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a b s t r a c t

Live migration of virtual machines (VMs) is an indispensable feature in cloud computing systems due
to the use of load balancing, system maintenance, power management, etc. However, it is usually an
intractable problem tomigrate the VMs runningmemorywrite-intensiveworkloads, because they rapidly
generate plenty of dirty pages, which need to be resent many times. Migration failures or compromises
with large downtimes usually result in severe consequences such as the violation of service level
agreements, abortion of TCP connections, etc. To solve this challenging problem, we first demonstrate
a novel observation: during the pre-copy migrations, some workloads have a large portion of ‘‘fake dirty’’
pages, which are unnecessary and wasteful to be resent. After exploring how they are generated, we
propose to leverage the secure hashmethod to avoid resending them. Besides, to guarantee the successful
accomplishment of migration, we further propose the intelligent hybridmigration. Our scheme leverages
heuristic and automatically switches from pre-copy to post-copy at the near-optimal moment to obtain
a short post-copy duration, thus alleviating post-copy’s inherent weaknesses. Evaluations show that our
proposed scheme gets a significant performance improvement for VM migration. The workloads which
fail to be migrated with pre-copy now accomplish migration quickly, with a total migration time from
27 s to 98 s. Besides, the intelligent hybrid migration remarkably shortens the post-copy duration by an
extent from 43% to 60%, compared with the traditional hybrid method.

© 2018 Published by Elsevier B.V.

1. Introduction

As one of the most important techniques in cloud computing
systems, virtualization [1] has many superiorities, such as abstrac-
tion fromheterogeneous hardware, security isolation, convenience
for management, etc. A key characteristic of the virtualization
technology is live virtual machine (VM) migration [2,3], which
refers to moving a running VM from one physical host to another.
Live VMmigration is powerful in data centers due to the use of load
balancing [4,5], online system maintenance [6], fault tolerance [7,
8] and power management [9], etc.

Inside data centers, the source and target nodes for migration
often share the same storage through SAN (Storage Area Network)
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or NAS (Network-Attached Storage). So only the content of VM
memory and the states of the other virtual devices (for example,
the virtual CPU state) need to be transferred. Pre-copy [2,3] is the
prevailing approach for VM migration. In a pre-copy migration,
the memory content is sent from the source to the target node in
several sequential iterations. In the nth iteration, only the pages
that arewritten dirty in the (n−1)th iteration are transferred. Thus,
pre-copy tries to obtain the goal of a short downtime, duringwhich
the VM is temporarily suspended.

However, it is usually an intractable problem to migrate VMs
runningmemorywrite-intensiveworkloads [10]. Theseworkloads
often persistently occupy a large fraction of systemmemory, while
writing the memory pages dirty very fast. This leads to the rapid
generation of plenty of dirty pages, which need to be resent many
times during pre-copy. So the total data transferred (TDT) is huge
and the total migration time (TMT) is prolonged. A long TMT
usually results in the miss of the best migration opportunity, and
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makes the activities of system maintenance, load balancing, etc.
less effective. Besides, it is not an exception that the speed to
generate dirty pages exceeds the network bandwidth for migra-
tion. In such a circumstance, pre-copy would not converge to stop-
copy phase, so migration fails to be completed with an expected
downtime [11]. Facing this difficult situation, the administrators in
data centers have to force the completion ofmigration, resulting in
an unacceptable downtime as long as several seconds, sometimes
even tens of seconds. This long downtime often violates the service
level agreements (SLAs). Besides, it also leads to some other serious
problems, such as the abortion of TCP connections, consistency
problems, etc. [12]. However, without this long downtime, the
cancels [13] or failures of migration would lead to severer loss for
the data centers. Remedies, such as decreasing the VCPU’s running
frequency [14] and imposing delays to page writes like the Stun
During Page Send (SDPS) in XvMotion [15], also usually violate the
SLAs, QoS, etc.

This paper tries to solve the challenging problem of migrating
the memory write-intensive workloads. First, our analysis demon-
strates a novel observation: duringmigration, some of these work-
loads have a large portion of ‘‘fake dirty’’ pages. That is, many dirty
pages transferred to the target node are exactly the same in content
as their former copies which have already been there. This means
that resending them is just a waste of time and network resources.
Then we explore the causes for the generation of these fake dirty
pages and discover two reasons: the ‘‘write-not-dirty’’ requests is-
sued tomemory pages, caused by the silent store instructions [16–
19], and the defect of the dirty page tracking mechanism used by
migration. Furthermore, we propose to leverage the computation
and comparison of the secure hashes for memory pages to avoid
transferring these fake dirty pages. We also analyze the hash colli-
sion probability and demonstrate that it is reasonable to use secure
hash comparison instead of byte-by-byte comparison. Besides, to
store the secure hashes of memory pages consumes negligible
memory overhead. This is a big advantage of our method against
the byte-by-byte comparison and other schemes.

As explained above, pre-copy may result in the failures of mi-
gration in some cases. To guarantee the successful accomplishment
ofmigration,we further propose the intelligent hybridmigration. A
hybridmigration consists of several pre-copy iterations and a post-
copy [20,21] phase. However, post-copy has inherent weaknesses
in terms of VM reliability and application performance. So it is
critical to shorten the post-copy duration in a hybrid migration
design. The key design of our intelligent hybrid method is that, it
automatically switches from pre-copy to post-copy, when taking
more pre-copy iterations would not further reduce the amount
of dirty pages. Thus we do not perform more useless pre-copy
iterations, while obtaining a short post-copy duration.

The main contributions of this paper are listed as follows:
(1) We demonstrate a novel observation that a large portion

of fake dirty pages exist during pre-copy migration. Experiments
are conducted to evaluate the proportions of fake dirty pages for
various memory write-intensive workloads. Besides, we explore
how they are generated in detail. Furthermore, the secure hashes
method is proposed to avoid transferring these fake dirty pages.

(2) To guarantee the success of migration, we further propose
the intelligent hybrid migration. Leveraging a heuristic, it auto-
matically switches from pre-copy to post-copy at a near-optimal
moment, thus effectively shortening the duration of the post-copy
phase.

(3) Evaluation results with the KVM/QEMU platform show that
our scheme obtains significant performance improvement for VM
migration. With our secure hash method, the workloads, which
originally fail to be migrated with pre-copy, now complete migra-
tion with a short TMT from 27 s to 98 s. Besides, compared with
the traditional hybrid migration, our intelligent hybrid method

remarkably shortens the post-copy duration by an extent from43%
to 60%.

The rest of this paper is organized as follows: Section 2 shows an
overview of the background of live VMmigration. Our observation
and motivation are demonstrated in Section 3. Section 4 details
the design of our proposed scheme. In Section 5, we show the
evaluation results. Section 6 lists the related work and Section 7
draws the conclusions.

2. Background

In this section, we introduce the background for live VM mi-
gration, including the key metrics for migration, and the various
migration algorithms.

Generally speaking, there are three key metrics for live mi-
gration: total migration time (TMT), total data transferred (TDT),
and downtime. TMT is the elapsed time from the beginning of
the migration to the moment when the VM is able to run on the
target host independently. It is important to shorten the TMT.
Because long TMT may lead to the misses of the best migration
opportunities, and make the activities of system maintenance,
load balancing, etc. less effective. Furthermore, TDT refers to the
amount of data transferred from the source to the target node
during themigration. It indicates the network resources consumed
by the migration. Because the migration thread and applications
running inside the VMs often share the same network infrastruc-
ture, less TDT would leave more bandwidth to applications during
the migration. At last, downtime is the period from the moment
the migrated VM is suspended at the source node, to the moment
it is resumed at the target node. The downtime should be short
enough, so that it is not perceived distinctly by users. Besides, it
should not have obvious impact on the applications running inside
the VMs. The default setting of the maximum expected downtime
in KVM/QEMU [22,23] platform is 300 ms.

Pre-copy [2,3] is the prevailing algorithm for migration and
has been widely used in many virtualization platforms, such as
VMware [24], KVM [22], and Xen [1]. It works as follows. The
bulks of the VM’s memory pages are transferred to the target node
while the VM is still running at the source node. The pages which
are written dirty during the transmission are resent to the target
node in the next iteration. This iterative process comes to the end,
when the remaining dirty pages are so little that the expected
time to transfer them is shorter than the maximum acceptable
downtime. Then pre-copy steps into the stop-copy phase and the
VM is suspended at the source node. During this transitory sus-
pension, the remaining dirty pages along with the states of the
virtual devices are transferred to the target node. After that, the
VM is resumed at the target node. Pre-copy’s overriding goal is to
keep the downtime short. However, as pre-copy needs to transfer
part of the memory pages many times, it often causes long TMT
and large TDT. Even worse, when VMs are running memory write-
intensiveworkloads, pre-copymay fail to completemigrationwith
an expected downtime.

To solve the problems of pre-copy, another live migration al-
gorithm, post-copy [20,21], has been proposed. At the beginning
of migration, post-copy first suspends the VM at the source node.
Then it transfers the states of the virtual devices to the target
node. After that, the VM is resumed at the target node without
any memory pages. Memory pages are fetched on-demand from
the source nodewhen the VM incurs page-faults by accessing non-
exist pages at the target node. Concurrently, post-copy actively
pushes the pages that have not been accessed from the source to
the target node. This background push thread helps to accelerate
the process of post-copy. Because each page is transferred only
once in post-copy, the TMT is shortened, and the TDT is reduced,
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Fig. 1. The elapsed time and amount of transferred pages for each pre-copy itera-
tion when we migrate a VM running zeusmp. The default migration bandwidth of
KVM/QEMU is used, which is 32 MB/s. We do not count zero pages when recording
the amount of transferred pages.1

compared with pre-copy. Besides, post-copy guarantees the ac-
complishment ofmigrationwith an estimable TMT.However, post-
copy has the following two inherentweaknesses. Firstly, post-copy
is less robust than pre-copy. During the post-copy migration, both
source and target nodes have part of the latest memory status, so
malfunctions of the migration network or the target node would
cause VM failure. In contrast, the same malfunctions during the
pre-copy migration only cause migration failure, while the VM
would still run at the source node. Secondly, during the post-
copy migration, the continuous demand-fetching of fault pages
increases the memory access latencies, thus declines the perfor-
mance of applications running inside VMs.

Furthermore, the hybrid migration method [25–27] has also
been proposed to combine the pre-copy and post-copy algorithms.
Consisting of several pre-copy iterations and a post-copy phase, it
tries to transfer the bulks of memory pages during the pre-copy
period, so that less pages need to be transferred during the post-
copy phase. Thus on one hand, hybrid migration guarantees that
the migration is completed in finite time; On the other hand, it
shortens the duration of the post-copy phase. However, none of the
previous works has explored when the best moment is to switch
from pre-copy to post-copy. They usually perform fixed one or two
pre-copy iterations, and then switch into post-copy.

3. Motivation

3.1. Challenge of migrating memory write-intensive workloads

It is usually a difficult problem to migrate VMs running the
memory write-intensive workloads. This is because these work-
loads generate dirty pages very fast. These dirty pages usually need
to be resent many times during the pre-copy migration, resulting
in long total migration time (TMT) and huge total data transferred
(TDT). Besides, it is a common case that the pre-copy could not con-
verge into the stop-copy phase, when the speed to generate dirty
pages exceeds the network bandwidth formigration. This situation
leads to the failures of migration with the expected downtime.

1 In a zero page, the content of every byte is zero. For some workloads such
as zeusmp, zero pages account for a large proportion within all the transferred
pages during migration. However, the existing implementation of migration in
QEMU employs a standard optimization to quickly recognize zero pages. Besides,
it uses one byte (plus a flag to distinguish) to represent one entire 4 KB page when
transferring a zero page. So zero pages scarcely consume time or network resources
during migration. Due to this reason, when talking about the amount of pages, the
results of all the experiments in this paper do not count zero pages.

Fig. 2. The average amount of dirty pages with varying migration bandwidth after
the pre-copy process does not converge any more. A value of zero means that the
workload is migrated successfully with high enough bandwidth. Some of the dirty
pages may be zero pages.

The following experiment illustrates this problem in detail. We
migrate a VM running the zeusmp workload from the CPU2006
benchmark suit [28]. This is a memory write-intensive workload.
During the pre-copy process, we record the elapsed time and the
amount of transferred pages for each iteration. As is shown in
Fig. 1, zeusmp writes the memory pages dirty very fast. From the
third iteration of pre-copy, the amount of transferred pages does
not decrease as more iterations are performed. This leads to the
failure of the migration, unless with an unacceptable downtime as
long as 6∼8 s. This is an example of the intractable workloads for
VM migration. Prolonging the migration process does not shorten
the downtime, while wasting plenty of network resources. Thus,
to successfully migrate the VMs running these memory write-
intensive workloads is a big challenge in data centers. The goal of
this paper is to solve this issue.

In this paper, we use eight memory write-intensive workloads
running inside the VMs. The details of these workloads are shown
in Table 1. Except Memcached and kernel compilation, all the
workloads are from the SPEC CPU2006 benchmark suit. We mi-
grate these VMs using the default setting of the migration band-
width in QEMU, which is 32 MB/s, except Memcached. For Mem-
cached, we use the maximum bandwidth of our Gigabit Ethernet
(about 117 MB/s), because it has larger guest memory size and
faster memory dirtying speed. As a result, except bzip2, all of these
workloads fail to complete the pre-copymigrationwith the default
setting of maximum downtime in QEMU, which is 300 ms.

Note that the workloads except Memcached are migrated with
limited 32 MB/s bandwidth, which could be further increased if
there are abundant network resources in data centers. Allocating
a higher migration bandwidth may make the migrations of these
workloads easier, because less pages become dirty during one iter-
ation. In order to obtain a comprehensive knowledge of the impact
of migration bandwidth, we conduct the following experiments.
We migrate these workloads except Memcached and bzip2 (be-
cause the 32MB/s bandwidth has already completed themigration
of bzip2 ), allocating different bandwidth varying from 30 MB/s
to the maximum network throughput, by the step of 10 MB/s.
During themigrations, we record the dirty pages generated in each
iteration. We expect to obtain the average amount of dirty pages
for one iteration, after the pre-copy process does not converge
any more, as shown in Fig. 1. The results are shown in Fig. 2. We
plot the average amount of dirty pages for ten iterations, from
the 11th to the 20th iteration. Note that the value may decrease
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Table 1
The eight memory write-intensive workloads we use in this paper.
Workloads Description Approximate

working set size
(% of guest
memory size)

Memcached An in-memory key–value store, Memcached-1.4.25, is running
inside the VM. The VM is allocated with 6 cores and 6 GB
memory. Memcahced is configured with 4 threads and 4 GB
cache. A benchmark, memaslap from libmemcached-1.0.18, is
executed in another client machine. Memaslap first runs against
Memcached to fill up the 4 GB cache. During the migration,
memaslap is executed with concurrency level of 6, and performs
all set requests against Memcached.

67% of 6 GB

zeusmp This is a floating point benchmark, which performs the
simulation of astrophysical phenomena using computational
fluid dynamics. The VM is allocated with 1 core and 1 GB memory
(same as the following five workloads).

50% of 1 GB

mcf This is an integer benchmark, which uses a network simplex
algorithm to schedule public transport.

80% of 1 GB

bzip2 This is an integer benchmark, which performs Seward’s bzip2
version 1.0.3, modified to do most work in memory.

80% of 1 GB

cactusADM This is a floating point benchmark, which solves the Einstein
evolution equations using a staggered-leapfrog numerical
method.

60% of 1 GB

milc This is a floating point benchmark, which performs a gauge field
generating program for lattice gauge theory programs with
dynamical quarks.

60% of 1 GB

lbm This is a floating point benchmark, which implements the
‘‘Lattice-Boltzmann Method’’ to simulate incompressible fluids in
3D.

40% of 1 GB

kernel
compilation

The Linux 3.7.9 kernel is compiled with 4 threads in the VM. This
is a system-call intensive workload, which is expensive to
virtualization. The VM is allocated with 4 cores and 1 GBmemory.

15% of 1 GB

to zero for some workloads. This means that these workloads are
migrated successfullywhen the bandwidth is increased to a partic-
ular value. It is shown that for zeusmp, mcf, cactusADM and kernel
compilation, the amount of dirty pages gradually decreases with
the increase of migration bandwidth. At last, they are migrated
successfully with high enough bandwidth. This demonstrates that
the problem of migrating these workloads is alleviated by a higher
bandwidth. However, for milc and lbm, they generate dirty pages
so fast, that the amount does not decrease obviously with a higher
bandwidth. So they still fail to be migrated, even with the maxi-
mum bandwidth of our network.

Our testbed is equipped with Gigabit Ethernet (1 GbE). Faster
network infrastructures such as 10 GbE and InfiniBand, with new
technologies like SR-IOV (Single Root I/O Virtualization) [29,30],
are being deployed in modern data centers, and the migration
bandwidth could be further improved. This would further alleviate
the problem of migrating memory write-intensive workloads. It
could bededuced that,with such faster networks, ourVM instances
of milc and lbm could be migrated successfully by pre-copy, be-
cause their 1 GBmemory size is quite small for these fast networks.
However, in the next paragraph, we would discuss the impact of
larger VM memory size, which on the other hand exacerbates the
migration problem. Here we first indicate a side effect of a faster
network. With a better network infrastructure, network-intensive
workloads, such as Memcached, are able to handle the requests of
more clients concurrently. Thismaymake theVMmemory get dirt-
ied faster. We conduct an experiment to verify this consideration.
For theMemcachedworkload described in Table 1, we increase the
concurrency level of memaslap from 6 to 24, which corresponds to
the simulation of more clients requesting the Memcached server
concurrently. As a result, during migration, the amount of dirty
pages generated in the first iteration is increased from 584,429 to
959,025.

The VM instances used in this paper is relatively small, with
several GBmemory. However, VMswithmuch largermemory size,

Table 2
The time spent and the amount of dirty pages for the first iteration when the
Memcached VMs with varying memory sizes are migrated.
Memory size 6 GB 10 GB 14 GB 18 GB 22 GB 26 GB
Time (s) 42 84 117 158 195 235
Dirty pages (K) 584 1124 1806 2459 3,072 3517

such as the Amazon EC2 X1e instances withmemory size from 122
GB to 4TB [31], are being adopted in modern data centers. This
trend is making the migration problem more severe, because the
time spent on one iteration becomes longer, which makes more
pages get dirtied. The impact of a larger memory size is evaluated
by the following experiments. We enlarge the VM memory for
Memcached from 6 GB to 26 GB, by the step of 4 GB. The cache
configured for Memcached is always 2 GB less than the memory
size, e.g., 24 GB cache for the 26 GB VM. The other configurations
are the same as described in Table 1. When migrating these VMs,
we record the time spent and the amount of dirty pages during the
first iteration. As is demonstrated in Table 2, both the time spent
and dirty pages increase nearly linearly with thememory size. This
verifies that a larger memory size does deteriorate the migration
problem.

After having discussed the above several factors that affect the
migrations of memory write-intensive workloads, we conclude
that migrating these workloads is still a big challenge. First, in the
production environment, the bandwidth allocated toVMmigration
could be limited, because the migration process and the appli-
cations in the data centers often compete for the same network
resources. Besides, when VMs are migrated across networks with
low-speed link, e.g., for a WAN migration, the problem would be
especially severe. At last, even though faster network infrastruc-
tures, such as 10 GbE, could alleviate this problem, the earnings are
counteracted by the trend in larger and larger VMmemory size.



130 C. Li, D. Feng, Y. Hua et al. / Future Generation Computer Systems 95 (2019) 126–139

Fig. 3. The proportion of the fake dirty pages within all the transferred pages for
each iteration. Note that fake dirty pages begin to appear from the second iteration
of pre-copy.

3.2. Observation: the ‘‘Fake Dirty’’ pages

The main difficulty of migrating the memory write-intensive
workloads is the fast generation of dirty pages. Therefore, we first
analyze the dirty pages in detail. However, we find that during the
pre-copy migration, many dirty pages are in fact ‘‘not dirty’’. This
means that even thoughmarked as dirty, they are in fact unaltered
in memory content compared with the copies transferred in the
former iteration.Wename these pages as ‘‘fake dirty’’ pages. Trans-
ferring these fake dirty pages is a significant waste of time and
network resources, because the same data is copied to the target
node while it is already there.

To illustrate the fake dirty pages in detail, we conduct the fol-
lowing experiments. When migrating the VMs running workloads
described in Table 1, at the source node, we maintain a buffer in
the hostmemory as large as the VMmemory size. During the entire
migration time, we keep the content of this buffer the same as the
VM memory content in the target node. Specifically, in the first
iteration of pre-copy, when sent to the target node, each page is
also copied into the buffer according to its guest physical address.
From the second iteration, when each dirty page is transferred, its
content is compared byte-by-byte with its former copy inside the
buffer. If the contents are the same, this page is recorded as ‘‘fake
dirty’’; Otherwise, the new content replaces its former copy for the
potential comparison in the future. Thus we obtain the amount of
fake dirty pages and compute their proportion in each iteration as
shown in Fig. 3.

It is demonstrated that, four of these workloads (Memcached,
zeusmp, mcf and bzip2) have remarkably high proportions of fake
dirty pages. For example, in some iterations of mcf, the proportion
is higher than 80%. For these workloads, if we could avoid trans-
ferring these fake dirty pages, the TMT and TDT would be reduced
significantly. However, the other fourworkloads (cactusADM,milc,
lbm and kernel compilation) have relatively low proportions of
fake dirty pages. The same optimization may obtain limited im-
provements for them.

3.3. Reasons for the generation of the fake dirty pages

Given the big amount of fake dirty pages, the first question to
ask is: why do so many fake dirty pages exist at all? Next, we will
explain the two reasons for the generation of fake dirty pages. First,

Fig. 4. The proportion of the write-not-dirty pages within all the pages marked as
dirty for each iteration.

there are many ‘‘write-not-dirty’’ requests issued to the memory
pages, caused by the widely existing silent store instructions [16–
19]. Second, the dirty page trackingmechanismused for themigra-
tion has defects in design. We find that the former is the primary
reason, while the latter is the secondary.

1. The ‘‘write-not-dirty’’ requests to memory pages
Virtualization platforms such as KVM and XEN leverage similar

mechanisms to track dirty pages during migration, using the dirty
bitmap. From the beginning of the pre-copy migration, all of the
pages are write-protected so that a write request on a page leads
to a soft page fault. While the page fault is handled, the dirty flag
of this page is set in the dirty bitmap. The pages marked as dirty in
the bitmap are resent in the next iteration.

However, does one pagemarked as dirty really change inmem-
ory content? In other words, does a write request issued to one
page really modify the content of this page? In fact, the answer is
‘‘not always’’. This is verified by the following experiment. Again,
we migrate VMs running the workloads shown in Table 1. During
the setup phase of the migration, first we suspend the VM. Then
we copy all the VM memory pages to a buffer as large as the VM
memory size. After this, we begin to trace the dirty pages and re-
sume the execution of the VM. Besides, at the end of each iteration,
we also suspend the VM temporarily. During the suspension, we
compare all the pages marked as dirty in this iteration byte-by-
byte with their former copies inside the buffer. If the content of
one page is the same as its former copy, it is recorded as a ‘‘write-
not-dirty’’ page. Otherwise, this page in the buffer is replaced with
the new content, for the possible comparison in the future. After
the reset of the dirty bitmap, we resume the VM. Thus, we obtain
the proportion of the write-not-dirty pages within all the pages
marked as dirty for each pre-copy iteration.

As is demonstrated in Fig. 4, write-not-dirty pages exist in all of
the workloads. Besides, the proportions for some workloads, such
as Memcached, zeusmp and mcf, are extremely high. Especially,
the proportion for mcf is even higher than 80% in most iterations.
Compared with the results in Fig. 3, it is deduced that, the primary
reason to generate the fake dirty pages is the write-not-dirty
requests issued to memory pages.

In fact, the root cause of the write-not-dirty requests is the
widely existing silent store instructions [16–19]. A silent store
instruction does not change the state of the system, because it
writes a value that exactly matches the value which has already
been stored at thememory address beingwritten. Results reported
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Fig. 5. The proportion of write-not-dirty pages generated in the first iteration com-
pared with the proportion of fake dirty pages transferred in the second iteration.

in [16] demonstrate that 20%–68% of all store instructions are
silent,which explains the high proportion ofwrite-not-dirty pages.
Analysis in the context of source code presented in [17] indicates
that many silent store instructions are algorithmically in nature,
and that they occur in all levels of program execution and compiler
optimization. This is consistentwith our finding that thewrite-not-
dirty requests exist widely in various workloads.

However, thewrite-not-dirty request is not the only reason that
generates the fake dirty pages. This is demonstrated by Fig. 5. We
compare the proportion of the write-not-dirty pages generated
in the first iteration with the proportion of the fake dirty pages
transferred in the second iteration. If the write-not-dirty request
is the only reason for the fake dirty pages, the proportion of the
fake dirty pages should not be larger than that of the write-not-
dirty pages. This is because in the second iteration, some of the
write-not-dirty pages may be written again and become really
dirty before they are transferred. However, Fig. 5 shows that the
contrary is the case for most workloads, especially for Memcached
and bzip2. So there must be some other reasons that also lead to
the generation of the fake dirty pages. In fact, we discover that the
defect in the dirty page trackingmechanism used by themigration
thread is another reason for this. Next, we will explain it in detail.

2. The defect of the dirty page tracking mechanism
As described above, both of KVM and XEN use the dirty bitmap

to track the dirty pages during the migration. In the following, we
will explore the dirty page trackingmechanism inmore detail, and
show how it contributes to the generation of the fake dirty pages.

(1) KVM
The KVM/QEMU platform consists of a KVM [22] kernel module

and a userspace tool—QEMU [23]. During the migration, both of
the kernel and the userspace maintain a dirty bitmap. The kernel
bitmap is responsible for tracing the write requests to memory
pages and setting the corresponding dirty bits. It records all the
pages that are written in one whole iteration. At the end of one
iteration, the dirty bitmap is synchronized from the kernel to the
userspace through the ‘‘ioctl’’ API offered by KVM. At the same
time, the kernel bitmap is reset to start a new round of tracking
for the next iteration. In the next iteration, the migration thread
leverages the userspace bitmapupdated from the kernel to transfer
dirty pages.

So the granularity of the dirty page tracking mechanism is as
coarse as one whole iteration of pre-copy. It is just this coarse
granularity that also results in the generation of the fake dirty
pages. We use Fig. 6 to illustrate the reason in detail. We take the
first iteration of pre-copy as example, while the other iterations
are similar. In the first iteration, the migration thread transfers

Fig. 6. The KVM dirty page tracking mechanism, which also results in the genera-
tion of the fake dirty pages.

every page within the guest address space sequentially from the
low to the high address. We assume that during the period for the
transferring cursor to move from address P to address P’, 4 pages,
which are pages A, B, C and D, receive write requests. So these 4
pages aremarked as dirty in the kernel bitmap.We assume these 4
pages are not the write-not-dirty pages we have explained above.
Even so, in this example, only pages A and B are really dirty, while
pages C and D are ‘‘fake dirty’’. The reason is, unlike A and B, C and
D are marked as dirty before being transferred in this iteration. So
when the migration thread sends C and D to the target node, it is
the newdirty content that is transferred. Unless C andDarewritten
dirty again after being transferred,when they are resent in the next
iteration, it is just the same content that is transferred.

(2) XEN
Unlike KVM, the migration thread of XEN uses three bitmaps to

indicate the pages to be transferred.
to_send: It indicates the pages written dirty during the former

iteration. Like KVM, at the end of each iteration, the migration
thread update the to_send bitmap according to the kernel bitmap
and then reset the kernel bitmap.

to_skip: Every now and then during one iteration, migration
thread peeks the kernel bitmap to update the to_skip bitmap.
However, different from the update of the to_send bitmap, this
operation would not reset the kernel bitmap. Pages in to_skip
bitmap would not be transferred in current iteration, because they
still need to be transferred in next iteration.

to_fix: It indicates the pages that should be transferred during
the last stop-copy phase.

In terms of the reduction in the generation of the fake dirty
pages, the tracking mechanism of XEN performs much better than
KVM. This is because, the to_skip bitmap avoids many pages writ-
ten dirty in the current iteration from being transferred. However,
during one iteration, if a page to be sent is written dirty after the
latest update of the to_skip bitmap (so it will not be skipped in this
iteration), and just before being transferred, it is still a fake dirty
page.

4. Design

According to the finding in the former chapter, if we can avoid
transferring the fake dirty pages, the TMT will be shortened, and
the TDT will be reduced. So in this chapter, we propose to leverage
the secure hashes to realize this objective. Besides, to guarantee the
successful completion of the migration process, we further com-
bine our secure hashmethodwith the intelligent hybridmigration.
Fig. 7 shows the overall workflow of our design. In the following,
we will illustrate our design in detail.
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Fig. 7. The overall workflow of our design. The italic blue parts indicate our design
added on the original pre-copy algorithm.

4.1. Leverage secure hashes to avoid transferring fake dirty pages

To avoid transferring the fake dirty pages, we propose to com-
pute and compare the secure hash for each page to be transferred.
The concrete process is as follows. During the first iteration of pre-
copy, we compute and store the secure hash for the 4 KB content of
each transferred page. In the following iterations, before a page is
sent, its secure hash is first computed. Then this hash is compared
with its former version. If the hashes are the same, the content of
this page is considered as not changed (we will discuss the hash
collision probability in the next paragraph). This indicates that it is
a fake dirty page, sowe just skip it without transferring. Otherwise,
it is a really dirty page which needs to be transferred. Besides, for a
really dirty page, the old version hash needs to be replacedwith the
new one, for the possible comparison in the following iterations.

In our design, the same secure hashes indicate that the content
of one page stays unchanged. Now we explain the rationality of
this consideration, even though theoretically, there may be hash
collisions, which means two different pages may have the same
hash. According to the ‘‘birthday paradox’’ [32,33], we are able to
calculate the collision probability of a given secure hash pair as
follows:

Hash collision probability : p ≤
n(n − 1)

2
×

1
2m (1)

n : the number of chunks (memory pages here)
m : the length of the hash in bits

Table 3
Thehash collision probability for SHAxhasheswith different amounts of transferred
pages during migration.
Amount of
transferred pages

SHA1
160 bits

SHA256
256 bits

SHA512
512 bits

256 K (1 GB) 10−37 10−66 10−143

256 M (1 TB) 10−31 10−60 10−137

Table 3 shows the hash collision probability for SHAx hashes
according to formula (1) with different amounts of transferred
pages during themigration. Assume the data size of the transferred
memory is as huge as 1 TB, which is quite impossible, the proba-
bility for a SHA1 collision is less than 10−31. In fact, this probability
is much lower than the probability of a DRAM error in computer
systems [34,35]. So the match of secure hashes is sufficient to
demonstrate that the content of one page is unchanged. There is
no need for a further byte-by-byte comparison.

Leveraging secure hashes, we successfully avoid transferring
the fake dirty pages. Besides, there is an obvious advantage to use
secure hashes, compared with the byte-by-byte comparison. That
is, storing the secure hashes only consumes very little memory
overhead. However, the byte-by-byte comparison needs a buffer
in memory as large as the VM memory size to hold the copies of
all the pages. Take the SHA1 hash as example, for a 4 KB page, its
SHA1 hash is only 20 bytes. So the memory overhead to store the
SHA1 hashes is only less than 1/200 of the VMmemory size, which
is negligible.

In fact, a feature called XBZRLE [12,36] offered by KVM/QEMU
could also avoid transferring the fake dirty pages, even though
this is not its objective in design. However, it consumes very
large memory overhead to obtain a good effect. Next we will
explain this in more detail. XBZRLE is short for ‘‘Xor Binary Zero
Run-Length-Encoding’’. Users could choose to activate this feature
during the migration to obtain a possible migration performance
improvement. Instead of sending awhole dirty page, XBZRLE sends
the compressed content of the update against the old version of
this page. So it reduces the amount of data transferred. In order
to calculate the update, the old copies of the pages need to be
stored at the source node, so it needs a cache in memory. From its
principle, it is deduced that XBZRLE could also avoid transferring
the fake dirty pages, if their old copies are in the cache. In fact, it
does more than this because it also performs delta compression
for the really dirty pages. However, it needs a memory cache quite
large to hold enough pages in order to get a satisfying performance
improvement. Otherwise, there would be a lot of cache misses,
which restricts the effect of XBZRLE. The evaluation results in
Section 5 demonstrate this in detail.

4.2. Intelligent hybrid migration

As explained above, memory write-intensive workloads often
result inmigration failureswith an expected downtime. Our secure
hash method would improve the migration performance. How-
ever, it does not guarantee the successful completion of the pre-
copy migration, especially for the workloads with low proportion
of fake dirty pages. Therefore, to guarantee the success of mi-
gration, we further propose the intelligent hybrid migration. As
introduced in Section 2, hybrid migration combines the pre-copy
and post-copy algorithms. A traditional hybrid method usually
fixedly performs one or two pre-copy iterations before shifting
into post-copy, or is switched manually by administrators in data
centers. In contrast, our design is ‘‘intelligent’’, because it leverages
heuristic and automatically switches from pre-copy to post-copy
at the near-optimal moment. Therefore, our intelligent hybrid mi-
gration combines the advantages of pre-copy and post-copy more
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Fig. 8. The performance of the Memcached server during the pre-copy migration. The dashed box indicates the duration of the migration.

Fig. 9. The performance of the Memcached server during the post-copy migration. The dashed box indicates the duration of the migration.

efficiently than the traditional ways. Next, we will explain this
design in detail.

The post-copy phase in a hybrid migration guarantees that the
migration is completed in finite time. However, as explained in
Section 2, post-copy has inherent weaknesses in VM reliability
and application performance. To verify theweakness of the perfor-
mance degradation caused by post-copy, we migrate the VM run-
ning the Memcached with pre-copy and post-copy respectively.
The details of this experiment is almost the same as described in
Table 1, except that during migration, memaslap is executed with
set-get ratio of 1:9. This set-get ratio makes the VMmemory pages
get dirtymuchmore slowly than the all-set configuration. Thus the
pre-copy migration is able to be completed. We leverage the real-
time throughput and the average latency measured by memaslap
to represent the performance of theMemcached server. The results
are shown in Figs. 8 and 9. Both of the measurements last for
180 s, while the migrations begin at the 60 s. The dashed boxes
indicate the durations of the migrations. It is demonstrated that,
pre-copy has no obvious impact on the performance of the work-
load. However, during almost the whole period of post-copy, the
throughput and average latency of Memcached are both degraded
dramatically. Besides, the performance recovers very slowly as
pages gradually arrive at the target node. This result verifies that,
compared with the pre-copy, post-copy does have severe impact
on the performance of applications running inside the VMs.

Due to post-copy’s weaknesses in reliability and performance,
in our hybrid method, we try to shorten the duration of post-copy

Fig. 10. A typical condition for the amount of remaining dirty pages for memory
write-intensive workloads. The VM running the kernel compilation is migrated.

as much as possible. So in our hybrid migration design, it is crucial
to pick a suitable moment to switch from pre-copy to post-copy.
On one hand, we would like to obtain the shortest duration of
post-copy; On the other hand, we do not expect to perform too
many useless pre-copy iterations, because they waste time and
network resources. Fig. 10 shows the amount of the remaining
dirty pages at the end of each iteration when a VM running the
kernel compilation is migrated with pre-copy. This represents a
typical conditionwhen thememorywrite-intensiveworkloads are
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migrated. Usually, the first several iterations gradually decrease
the amount of the remaining dirty pages, until a turning point
occurs. After this turning point, the amount of the remaining dirty
pages is not further reduced obviously, and fluctuates within a
range.

Based on this observation, we propose the design of our intelli-
gent hybrid migration as follows. First, at the end of each iteration,
our hybrid method compares the numbers of pages dirtied and
sent during this iteration. The turning pointmentioned above is de-
tected when the pages dirtied are not less than the pages sent. The
migration could be switched into post-copy just at this moment.
However, the random fluctuation in the amount of the remaining
dirty pages indicates that, waiting a few more iterations may lead
to a shorter post-copy duration, with acceptable increase in the
total migration time. So after this turning point, our intelligent
hybrid method continues the pre-copy process and records the
numbers of the pages dirtied in each iteration to search for a
local minimum. At the end of one iteration, if the number of the
remaining dirty pages is the minimum of the recent iterations in
a sliding window (e.g. three iterations), the migration is switched
into the post-copy phase.

In fact, in the above design, we assume that the workload
does not change during VM migration. However, if the workload
changes, the above design may not obtain good effect. For exam-
ple, the amount of dirty pages could increase after the workload
changes. Thus the above design may cause both the TMT and the
duration of post-copy to be longer than a simple hybrid migration
with fixed pre-copy iterations. We leave a better design for such a
circumstance as futurework. So farwe still adopt the above design,
because the migration time is usually less than several minutes.
We consider the possibility that the workload changes during such
a short period as small.

5. Evaluation

Wehave implemented our proposed scheme in the KVM/QEMU
platform. We modify the code of QEMU-2.5.1 to realize the secure
hash method and the intelligent hybrid migration. We leverage
SHA1 to compute the secure hashes, and adopt three iterations as
the sliding window size used for the intelligent hybrid migration.

This section evaluates the performance characteristics of our
proposed schemewith theworkloads shown in Table 1. The results
show that our secure hash method obtains significant migration
performance improvement for theworkloadswith high proportion
of fake dirty pages. The workloads which fail to be migrated with
the pre-copy now accomplish migration quickly. Furthermore, our
intelligent hybrid migration guarantees successes of the migra-
tions for all the workloads. More importantly, compared with
the traditional hybrid migrations with fixed switching points, our
design remarkably shortens the duration of the post-copy phase,
thus alleviate the inherent weaknesses of post-copy effectively.

5.1. Experiment setup

As shown in Fig. 11, our testbed consists of four machines. Both
the source and target nodes for the migration are equipped with
two quad-core Xeon E5620 2.4 GHz CPUs, 32 GB RAM, and two
Intel 82574L Gigabit network interface cards (NICs). They share
the storage from another machine through the NFS (Network File
System) method. The last machine acts as the client of the Mem-
cached workload to execute the memaslap benchmark. All of the
fourmachines are connected via aGigabit Ethernet switch. Besides,
a separate Gigabit Ethernet exists between the source and target
nodes, and is used exclusively for the migration process. The OS of
the host machines is Ubuntu-16.04, while the guest OS is Ubuntu-
12.04. As mentioned above, Memcached is migrated with the max

Fig. 11. The testbed of our evaluation. Note that the one client machine runs the
memaslap benchmark with concurrency, so it simulates many clients executed
against Memcached simultaneously.

bandwidth of our Gigabit Ethernet, which is about 117 MB/s. The
other workloads are migrated with the default bandwidth setting
inQEMU,which is 32MB/s. Besides, themaximumexpected down-
time is 300 ms, as the default setting in QEMU.

5.2. Effects of the secure hash method

Firstly, we conduct experiments to verify the effects of using se-
cure hashes to avoid transferring the fake dirty pages. Our scheme
is compared with the original pre-copy and pre-copy with the
XBZRLE2 feature. The XBZRLE cache size for Memcached is 1 GB,
while those for the other workloads are all 256 MB.

With our secure hash method, four workloads (Memcached,
zeusmp,mcf and bzip2) successfully complete the pre-copymigra-
tion.However, the other fourworkloads (cactusADM,milc, lbmand
kernel compilation) still fail to bemigrated, nomatter using secure
hashes or the XBZRLE feature. This result conforms to the propor-
tions of the fake dirty pages shown in Fig. 3. Memcached, zeusmp,
mcf and bzip2 have higher proportion than the other four work-
loads, so they obtain more performance improvements. Fig. 12
shows the results of the TMT, TDT and downtime for Memcached,
zeusmp, mcf and bzip2. Compared with the original pre-copy, our
secure hashmethod obtains significant performance improvement
for all the three metrics. Three workloads (Memcached, zeusmp
and mcf), which fail to be migrated with the original pre-copy,
accomplishmigrationwith a TMTof 58 s, 27 s and 98 s respectively.
Bzip2 also obtains great benefits, as the TMT and TDT are both
reduced a lot. Besides, the XBZRLE feature also gets performance
improvement, compared with the original pre-copy, except that
zeusmp still does not complete migration. However, our secure
hash method performs much better than the XBZRLE feature with
the given cache size. Besides, our method consumes negligible
memory overhead, compared with XBZRLE. So we conclude that
our method that leverages the secure hashes to avoid transferring
the fake dirty pages is effective.

Different cache sizes of XBZRLEwould lead to variousmigration
performance. So we further repeat the experiments using XBZRLE
with different cache sizes. As is shown in Table 4, a larger cache
size does obtain more benefits for migration, while also consum-
ing more memory overhead. Through this table, we compare our

2 The current implementation of the XBZRLE feature in QEMU starts to insert
pages into the cache since the second iteration of pre-copy. This results in that the
dirty pages start to be delta-compressed from the third iteration. We modify the
code to start inserting from the first iteration. Thus the second iteration also obtains
the benefits of the XBZRLE.
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Fig. 12. Migration performance for different methods. The results for cactusADM, milc, lbm and kernel compilation are not shown, because they still fail to be migrated, no
matter using secure hashes or the XBZRLE feature.

Table 4
Migration performance for XBZRLE with different cache sizes. The dash lines indicate that migration fails to be completed.

TMT (s) TDT (MB) Downtime (ms)

XBZRLE hash XBZRLE hash XBZRLE hash

(cache size) 1 G 2 G 4 G 8 Ga 1 G 2 G 4 G 8 G 1 G 2 G 4 G 8 G
Memcached 102.7 83.6 64.3 47.3 58.2 11427 9209 6909 4961 5821 163 101 61 41 97
(cache size) 128 M 256 M 512 M 1 G 128 M 256 M 512 M 1 G 128 M 256 M 512 M 1 G
zeusmp – – 24.9 22.6 27.2 – – 795 722 869 – – 31 5 7
mcf – 137.2 76.1 48.5 97.9 – 4386 2425 1543 3128 – 18 120 51 35
bzip2 34.6 33.1 22.7 18.4 19.9 1109 1065 731 590 631 173 56 28 9 23

aQEMU requires that the XBZRLE cache size must be a power of 2, and that it must not be larger than the guest memory size. We modify the code to cancel the upper limit
of the cache size. Thus the 8 GB cache is able to hold all the 6 GB VMmemory pages for Memcached.

Fig. 13. The elapsed time and amount of the transferred pages for each pre-copy
iteration with our secure hash method. The VM running zeusmp is migrated.

secure hashmethod with XBZRLE inmore detail. TakeMemcached
as example, it is shown that our secure hash method outperforms
XBZRLE even with a 4 GB cache. However, when the cache size is
expanded as large as the whole guest memory size, XBZRLE per-
forms better. This is because XBZRLE with this cache size not only
skips the fake dirty pages, but also performs delta compression on
every page to be sent against their old copies, from the second
iteration. In conclusion, considering both the performance im-
provement and the overheads consumed, our secure hash method
outperforms XBZRLE significantly.

Furthermore, we record the elapsed time and amount of the
transferred pages for each iteration with our secure hash method,
for the zeusmp workload. The results are shown in Fig. 13. Com-
pared with the results in Fig. 1, it shows how the secure hash
method obtains the benefits in detail. In the second iteration, the
amount of the transferred pages is reduced from 54,639 to 13,713,
because approximately 75% of the 54,639 pages are fake dirty. Due
to the significant reduction in pages to be transferred, the second
iteration is shortened from 6.70 s to 1.75 s. An additional effect

to shorten one iteration is that, the amount of the dirty pages
generated during this iteration is also reduced. This additional
effect speeds up the convergence of the pre-copy process.

5.3. Computation overhead of the secure hash method

The computation speed for the SHAx hashes is related with
the length of the messages to generate hashes. Fig. 14 shows the
throughput to compute the SHAx hashes for the 4 KB memory
pages, using one core of the quad-core Xeon E5620 2.4 GHz CPU.
It is demonstrated that the throughput to compute anyone of the
SHA1, SHA256 or SHA512 hash is much higher than the maximum
bandwidth of our Gigabit Ethernet (<125 MB/s). So to use anyone
of the SHAx functions is fast enough for our migration system.

However, with faster networks in recent data centers, e.g., 10
GbE, the throughput shown in Fig. 14 is relatively slow. Considering
that the Xeon E5620 CPU in our testbed is a little outdated, we also
compute the SHA1 throughput on a server with more advanced
Xeon E3-1225 v6 3.3 GHz CPU, and get a much faster result of
1.02 GB/s. Besides, with the availability of multi-core or many-
core, CPU resources tend to be abundant in current data centers.
So the calculation of secure hashes could be speeded up with
multi threads. Furthermore, processor vendors are offering some
hardware acceleration and new instruction supports (e.g. the Intel
QuickAssist Technology [37] and the Intel SHA Extensions [38])
for more efficient SHA computing performance. These techniques
would keep computing secure hashes from being a bottleneck in
faster networks.

Besides the throughput, we are more interested in how much
extra CPU consumption our secure hash method incurs, com-
pared with the original pre-copy migration. In the source code
of KVM/QEMU, the migration routine is implemented as an in-
dividual thread, separated from the main virtualization thread.
So after obtaining the PID (process/thread ID in Linux system) of
the migration thread, we are able to monitor its CPU utilization
through the Linux ‘‘top’’ command. As is shown in Fig. 15, for the
VMrunning zeusmp, our secure hashmethod increases the average
CPU utilization of themigration thread from3.7% to 14.9%, which is
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Fig. 14. The throughput to compute the SHAx hashes for the 4 KB memory pages.
The dashed line indicates the theoretical maximum bandwidth of our Gigabit
Ethernet. Themachine for this test is equippedwith quad-core Xeon E5620 2.4 GHz
CPUs. Note that only one core is used to compute the SHAx hashes.

Fig. 15. The CPU consumption of themigration threadwith andwithout the secure
hash method. The VM running zeusmp is migrated. The CPU utilization is obtained
once per second from the host Linux system.

acceptable. So we consider the CPU overhead spent on computing
the secure hashes as insignificant.

5.4. Effects of the intelligent hybrid migration

Next, we further conduct experiments to evaluate the effects
of our intelligent hybrid migration. The four workloads with high
proportion of fake dirty pages (Memcached, zeusmp, mcf and
bzip2) have already finished migration quickly with the secure
hash method, so they would not step into the post-copy phase in
our intelligent hybrid design. In contrast, the other four workloads
(cactusADM, milc, lbm and kernel compilation) step into post-
copy at the end of the 4th, 6th, 7th and 7th pre-copy iteration
respectively. So we only show the results of these four workloads
in this subsection. Besides, as baseline, we also migrate them
using hybrid migrations with fixed switching points (at the end
of the 1st/2nd pre-copy iteration). Fig. 16 shows the results of
the duration of the post-copy phase. The result of a pure post-
copy without preliminary pre-copy iterations is also shown in
this figure. It is demonstrated that our intelligent hybrid method
remarkably shortens the post-copy duration compared with the
baseline, except cactusADM. For example, compared with the hy-
brid migration with one iteration, our method shortens the post-
copy duration by an extent of 44%, 43%, and 60% respectively for

Fig. 16. The post-copy duration for pure post-copy and different hybrid methods.

Table 5
The amounts of the page faults during post-copy phase for the baseline (hybrid
migration with one iteration) and our intelligent hybrid migration.

cactusADM milc lbm kernel

Baseline 207 6031 3678 364
Intelligent hybrid 216 3512 2241 183

milc, lbm and kernel compilation. However, our method has no
better effect for cactusADM. This is because the remaining dirty
pages of cactusADM cannot be further reduced and maintain in
a relatively constant range from just the second iteration. Thus
to perform more pre-copy iterations would not further shorten
the post-copy duration. Besides, it is shown that the secure hash
method further reduces the post-copy duration, because fake dirty
pages, although lowproportion, are kept frombeing resent in post-
copy phase.

As shown in Figs. 8 and 9, post-copy damages the VM ap-
plication performance severely, while pre-copy has no obvious
impact. So our intelligent hybrid migration reduces the impact of
migration on VM application performance, given that the duration
of post-copy is shortened remarkably, even though the pre-copy
period could be prolonged. Besides, page faults are the immediate
causes to damage application performance during post-copy. So
we record the amount of page faults for different hybrid methods,
to obtain amore comprehensive knowledge of the impact ofmigra-
tion on VM application performance. As is shown in Table 5, com-
pared with the baseline, our scheme reduces the amount of page
faults remarkably by an extent from39% to 50%, except cactusADM.
This result further verifies the efficiency of our intelligent hybrid
migration to reduce the impact on VM application performance.
For cactusADM, as we have explained in the above paragraph, our
scheme could not further shorten the post-copy duration. So the
amount of page faults is not reduced either.

However, if the network-bound applications are migrated, our
method may cause more performance degradation, especially
when the application and migration traffics compete for the same
network infrastructure. This is because, unlike what is shown
in Fig. 8, the network contention would degrade the application
performance during pre-copy. Besides, the pre-copy phase is also
prolonged by the contention. For this situation, it is better to
finish themigration quickly, so simple hybridmigration with fixed
iterations could outperform our design.

As our intelligent hybrid method performs more pre-copy it-
erations to search for a near-optimal switching moment, the TMT
and TDT are increased compared with the baseline. This is demon-
strated by Figs. 17 and 18. For example, compared with hybrid mi-
gration with one iteration, our scheme transfers 58%more data for



C. Li, D. Feng, Y. Hua et al. / Future Generation Computer Systems 95 (2019) 126–139 137

Fig. 17. The TMT for different hybrid methods.

Fig. 18. The TDT for different hybrid methods.

cactusADM. The primary objective of our design is to shorten the
post-copy duration, and thus to alleviate the inherent weaknesses
of post-copy. So we consider the increase in the TMT and TDT as
an acceptable trade-off. However, if the primary goal is to shorten
the migration time or to reduce the amount of data transferred,
our design may not be preferable. In such a circumstance, hybrid
migration with fixed pre-copy iterations or even the pure post-
copy is more suitable, even though the inherent weaknesses of
post-copy would be more severe.

6. Related work

Optimizations for Pre-copy Migration. Due to its importance
for the data center managements, live VM migration has been
widely researched for many years since first proposed by Clark
et al. [2] and Nelson et al. [3]. A number of techniques have
been proposed to optimize the pre-copy migration. Jin et al. [39]
improve the pre-copy process by compressing the memory data
transferred from the source to the target node. Liu et al. [40]
adopt checkpointing/recovery and trace/replay to speed up the
convergence of the pre-copy migration. Since the second iteration,
rather than the memory data, they send the log files, which record
the non-deterministic system events for the previous iteration, to
the target node. Then the target node replays with the received log
files. Because the log file size is much smaller than the memory
data size, their approach leads to great performance improvement
for migration. However, this approach is not suitable to migrate
the VMswith SMPOS in themulti-processor environment, because
expensive memory race among different VCPUs must be recorded
and replayed. Jo et al. [41] observe that modern operating systems
often use part of the physical memory to cache data from the

secondary storage. So in the scenes of migrations with shared
storage, they propose to track the VM’s I/O operations and main-
tain a mapping of the memory pages that are in identical form
with the data on the storage device. During the migration, the
target node directly fetches this part of identical data from the
shared storage device. Thus the TMT is shortened remarkably. Song
et al. [42] study the parallelization opportunities of live migration.
They propose the PMigrate, which leverages data parallelism and
pipeline parallelism to parallelize the migration operation. Their
prototypes show that PMigrate accelerates the live migration sig-
nificantly, while consuming more CPU cores and NIC ports for
the parallelization. Ibrahim et al. [10] optimize the migration for
HPC applications, which are usually memory write-intensive. To
guarantee the convergence of pre-copy, they propose to adjust the
migration bandwidth limit and downtime setting according to the
memory dirtying rate of the applications. However, their approach
may lead to a long downtime, while our scheme in this paper
completes the migration while keeping a short downtime.

WANMigration. Besides the live migration in a LAN scope, the
WAN migration without a shared storage has also been studied.
In the scenes of WAN migration, the VM storage states along with
the memory pages need to be transferred. CloudNet [43] proposes
a cloud framework that supports efficient WAN migration with
VPN based network infrastructure. It presents a set of effective
optimizations for migration. They reduce the cost of transferring
VMstorage andmemory data over lowbandwidth andhigh latency
network links. Zheng et al. [44] propose to record a history of the
VM disk I/O operations, and use this history to predict the I/O
locality characteristics of themigratedworkload.With this locality
characteristics, they design a storage migration scheduling algo-
rithm. This algorithm efficiently alleviates the VM I/O performance
degradation during migration. XvMotion [15] is a WAN migration
system of VMware. It builds on the live migration and IOmirroring
mechanisms in ESX [13]. The migration process of XvMotion first
copies the disk data with a single pass. After that, it iteratively
copies the memory data with pre-copy. During the whole migra-
tion period, the asynchronous IO mirroring is performed, which
reflects any additional changes of the source disk to the desti-
nation. Besides, XvMotion has been in active use by customers
for several years with good effects. SnapMig [45] proposes a VM
storagemigration designwith the snapshot backup servers. During
the storage migration, the task of transferring VM base image and
snapshots is outsourced to the backup servers. Thus only little data
needs to be copied from the source node. This schememitigates the
interference between VM I/O requests and migration I/O requests.

Memory Deduplication in Migration. It seems that the ex-
isting works employing memory deduplication to accelerate VM
migration [46–49] cover the problem of fake dirty pages. In fact,
most of these works perform deduplication while simultaneously
migrating multiple VMs co-located on the same host or within
a cluster [46–49]. Deduplication is effective in these scenarios,
because these VMs often have some common memory content,
given that they may execute the same operating system, libraries,
and applications. However, within a single VM, excluding the fake
dirty pages discussed in this paper, the amount of duplicate pages
is very small. This is verified by the experiment results shown in
Table 6. We dump the memory content (excluding zero pages)
of VMs running different workloads info files. Then we analyze
these memory dump files and compute the percentage of dupli-
cate pages. It is demonstrated that, for most workloads except
cactusADM, the percentage of duplicate pages is less than 10%.
So we deduce that, without the fake dirty pages, we can only
obtain very little performance improvement by applying memory
deduplication into single VMmigration.

Zhang et al. [50] leverage delta compression to accelerate VM
migration. They use the HashSimilarityDetector [51] to find mem-
ory pages similar in content, including the identical pages. Then
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Table 6
The percentage of duplicate pages for single VM running different workloads.

zeusmp mcf bzip2 cactusADM milc lbm kernel compilation

Duplicate pages 7.77% 1.12% 9.36% 19.65% 2.07% 6.57% 6.09%

they perform XBZRLE on these pages against their reference pages.
So at the source node, they need to cache the reference pages in
memory, while our scheme does not have this memory overhead.

According to a study by IBM [52], a VM typically moves among
a very limited set of hosts. Even it is often migrated back and
forth between just two hosts. Aiming at these scenes, VeCycle [53]
proposes that the migration source stores a checkpoint of the out-
going VM. When the VM is migrated back, the incoming migration
could be speeded up with the old checkpoint. Particularly, VeCycle
computes the MD5 checksum of one page, and does not send it if
its checksum is within the checksum set of the old checkpoint. As
a result, VeCycle reduces the migration time and traffic remark-
ably, especially when there is high similarity between the VM’s
current state and old checkpoint. Although the checksum method
in VeCycle is similar to our secure hash method, they are proposed
for different purposes. VeCycle aims at identifying duplicate pages
already existing in the checkpoint, which are mainly pages not
updated between the two migrations, while our purpose is to
recognize the fake dirty pages, which are updated in fact. Besides,
VeCycle identifies duplicate pages when the same contents exist
anywhere in the checkpoint, while we only recognize fake dirty
pages with the same page frame number. So in fact VeCycle could
find more duplicate pages than our method. However, VeCycle
only performs checksum comparisons during the first iteration,
because they consider it unlikely that a page updated between
iterationsmatches a page alreadypresent at the destination. In fact,
our analysis indicates that this is possible because of the widely
existing fake dirty pages, so we perform the secure hash method
throughout the whole migration process.

7. Conclusion

In this paper, we try to solve the challenging problem ofmigrat-
ing the VMs running the memory write-intensive workloads. Our
analysis first demonstrates an important fact: during the pre-copy
migrations, some of these workloads have a large proportion of
fake dirty pages. In fact, these pages are unnecessary and wasteful
to be resent. Then we explore how these fake dirty pages are
generated. After that, we propose to leverage the computation and
comparison of the secure hashes to avoid transferring these fake
dirty pages. Besides, to guarantee the successful accomplishment
of migration, we further propose an intelligent hybrid migration
design. It automatically switches from pre-copy to post-copy at
a near-optimal moment, when taking more pre-copy iterations
would not further reduce the amount of the dirty pages. Our
evaluations show that the proposed scheme gets a significant per-
formance improvement for VM migration. The workloads which
fail to bemigratedwith pre-copy now completemigration quickly,
with a TMT from 27 s to 98 s. Besides, the intelligent hybrid migra-
tion remarkably shortens the post-copy duration, thus effectively
alleviate the inherent weaknesses of post-copy.
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