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Abstract

Object detection in aerial images is a challenging task which plays an important role in many fields, such as intelligent traffic
management, fishery management and so on. Different from object detection in natural images, the orientation of objects in aerial
images is arbitrary. The axis-aligned bounding box detection, which is always used in traditional object detection methods, will
cover a lot of redundant information and deteriorate the detection results when it is used to locate the object in aerial images.
Therefore, traditional object detection methods are no longer applicable for aerial images. In order to promote the object
detection performance in aerial images, we propose a novel orientation robust object detection model based on rotated non-
maximum suppression (R-NMS). In addition, we adjust the anchor setting according to the diversity shapes of the aerial objects
to enhance the performance of the model. Our model is tested on the public DOTA dataset, and the mAP is 16.31% higher than
the baseline, indicating that our method is very effective and competitive in the object detection of aerial image.
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1. Introduction

In recent years, inspired by deep learning, significant progress has been made in object detection. By learning the
in-depth presentation of the region of interest (Rol), the deep learning-based detectors make it possible to precisely
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locate and classify objects on the image. There are many works, such as R-CNN1, Fast R-CNN2, Faster R-CNN3,
YOLO4, YOLO90005 and so on, have achieved excellent performance on object detection task in natural scenes.
However, these methods are horizontal region-based detection methods and are not suitable for aerial image
detection tasks because of the arbitrary rotation characteristics of aerial objects. Using axis-aligned bounding boxes
to locate tilted objects will cover many redundant areas (i.g., background or adjacent objects), especially in dense
object scenes as shown in Fig.1(a). In this case, axis-aligned bounding boxes are not conducive to the processing of
non-maximum suppression (NMS) and are prone to missing detection. Therefore, although many previous methods
achieve the state-of-the-art in natural scene, they are not quite suitable for object detection in aerial images.

In order to detect arbitrary-oriented objects in the aerial image, scholars have also proposed many methods. Chen,
Gong, et al. propose a method which contains two stages6. First, a detection network is utilized to initially detect
buildings in images. Then an orientation classifier network is applied to learn the rotation angle of the buildings.
Zhang, Sun, et al. authors firstly segment the image into several areas and extract some Rols (region of interest)7.
Then, they detect the bridge in the Rols through feature extraction and a neural network called Hopfield. Though
these methods are successful in some applications, this kind of two-step approach is relatively more cumbersome
and time-consuming than the end-to-end approaches. Some researches put forward end-to-end models8,9,10,11, but
these models only recognize a single object in specific problems with simple datasets. And the method proposed in
[8] and [9] still uses horizontal boxes.

We present a novel end-to-end model for detecting multiple categories of arbitrary-oriented objects in aerial
images. The model adopts a variety of anchor aspect ratios to generate proposals that can better fit multiple
categories of objects. In addition, our model eventually generates the rotated bounding box, which is shown in Fig.1
(b). This kind of minimum circumscribed rectangle reduces the interference of redundant noise during detection.
Finally, post-processing with R-NMS to obtain the final detect results.

Fig. 1. Two styles of bounding boxes. (a) shows the axis-aligned bounding boxes, which covered redundant regions are relatively large. (b) shows
the rotated bounding boxes, which fit object snugly.

2. Proposed Approach
2.1. Overview

Our model is based on the Faster R-CNN pipeline, its architecture as shown in Fig.2. It can be known from [2]
that the Faster R-CNN is composed of two parts: regional proposed network (RPN) and Fast R-CNN. We optimized
these two parts to adapt to the object detection for aerial images. The workflow of the model is as follows: First, we
input the image and obtain the feature map through ResNet10112. Second, the feature map is input to the RPN to get
the horizontal proposals. A variety of aspect ratios are set for the anchors in RPN to better adapt to different kind of
objects in aerial images. After RPN, the model learns to classify objects and refine inclined boxes through Rol
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pooling and full connected layers (FCs). Finally, in the post-processing stage, we use R-NMS to refine the object
detection results. In the following sections, we will introduce the various parts of the model in detail.
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Fig. 2. Model architecture

2.2. Multiple anchor aspect ratios

The Faster RCNN sets the anchor ratios to [1, 1/2, 2]. Such setting can well cover almost everything in the nature
scene. However, unlike in natural scene, aerial images 'look' at objects from high altitude and many objects often
have large aspect ratios, such as the harbor, bridge and so on. According to the statistics characteristic of the objects
in the DOTA13, the aspect ratio of objects in the aerial images mainly distribute from 1 to 5. So, we adjusted the
aspect ratio setting to [1, 1/2, 2, 1/3, 3, 1/4, 4, 1/5, 5]. Such setting can better cover the different classes of object and
getting as much information of the object as possible for further operation.

2.3. Rotated bounding box

We use five parameters x,y,w,1,0) to represent the rotated bounding box, which represent the coordinates of
the centre point, width, height, and rotation angle of the bounding box, respectively. As shown in the Fig.3, the
rotation angle 9 is the angle that the horizontal axis (x-axis) rotates counterclockwise when it encounters the first
edge of the box. The range of angles defined as [-90,0).
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Fig. 3. The representation of rotated bounding box Fig. 4. Intersection area between two rotated rectangles

2.4. Rotated non-maximum suppression(R-NMS)

The core idea of NMS (Non-Maximum Suppression) is to calculate the Intersection-over-Union (IoU) between
two rectangles. Because the IoU computation on axis-aligned boxes may lead to an inaccurate IoU of skew
interactive bounding boxes. We design the R-NMS, which calculates skew IoU by using a triangulation method. Fig.
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4 shows the geometric principles. Firstly, we should divide the intersection area into triangles and summarize all the
area of the triangles (S0). Then the IoU can be obtained by using the area of two intersecting rectangles S1 and S2.
The calculation formula for IoU is as follow:

IoU = S0/ (S1+52—-50) (1)

2.5. Loss function

Our loss function for an image is defined as follow 2:

L(p,L,u,u®)=L, (p,))+ Al =1]L, loc(u,u*) 2)

P =(Po: P ) represents a discrete probability distribution of the k+1 categories calculated by the SoftMax

function. / =12k denotes the label of each class, and the background is labeled as 0. L, (p.l)=—log(pl) is the

>
L (p.0) is a smooth L1 loss function2 for position regression. The Iverson brackets [l - 1]

indicates that 1is 1 when I>1, otherwise 0. So, there is no position regression for background. The trade-off between

log loss for class 1.
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two terms are controlled by A In our model, # is set to 1. represents the predicted tuple of

the rotated bounding box, and U= (st 15ty ) denotes the ground truth tuple of the rotated bounding box. In
order to facilitate the regression of the bounding box, these parameters are scale-invariantly parameterized as

follow3:
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where x, y,w,hrepresent the central coordinates, length, and width of a box, respectively. x,xa,x* are for the
predicted box, anchor box, and ground truth box, respectively. The same applies to y,w,s, and & . And the 6
belongs to the rotated bounding box only.

3. Experiments and analysis
3.1. Dataset and training

We comprehensive evaluate our method on DOTA ", which contains 2806 aerial images collected from different
sensors and platforms. DOTA totally annotated 188,282 instances and covered 15 common categories (including the
plane, ship, storage tank (ST), baseball diamond (BD), tennis court (TC), basketball court (BC), ground track field
(GTF), harbor, bridge, large vehicle (LV), small vehicle (SV), helicopter (HC), roundabout (RA), soccer ball field
(SBF), and swimming pool (SP). Each instance is labeled with an arbitrary quadrilateral.

We build our model with tensorflow and use ResNet101 to initialize the network. All models are trained and
tested on an Nvidia Titan Xp GPU with 12GB memory. Before the training, we randomly flip images and subtract
the mean value [103.939, 116.779, 123.68].
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3.2. Experiments

Tablel summarizes the effectiveness of different settings of our model. FR-H'"? is the officially provided baseline,
which means Faster RCNN trained on horizontal bounding boxes and evaluated with the rotated ground truth.

Table 1. The results of ablation experiments performed on DOTA.

Method R-NMS Anchor aspect ratio mAP(%)
FR-H (baseline) N [1,1/2,2] 39.95
Method1 Y [1,1/2,2] 54
Method2 Y [1,1/2,2,1/3,3,1/4,4,1/5,5] 56.26

Methodl is used to test the effectiveness of R-NMS in object detection. It can be found that using rotated
bounding boxes to train the model and post-process the prediction result with R-NMS can achieve 54% mAP and
dramatically higher by 14.05% than FR-H. This proves that R-NMS is a useful method in the aerial images object
detection. As shown in Fig.5, the lifting of recall is especially noticeable for densely arranged inclined objects.

Fig 5. Detect results by using different NMS. (a) (c)Detect results obtained after the normal NMS of the horizontal bounding box. (b) (d)Detect
results obtained after the R-NMS of the rotated bounding box. The numbers in the centre of the pictures indicate the number of objects detected.

In order to make the proposals to cover different categories of objects better and facilitate the further detection
procedures, we set the aspect ratio to [1,1/2,2,1/3,3,1/4,4,1/5,5]. Fig.6. shows the effect of different anchor aspect
ratios settings. The color boxes in the Fig.6. indicates proposals. Obviously, the proposals in (a) can cover large
aspect ratios objects well, while (b) cannot. Method2 in Table 1 examines the effect of multiple anchors aspect ratios
on detection performance. Its mAP is 56.26%, which is 2.26% higher than Method1. It demonstrates that utilizing
multiple anchor aspect ratios can increase the flexibility of the model and improve the detection performance.

Fig 6. The effect of using different anchor aspect ratios. The colour boxes in figures indicates proposals. (a) shows the proposals obtained by
setting the anchor aspect ratios to [1,1/2,2,1/3,3,1/4,4, 1/5,5]. (b) shows the proposals obtained by setting the anchor aspect ratios to [1,1/2,2]
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Table 2. Detection results of different algorithm on DOTA.

SSD[13] | YOLOv2[13] | R-FCN[I3] | FR-H[13] FR-O[13] Our
plane 39.83 39.57 378 47.16 79.09 77.09
BD 9.09 20.29 3821 61 69.12 66.14
bridge 0.64 36.58 3.64 9.80 17.17 32.69
GTF 13.18 2342 37.26 51.74 63.49 60.23
SV 0.26 3.85 6.74 14.87 34.20 58.23
LV 0.39 2.09 2.60 12.80 37.16 46.19
ship L1l 482 5.59 6.88 36.20 53.97
TC 16.24 4434 22.85 56.26 89.19 76.86
BC 27.57 38.25 46.93 59.97 69.6 61.52
ST 9.23 34.65 66.04 57.32 58.96 71.36
SBF 27.16 16.02 33.37 47.83 49.40 45.29
RA 9.09 37.62 47.15 48.70 52.52 43.98
harbor 3.03 4723 10.60 3.23 46.69 56.67
SP 1.05 2550 25.19 3725 4430 5338
HC 1.01 745 17.96 23.05 46.30 35.12
mAP(%) 10.59 21.39 26.79 36.29 52.93 56.26

Table 2 shows the comparisons of our method and some classical object detection algorithms on DOTA. Among
them, SSD, YOLOvV2, R-FCN, and FR-H are all trained on axis-aligned bounding box. FR-O denotes Faster RCNN,
which is trained on rotated bounding boxes. All methods are evaluated on the rotated ground truth. As you can see,
the mAP of our method is higher than other methods, which proves that our method is effective and competitive in
detecting objects in aerial image. And Fig.7. exhibits more detect results of our method on DOTA.

Fig 7. Detect results of our method on DOTA.

4. Conclusion

We present a novel end-to-end model for detecting multiple categories of arbitrary-oriented objects in aerial
images. The model adopts a variety of anchor aspect ratios to generate proposals that better fit multiple categories of
objects. Besides, The R-NMS post-processing method can improve the recall rate. Finally, a series of experiments
based on DOTA datasets prove that our method is effective.
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