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• Zhu et al. proposed a blind signature in Future Generation Computer Systems in 2017.
• Zhu et al.’s is extended from Plantard et al.’s signature scheme in PKC 2008.
• Zhu et al.’s scheme either does not provide the blindness or not correctly work.

a r t i c l e i n f o

Article history:
Received 26 July 2018
Received in revised form 16November 2018
Accepted 29 December 2018
Available online 8 January 2019

Keywords:
Blind signatures
Lattice-based cryptosystem
Cryptoanalysis

a b s t r a c t

In this note, we review the article published by Zhu et al. in Future Generation Computer Systems in
2017. We show that their construction of a blind signature does not hold the correctness requirement or
the blindness requirement.

© 2018 Published by Elsevier B.V.

1. Introduction

In [1], a lattice-based blind signature scheme is proposed by Zhu
et al. Their blind signature scheme is extended fromPlantard et al.’s
digital signature scheme [2] based on the Closest Vector Problem
CVP∞.

1.1. Paper organization

In Section 2, we introduce preliminaries, and in Section 3, we
briefly describe the blind signature scheme by Zhu et al.’s [1]. In
Section 4, we present our cryptoanalysis on the Zhu et al.’s scheme.
In Section 5, we discuss the difficulties of building a provably
secure blind signature and future work. Finally, in Section 6, we
conclude.

2. Preliminaries

2.1. Blind signature

A blind signature scheme consists of three PPT algorithms,
(KGϵ, SGϵ, VFϵ) and involves three entities of the signer S , the user
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U and the verifier V . The key generation algorithm KGϵ is run
by the signer or a trusted authority. The signing algorithm SGϵ is
run by the signer S and the user U interactively. The verification
algorithm VFϵ is run by the verifier V . The algorithms are defined
as follows [1,3].

• KGϵ generates secret key ks and public key kp.
• SGϵ(ks,m) executes an interaction between S and U where S

has a secret key ks and U has a message m. Finally, U obtains
and outputs a signature σ ofm.
• VFϵ(kp, σ ,m) accepts it if σ is valid, otherwise it rejects it.

Correctness requirement. The correctness requirement is as fol-
lows. If ks, kp are generated from KGϵ , and a signature σ on a
messagem is generated from SGϵ(ks,m), then VFϵ(kp, σ ,m) accepts
it with probability 1. If we allow a negligible error ε, then the
correctness requirement holds with probability 1− ε.

Security requirement. A blind signature scheme requires two
security properties, blindness and one-more unforgeability [1,3,4].
The blindness captures message hiding from a malicious signer. In
particular, amalicious cannot determinewhichmessage is queried
to sign from the signing execution. The one-more unforgeability
captures the inability of the adversary accessing to the signing
oracle to obtain one-more valid signature that is not from the
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signing oracle. In particular, no adversary controlling the user can
generate l + 1 valid signatures given l valid signatures from the
signer. For formal definitions, we refer to [1,3,4].

2.2. Notations and definitions [1,2]

We briefly review the notions and definitions from [1,2].

Notations. Let ⌊x⌋ be rounded down to the closest integer vector
of x ∈ Rn. l2-norm and l∞-norm are the Euclidean norm and the
infinity norm, respectively. ∥A∥ and ∥A∥p are the l2 matrix norm
and the lp matrix norm, respectively. Finally, let ρ(C) denote the
spectral radius of C , i.e., ρ(C) = max{|λ|, Cx = xλ} for C ∈ Cn,n.
We denote the identity matrix of dimension n by Idn, or Id simply.

Definition 1 (lp-norm). Let w be a vector of Rn.

1. For p = ∞, ∥w∥∞ is defined by ∥w∥∞ = max{|wi|,≤ i <
n}.

2. For p ≥ 2, ∥w∥p is defined by ∥w∥p =
(∑n−1

i=0 |wi|
p
)1/p

.

Definition 2 (CVPp). Let B be a given basis of a lattice L and w a
vector. The Closest Vector Problem (CVP) is to find a vector u such
that ∥w − u∥p ≤ ∥w − v∥p for all v ∈ L

Moreover, we introduce some definitions and notations related
to matrices.

Definition3 (HermiteNormal Form,HNF). LetLbe a full-rank lattice
of dimension nwith H = (hi,j) ∈ Rn a basis. H is a Hermite Normal
Form basis of L if and only if

hi,j

⎧⎨⎩
= 0 if i < j
≥ 0 if i ≥ j
< hj,j if i > j

for all 0 ≤ i, j < n.

Definition 4 (Polytope Norm). Given a non-singular matrix P of
dimension n, we define ∥w∥P = ∥wP−1∥∞ for w ∈ Rn.

3. The blind signature scheme by Zhu et al.

H is a hash function familymapping {0, 1}∗ → {x ∈ Zn, ∥x∥P2 <
1}. The blind signature scheme ϵ = (KGϵ, SGϵ, VFϵ) works as
follows:

1. KGϵ chooses a random hash function h fromH and a random
matrix S ∈. Then, compute P = ⌊2ρ(S) + 1⌋Id and the HNF
basis H of P − S. Finally, output the public key kp = (P,H),
and the secret key ks = S.

2. SGϵ defines the interactive protocol between U and S (de-
scribed in Fig. 1) as follows.

(a) U chooses a random r ← {0, 1}∗

(b) U computes v = h(m, r) ∈ Zn.
(c) U selects a random blinding vector e where e is a

linear combination of H and H ’s integral coefficients
are chosen from uniform distribution.

(d) U chooses a blinding matrix T = B−1NB where B is
generated from H , N is a permutation matrix. T maps
a lattice point to another lattice point while keeping
the vector’s length.

(e) U computes u = (v + e) ∗ T and sends it to S.
(f) S repeatedly computes δ′ = u − ⌈uP−1⌋(P − S) until
∥δ′∥P < 1.

(g) S sends δ′ to U .
(h) Finally, upon receiving δ′, U compute δ = δ′ ∗T−1− e,

and outputs themessage and signature pair, ⟨m, r, δ⟩.

Fig. 1. The signing procedure in the blind signature scheme proposed by Zhu
et al. [1].

3. VGϵ verifies δ as follows.

(a) V checks if ∥δ∥P < 1. If it is not, rejects it.
(b) Otherwise, if it is. Then, check if h(m, r)− δ is a lattice

point of L with basis H . If it is, accept it, otherwise,
reject it.

4. Cryptoanalysis on Zhu et al.’s blind signature scheme

4.1. Correctness and blindness

In the Zhu et al.’s blind signature scheme [1], it is argued that
the correctness of their blind signature scheme is obvious since
their scheme is a variant of Plantard et al.’s signature scheme [2].
However, the final signature δ, unblinded by the user U is not δ′

generated by the signer S. Therefore, even if ∥δ′∥P < 1., it does not
guarantee that ∥δ∥P < 1 where δ = (δ′ ∗ T−1 − e). In particular, if
∥e∥P is larger than or equal to 2, ∥δ∥P can be larger than 1.

Otherwise, if ∥e∥P is not large enough but smaller than 2, then,
the blindness can be broken since given two message-signature
pairs (m0, r0, δ0), (m1, r1, δ1), themalicious signer can checkwhich
ui is close to vj for i, j ∈ {0, 1}, where vj = h(mj, rj). Since T is length
preserving and ∥e∥P is small, |uj| = |vj + e| ≈ |vj|.

In the next, we formally show our argument described in the
above as follows.

Theorem 1. In Zhu et al.’s blind signature scheme, if ∥e∥P ≥ 2,
the correctness does not hold. Otherwise, if ∥e∥P < 2, the blindness
property does not hold with non-negligible probability.

We prove Theorem 1 by showing each case of ∥e∥P ≥ 2, or
∥e∥P < 2. The former yields an incorrect scheme, and the latter
breaks the blindness property with non-negligible probability.

Showing incorrectness. We first prove the incorrectness of the
scheme in the following theorem.

Theorem 2. Suppose that ∥δ′∥P < 1 and T is a linear transformation
preserving the norm ∥∥P , that is, ∥v ∗ T∥P = ∥v∥P for every vector
v ∈ Zn. If ∥e∥P ≥ 2, then ∥δ∥P ≥ 1 where δ = δ′ ∗ T−1 − e.

Proof. The proof is easily done using the triangle inequality.

∥δ∥P = ∥δ
′
∗ T−1 − e∥P

≥
⏐⏐∥δ′ ∗ T∥P − ∥e∥P ⏐⏐ = ⏐⏐∥δ′∥P − ∥e∥P ⏐⏐ > 2− 1 ≥ 1. □

Breaking the blindness property. As shown in Theorem 2, to
guarantee the correctness of Zhu et al.’s scheme, ∥e∥P must be
smaller than 2. However, this bound on e leads the blindness to
be totally broken. We show it formally in the next.

Lemma 1.

1. If ∥e∥P < 2 and P = ⌊2ρ(S) + 1⌋Id, then ∥e∥∞ <
2 (⌊2ρ(S)+ 1⌋)
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2. If v ∈ Zn satisfying ∥v∥P2 < 1, then ∥v∥∞ < (⌊2ρ(S)+ 1⌋)2

Proof. Now we have 1 ≤ ⌊2ρ(S)+ 1⌋ ≤ 2n+ 1 meaning
∥e∥∞

⌊2ρ(S)+ 1⌋
= ∥(⌊2ρ(S)+ 1⌋)−1e∥∞ = ∥eP−1∥∞ = ∥e∥P < 2.

Thus, ∥e∥∞ should be smaller than 2 (⌊2ρ(S)+ 1⌋). Similarly,
∥v∥P2 < 1 gives us ∥v∥∞ < (⌊2ρ(S)+ 1⌋)2. □

Lemma 2. Assume that the distribution of the outputs of the hash
function h : {0, 1}∗ → {x ∈ Zn, ∥x∥P2 < 1} and N = ⌊2ρ(S)+ 1⌋ ≥
4 . Then the probability that ∥x1 − x2∥∞ is larger than 4N is at least
1− 16

N2 .

Proof. By Lemma 1, the space of outputs of h is {x ∈ Zn, ∥x∥∞ <
N2
} which is represented by the square with size of 2N2 centered

at origin in Euclidean plane. On this range, the 4N-neighborhood
of x1 has at most (2 · 4N)2 area which tends to get smaller as x1 is
close to the boundary. Thus, the probability that x2 lies outside of
this area is at least 1− (2·4N)2

(2·N2)2
= 1− 16

N2 . □

From Lemma 2, we can construct an adversary attacking the
blindness of this scheme as in the following theorem.

Theorem3. If ∥e∥P < 2, the blindness of Zhu et al.’s scheme is broken
with non-negligible probability.

Proof. We construct an PPT adversary A trying to break the
blindness of this scheme.

1. The adversary A uses the algorithm KGϵ to generate a key
pair (ks = S, kp = (P,H)) of this blind signature scheme. The
public key kp is made public, while A keeps ks as his private
key.

2. The adversary A outputs two messages m0 and m1, which
might depend on ks and kp.

3. LetU0 andU1 beuserswith access to the public key kp but not
to the secret key ks. For a random bit b that is unknown toA,
user U0 is given the message mb, while the message m1−b is
sent to user U1. Both users engage in the interactive signing
protocol (with A as signer), obtaining blind signatures δ0
and δ1 for the messages m0 and m1 with random r0 and r1,
respectively.

• In this procedure, A is given ub = (vb + eb) ∗ T and
u1−b = (v1−b + e1−b) ∗ T where vi = h(mi, ri) for
i = b, 1− b.
• A can get ∥ui∥P = ∥vi + ei∥P for i = b, 1 − b since T

preserves the norm.

4. The message/signature pairs (m0, r0, δ0) and (m1, r1, δ1) are
given to the adversary A.

5. A computes ∥vi∥P where vi = h(mi, ri) for i = 0,1 and out-
puts a bit b̄ such that ∥vb̄∥P−∥ub∥P |= min{|∥v0∥P − ∥ub∥P |,
|∥v1∥P − ∥ub∥P |}.

In the scheme [1], P := ⌊2ρ(S) + 1⌋Id. Therefore, by Lemma 2,
the probability that ∥v0 − v1∥∞ is larger than 4N is at least 1 −
16
N2 . Furthermore, here we are considering the case ∥e∥P < 2.
Therefore, for two bits b, b′ ∈ {0, 1}, we have:

∥vb − ub′∥∞ ≤ ∥eb′∥∞ < 2N,with probability 1, if b = b′, and

∥vb − ub′∥∞ > 4N − 2N = 2N, with probability at least

1−
16
N2 , if b ̸= b′.

Now, let L denote the case when ∥v0 − v1∥∞ > 4N . Clearly,
Pr[L] ≥ 1 − 16

N2 . Also, in the event of L, b = b with probability 1-ϵ

for a negligible function ϵ, sinceA can perfectly determine it by the
distance of ∥vb̄∥P −∥ub∥P . In the event of L (L’s complement case),
without loss of generality, we can say the probability that b = b is
1
2 + ζ for a function ζ ∈ [0, 1

2 ).
1

Then, we have the advantage of this adversary A :

AdvA =

⏐⏐⏐⏐Pr[b = b] −
1
2

⏐⏐⏐⏐ = ⏐⏐⏐⏐ Pr[b = b|L] Pr[L]

+ Pr[b = b|L] Pr[L] −
1
2

⏐⏐⏐⏐ >
1
2
Pr[L] + ε,

for a negligible function ε.
Moreover, an average approximation of ρ(S) is about

√
2n
3 [2,

Chapter 7.3]. Therefore, an average approximation of N is about
2
√

2n
3 + 1, and we can obtain the advantage of A,

AdvA >
1
2

(
1−

16
N2

)
+ε ≈

1
2
−

8(
2
√

2n
3 + 1

)2 +ε >
1
2
−

8
n
+ε,

which is not negligible in n for n > 16. Therefore, the blindness is
broken with non-negligible probability. □

5. Discussion

In this section, we briefly describe the difficulties of building
provably secure blind signatures and future work. To our best
knowledge, from lattices, there is one known provably secure blind
signature [3]. In [3], it is well described why building a provably
secure blind signature is difficult in general and why it is more
difficult when it comes to working with lattices. Here is a quick
summary and we refer to [3] for details. First, building a provably
secure blind signature is non-trivial in general since two security
requirements of a blind signature scheme, the blindness and the
one-more unforgeability have somewhat conflicting characteris-
tics. To provide the blindness, the user is given an ability to modify
the signature from the signer. However, the abilitymust be limited
only to the single signature. Otherwise, it hurts the one-more
unforgeability.

Secondly, building a probably secure blind signature from lat-
tices becomes harder because in lattices, the completeness is not
naturally followed. In particular, the blind signature by Rückert [3]
makes use of a commitment scheme and additional interactions
to overcome the incompleteness. Moreover, in lattices, RSA-style
design does not work [3]: the RSA-style using preimage trapdoor
functions consists of the following procedures, (1) hash, (2) blind,
(3) invert, then (4) unblind. In lattice, such a style does not work
due to the linearity of the function (For details, we refer to [3]).

As summarized in the above, building a blind signature that
is provably secure in lattices requires a careful design and rigor-
ous security analysis. Often plausible designs fail to be provably
secure [1,5,6]. Since the problem becomes harder in lattices, a
rigorous study is required. One possible approach is improving the
schemebyRückert [3] by lessening the number of interactions. One
might try to lessen them by sending two or more commitments
at a time. Another possible approach is building a lattice-based
witness indistinguishability primitive first and then applying it as
a building block like in [5,6]. The aforementioned methods require
further research to ensure provable security analysis and concrete
scheme design. In this paper, we focus on providing cryptoanalysis
of the particular scheme. We will continue the further research as
a future work.

1 For ζ ∈ (− 1
2 , 0], we can similarly obtain the same lower bound.
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6. Conclusion

In this paper, we present cryptoanalysis on the blind signature
scheme by Zhu et al. [1]. We formally prove that either the scheme
is incorrect, or the blindness property is not preserved with high
probability.
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