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Abstract 
 
The applications of distributed computing systems are pervasive in nature involving multiple 
shared resources. The distributed mutual exclusion algorithms of various classes are employed to 
control concurrency of accessing shared resources maintaining data consistency. In general, the 
distributed mutual exclusion algorithms are designed based on fixed or dynamic graph structures 
formed by a set of processes, where the distributed mutual exclusion mechanisms are realized 
depending upon timestamp based ordering of events or by employing token circulation in the 
graph. On the contrary, in large scale heterogeneous distributed systems, an aggregate set of 
processes can be generated under special circumstances, where processes in a group are equally 
eligible to enter into critical section. In order to maintain safety and liveness properties of mutual 
exclusion in such cases, the probabilistic characterization as well as topological analysis of 
aggregate set in computing space is necessary. This paper proposes a probabilistic algorithm and 
its topological characterization for mutual exclusion in aggregate set of processes. The analysis of 
failure model of strictly ordered distributed inclusion-exclusion designs is constructed in the 
presence of aggregate set. The unbiased probabilistic algorithm is based on two-phased elastic 
randomization. The algorithm is evaluated through detailed simulation and, the related 
probabilistic characterization in topological subspace is evaluated. A detailed comparative 
analysis of the algorithm with respect to other distributed mutual exclusion algorithms is 
presented.       
 
Keywords: Distributed computing, logical clock, mutual exclusion, probability, random variable, 
topological spaces. 
 
1. Introduction 
 
The present day distributed computing systems have two distinct characteristics namely, multi-
level heterogeneities and, large scale involving thousands of computing nodes. The multi-level 
heterogeneities include network level heterogeneity, hardware level heterogeneity and, system 
software level heterogeneity. Traditionally, the distributed computing systems are modeled as 
arbitrary graph structures, where nodes of a graph represent distributed processes and the edges of 
a graph represent network links. However, a distributed computing system can be modeled in 
view of topological spaces comprised of sets of distributed events generated by individual 
processes [23]. In any case, a distributed computing system maintains a set of shared resources 
concurrently accessed by a subset of distributed processes, which requires designing of mutual 
exclusion for Critical Sections (CS) [12]. The main aim of mutual exclusion is to maintain data 
consistency, liveness and fairness of computation involving shared resources [2, 6, 11]. The 
traditional distributed mutual exclusion (mutex) algorithms are designed employing two 
approaches namely, (1) logical clock based timestamps for ordering of requests in a group of 
processes, and (2) repeated circulation of a token between processes [7]. If a token is lost then the 
fault detection and regeneration of a new token may incorporate unpredictable delay in a system. 



A wait-free (minimum delay) synchronization algorithm is proposed for concurrent distributed 
systems programming intended to systems having moderate scale [21]. 
 
However, the present day distributed systems such as, Mobile Cloud and Grid computing systems, 
are having geographic scale comprised of thousands of nodes and multi-level heterogeneities in 
architecture. These large scale systems are hybrid in nature, where traditional graph based or 
token based distributed mutual exclusion algorithms may not be adequate. The reasons are that, 
the distributed systems having geographic scale and highly heterogeneous networks are open to 
unpredictable network partitioning, message latency, duplicate transmissions, and random node 
failures. The fail-proof token circulation, token loss detection, regeneration, and realization of 
timestamp based ordering of events in such large-scale geographically distributed systems are 
extremely challenging. In such cases, the majority of traditional as well as improved distributed 
mutex algorithms are not completely suitable to guarantee safety, liveness and fairness [1, 10]. 
For example, the Ricart-Agrawala mutex algorithm requires modifications to adapt to large scale 
heterogeneous distributed systems [9]. However, the designing of probabilistic mutex algorithms 
and their characterizations in large scale distributed systems are not well studied. Moreover, the 
topological analysis of behaviour of a group of processes equally eligible for critical section in a 
distributed system is not explored.    
 
1.1 Motivation 
 
The large scale distributed computing systems contain multiple shared resources, and the 
distributed mutual exclusion algorithms are essentials for maintaining data consistency under 
concurrent execution involving those shared resources. However, the traditional distributed mutex 
algorithms are not completely suitable for present day large-scale geographically distributed 
mobile computing systems due to multi-level heterogeneities as well as scale of the systems [1]. 
The network level heterogeneity may results in random network partitioning and unpredictable 
delay in message transactions leading to the failures of traditional distributed mutex algorithms. 
Furthermore, the adaptation of distributed mutex algorithms to grid topology requires 
modifications at router layer. The router layer of grid topology is modified while employing 
Naimi–Trehel-Arnold algorithm to minimize network routing delays during distributed mutex [1]. 
However, this leads to a comparatively rigid design requirements involving network hardware 
layer of a large-scale geographically distributed systems. The token based adaptation of Naimi–
Trehel-Arnold mutual exclusion algorithm is not suitable for fail-prone geo-distributed systems 
involving mobile computing nodes [4]. The reason is that, locating and recovering a lost token in 
a mobile distributed system enhances computational complexity to a high degree.  
 
On the other hand, the generalized (l, k)-CS group mutual exclusion algorithms aim to incorporate 
flexibility in traditional mutual exclusion model in a group of processes [11, 20]. However, this 
algorithmic model would violate safety property due to reduction of tractability of shared data 
modifications if the group size increases. Moreover, the token based (l, k)-CS group mutual 
exclusion algorithms would fail in mobile distributed systems due to possibility of unpredictable 
network latency and network partitioning. On another extreme, the finite-population queuing 
model based distributed mutex algorithm assumes that, systems can be modeled using Petri Nets 
and, multicasting in network is reliable along with FIFO ordering, which are not suitable for geo-
distributed mobile computing systems [6]. In general, the efficiency of distributed local mutex 
algorithm for mobile ad hoc networks (MANET) is highly dependent on the mobility of 
computing nodes [19]. The distributed local mutex algorithm is efficient if the computing nodes 
are effectively stationary residing in geographic proximity reducing network delay. The rooted 
graph based algorithms such as, Raymond and Ricart-Agrawala mutex algorithms, require 



adaptation for realizing mutual exclusion if the scale of distributed systems increases [5]. 
However, the Ricart-Agrawala algorithm would not be able to provide safe mutual exclusion in 
the presence of (l, k)-CS group (i.e. aggregate set), where l > 1 and k > 1 (l = k). It is interesting to 
note that, concurrency control can be modeled in topological spaces of distributed computation 
having complex structures [24]. Furthermore, the probabilistic estimation models offer acceptable 
solutions in the systems having inherent ambiguity as well as randomness in decision making [30, 
31]. 
 
This paper proposes a probabilistic mutual exclusion model and corresponding algorithm for 
large-scale geo-distributed systems. This paper considers that aggregate set is a subspace in 
topological event space of distributed computation, and the algorithm can be viewed as a 
refinement of logical clock based mutex algorithms imposing total ordering on processes. The 
algorithm allows generation of aggregate set and resolves it using unbiased phased randomization. 
The probabilistic characterization of topological subspace of generated aggregate set is analyzed 
to gain insight. The main contributions of this paper are as follows. 
 

- A unbiased probabilistic distributed mutex algorithmic model is proposed   
      independent of network topology and delay distribution.  
- The proposed algorithmic model considers generation of aggregate set and, resolves it 

probabilistically maintaining safety and fairness properties. 
- The unbiased probabilistic model is based on two-phase elasticity of randomization, 

which reduces the requirement of repeated execution rounds for realizing mutex.  
- Analysis of probabilistic characterization of topological normed spaces of arbitrary 

aggregate set is formulated. 
- Computational estimation of variations of probability measures for different aggregate 

sets having varying densities of processes is presented. 
 
Rest of the paper is organized as follows. Section 2 presents related work. Section 3 illustrates 
analysis of aggregate set generation, failure modes, and respective probabilistic characterization 
of aggregate set. The phased randomization model for generating order for mutex in aggregate set 
is presented in section 4. The corresponding mutex algorithms are presented in section 5. The 
analysis of algorithmic correctness and a set of analytical properties are presented in section 6. 
The implementation and evaluation of the algorithms are presented in section 7. Section 8 
illustrates comparative analysis. Finally, section 9 concludes the paper. 
 
2. Related Work 
 
The mutual exclusion algorithms for distributed systems can be classified into two broad 
categories namely, (a) function based algorithms and, (b) structure based algorithms. The 
structure based algorithms require a specific graph structure for the designing of distributed 
mutual exclusion algorithms. The function based categories can be further classified into two 
subcategories such as, permission based mutex algorithms and, token based mutex algorithms [7]. 
In case of permission based distributed mutex algorithms, the timestamps (generated by logical 
clocks) based ordering and consensus within a group of processes are employed, where the group 
is considered to be in closed category. The examples of permission based distributed mutex 
algorithms are, Lamport algorithm [2], Ricart-Agrawala algorithm [12], Singhal algorithm [14] 
and, Maekawa algorithm [13]. However, the token based distributed mutual exclusion algorithms 
are designed considering rooted graph structures, where the repeated circulations of a token take 
place in the structure. The examples of token based mutex algorithms are Suzuki-Kasami 
algorithm [15] and, Naimi-Trehel-Arnold algorithm [16]. A distributed mutual exclusion in 



MANET is proposed based on dynamic logical ring topology employing token circulations [8]. 
The periodic graph partitioning mechanism is employed forming cluster of computing nodes and 
arranging them into a logical ring topology for implementing Ricart-Agrawala mutex algorithm 
[9]. Another token based mutual exclusion algorithm in MANET is proposed to reduce hop 
frequency [10]. The main challenge with token based distributed mutual exclusion algorithms is 
to maintain fairness property. This is because a process holding a token may be in CS for 
arbitrary long time.   
 
A fair and starvation-free distributed mutex algorithm is proposed, which is a refinement of 
Kanrar-Chaki algorithm [4, 32]. In this algorithm, heuristics are inserted in order to reduce the 
frequency of priority enhancement in a queue of requests received from processes [4]. A tree-
based distributed mutex algorithm is proposed independent of the distributed shared memory [17]. 
The algorithm considers that a distributed system has a spanning tree topology. The hybrid 
version of distributed mutex algorithm is proposed based on logical array topological structure 
employing token circulations as well as wraparound in 2-D [18]. A priority based distributed 
mutual exclusion algorithm is proposed based on rooted tree structure, which is a logical tree 
structure [5]. The algorithm is dependent on the network layer supports from routers. A hybrid 
group based distributed mutual exclusion algorithm is proposed considering multiple groups of 
processes [3]. The algorithm aggregates a set of nodes into multiple groups, where mutual 
exclusion is realized by transacting inter-group or intra-group messages. This results in high 
message complexity due to several rounds of messaging within a group as well as inter-group. In 
cloud computing paradigm, analysis and similarity assessment of events generated by distributed 
processes can be performed based on shared data requiring distributed mutex in closed group of 
processes [28]. In case of very large scale mobile distributed systems, formation of process 
groups can be analyzed in view of topology, which is inline with the topological data grouping in 
massive data sets [26, 27, 29].  
 
 
3. Probabilistic Characterization of Aggregate Set 
 
The standard mutual exclusion algorithms for distributed systems are designed based on partial 
ordering of events. The partial ordering is performed based on local logical clocks associated to 
each distributed processes. The CS requests are time stamped by using local logical clock values 
of individual processes and the request messages are broadcasted in a closed group of processes. 
As a result, a single process within the closed group can enter into CS depending upon lowest 
value of logical clocks. In general, this mechanism is efficient and easy to realize. However, in 
special cases the algorithm may lead to generate an aggregate set of processes and would not be 
able to provide strict mutex in the presence of (l, k)-CS set. Moreover, the timestamp based 
mechanism may not work in open group of processes. The detailed analysis of generation of 
aggregate set (i.e. process subgroup) and failure model is given in next section. 
 
3.1 Generation of Aggregate Set and Failure Model 
 
Let },1:{ +∈≤≤= ZiNipP i  be a closed group of processes in a distributed system having 

arbitrary topology. Let iE  be a set of events generated by respective process Ppi ∈  and, 

}0{:, ∪→∈∀ +ZECPp ii  be the clock function associated to individual processes. According 

to model of distributed computation, the following biconditional is maintained over an anti-

symmetric relation 2, ii EPp <⊂∈∀  in any system, 
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However, as the clock function is not a global bijection in a system, hence a distributed system 
maintains following condition for consistency of computation, 
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Assume that, initially 0)(,, =∈∃∈∀ aiai eCEePp  and, PPCS t ⊂∆|)(  represents a set of 

processes willing to enter CS within t∆  time-window, where 0→∆t . As the function (.)C  is 

not invertible, so U
N

i
iEA
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⊂∃  such that following axioms are satisfied, 
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This may lead the distributed system under consideration to violate safety and liveness properties 
of mutual exclusion of logical clock based algorithms if the following axioms are satisfied, 
 

]|)([][

,0

,1||,1||)(|

txx

t

PCSpAe

t

APCS

∆

∆

∈⇒∈
→∆

>≥
      (5) 

 
Thus, the logical clock based traditional mutex algorithms may not be able to select a distinct 
process under the existence of conditions satisfying axioms mentioned earlier. Hence, A  is a 
generated CS-aggregate set and the corresponding execution sequence is presented in Fig. 1 as 
schematic representation.  
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 1. Schematic representation of generation of aggregate set  
 

It is to note that, complete restriction on set A  is not possible in a large-scale distributed system, 
which is inline to the concept of generalized (l, k)-CS set. Hence, a mechanism is necessary to 
resolve A  while maintaining safety and liveness properties of CS. In the next section, a detailed 
probabilistic characterization of generation of aggregate set A  is presented in view of topological 
spaces. 
 
3.2 Probabilistic Characterization of Set A   
 

Let the entire set of events generated in a distributed system be represented by, U
N

i
iD EE

1=

= . 

However, the CS requests can be generated randomly by distributed processes and, the 
corresponding real (R ) valued random variable in 1-D is given by, 
 

REX DD →:     (6) 
 
In a group of processes in a distributed system, the inter-dependency between processes is 
important factor to be considered. Let the probabilistic characterization of A  be represented by, 

)( DDi EAXA ⊂⊆ , where Ii ∈  (index set). In the correlated event space, a probability 

distribution function is defined as, 
 

 ]1,0[: 2 →DEpr     (7) 
 
Let gτ  be the product topology in 2-D space of randomized events of processes and, the 

corresponding product topology generating function on randomized real space be given as, 

}{: 22 RRg →τ  such that, the following conditions are satisfied, where (.)Ω  generates power 

set, 
 



)(

},{)(
2

22

Dg

D

X

XRg

Ω⊂

⊆

τ
τ

   (8) 

 
However, the generation of topology gτ  is not arbitrary and, it follows a restriction as given 

below considering iK  is a closure of open set iK , 
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The degree of correlation of events in space is computed as a norm affecting the shape of 
probability distribution within topological space generated by (.)τg . The computable q-norm in 

correlated event space and, the respective locally uniform as well as complete (LUC) probability 
distribution in topological event space are defined as, 
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Furthermore, if 2, DEHG ⊂  be such that, gV τ∈∃  and φ≠∩ HG  then, definition of (.)pr  is 

refined as, 
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Evidently, the probabilistic characterization is unbiased in nature having uniform as well as 
normed distribution. In the next section, a probabilistic model is constructed to resolve set A  
through the noncommutative composition of functions maintaining SL (Safety-Liveness) 
properties of mutex. 
 
4. Resolving aggregate set A  
 
It is considered in this paper that, φ≠A  and, the SL properties are maintained while resolving 

set A . If one considers that, unbiased randomization preserves fairness, then the proposed model 
in this section also preserves fairness of mutex.  
 



Let two monotone sequences be defined as, 
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If ++ → ZZfS :  is a surjection function and, +⊂∃ ZD , then (.)Sf  can be defined as, 
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The surjection is hybrid in nature having partly periodic and partly linear combination depending 
on interval conditions. The hybrid function ensures unbiased distribution in two disjoint domains 
having disparate distribution profiles of points in a set.   
 
An integer valued translation function (.)g  is defined as follows, 
 

kkkk

S

cyygEy

nkDfE

+=∈∀
≤≤=

)(,

,1),(
      (14) 

 
Furthermore, a random variable (.)X  is defined as, 
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A noncommutative composite function is )(.)( gX

o
 which prepares set A  by incorporating 

elasticity along with unbiased randomization. The elastic diameters and ratio of diameters r  are 
computed as, 
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The ratio of diameters may not be constant and it determines the varying elasticity of set during 
randomization at different instances. The elasticity of set affects the chances of collision during 



composite mapping. If the frequency of collision is low, then the computational complexity is 
high due to requirement of generating a complete injection map covering set in multiple rounds. 
 
5. The Algorithms 
 
This section presents a set of algorithms in pseudo-code form for probabilistic mutual exclusion, 
which is a refinement of logical clock based algorithm following partial ordering. First, the 
randomization algorithm is presented. The resolution algorithm of aggregate set is presented next. 
Finally, the refined algorithm for mutual exclusion is presented.  The randomization algorithm is 
presented in Fig. 2. 
 

 
Fig. 2. Pseudo-code representation of randomization algorithm 

 
The randomization algorithm follows the randomization model to generate a set of processes 
having distinct infimum. The computation considers individual process identifier(s) (pid) of CS-
requesting processes during randomization. If the distinct infimum cannot be generated in a single 
round, then multiple rounds would be required executing same algorithm realizing repeated 
randomization. The pseudo-code representation of resolving aggregate set in multiple rounds is 
given in Fig. 3.  

 



 
Fig. 3. Pseudo-code representation of aggregate set resolution algorithm 

 
The find_min_equal() function represents searching the process in randomized set having 
infimum randomized value. The processes in aggregate set execute the resolution algorithm and 
mutually exchange the randomized local values. The reason for exchanging values is to ensure to 
global consistency of values within a subset of processes. If the distinct infimum of values is 
found, then the process generating the infimum proceeds into CS. Otherwise, if no single process 
is found having a distinct infimum, then repeated execution of the algorithm is performed. On 
each round of execution, the reduced infimum valued set is considered and other elements are 
discarded.        

 
The refined probabilistic mutual exclusion algorithm is presented in pseudo-code format in Fig. 4. 
According to algorithm, if the first round of execution of standard logical clock based algorithm 
successfully generates a distinct infimum, then further randomization is not required and the 
process generating infimum proceeds to CS. In this case, the aggregate set is not formed by the 
execution sequence.   

 



 
Fig. 4. Pseudo-code representation of refined probabilistic mutex algorithm 

 
However, if the aggregate set is generated due to combinatorial execution sequence, then the 
algorithm fails to determine distinct infimum and proceeds to resolving the aggregate set. The 
algorithm calls for set resolution, which in turn calls for randomization in repeated rounds, if 
required. In any case, the algorithm successfully generates a distinct process generating infimum 
and selects the process to enter into CS. Note that, once full monotonic sequencing is performed 
on an aggregate set, each process in the set can enter CS one by one following that monotone. It 
indicates that, after generating a randomized monotone sequence, repeated executions to generate 
different sequences are not required. This reduces the overall computational complexity of the 
algorithm. 
 
6. Analysis of Correctness and Topological Properties 
 
This section presents analysis of algorithmic correctness and a set of associated properties. It is 
assumed that, the points in a set can be associated to a distribution function, where the underlying 
metric space of distributed systems is probabilistic in nature (i.e. events generated by processes 
are random in nature). Thus, the standard probably space of events generated by processes having 
a topological structure would result in formation of probabilistic topological space [25]. The 
estimation of interrelationship between event samples in a computing space is important for 



formation of aggregate set of processes, data and events [29]. The aggregate set A  generated by 

processes is considered as a subspace in view of analysis, where A  represents corresponding 
closed set.   
    
6.1 Algorithmic Correctness Analysis 
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algorithm executes in rounds to attain the condition, |||| AJ = . Furthermore, as || P  is finite, thus 

monotone sequences nn CB , are finite as well as bounded by corresponding definitions. Hence, 

the algorithm successfully resolves aggregate set and sequences the processes in a convergent 
form.  
 
6.2 Topological Analysis of Aggregate Set 
 
In this section, the analysis of characteristics of aggregate set is presented considering underlying 
distributed computing space having topological nature. The aim of performing rigorous analysis 
is to gain a better insight to the dynamics of the system. The analytical results are presented as a 
set of theorems considering any probabilistically characterized set iA  in the topological space for 

any aggregate set A  in the corresponding event space of processes in a system. If the structures 
of aggregate sets are different, then the corresponding probabilistically characterized sets are also 

represented using different indexes. In this section,  +N  represents a set of natural numbers.     
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Proof: Let gIA τ⊂  such that, ][][,, φ=∩⇒≠∈∀ miImi AAmiAAA . If +∞<|| gτ , then 
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respective finite topological space,  
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6.2.2 Theorem 2: If (.)pr  is LUC everywhere in gτ  and, gki AA τ⊂∃ },{  where 
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Proof: Let be gki AA τ⊂∃ },{  where, φ≠=∩ CAA ki . By following the topological properties, 
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Hence, the local distributions within the sub-spaces maintain, 
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Lemma :  If (.)pr  is LUC everywhere in gτ , then 
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Proof: Let be gki AA τ⊂∃ },{  and, kig AAKK ∪=∈ :τ . If ki AAC ∩= , then according to 
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However, due to LUC property, ∑
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This indicates that, locality of probability measure within topological space has an effect on 
respective distribution profiles. 
 
6.2.3 Theorem 3: Probabilistic estimation is topologically commutative, giA τ∈∀  if  
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Proof: Let the two topological spaces gτ  and, ⊗gτ  be defined over 2
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However, due to symmetry, qmiqim ee |||||||| = . Moreover, due to LUC property, 
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6.2.4 Theorem 4: If 0||||,},{ >⊂ qimDmi eEee  and, )( imα∆  is a neighbourhood base of 

gim D τα ∈∈  such that, gτ  is first countable with )(},{ imHGDH α∆⊂⊂⊂ , then 

∑∑
∈∀∈∀

∈<∈
H

gim
G

gim

imim

DeprDepr
αα

ττ )|()|( . 

 

Proof: Let +∈⊂ ZkEee Dmi ,},{  and, gD τ∈  be such that, gτ  is first countable having 

}:{)( 1+⊃∧∈⊂=∆ kkkimkim AAADA αα . Thus, in finite topological space +∞<∆ |)(| imα  and, 

DA
nk

k k ⊂=

=U 1
. Now, if 0|||| >qime  and, 1)|( =∈∑

∈∀ D
gim

im

Depr
α

τ , then  

1)|( <∈∑
⊂∈∀ DA

gim

kim

Depr
α

τ . Hence, if 1, +== kk AGAH  having positive norm everywhere in 

space, then ∑∑
∈∀∈∀

∈<∈
H

gim
G

gim

imim

DeprDepr
αα

ττ )|()|( . 

 
6.2.5 Theorem 5: If gH τ⊂  and HHf →:  where, φ=∩∈∀ mimi AAHAA ,,  and 

mi AAf ⊂)( , then 0, >∈∃ + nZn  such that, (.)nf  is topologically convergent. 
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7. Experimental Evaluation 
 
7.1 Implementation Framework 
  
The experimental evaluation of the algorithm is performed by implementing in C language on 
Linux Fedora 2.6 platform. The implantation simulates a set of distributed processes by using 
multithreaded programming environment. The schematic representation of implementation 
architecture is presented in Fig. 5.  
 
 

 
Fig. 5. Schematic representation of implementation model 

 
The threads simulate a set of distributed processes connected by network. Each thread is 
associated with isolated thread stack frames, where the data IO between threads are implemented 
by inter-TS IO module over the Socket interface. The set of threads reside within an address 
space of a process. The threads execute the algorithms locally in respective nodes and exchanges 
computed values over network. The random variable X(.) is realized by seeded srand(seed) 
library function, where seed is computed by following randomization model presented earlier. 
The threads proceed to create a total order based on exchanged randomized key values. If the 
threads detect generation of same key values by a subset of threads, then that subset of threads 
proceed to second round of execution of same algorithm to establish a total order. The evaluation 
of system performance is conducted by measuring the following parameters: (a) variations of 
diameter of set after hybrid surjective mapping and composite mapping, (b) frequency of 
surjective collision, (c) variations of diameter ratio ( r ) with respect variations in number of 
nodes, (d) requirement of computation rounds for monotone sequencing of processes and, (e) 
surface map of interdependency between collision, diameter ratio and number of nodes in a 
system. In the experimentation, the initial base value is set to integer value 2 ( 21 =b ). 

 
7.2 Evaluation of Algorithmic Performance 
   
The variation of diameter of surjective map of a set with respect to number of nodes is presented 
in Fig. 6. The experimental result illustrates that, initially the diameters are not heavily inflated 
with respect to varying number of nodes. However, the diameter starts to get inflated strongly 
after node count exceeds a threshold (in this case 20). The diameter inflation peaks at node count 
equals to 25 and sets down to a lower value gradually if the node count is further increased. This 
indicates that, the surjection provides an expansion zone and a contraction zone depending on the 



node counts. This behaviour is due to the influence of periodic trigonometric function controlled 
by shifting base value in iterations.  
 
The corresponding variation of diameter of set under randomized composite mapping is 
illustrated in Fig. 7. The composite map expands the diameter 100 folds approximately, on the 
average covering the entire range of node counts. However, the inflation dynamics is relatively 
monotonic and exhibits saturation effects for a given base value. Moreover, the monotonic 
expansion of diameter is nonlinear in nature.        
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Fig. 6. Variation of diameter of surjective set mapping 
 

Variation of set diameter for randomized composite map
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Fig. 7. Variation of diameter of randomized composite mapping 

 
 
The variation of collision frequency under hybrid surjective map is illustrated in Fig. 8. The curve 
illustrates that, collision frequency is varying with indeterminism and has nonlinear profile. 
However, the variation is having computable as well as distinct supremum and infimum values. It 
indicates that, collision frequency is band-limited in nature. The value of diameter ratio of 
aggregate set for full execution of algorithm is illustrated in Fig. 9. The profile of diameter ratio 
variation illustrates that, with lower number of nodes, the ratio is much larger (i.e. composite map 
is highly elastic). However, the elasticity of randomization decreases monotonically as the 
number of nodes is increased. However, monotonic increase in umber of nodes results in 
nonlinear variation in elasticity in randomization.    
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Fig. 8. Variation of collision frequency under hybrid surjection 

 
 

Variation of mapped diameter ratio
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Fig. 9. Variation of diameter ratio under two maps 

 
The reduction in elasticity enhances the requirement of multiple rounds of computation for 
ordering of processes to enter in CS. This effect is visible in Fig. 10. If the base value of primary 
sequence is lower, then the requirement of multiple rounds of computation starts at node count of 
35. However, a single round of execution is enough for relatively lower node count.   
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Fig. 10. Shifts in sequencing rounds 

 
 
The dynamics of collision, node count and diameter ratio are illustrated in Fig. 11. The surface 
map is nonlinear and not strictly monotonic in nature. The surface map illustrates that, there exist 
multiple zones of elevations and, the nonlinear randomized variation within a zone is band-
limited (i.e. computable in nature).    
 

 
 

Fig. 11. Dynamics of collision, node count and diameter ratio 
 

Furthermore, in all cases the aggregate set is successfully resolved and mutual exclusion is 
attained without failures.  
 
7.3 Evaluations of Probabilistic Characterization 
 
Experimental evaluations of probabilistic characterization model are carried out by using 
numerical simulation of different clusters of events with varying densities in event subspaces. The 
randomization of sampling of events to generate aggregate set A  is simulated by using seeded 



randomized function. The distribution profiles of events clusters are presented in Fig. 12. The 
nature of density distribution is divergent between two profiles as presented in Fig. 12. One of the 
cluster density distribution profiles is approximately converged within a limiting value with 
respect to range of distribution representing monotonically increasing high density clusters of 
events. The second profile represents dilution effect (i. e. reduction in events cluster density) with 
the increasing norms with respect to increasing cluster size distribution. As a result, the second 
profile has a divergent distribution profile. The probabilistic estimations are performed for both 
low density and high density events clusters with varying norms in order to determine the 
resultant effect of norm on the respective estimations.       
 

 
Fig. 12. Distributions profiles of events clusters with varying densities  

 
7.3.1 Characterization I: High density of A  
 
In this experiment, the density of clusters of events is considered to be high indicating a large 
cardinality of aggregate set A , which results in reduction in distances (d values) between 
samples within topological spaces of computation. The snapshot of variations of 2-norm values of 
distances (d values) between events is presented in Fig. 13. The correlation between d values and 
2-norm values illustrates that, both are monotonically increasing in nature with relative 
uniformity of distances with increasing number of events collected in a cluster from the 
underlying topological subspaces.  
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Fig. 13. Correlation of distances and 2-norm values of events samples 

 



The corresponding distribution surface of probability estimation in 2-normed space is presented 
in Fig. 14. The distribution surface illustrates that, in high density clusters of events, the 
variations of probability estimations are highly non-uniform in nature. The non-uniformity of 
probability estimation is highly dependent on the cluster size affecting the relative distances 
between events. In other words, the structure of underlying topological subspace has influence on 
probability estimations in high density events clusters in 2-normed space.  
 

 
 

Fig. 14. Distribution surface of probability estimation in 2-normed high density events space 
 
Next, the norm dimension is increased to 3 while keeping the cluster densities of events 
unchanged in order to detect the influence of norm dimension on estimations. The resulting 
variations of profiles of d values and 3-norm values are presented in Fig. 15. The profiles 
illustrate that, d values and 3-norm values tend to diverge if the number of samples are 
monotonically increased. This indicates that, correlation of d values and norm dimensions are 
mutually repulsive in nature.   
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Fig. 15. Correlation of distances and 3-norm values of events samples 

 



As a result, the probability estimation surface appears to be smoother in this case as illustrated in 
Fig. 16.  
 

 
 

Fig. 16. Distribution surface of probability estimation in 3-normed high density space 
 
The estimation surface illustrates that, the variations of d values, 3-norms and probability 
variations are mutually adjusting keeping the surface relatively smooth. However, there are 
appearances of occasional low intensity periodicity on probability estimation surface limited 
within a band.   
 
7.3.2  Characterization II: Low density of A  
 
In this experiment, the density of clusters of events is considered to be low, which results in 
increase in distances (d values) between samples within topological subspaces. The variations of 
2-norm values and d values with respect to sample size are illustrated in Fig. 17. It is evident from 
figure that, the variations are mutually divergent in nature if the sample size is increased 
monotonically.  
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Fig. 17. Variations of d values and 2-norm values of events samples in low density cluster 
 



The resulting surface of probability estimation in low density cluster of events is presented in Fig. 
18. In the low density subspaces within clusters of events, the 2-normed estimation appears to be 
relatively stable all most everywhere. However, there are localized band limited periodicities in 
estimations on the surface of probability variations. This indicates that in low density clusters of 
events, the 2-norm based estimation may not distinguish probabilities of appearances of samples 
with sharpness.    
 

 
 

Fig. 18. Distribution surface of probability estimation in 2-normed low density space 
 

The corresponding variations of d values and 3-norm in low density clusters of events with 
respect to monotonically increasing sample size are presented in Fig. 19. As expected, the 
correlation between d values and dimensions of norms is invariant in low density clusters of 
events. The main reason is that, the reduction in density results in reduction of mutual 
interference between events within a computing subspace.  
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Fig. 19. Variations of d values and 3-norm values of events samples in low density cluster 

 



The resulting surface of probability variations is presented in Fig. 20. Evidently, the identical 
invariance is observable in probability estimation surface, which is insensitive to the dimension of 
computation of norm.   
 

 
 

Fig. 20. Distribution surface of probability estimation in 3-normed low density space 
 

In other words, the enhanced distances between samples in subspace effectively reduce the 
normed projection values making it relatively uniform in nature. 
 
8. Comparative Analysis 
 
This section presents comparative analysis of the proposed probabilistic mutex algorithm (called 
as PMA) with respect to a diverse set of algorithms in the domain. The number of nodes 
considered for PMA in comparative analysis represents the size of aggregate set. The set of 
algorithms considered for comparative analysis are: Token based distributed group mutex 
algorithm (TGM) [11], Optimal algorithm for mutex (OAM) [12], pN algorithm for mutex (PNA) 
[13], Tree based mutex algorithm (TMA) [17], Kanrar-Chaki algorithm (KCA) [4], Chang mutex 
algorithm (CMA) [3], Common optimal fair starvation-free algorithm (COA) [4], Hybrid token 
based mutex algorithm (HTA) [18] and, Local mutex algorithm (LMA) in static network [19]. 
The comparative analysis of algorithms considers three parameters such as, (1) message 
complexity, (2) response time and, (3) failure/collision count. The message complexities of 
algorithms are compared in two classes. In first category, algorithms are grouped depending on 
their computable deterministic message complexities. In the second category, the comparison is 
performed considering algorithms having varying complexities with a range (bounded).  
 
The comparison of deterministic message complexities is presented in Fig. 21. The message 
complexity of OAM algorithm is a monotonically increasing function having relatively steep 
slope due to rounds of multicasting. The message complexities of TMA and PNA are nearly 
comparable. The message complexities of these two algorithms are having extremely low growth 
factor with respect to number of nodes because, communication does not need to cover the whole 
group. On the other hand, message complexities of PMA and TGM are comparable within a 



range for relatively lower number of nodes. However, the message complexities tend to diverge 
for PMA and TMA as the number of nodes increases. The PMA has relatively lower message 
complexity as compared to TGM, because PMA requires subset of processes, in general.     
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Fig. 21. Comparison of deterministic message complexities  

 
The comparison of varying message complexities (bounded within an interval) is depicted in Fig. 
22. It is observable that, message complexity of HTA is bounded within a bounded region 
(between HTA-I and HTA-II). However, the region of variation is not highly divergent in nature. 
On the other hand, PMA exhibits a uniform variation of message complexity having deterministic 
characteristics in all cases. If the number of CS-requesting nodes is lower, then the overall 
message complexity of PMA is lower than HTA. However, overall message complexity of PMA 
tends to monotonically increase if aggregate set size is monotonically increased.     
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Fig. 22. Comparison of varying message complexities  

 
The response time of algorithms are measured by using system clock having millisecond 
resolution in order to determine computational complexities of algorithms. The comparison of 
response time of mutex algorithms is presented in Fig. 23. The algorithmic response time 
represents the averaged execution time of algorithm while generating the mutex decision given a 
set of CS-requesting processes.    
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Fig. 23. Comparison of algorithmic response time  

 
It is observable that, response time of KCA, CMA and COA are comparatively higher (nearly 3 
folds) than the PMA and LMA models. However, algorithmic response times of PMA and LMA 
are comparable, where PMA offers relatively lower response time in a static network.  The 
comparative analysis of varying failure/collision locality set size is presented in Fig. 24. In this 
case, the LMA is evaluated in static network following Linial model [22].  
 
The variation of failure/collision between Linial LMA and PMA is diverging in nature with 
monotonically increasing number of nodes. The PMA model successfully reduces 
failure/collision rate by incorporating two-phased elastic randomization. However, in any case, 
the failure/collision count is monotonically increasing with respect to monotonic increment of 
number of CS-requesting processes.  
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Fig. 24. Comparison of varying failure/collision locality set size  

 
Although the failure/collision count is enhanced with respect to node count, however PMA model 
does not incur repeated rounds of execution of algorithm for generating the total order among the 
set of CS-requesting processes. This reduces the computational complexity to some extent 
reducing the overall response time.  
 
 
 



9. Conclusion 
 
The traditional distributed mutual inclusion and exclusion algorithms intended for shared 
resources are not completely suitable for direct applications in heterogeneous large scale mobile 
distributed systems. The generalized distributed mutual inclusion and exclusion algorithms 
execute in localized computing systems and, these algorithms tend to generate subset of processes 
in a queue waiting for critical section execution. These processes are equally eligible to enter into 
critical section. In specific cases, this violates safety property of distributed critical section if 
these processes are allowed to enter in critical section concurrently. The proposed failure analysis 
model identifies such conditions in analytical forms. The resolution of such group of processes is 
performed by employing a probabilistic algorithmic model. The computational evaluation of the 
algorithm illustrates that, it is suitable for maintaining safety property by incorporating concept of 
multi-phased elastic randomization. The detailed analysis of algorithmic correctness, probabilistic 
characterizations, and underlying topological structures are presented in this paper. The profiles 
of topological as well as probabilistic characterizations are evaluated through numerical 
simulations. The proposed distributed mutual exclusion algorithm is computationally inexpensive 
in nature. 
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