is why the LADEL error does not go above 4% of that of a single 
classifier (Multilayer Perceptron [1:10]) while the regular vote-based 
distributed Ensemble approaches reported in literature exceed 16% 
(Multilayer Perceptron [1:2]). 

The experiment (Multilayer Perceptron [1:10]) was repeated using 
Simple Random Sampling (SRS) which yielded a 47.02% error rate while 
taking the same time as DSS. With SRS, all minority class records are 
misclassified because the majority of the ensemble classifiers are not 
trained on records belonging to the minority class. This shows that DSS 
leads to higher accuracy in more situations than SRS. 

With skewed datasets with minority classes, it is recommended to have 
as few Ensemble classifiers as possible to ensure that there are enough 
records belonging to the minority class in each training data split to 
adequately train the classifiers.  

4.3. Distributed Stratified Sampling Overhead 

The prediction accuracy maintained by the LADEL model comes at a 
price. Distributed training using LADEL includes the cost of the DSS 
algorithm to create stratified partitions to assure that each Ensemble 
classifier has records belonging to all class labels. Using DSS increases the 
training time compared to other vote-based distributed Ensemble learning 
approaches as illustrated in Fig. 16.  

(a) Hoeffding Tree  

(b) Multilayer Preceptron  

Fig. 15 –   Prediction error of single classifier, vote-based distributed 
Ensemble and LADEL Ensemble on skewed training datasets. 
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Fig. 16 –   Training time with and without DSS. 

5. Conclusions and Future Work 

In this article, we introduce the LADEL model for distributing the 
training of classifier Ensembles while avoiding the pitfalls suffered by other 
vote-based distributed Ensembles. The LADEL model is easy to use, even 
for data miners without experience with parallel and distributed systems, 
since it hides the details of parallelization. It significantly reduces the 
development time for creating distributed classification algorithms and 
adds scalability to a large set of classification algorithms that are either 
unimplemented in distributed data mining libraries or unusable for Big Data 
in their sequential single-node implementation. The LADEL model relies 
on the proposed Distributed Stratified Sampling (DSS) algorithm to 
generate stratified samples from large, pre-partitioned datasets in a shared-
nothing architecture. It executes in a single pass over the data and 
minimizes inter-machine communication. 

An open-source proof-of-concept LADEL implementation is built on 
the Apache Drill distributed framework and the Weka sequential single-
node data mining library. The proof-of-concept allows distributing the 
training of all Weka’s classification algorithms on Apache Drill without 
rewriting the algorithms. The LADEL model, however, can be 
implemented on any distributed framework to distribute the training of any 
sequential single-node data mining library. 

The empirical study shows that LADEL Ensembles can have 
classification accuracy that is similar and sometimes better than having a 
single classifier trained on the entire training dataset. The DSS algorithm 
implemented in the LADEL model guarantees having records representing 
all class labels in the training partitions.  The empirical study also shows 
that other vote-based distributed Ensembles reported in literature tend to 
have significantly worse classification accuracies with ordered datasets 
compared to the single classifier due to the lack of records representing all 
class labels in its classifiers’ training data. 

For the future work, the prediction accuracy of distributed regression 
Ensembles and distributed clustering approaches is to be evaluated. This 
evaluation is then to be used to devise models for distributing regression 
and clustering that maintains their accuracies.  
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