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Abstract

The applications of distributed computing systenes ervasi ‘@ in r ature involving multiple
shared resources. The distributed mutual exclugligorithm~ Jf vaniuus classes are employed to
control concurrency of accessing shared resour@stair ng .at. consistency. In general, the
distributed mutual exclusion algorithms are desighas~d un fixe d or dynamic graph structures
formed by a set of processes, where the distribotetlar ~xclusion mechanisms are realized
depending upon timestamp based ordering of ev ity @n ploying token circulation in the
graph. On the contrary, in large scale heteroge atim. > .ced systems, an aggregate set of
processes can be generated under special circuresic.”here processes in a group are equally
eligible to enter into critical section. In ordermec. tain safety and liveness properties of mutual
exclusion in such cases, the probabilistic charae.*™n as well as topological analysis of
aggregate set in computing space is necess ry, ... 3 proposes a probabilistic algorithm and
its topological characterization for mutual excb. in aggregate set of processes. The analysis of
failure model of strictly ordered distribu. . insian-exclusion designs is constructed in the
presence of aggregate set. The unbiased | rou&bdigorithm is based on two-phased elastic
randomization. The algorithm is ev.'tawce throughtailed simulation and, the related
probabilistic characterization in topologic.' subsp is evaluated. A detailed comparative
analysis of the algorithm with r~_:~ct to othertribsited mutual exclusion algorithms is
presented.

Keywords: Distributed compu’.ng. logical clock, mutual exsilon, probability, random variable,
topological spaces.

1. Introduction

The present day distr .out d computing systems hawedistinct characteristics namely, multi-
level heterogeneities .., large scale involvirgugands of computing nodes. The multi-level
heterogeneities incwde nc work level heterogenditrdware level heterogeneity and, system
software level hr.erc genr.ity. Traditionally, thetdbuted computing systems are modeled as
arbitrary graph struc. re’,, where nodes of a graptesent distributed processes and the edges of
a graph repre sent ratwork links. However, a disted computing system can be modeled in
view of topoigical : paces comprised of sets ofrithisted events generated by individual
processes ?3)]. =~ ~.1y case, a distributed comguystem maintains a set of shared resources
concurrer Jy acc 2ssed by a subset of distributedgsses, which requires designing of mutual
exclusion ‘or Crif cal Sections (CS) [12]. The maiim of mutual exclusion is to maintain data
consistency, ..ecness and fairness of computatwolving shared resources [2, 6, 11]. The
traditio.~al waibuted mutual exclusion (mutex)gaithms are designed employing two
approaci. ‘s namely, (1) logical clock based timgssafor ordering of requests in a group of
processes, and (2) repeated circulation of a tbkéween processes [7]. If a token is lost then the
fault detection and regeneration of a new token megrporate unpredictable delay in a system.



A wait-free (minimum delay) synchronization alghrit is proposed for concurrent distributed
systems programming intended to systems having ratalscale [21].

However, the present day distributed systems ssicMabile Cloud and Gr'. ~omputing systems,
are having geographic scale comprised of thousahdedes and multi-'2ve! heterogeneities in
architecture. These large scale systems are hytrichture, where tradiu. "al graph based or
token based distributed mutual exclusion algoritimasy not be adequaw. The reasons are that,
the distributed systems having geographic scalehagiily heteroge iec Js networks are open to
unpredictable network partitioning, message latedcylicate trar smi-.sions, and random node
failures. The fail-proof token circulation, tokeosk detection, rege:. ration, and realization of
timestamp based ordering of events in such largkesgeogrs phica!'v distributed systems are
extremely challenging. In such cases, the majafttraditional as wel as improved distributed
mutex algorithms are not completely suitable torgntee s~*ety, ' zness and fairness [1, 10].
For example, the Ricart-Agrawala mutex algorithiquises mor’... ations to adapt to large scale
heterogeneous distributed systems [9]. Howeverdéséani., of p obabilistic mutex algorithms
and their characterizations in large scale disteithsystern.~ arc not well studied. Moreover, the
topological analysis of behaviour of a group ofgaeres equc 'ly eligible for critical section in a
distributed system is not explored.

1.1 Motivation

The large scale distributed computing sy.ten . Jontaultiple shared resources, and the
distributed mutual exclusion algorithms are ¢ séstfor maintaining data consistency under
concurrent execution involving those sharcu e, urdlowever, the traditional distributed mutex
algorithms are not completely suitable for oreseay large-scale geographically distributed
mobile computing systems due to mui. 'eve, .ieteragties as well as scale of the systems [1].
The network level heterogeneity may resu..3 in candchetwork partitioning and unpredictable
delay in message transactions le~ .1 to the &ilof traditional distributed mutex algorithms.
Furthermore, the adaptation rr disti huted mutegoddhms to grid topology requires
modifications at router layer. The *out.r layergeid topology is modified while employing
Naimi—Trehel-Arnold algorithr . to minn.ize networkuting delays during distributed mutex [1].
However, this leads to a cc mp-.rati* ely rigid desigquirements involving network hardware
layer of a large-scale geor,rapri.?)'y distributgstams. The token based adaptation of Naimi—
Trehel-Arnold mutual exs..~ion algorithm is nottabie for fail-prone geo-distributed systems
involving mobile computing nou ~s [4]. The reasothit, locating and recovering a lost token in
a mobile distributed s ste. 1 enhances computatoraplexity to a high degree.

On the other hand. .he ge.~eralizE&)-CS group mutual exclusion algorithms aim to ipavate
flexibility in traditi ,nal mufual exclusion modehia group of processes [11, 20]. However, this
algorithmic model . wld violate safety property diereduction of tractability of shared data
modifications . w1e gredp size increases. Moreptbe token based, (k)-CS group mutual
exclusion alg: rithms vould fail in mobile distrileat systems due to possibility of unpredictable
network latenc,” an” network partitioning. On anotk&treme, the finite-population queuing
model barc ed dictributed mutex algorithm assumes sligtems can be modeled using Petri Nets
and, mult ~asting in network is reliable along with-O ordering, which are not suitable for geo-
distributed . ~~*".e computing systems [6]. In gehettze efficiency of distributed local mutex
algorit.su 7.7 mobile ad hoc networks (MANET) is hig dependent on the mobility of
computnh - nodes [19]. The distributed local mutigoethm is efficient if the computing nodes
are effecti. 2ly stationary residing in geographioximity reducing network delay. The rooted
graph based algorithms such as, Raymond and FAgaaiwala mutex algorithms, require



adaptation for realizing mutual exclusion if thealsc of distributed systeris increases [5].
However, the Ricart-Agrawala algorithm would notddgle to provide safe r ‘itual exclusion in
the presence of,(k)-CS group (i.e. aggregate set), whierel andk > 1 (| =K). It is ..teresting to
note that, concurrency control can be modeled poltigical spaces of di.. huted computation
having complex structures [24]. Furthermore, thebpbilistic estimation ' 10dr is offer acceptable
solutions in the systems having inherent ambigastyvell as randomness . lecision making [30,
31].

This paper proposes a probabilistic mutual exclusimodel and ~orr :spunding algorithm for
large-scale geo-distributed systems. This papesiders that aagre_ate set is a subspace in
topological event space of distributed computatiand the algorithm can be viewed as a
refinement of logical clock based mutex algorithmgosing i tal orc aring on processes. The
algorithm allows generation of aggregate set aadlves it usng u."".used phased randomization.
The probabilistic characterization of topologicabspace ¢ f ge .« 'ated aggregate set is analyzed
to gain insight. The main contributions of this papre as fu..ows.

- A unbiased probabilistic distributed mutex a'qamitb n 2del is proposed
independent of network topology and delatrid. “an

- The proposed algorithmic model considers (~neratioaggregate set and, resolves it
probabilistically maintaining safety and * .....coopperties.

- The unbiased probabilistic model is basc™ on twasphelasticity of randomization,
which reduces the requirement of re, ~...>~ execubamds for realizing mutex.

- Analysis of probabilistic characteriza ica of topgical normed spaces of arbitrary
aggregate set is formulated.

- Computational estimation of variaticns f probabilnmeasures for different aggregate
sets having varying densities ¢. -n .27 3€s is ptege

Rest of the paper is organized as follows. Secigesents related work. Section 3 illustrates
analysis of aggregate set geners don, 1. ilure maoated respective probabilistic characterization
of aggregate set. The phased rai. 'amiz: tion modgkfrerating order for mutex in aggregate set
is presented in section 4. Th . corre., onding matgarithms are presented in section 5. The
analysis of algorithmic corre :the s5s 21d a set afyéical properties are presented in section 6.
The implementation and <vai.~tic 1 of the algorithans presented in section 7. Section 8
illustrates comparative ar . 'vsis. Finally, secBoroncludes the paper.

2. Related Work

The mutual exclurion a.arithms for distributed teyss can be classified into two broad
categories name'y, (1) finction based algorithmd, db) structure based algorithms. The
structure based a.g rith as require a specific grsgphcture for the designing of distributed
mutual exclus’.n alnon..hims. The function basedegaties can be further classified into two
subcategories such & 3, permission based mutexthigerand, token based mutex algorithms [7].
In case of pen.issir.1 based distributed mutex dlgos, the timestamps (generated by logical
clocks) be sed ordering and consensus within a gpbppocesses are employed, where the group
is consid red to be in closed category. The exanpfepermission based distributed mutex
algorithms .-~ _amport algorithm [2], Ricart-Agrae algorithm [12], Singhal algorithm [14]
and, N «c... ~ algorithm [13]. However, the tokenedadistributed mutual exclusion algorithms
are desi r.ed considering rooted graph structurkereanthe repeated circulations of a token take
place in . e structure. The examples of token bawetex algorithms are Suzuki-Kasami
algorithm [15] and, Naimi-Trehel-Arnold algorithnig]. A distributed mutual exclusion in



MANET is proposed based on dynamic logical ringology employing token circulations [8].
The periodic graph partitioning mechanism is emetbjorming cluster of co’ 'nuting nodes and
arranging them into a logical ring topology for il@menting Ricart-Agrawc.ia nic*ex algorithm
[9]. Another token based mutual exclusion algoritmMANET is pror..~d to reduce hop
frequency [10]. The main challenge with token badesttibuted mutual :xcbh sion algorithms is
to maintain fairness property. This is because agss holding a *foke.. may be in CS for
arbitrary long time.

A fair and starvation-free distributed mutex al¢fum is proposr 4, v nicii is a refinement of
Kanrar-Chaki algorithm [4, 32]. In this algorithrheuristics are inse..~d in order to reduce the
frequency of priority enhancement in a queue oliests rece ved f.om processes [4]. A tree-
based distributed mutex algorithm is proposed irddpnt of th » distrit uted shared memory [17].
The algorithm considers that a distributed systeam & s~~nn... «ree topology. The hybrid
version of distributed mutex algorithm is propodesed in I . al array topological structure
employing token circulations as well as wraparoim®-L ,+8]. A priority based distributed
mutual exclusion algorithm is proposed based onemw ~2 suucture, which is a logical tree
structure [5]. The algorithm is dependent on thiwves layer supports from routers. A hybrid
group based distributed mutual exclusion algoriienpi.~os.d considering multiple groups of
processes [3]. The algorithm aggregates a set ov™mdnto multiple groups, where mutual
exclusion is realized by transacting inter-gro’ ....«-youp messages. This results in high
message complexity due to several rounds of me.agthin a group as well as inter-group. In
cloud computing paradigm, analysis and sit u...“~~=sment of events generated by distributed
processes can be performed based on share.' iatangglistributed mutex in closed group of
processes [28]. In case of very large s 'e n did&ibuted systems, formation of process
groups can be analyzed in view of topology, wi.Tline with the topological data grouping in
massive data sets [26, 27, 29].

3. Probabilistic Characterizatic .1 of A gregate Set

The standard mutual exclusir n a'goriuims for distied systems are designed based on partial
ordering of events. The pari.~l c.der’ ag is perfednbased on local logical clocks associated to
each distributed processes. The ~¢, requests aestamped by using local logical clock values
of individual processes a i the request messagdsreadcasted in a closed group of processes.
As a result, a single process v.*hin the closedigrean enter into CS depending upon lowest
value of logical clocks. In general, this mechanisnefficient and easy to realize. However, in
special cases the alg ~ritt m may lead to generatggregate set of processes and would not be
able to provide str'ct mu.~x in the presence lok)-CS set. Moreover, the timestamp based
mechanism may 1ot wvorl in open group of procestbs. detailed analysis of generation of
aggregate set (i.e. ' ce’.s subgroup) and failotehis given in next section.

3.1 Generaticn of At gregate Set and Failure M odel

Let P={ ) :1<1 <N,i0Z"} be a closed group of processes in a distributstesy having
arbitrary to, ~lo,y. LetE be a set of events generated by respective propessP and,
Op 01 C.g — Z" 0{0} be the clock function associated to individualggsses. According

to model ~f distributed computation, the followilgconditional is maintained over an anti-
symmetric relatiortlp, [P, <0 Ei2 in any system,



Op OP,0e,e UE,[(e,6)0<] = [C(g) <C(g)] 1)
Let a predicate be defined dsx, y[0Z* {0}, W(x, y) 0{01} where,

x=C(e,),y=C(s,),

el )
[W(xy)=1]:=(x<y]=[(e, &) <)

However, as the clock function is not a global diign in a sys.ein, hence a distributed system
maintains following condition for consistency ofngputation,

|:{ea1eo} D UEi;

W(x,y) =0, (3)
[(e,,6)U<]=[(g,,e,) <] U[x<VY]

Assume that, initiallyOp OP,e, 0E,C(e,) = and, CS(P)|,,J P represents a set of
processes willing to enter CS withiit time- =“~w. whereAt — 0. As the functionC(.) is
N
not invertible, soJA [ U E, such that foll .ing « Xioms are satisfied,
i=1
Ue,, e OA,
e,0E, e 0E,,azb, (4)

C(e.) =C(s)

This may lead the distributer’ sys.em under conaiater to violate safety and liveness properties
of mutual exclusion of logical c.. ~k ¥ ased algarithif the following axioms are satisfied,

ICSP)LELIAPL
At - 0, )
[e, DA =[p, OCS(P)),1

Thus, the logical u.- :k ased traditional mutexodthms may not be able to select a distinct
process under uie exiwience of conditions satigfgirioms mentioned earlier. Henc8, is a
generated C< -aggre. ate set and the correspondengiteon sequence is presented in Fig. 1 as
schematic repi. <ent ion.
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Fig. 1. Schematic representation cf gener. tiorggfegate set

It is to note that, complete restriction on getis not pos.hle in a large-scale distributed syste
which is inline to the concept of generalizédk, -> set. Hence, a mechanism is necessary to
resolve A while maintaining safety and liveness pro,certie€8. In the next section, a detailed
probabilistic characterization of generation o. &g «. 3etA is presented in view of topological
spaces.

3.2 Probabilistic Characterization of Sat A

N
Let the entire set of events gene .. in a digeib system be represented Iy, :UE .

i=1
However, the CS requests rcan he ‘,enerated randbmlgistributed processes and, the
corresponding realR ) valued 'andom variable in 1-D is given by,

X, :E, - R (6)

In a group of process~< in a distributed system, ither-dependency between processes is
important factor to be cor sidered. Let the prolistisl characterization oA be represented by,
A OX,(ADOE,) . wi.c«eildl (index set). In the correlated event space, a ghitity

distribution functic .1 is Jefined as,
pr:Eg - [07] @

Let 7, be *»2 p._.uct topology in 2-D space of randomieeents of processes and, the
correspor ding p 2duct topology generating functamn randomized real space be given as,
g,: R* - {2 Luch that, the following conditions are satisfiathere Q(.) generates power
set,



g,(R*) O{Xz}

8
7, 0Q(X3) ®)

However, the generation of topology is not arbitrary and, it follow. a estriction given

below considering; is a closure of open sé&; ,

eab =(ea!eb)|] Eé,
a4y =(Xp(e) UR X, (g)UR), ©)
0K, O7y, > pr(e, K Ory)=1

Da0K;

The degree of correlation of events in space ispe.™® as = norm affecting the shape of
probability distribution within topological spacemgrated by, (.). The computablg-norm in

correlated event space and, the respective loaalfarnm ~s w:ll as complete (LUC) probability
distribution in topological event space are defiasd

De, 0BOEZ,qOR",

ey 1= (X0 (e + X0 (8) ), Lo
lley |l
pr(e, |K O7,)=——"——
® T Y lleyll,
D@, 0K;

Furthermore, ifG,H 0 E2 be su'n that, V Oz, andG n H # ¢ then, definition ofpr(.) is
refined as,

|G PLIH P
M=GOH,\VOg,(X,(*.YxX,(M)), (11)
e I
a,0V:pr(e, |VOT,) - 29
® ® ’ Zueabllq
OagpV

Evidently, the prui=ailis’.c characterization isbiased in nature having uniform as well as
normed distrib’..on. 1. ¢he next section, a prolistic model is constructed to resolve et
through the noncoir ‘mutative composition of functiommintaining SL (Safety-Liveness)
properties of n. 'tex.

4. Resolv ng agg egateset A

It is ccsic s d in this paper thad# ¢ and, the SL properties are maintained while resglv

set A. If u e considers that, unbiased randomizatiosges fairness, then the proposed model
in this section also preserves fairness of mutex.



Let two monotone sequences be defined as,

n=|A,B,0Zz*.C,0Z",

B, = (b,)mr b, 0 (0+%),b,,, =b, +1 (12)
Cn = (Cm )2:; 1 Cm D (0,+00), Cm+1 > Cm

If fg:Z" - Z" is a surjection function and,D 0 Z", then f5(.) .=n "se defined as,

Ux.,, 0D, nx,, >0,
[sin(nx,) >0] = [f5(x,) =|sin(x,) ] (13)
[sin(nx,,) <01 = [fs(x,) =N =X, ]

The surjection is hybrid in nature having partlyipdic and pe.tly linear combination depending
on interval conditions. The hybrid function ensusebi..~ad d'stribution in two disjoint domains
having disparate distribution profiles of pointsaiiset.

An integer valued translation functiag(.) is defineu ~s follows,

E=f,(D)l<k<n,

(14)
Oy, OE, 9(Yi) = Vi +C
Furthermore, a random variab}(.) is defic as,
1<j<n,c =h,
H ={w, 1w, =g(y,) Oc,; =2c _}, (15)
X:H - Z" 0{0}

A noncommutative cor pos..~ function (X.g)(.) which prepares seA by incorporating

elasticity along with ur... sed randomization. Thes#c diameters and ratio of diametersare
computed as,

w O R* 0{0},

diam(W) =| maxiw, - ingW)|,

G ={x:x0(<.9)(), (16)

G, ={y:yrgn

_dian G,)
diam( )

The ratio »f diameters may not be constant anetierdhines the varying elasticity of set during
randomizaw.on at different instances. The elastioit set affects the chances of collision during



composite mapping. If the frequency of collisionlagv, then the computational complexity is
high due to requirement of generating a complgeeiion map covering set ir multiple rounds.

5. The Algorithms

This section presents a set of algorithms in psewde form for probe*-ilisue mutual exclusion,
which is a refinement of logical clock based algori following partiai ~rdering. First, the
randomization algorithm is presented. The resatutilgorithm of ag,rep ~*~ set is presented next.
Finally, the refined algorithm for mutual exclusi@npresented. T. ~ r usndomization algorithm is
presented in Fig. 2.

/lAlgorithm : randomize (A)

Vpje P:

Integer m=0,n=A. F v:
Integer array a[n];

Set B={pr:ee€ A

while (m '=n && B# ,>¢
k=pid (. - o)
y=Js(k);
alm] (7~ )y):
B=B\y, .
m Mt

}
Fig. 2. Pseudo-code rep esc,..ation of randomizatigorithm

The randomization algorithm follr... the randomiaatimodel to generate a set of processes
having distinct infimum. The cor putatic 1 considerdividual process identifier(s) (pid) of CS-
requesting processes during rendu. ~iza'on. If teéndt infimum cannot be generated in a single
round, then multiple rounds wor'ld be required ekiiagusame algorithm realizing repeated
randomization. The pseudo-.c : re',resentationsaivieg aggregate set in multiple rounds is
given in Fig. 3.



/lAlgorithm : resolve (4)

Vpje P:

Integer n, v, z;

Set By , B;

Structure message m[ | = +eo; //initialized to invalid

Label: n=|4];
Br={px:ere€ 4};
if (n=1 && p;je By) enter_CS();
else { y=randomize (4);
m[j] =<pj, y>;
send (m[j], Bx \{p;}):
z=n-1;
while (z !=0) { receive (m[k], px= Bx);
z=z—1:;}
A=¢:;
B=tind min_equal (m[n]);
A=A {ex: px€ B};
goto Label;
}

Fig. 3. Pseudo-code representation of an:. 2gatesaution algorithm

Thefind_nmi n_equal () function represert*s searc..ing the process in raima set having
infimum randomized value. The processes I ar,gecgett execute the resolution algorithm and
mutually exchange the randomized local ‘alue. rEhason for exchanging values is to ensure to
global consistency of values within a sub-e. “epsses. If the distinct infimum of values is
found, then the process generating th~ infim.mgmds into CS. Otherwise, if no single process
is found having a distinct infimum, ther -~epeatedaaition of the algorithm is performed. On
each round of execution, the reduced infimum valseidis considered and other elements are
discarded.

The refined probabilistic mutus' exc..<i",n algamitlis presented in pseudo-code format in Fig. 4.
According to algorithm, if the firs' round of exaimn of standard logical clock based algorithm
successfully generates a dis.~_t ir.mum, thenhtr randomization is not required and the
process generating infimu n proce .ds to CS. Indhse, the aggregate set is not formed by the
execution sequence.



/I Algorithn : pmutex(P)

Vpie P:

Boolean want_CS;

Integer my clock, agreed = 0;

Structure message m;

SetBr=¢,A=¢;

Macro LEAVING _CS = 0; //set to true at end of CS within CS pr- .. *ure

if (want CS==1) {
Br=Brv {p;}:
m.clock = my clock;
m.data = CS_request;
send (m, P\{p;}):
}
if (receive (m)){
if (want CS==1){
if (m.data == CS_request && m.clock < my clock) send (ok, m.py);
else if (m.data == CS_request && m..'~ck - =my clock) {
Br=Bru {mpr}:ia =40 {mep}:}
)
else send (ok, m.py):
if (m.data == ok) agreed = agree ' - 1-
else if (want CS==1 && agreea == £|—1) {
if (|Bx|==1) enter C™;
else resolve (4);
}
}
if (LEAVING CS) send (ok, P\{pi}):
//lend
Fig. 4. Pseudo-code ' epresc-.tation of refined fmtibac mutex algorithm

However, if the aggregate sev .~ renerated dueomabimatorial execution sequence, then the
algorithm fails to determ’ .~ distinct infimum andopeeds to resolving the aggregate set. The
algorithm calls for set resoluuon, which in turalls for randomization in repeated rounds, if
required. In any case. aic algorithm successfidlyegates a distinct process generating infimum
and selects the proc’ ss tJ enter into CS. Notedhat full monotonic sequencing is performed
on an aggregate sft, ea." process in the set temGH one by one following that monotone. It
indicates that, aftr/ ge.1erating a randomized nwmeosequence, repeated executions to generate
different sequencc. =~ are 1ot required. This redtleesverall computational complexity of the
algorithm.

6. Analysis of Jorre tnessand Topological Properties

This sect.n pres ants analysis of algorithmic @iness and a set of associated properties. It is
assumed tr..* *.e points in a set can be assotmgedistribution function, where the underlying
metric spw. = ~f distributed systems is probalglistinature (i.e. events generated by processes
are rana Y a in nature). Thus, the standard prolsdage of events generated by processes having
a topologi al structure would result in formatioh probabilistic topological space [25]. The
estimation of interrelationship between event sasiph a computing space is important for



formation of aggregate set of processes, data eemt®[29]. The aggregate st generated by

processes is considered as a subspace in viewabyfsan whereA represer «. corresponding
closed set

6.1 Algorithmic Correctness Analysis

Let be ChCmOZ" such thath =| A| andm=|(X_g)(U)]| in a sv.wm, wi.ere initiallg =1
andU OR is a finite set. In a distributed systefdxOdyA, le.io 12 andipyDZ+ be
representing respective process IDs (pid). Accgrdmm the al¢ oiichm, na=m for s=1 then
DnyDA,(XQg)(ipX)|Fl Z (Xog)(ipy)‘s:1 . Thus, the algor thm te ‘minates witb=1 by

generating a monotone sequendes (8 OR) . Howevr r, if =>m then [s>1 such that,
DXDyDA,(XQg)(ipX)|S>1 Z (Xog)(ipy)‘S>1 and, the ~lgurithr terminates by generating

J=(B0ORM ats>1. It is not possible to attain<m in a system in any case, and the
algorithm executes in rounds to attain the condjtic =| A, -urthermore, afP | is finite, thus
monotone sequencd3;,C_are finite as well as h~'=-- | by correspondingndtefns. Hence,

the algorithm successfully resolves aggregate su ~®quences the processes in a convergent
form.

6.2 Topological Analysis of Aggregate S:»

In this section, the analysis of characic “suc.._ dregate set is presented considering underlying
distributed computing space having topolo,cal ratfhe aim of performing rigorous analysis
is to gain a better insight to the dv-~mics ofdhistem. The analytical results are presented as a

set of theorems considering any orobab isticaligracterized sef in the topological space for

any aggregate séh in the corrr spor..\n 4 event space of processes intansy the structures
of aggregate sets are differer , tt 2n the correipgrprobabilistically characterized sets are also

represented using different inuc ‘es n this sactid* represents a set of natural numbers.

6.2.1 Theorem 1: If A U7, suoh thatDA, A OA,An A =@ andi,mON",i#m, then
> pr(e,IKOr) < Y, Y pr(e,|AD7,) where,K =Uin:1A.

Oa 0K L A Doy, 0A

Proof: Let A Oy suct that,OA,A DA [izm=[AnA =@ . If |1 |<+w, then

ChON™ suck that],” |=n. However, if pr(.) is locally uniform and complete, then within the
respective fini.» topo' ygical space,

OA Oz, Y priz,|ADr)=1 (17)
Oa,, A



Thus, if K:ULA , then due to local uniformity and completep :ss tapological

space, pr(e,|KOr,)=1. Hence, the topological space maintaiis th. btppérat,
Pri€m g

Oam K

Y. pre, |KOr)< > > pr(g,lADT,).

Oa 0K OADA Oa,0A

6.22 Theorem 2 If pr(.) is LUC everywhere in7, a'd, "y~ A}0O7, where
AnA =C#g@ such that, Zﬁpr(qm|ADT9): Zr"(qm|.“ Oz,) , then the

Oa;,,0A\C Oa,0f \C
T , I 1 —
distribution will maintain Zﬁ pr(e,|ACrz,) 25(1— L e, |AnAl TQ)J.
Oa,,0A\C [ %0 0 A

Proof: Let be[{ A, A} U7, where, A n A =C # @. By fo. \wing the topological properties,
{AAYOr ]=>[A0ADO7]. If K=AOA &nd, ") s LUC everywhere i, then

Z pr(e, |[KO7,)=1. However, the rearranmem~~- in topological spame loe done as,
Oa;, 0K

K=(A\C)O(A\C)OC, whereC is an ¢ ..~ ~=t maintaining condition that,

Y, pre.lADT)= Y pr(e,lA L, (18)

Oa;OA\C Oaim0ANC

Hence, the local distributions within the sub-sgace maintain,

1

27 pr(leADTg)ZE(l_ Zp”?imlAnA(DTg)J'

OamOA\C Ol A,

Lemma : If pr o is LUC everywhere in 7, then
Y. pr(e,lKOr,)<  or(g,|COT,).

Oa;,0K\C OainC

Proof: Let be{A,A, " 7, and, KO7,:K=AUOA. If C=A n A, then according to
topological prope'.yC 7. . If C#¢ and, pr(.) is LUC everywhere irr,, then within the
sub-spaces,

D pre. lK?g:zl}:{ Y pr(e, |KO7,)<1 (19)

Da;0K Oa;,OK\C

Howe:~ due to LUC property,y_ pr(e,, |CO7,) =1.

Oa;,0C

Hence, ;7 pr(e, |KO7,) < Zipr(qm |COr,).

Oa;0K\C Ua[1C



This indicates that, locality of probability measuwithin topological space has an effect on
respective distribution profiles.

6.2.3 Theorem 3: Probabilistic estimation is topologically comrwn i UA LT, if

A ={(x,x,): (X, x)OA} : such that ATy then
DaimDA'DﬂmiDAU Zipr(leADTg): ZPr(emlA(DTg[l)
OamJA OBrniDA

Proof: Let the two topological spacey and, 7, be defined ov,.;lé suuh that,

OA 073, TA, ={(% %) (%, %) DA},
[A%@AD]=[A @A D7)

(=2

However, due to symmetry,||g,|l,=ll&;ll, - Moreov2r, due to LUC property,
Oa, OA, 06, 0A, D prenlAOr)= Y pin | nDOry) =1

Oa,m0A 0B,,A
6.24 Theorem 4 If {g,e,}UE; |[le,|l,>° ~nd. a(a,,) is a neighbourhood base of
a,,0D0r, such that, 7, is first countar’: with{H 0 D,GUH} OA(a;,) , then

Y pr(e,|DOT,)< > pr(e,|DOT7,).
Oa,,0G Oa,,OH
Proof: Let {g,g,} OE,,kOZ" 2~ DOr, be such thatr, is first countable having
Aa,,) ={A. O0D:a,,0A OA ' A..}. Thus, in finite topological spadé\(a;,,) <+ and,

k=n . .
UoAOD . Now,  © lg,,>0 and, > pr(g,|DO7,)=1 , then

Oa;,, 0D

z pr(g,|D0O7,)<1. dence, .fH =A,G=A,, having positive norm everywhere in

0a,0AOD

space, then " pr(e, | o '7,)< > pr(g,|DO7,).

Oa;,, G OayOH

6.25 Theorem r. If HOr, and f:H - H where, OA,A 0OH,ANnA =¢ and
f(A)OA,, tho~[h 7 ",n>0 such that,f "(.) is topologically convergent.

Proof: Let ber: 17 for the topological spacg, such that|7, [ Z and, f:H - H. If
H={A:40r, Ji0Z"} such that, 0OAA,0OH,AnA,=¢ then

Oa,bMZ*, 1« o] =[f*(A) O f°(A)] if f(A)OA, . Thus, f2(A)n f°(A) =9 and,
[lim, .. f*(A)I<+e. Hence, f"(.) is topologically convergent, whefenCJZ*,n>0.



7. Experimental Evaluation
7.1 Implementation Framewor k

The experimental evaluation of the algorithm isfagmened by impleme..'inc in C language on
Linux Fedora 2.6 platform. The implantation simafaia set of distrii.*tea ,"*ocesses by using
multithreaded programming environment. The schamagipresertation, f implementation
architecture is presented in Fig. 5.

|

Inter-TS 10 modiile Peos ss

123208

Networ -
T: Thread, TS: Thread stack
Fig. 5. Schematic represei tauon of implementatiaalel

The threads simulate a set of distributeu processesected by network. Each thread is
associated with isolated thread st .cx -"ames, wiherelata 10 between threads are implemented
by inter-TS 10 module over the Socke interfacee Het of threads reside within an address
space of a process. The threar's e~ ~~U e the Algasribcally in respective nodes and exchanges
computed values over netwe k. Tae random varixipleis realized by seedext and( seed)
library function, whereseed . ~ . mp.ted by following randomization model prased earlier.
The threads proceed to ¢ eate « ‘otal order baseskchanged randomized key values. If the
threads detect generatic 1 v same key values lpses of threads, then that subset of threads
proceed to second rourd of execution of same atgorio establish a total order. The evaluation
of system performanr e is conducted by measuringdhhewing parameters: (a) variations of
diameter of set afte: b,brid surjective mapping amanposite mapping, (b) frequency of
surjective collision (¢ va. ations of diametettioa(r ) with respect variations in number of
nodes, (d) requir :me .t ¢° computation rounds fonotone sequencing of processes and, (e)
surface map of imc ler endency between collisiogamdter ratio and number of nodes in a

system. In the exper mentation, the initial badeeés set to integer value B,(= 2).

7.2 Evalur.aun o1 Algorithmic Performance

The variati. ~ nf Jjiameter of surjective map of awith respect to number of nodes is presented
in Fig. «. Th= experimental result illustrates thatitially the diameters are not heavily inflated
with res ¢ ct to varying number of nodes. Howeviee, diameter starts to get inflated strongly
after node ~ount exceeds a threshold (in this 28s€eThe diameter inflation peaks at node count
equals to 25 and sets down to a lower value gradifidhe node count is further increased. This
indicates that, the surjection provides an expansame and a contraction zone depending on the



node counts. This behaviour is due to the influesfggeriodic trigonometric fuaction controlled
by shifting base value in iterations.

The corresponding variation of diameter of set wndendomized cc .., 9site mapping is
illustrated in Fig. 7. The composite map expandsdiameter 100 folds ap’ roximately, on the
average covering the entire range of node courtgeder, the inflation a, '‘amics is relatively
monotonic and exhibits saturation effects for aegiwase value. Mo, ~aver, the monotonic
expansion of diameter is nonlinear in nature.

Variation of set diameter for hybrid surjective r ap
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Variation of set diameter fo, ran.omized composite map
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Fig. 7. v ori dtion of diameter of randomized compssnapping

The variation of coliz.~r frequency under hybridjective map is illustrated in Fig. 8. The curve

illustrates tha', colli*ion frequency is varyingtlviindeterminism and has nonlinear profile.

However, the ‘ariatio 1 is having computable as aegltistinct supremum and infimum values. It

indicates th~t, c.lslon frequency is band-limited nature. The value of diameter ratio of

aggregate set fo - full execution of algorithm lastrated in Fig. 9. The profile of diameter ratio

variation i, 'istratr s that, with lower number ofdes, the ratio is much larger (i.e. composite map
is highlv elasuc). However, the elasticity of ramngization decreases monotonically as the
numbe. of nudes is increased. However, monotonicease in umber of nodes results in

nonlinear ‘ariation in elasticity in randomization.



Variation of surjection collision frequency

Collision frequency
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Fig. 8. Variation of collision frequency t nd~.r 1 thsurjection
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Fig. 9. Va .ation, ~ diameter ratio under two maps

The reduction in elasticity en, ~nc :s the requireénednmultiple rounds of computation for
ordering of processes to » ~ter in LS. This effeeisible in Fig. 10. If the base value of primary
sequence is lower, then .he 1< *uirement of multiplends of computation starts at node count of
35. However, a single ' u..d of execution is endoghelatively lower node count.



Variation of rounds for sequencing
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Fig. 10. Shifts in sequenﬂing_m;ds

The dynamics of collision, node count and diame %0 &, < Illustrated in Fig. 11. The surface
map is nonlinear and not strictly monotonic in matiThe ‘rface map illustrates that, there exist
multiple zones of elevations and, the nonline..oanized variation within a zone is band-
limited (i.e. computable in nature).

Surface map of collision and . ‘. “srrati v.r.t set size
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Furthermore n. =" cases the aggregate set isesafidly resolved and mutual exclusion is
attained v (thout *ailures.

7.3 EvAaluatiu,.. Jf Probabilistic Characterization

Experime (tal evaluations of probabilistic charagtion model are carried out by using
numerical vimulation of different clusters of evenith varying densities in event subspaces. The
randomization of sampling of events to generataeggge setA is simulated by using seeded



randomized function. The distribution profiles ofeats clusters are present~d in Fig. 12. The
nature of density distribution is divergent betwéea profiles as presented ir <ig. 12. One of the
cluster density distribution profiles is approxielgt converged within a .mit.> value with
respect to range of distribution representing maomigtlly increasing hir’. lensity clusters of
events. The second profile represents dilutionceffie e. reduction in eve s ¢ uster density) with
the increasing norms with respect to increasingtetusize distribution. As > result, the second
profile has a divergent distribution profile. Theopabilistic estimations .~ performed for both
low density and high density events clusters witltying norms in order to determine the
resultant effect of norm on the respective estiometi

Cluster of events distribution profile
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Fig. 12. Distributions profiles nf ev. ats clusteii¢h varying densities
7.3.1 Characterization I: High density cf A

In this experiment, the density of clusters vi @gdn considered to be high indicating a large
cardinality of aggregate sed, w'.ci, vesults in reduction in distances (d valubstween
samples within topological spacr s of col putatidre $napshot of variations of 2-norm values of
distances (d values) between rven.. is presenteid.ii3. The correlation between d values and
2-norm values illustrates trat, ooth are monotdlyicancreasing in nature with relative
uniformity of distances witi, ir cres sing number ofemlts collected in a cluster from the
underlying topological sub .paces.

Variation of 2-norm values with respect to
distances between events samples
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Fig. 13. Correlation of distances and 2-norm vahfesvents samples



The corresponding distribution surface of prob&piistimation in 2-normed s»ace is presented
in Fig. 14. The distribution surface illustratesatthin high density clust rs of events, the
variations of probability estimations are highlynaaniform in nature. Thc nor, “'niformity of
probability estimation is highly dependent on tHester size affecting ... relative distances
between events. In other words, the structure détlying topological su' spa .e has influence on
probability estimations in high density events s in 2-normed space.

Surface map of probability variations for 2-norm topologic’ . spe ~~
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Probability variations

Distances between samples & __ . Norm values

Fig. 14. Distribution surface of proba. 'y C_(itima in 2-normed high density events space

Next, the norm dimension is inr~-~sed to 3 whilepkeg the cluster densities of events
unchanged in order to detect t'.e infl.. 2:nce of ndimension on estimations. The resulting
variations of profiles of d values and 3-norm valwme presented in Fig. 15. The profiles
illustrate that, d values and 3-rorm values tendditeerge if the number of samples are
monotonically increased. Tt s ir.dic7.es that, datien of d values and norm dimensions are
mutually repulsive in naturr .

Variation of 3-norm values with respect to
distances between events samples
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Fig. 15. Correlation of distances and 3-norm vabhfesvents samples



As a result, the probability estimation surfaceegp to be smoother in this c7se as illustrated in
Fig. 16.

Surface map of probability variations for 3-norm topological space

i
o

Probability variations

Fig. 16. Distribution surface of probabi. 'y . “*=m in 3-normed high density space

The estimation surface illustrates that, ..~ vt of d values, 3-norms and probability
variations are mutually adjusting keeping *he siefaelatively smooth. However, there are
appearances of occasional low intei..v 2 ‘odioity probability estimation surface limited
within a band.

7.3.2 Characterization |1: Low de isity o1 A

In this experiment, the densi'y of clu.ters of éges considered to be low, which results in
increase in distances (d val. 2s) Jetv een samptesviopological subspaces. The variations of
2-norm values and d value, wiu. ve pect to saniptesse illustrated in Fig. 17. It is evident from
figure that, the variatior. are mutually divergémtnature if the sample size is increased
monotonically.

Variation of 2-norm values with respect to
dista. ses between events samples (low density cluster)
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Fig. 17. Variations of d values and 2-norm valuesvents samples in low density cluster



The resulting surface of probability estimationdw density cluster of events i presented in Fig.
18. In the low density subspaces within clusterswants, the 2-normed estir ation appears to be
relatively stable all most everywhere. Howeverrehare localized band lir.atea (- =riodicities in
estimations on the surface of probability variasiomhis indicates that in ! ... density clusters of
events, the 2-norm based estimation may not digishgprobabilities of 7 ope urances of samples
with sharpness.

Surface map of probability variations for 2-norm topological spac’ (low ~~nsity)

bility variations

0.08

0.06

Probal

0.04

0.02

s e
e S
el _—~1000
LT 5w
50 Ty —— T Norm values
Distances between sampled’ > Bl —

Fig. 18. Distribution surface of p .2~hil/ estitiom in 2-normed low density space

The corresponding variations of d values and 3-narnhow density clusters of events with

respect to monotonically increacing - mple size mesented in Fig. 19. As expected, the
correlation between d values a. 1 dime nsions of aamgminvariant in low density clusters of

events. The main reason is that, ‘*2 reduction ensitly results in reduction of mutual

interference between events with'1 a computing pabes.

“‘ariation of 3-norm values with respect to
distances . *ween events samples (low density cluster)
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The resulting surface of probability variationspiesented in Fig. 20. Evidently, the identical
invariance is observable in probability estimatsamface, which is insensitive n the dimension of
computation of norm.

Surface map of probability variations for 3-norm topological space (. ‘v c :nsity)
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Fig. 20. Distribution surface of probar ity ~stitiea in 3-normed low density space

In other words, the enhanced distances hetweenlsantp subspace effectively reduce the
normed projection values making it relatively unifoin nature.

8. Comparative Analysis

This section presents comp- rati e a'alysis of thpgsed probabilistic mutex algorithm (called
as PMA) with respect to a ai.>re2 set of algorithmshe domain. The number of nodes
considered for PMA in r_mparative analysis represéie size of aggregate set. The set of
algorithms considered 10r cu. “parative analysis dreken based distributed group mutex
algorithm (TGM) [11], ‘up. mal algorithm for muteX0O@AM) [12], pN algorithm for mutex (PNA)
[13], Tree based mut 'x e gorithm (TMA) [17], Kar@haki algorithm (KCA) [4], Chang mutex
algorithm (CMA) [2], Cu.mon optimal fair starvatidree algorithm (COA) [4], Hybrid token
based mutex algr sith’.1 (HTA) [18] and, Local mutdgoaithm (LMA) in static network [19].
The comparative - aly s of algorithms considengehparameters such as, (1) message
complexity, (2° .espoi.ue time and, (3) failurefs@in count. The message complexities of
algorithms ar.- comp. red in two classes. In firségary, algorithms are grouped depending on
their computar'= de*2rministic message complexitieshe second category, the comparison is
performec considering algorithms having varying ptewities with a range (bounded).

The compeenr. of deterministic message complexiepresented in Fig. 21. The message
comp! a., ~f OAM algorithm is a monotonically ireasing function having relatively steep
slope a. = to rounds of multicasting. The messageptxities of TMA and PNA are nearly
comparab, ». The message complexities of these lyavithams are having extremely low growth
factor with respect to number of nodes becausenuaritation does not need to cover the whole
group. On the other hand, message complexitiesMA Bnd TGM are comparable within a



range for relatively lower number of nodes. Howevke message complexitizs tend to diverge
for PMA and TMA as the number of nodes increasém PMA has relativr v lower message
complexity as compared to TGM, because PMA requiudset of processes, in y. eral.

Comparison of message complexity of mutex algorithms
(deterministic estimation)
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Fig. 21. Comparison of determi~i=*Z .nessage Coxilj@s

The comparison of varying message compl. ~...~~"Hed within an interval) is depicted in Fig.

22. It is observable that, message complex® ofAH$ bounded within a bounded region

(between HTA-I and HTA-II). However, ti -. *egic n\@driation is not highly divergent in nature.

On the other hand, PMA exhibits a uniform ‘an. t@dnimessage complexity having deterministic
characteristics in all cases. If the n. ...2” + £ EéQdesting nodes is lower, then the overall
message complexity of PMA is lower thai, HTA. Howewerall message complexity of PMA

tends to monotonically increase if anaregate getisimonotonically increased.
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.. 22. Comparison of varying message complexities

The respunse t'ne of algorithms are measured bygusystem clock having millisecond

resolu*~n in urder to determine computational claxities of algorithms. The comparison of
respon.2 me of mutex algorithms is presented i@ E3. The algorithmic response time
represenw.. the averaged execution time of algonthite generating the mutex decision given a
set of CS-requesting processes.



Comparison of response time (ms)
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Fig. 23. Comparison of algorithm.~ *zspr nse time

It is observable that, response time of KCA, CMAI &OA a. = comparatively higher (nearly 3
folds) than the PMA and LMA models. However, alymic r :sponse times of PMA and LMA

are comparable, where PMA offers relatively low sgonse time in a static network. The
comparative analysis of varying failure/collisigm=*'*- ~-__size is presented in Fig. 24. In this
case, the LMA is evaluated in static network folilo, * inial model [22].

The variation of failure/collision between Li ia' 1A and PMA is diverging in nature with
monotonically increasing number of +node:. The PMAodel successfully reduces
failure/collision rate by incorporating two-L"a_~astic randomization. However, in any case,
the failure/collision count is monoton” 2" ir,~s#@g with respect to monotonic increment of
number of CS-requesting processes.

Com ,arison ¢ failure/collision locality
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Fig. 24. Comparison of varying failure/collisiorchity set size

Although *.1e faiire/collision count is enhancedhaiespect to node count, however PMA model
does not 1cur re )eated rounds of execution ofréhgo for generating the total order among the
set of CS-, >~ _sting processes. This reduces thgutational complexity to some extent
reduci.y u. . ~verall response time.



9. Conclusion

The traditional distributed mutual inclusion andclesion algorithms iitenac.' for shared
resources are not completely suitable for direglieations in heterogene su. large scale mobile
distributed systems. The generalized distributeduaiuinclusion anc ex‘ .iusion algorithms
execute in localized computing systems and, thigeeitoms tend to ge~eraw. subset of processes
in a queue waiting for critical section executidhese processes are equc."V eligible to enter into
critical section. In specific cases, this violatedety property of rstr ~ted critical section if
these processes are allowed to enter in criticicseconcurrently. “he proposed failure analysis
model identifies such conditions in analytical fetrithe resolutic~ of s.~h group of processes is
performed by employing a probabilistic algorithmiodel. The comp. tational evaluation of the
algorithm illustrates that, it is suitable for miaiming safety pro,erty b’ incorporating concept of
multi-phased elastic randomization. The detailead\ais of ', oritin..c correctness, probabilistic
characterizations, and underlying topological strres are pre .er ‘ed in this paper. The profiles
of topological as well as probabilistic charactatigns are ‘valuated through numerical
simulations. The proposed distributed mutual exctuglgo..*"m 1s computationally inexpensive
in nature.
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