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a b s t r a c t

The coefficient of thermal expansion (CTE) significantly influences the performance of concrete. However,
CTE measurements are both time consuming and expensive; therefore, CTE is often predicted from
empirical equations based on historical data and concrete composition. In this work we demonstrate
the application of linear regression and random forest machine learning methods to predict CTE and
other properties from a database of Wisconsin concrete mixes. The random forest model accuracy, as
assessed by cross-validation, is found to be significantly better than the American Association of State
Highway and Transportation Officials (AASHTO) recommended prediction methods for CTE, denoted as
level-2 and level-3.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

The objective of this study was to demonstrate the usefulness of
using machine learning in predicting a range of concrete properties
with an emphasis on concrete coefficient of thermal expansion
(CTE). The ability to predict concrete properties using other indica-
tor properties or descriptors can save time and costs related to
making and testing materials. While prediction of concrete
strengths has been extensively studied using both non-machine-
learning and machine-learning techniques [1–5], there have been
fewer studies on prediction of concrete coefficient of thermal
expansion (CTE), and none exploring machine learning methods
for this property.

Concrete CTE is an important input in pavement design, as
detailed in the American Association of State Highway and Trans-
portation Officials’ (AASHTO) Mechanistic-Empirical Pavement
Design Guide (MEPDG) [6], and has significant effects on slab
cracking, joint faulting, and surface roughness [7]. The AASHTO’s
MEPDG describes three levels of design input for concrete CTE.
Level-1 input is site- or project-specific, and requires testing for
concrete CTE using the same materials that would be used for a
specific paving project. Level-1 data is the most reliable and the
most costly. For level-2 design input, the concrete CTE is estimated
as the average of the CTE values of mixture components (coarse
aggregate, fine aggregate, and cement paste) weighted with
respect to their volumetric proportions. CTE values of the mixture
components can be determined by experiments or from a data-
base. For level-3 design, the MEPDG permits the use of typical con-
crete CTE, which can be obtained from a national database,
according to the type of coarse aggregate. Level-2 and level-3
design approaches require less effort but are less reliable than
level-1. In addition to these three design approaches, transporta-
tion agencies have begun to develop their own concrete CTE data-
bases using their typical mix designs and materials and can use
such databases to obtain CTE inputs based on project locations.
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While these CTE values are not usually a level-1 input as they are
not typically the exact materials used in a specific project, CTE
measurements on typical local mix designs and materials are likely
to be more accurate than the averages provided by level-2 or level-
3 input [7]. With the development of these local databases there is
an increased need for methods to predict concrete CTE that can
extract the full predictive ability of CTE data. Such methods can
potentially both reduce the amount of data needed for a useful
database and increase the accuracy of CTE predictions for a given
project based on the database. There have been a few studies on
predicting concrete CTE based on mechanical models [8] or linear
regression [9,10]. For example, a study by Yang and Kim analyzed
the importance of concrete mix design variables using ANOVA and
used these variables to fit a linear equation for predicting CTE [10].
However, Yang and Kim’s study did not explore the predictive
capabilities of their model through cross validation, which is a
focus of this study. There have been no explorations of which we
are aware on predicting concrete CTE using machine learning tech-
niques or assessing models beyond linear regressions.

While CTE has not been studied with machine learning meth-
ods, neural networks have been widely used in predicting con-
crete compressive strength (CS) [1–5,11–13], and machine
learning has been used widely in other civil engineering applica-
tions [14]. Neural network predictions of CS of concrete have
achieved a Root Mean Squared Error (RMSE) of approximately
3 MPa on validation data with a range of 82.4 MPa, demonstrat-
ing that these techniques can be effective and warrant further
study [2].

This paper details the improvements in predicting the CTE of
concrete by using machine learning (ML) methods and demon-
strates that this approach can result in higher accuracy than
level-2 and level-3 predictions. Using a database of concrete com-
position and properties using materials sourced from Wisconsin
[15], many mechanical properties of concrete, including CS and
CTE, were predicted using ML models. As ML models used for pre-
dicting CTE were explored here for the first time, their predictions
are the focus of this paper. Additional mechanical properties of the
Wisconsin concrete were modeled and the results of these ML
model predictions are discussed for CS in detail and summarized
for all the studied properties except CTE in the Supplementary
Information.

The outline of the paper is as follows: Section 2 provides an
overview of an experimental program that provided the database
used in the machine learning models, Section 3 describes the dif-
ferent methods used to predict concrete CTE, Section 4 compares
results of the different methods in predicting concrete CTE, Sec-
tion 5 demonstrates the potential for reducing the amount of
experimental efforts by using ML models, and Section 6 demon-
Table 1
Inputs used in the MVLR and random forest models, as well as possible values categorica

Input Variable Data Type

Mix Types Categorical
Cement Source Categorical
Supplementary Cementitious Material (SCM) Categorical
Fine Aggregate Type Categorical
Coarse Aggregate Type Categorical
Air Entraining Admixture (AEA) Continuous
Air Content Continuous
Slump Continuous
Water-to-Cement Ratio (WCM) Continuous
Water Reducing Admixture (WRA) Continuous

* Grades A-S, A-F, and A are the terms used to refer to three different concrete mixes
** Source 1 and Source 2 are the terms used to refer to two different suppliers of conc
strates the potential of the random forest models to predict con-
crete CS.
2. Database

2.1. Dataset description

The dataset used was compiled as part of a study [15] that
aimed to determine the mechanical properties of concrete for use
in the AASHTO MEPDG. Mix proportions were varied to determine
the effects on mechanical properties of the concrete, namely the
CS, modulus of elasticity, modulus of rupture, splitting tensile
strength, CTE, and Poisson’s ratio (six properties). The mix propor-
tions, properties of constituent materials, and the methods used to
measure the concrete properties can be found in reference [15]. To
investigate the effects of concrete composition, mixes were varied
to include fifteen different sources of coarse aggregate, two differ-
ent sources of fine aggregate, two sources of Type I ordinary Port-
land cement, two grades of slag cement (Grade 100 and 120), and
three sources of Class C fly ash. By varying the mix proportions, the
listed mechanical properties could be measured and used for
approximating properties of future mixes in the MEPDG program.
The six mechanical properties were predicted from a set of 10
input descriptors (note that when we use one hot encoding for cat-
egorial variables this becomes effectively 17 descriptors, as
described in the Supplementary Information Table S2), given in
Table 1, along with the unit of the descriptor and values or ranges
in the database. A total of 110 samples are included in the dataset.
Each mechanical property was measured after curing for 7, 14, 28,
and 90 days, with the exception of CTE, which was measured only
at an age of 28 days. Each of these curing ages was treated sepa-
rately for each property such that four predictions were made for
CS, modulus of elasticity, modulus of rupture, splitting tensile
strength, and Poisson’s ratio corresponding to the four curing ages.
3. Methods

3.1. Multivariate linear regression

This work explores two regression methods, multivariate linear
regression (MVLR) and random forests, for predicting concrete
properties. The MVLR is used as a baseline comparison for the abil-
ity of more advanced and nonlinear random forests approach. The
regression algorithm was obtained from the Scikit-Learn toolkit in
Python, and the coefficients were optimized to minimize the sum
of squares error [16]. The MVLR method is not described in further
detail given its wide use in many fields.
l variables could take or range of continuous variables.

Data Categories
or Range

Units

Grade A-S, Grade A-F, Grade A* –
Source 1, Source 2** –
Slag, Fly Ash, None –
Sand A (igneous), Sand B (carbonates) –
Crushed Stone, Glacial Granite –
7–30 mL/2.5 ft3

3.4–6.8 %
1–3 in.
0.33–0.40 –
0–125 mL/2.5 ft3

in Ref. [15].
rete in Ref. [15].



Fig. 1. A basic DT, where the slump of the concrete mix is being used to predict a
concrete property.
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3.2. Random forest

As random forest approaches are perhaps less familiar to some
readers, a brief overview is given here. Random forest approaches
are based on the method of decision trees (DT’s), which are a
decision-making framework based on information theory, a math-
ematical model for storing information in data [17]. DT’s can be
used to make predictions about categorical or continuous data.
Depending on whether classification (categorical predictions) or
regression (continuous predictions) tasks are being pursued, the
exact methodology of the DT algorithm varies slightly. Since
regression was used for this analysis, this discussion will focus
on regression DT’s. Regression DT’s can be thought of as piecewise
regressions, where the exact regression equation used to predict a
given data point depends on the values of the features of the data
point and the structure of the tree, which will be subsequently
described. A basic tree using information about the slump of a con-
crete mix to predict some concrete property is shown in Fig. 1 to
aid in the description of a DT’s method. In Fig. 1, each circle in
the picture is known as a node, where the uppermost node labelled
Slump is known as the root node, and the lowest nodes on the tree
are known as the leaf nodes. The black arrows connecting nodes
are called arcs and contain information on the value of the node
they originate from.

Predictions are made with a DT by starting at the root node of
the tree and traversing the tree to reach the leaf nodes. Tree traver-
sal can be thought of as asking a series of questions about the fea-
tures of the data set. In this example, each non-leaf node of the tree
can be thought of as a question about the dataset, and each arc
Fig. 2. A visualization of one decision tree fit for our models used for predicting concrete C
of the descriptors X can be found in Supplementary Information Table S2.
from the node is a possible answer to the question being asked.
Using the basic DT in Fig. 1 as an example, the root node examines
the slump of concrete in the dataset. If the slump is less than 100, the
data point would travel down the left branch of the tree, and if the
slump is greater than 100, the data point would travel down the
right branch of the tree. The process of asking a question about
the data set and choosing an answer from the arcs is repeated until
a leaf node is reached. At the leaf node, a simple regression is fit to
data points in the training data set, and new predictions are made
based on the result of the regression at the specific leaf node a sam-
ple falls into [18,19]. A visualization of one decision tree fit for this
analysis is shown in Fig. 2.

This work uses the random forest and decision tree tools in the
Scikit-Learn software package [16]. In this implementation of the
algorithm, the order in which decision trees split on features is
determined when training the model by calculating either the
mean square error (MSE) or the mean absolute error (MAE) of
the prediction value versus the actual value of the data being pre-
dicted at a given node in the tree. Features that result in a larger
reduction in the error are split upon first for every possible attri-
bute, and those that are split upon earlier are more influential on
the property being predicted [16]. In addition to the criterion used
to assess splits, the way a decision tree functions can also be influ-
enced by limiting the maximum depth of the tree and the mini-
mum number of samples per leaf node [20]. In this study, the
maximum depth of the trees and minimum number of samples
per leaf node were set to default values (to be provided later in this
paper) and modest changes from these values did not have a signif-
icant impact on the predictive abilities of the model. These criteria
are hyperparameters for decision trees and can be thought of as
settings for the algorithm. DT’s often make predictions by ‘‘memo-
rizing” the training data, resulting in predictions that do not recog-
nize real patterns in the data, a phenomenon known as overfitting
[18,21].

To avoid overfitting, many decision trees can be used in con-
junction with one another to make predictions. This method is
known as a random forest. Random forests have fewer problems
with overfitting as they average the results of many trees to miti-
gate the poor performance of any single tree. Random forests also
have several more hyperparameters beyond the split criterion and
maximum depth of a tree for single decision trees, such as the
number of trees in the forest and whether or not to utilize boot-
strapping for sampling trees from the forest. For this study,
Scikit-Learn’s implementation of a random forest was used to fit
TE. More trees can be found in Supplementary Information Figure S21. The meaning
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the data. The hyperparameters were set to default values (specifi-
cally, the following Scikit-Learn variables were set to the following
values: max_depth = None (trees can be as deep as needed to fit
data), min_samples_split = 2 (must have two data points to split),
min_samples_leaf = 1 (must have at least one sample to be a leaf
node), min_weight_fraction_leaf = 0.0 (a leaf node can have any
weight fraction), max_features = None (no constraint on the num-
ber of features considered when splitting), max_lead_nodes = None
(can have any number of leaf nodes), min_impurity_decrease = 0.0
(set splitting to occur when any decrease in impurity occurs),
min_impurity_split = 10�7 (threshold of change in impurity below
which we stop splitting and form a leaf node)), with the exception
of the number of trees in the forest (n_estimators = 90 trees were
used) and the split criterion (criterion = MAE was used to split on
mean absolute error). Random forests demonstrate a time com-
plexity of O mk ~n � log2 ~nð ÞÞ�

, where m is a constant, k is the number
of variables randomly drawn at each node in the DT, ñ is 0.632*n,
and n is the number of samples [22]. In this particular study, this
time complexity translates to a runtime of less than one minute
required to fit a random forest with 90 DT’s and perform 100
rounds of 10-fold cross validation for any given mechanical prop-
erty in this data set. However, this runtime is dependent on many
variables, including the size of the data set being fitted and the
power of the computing device.
Table 2
Summary of results comparing the performance of all models used for predicting the
concrete CTE.

Model CV-RMSE
(�10�6 �C�1)

RMSE/r
(r = 0.45 � 10�6 �C�1)

R2

Level-2 1.2 2.6 �5.9
Level-3 0.67 1.6 �1.4
Multivariate

10 Fold
0.46 1.0 �0.04

Multivariate
2 Fold

0.48 1.1 �0.17

Random Forest 2 Fold 0.35 0.78 0.39
Random Forest 10 fold 0.22 0.48 0.76
3.3. Cross validation

In order to assess a model’s extrapolative capabilities on valida-
tion data not used in training, cross validation can be used to par-
tition data into training and validation sets [23]. Training sets are
used to train the ML model, while validation sets are portions of
the data set held out for assessing a model’s performance. Many
varieties of cross validation exist, but most follow the pattern of
leaving out random data points when training and using the left
out points for validation. This study utilized k-fold cross validation
to assess model performance. K-fold cross validation consists of
randomly grouping the data into k subsets (also called folds). Of
these k subsets, k � 1 are used to train the model (training folds)
and predictions are made on the remaining fold (validation fold).
The model performance on the validation fold can be assessed by
the RMSE of the predicted versus true data and the R2 [16] values
of the parity plot (a plot of predicted versus true values). Here and
throughout this work R2 refers to the coefficient of determination,
calculated using Scikit-Learn’s r2_score() method [16]. This
method computes R2 using an intercept value of 0 and gives the
best possible R2 value of 1 [24]. The process of training using
k � 1 folds, testing on the remaining validation fold, and assessing
model performance was repeated until every one of the k folds in
the data set has been used for testing. The entire process of split-
ting data, training and validating until every fold has been used
for testing is a single k-fold validation. In this work, the RMSE
and R2 values were calculated for each validation fold used, and
the k values of the RMSE and R2 were averaged to give one RMSE
and one R2 for a full set of k-rounds of cross validation (i.e., for a
single k-fold cross validation). The process was then repeated
100 times, with different folds chosen at random for each k-fold
cross-validation, to assure the results were not biased by the char-
acteristics of any given k-fold decomposition. The RMSE and R2 val-
ues were averaged over these 100 full k-fold cross validations to
assess performance of the model.

Parity plots were created to visually assess the performance of
the model. We also explored both 2-fold and 10-fold cross valida-
tions, where 2-fold was expected to be significantly more demand-
ing as only half the datawas used to predict the other half. The RMSE
value from cross validation, either a single k-fold or an average over
many k-folds, is referred to as a CV-RMSE. This value can be different
from the RMSE of the direct fit due to some level of overfitting.

3.4. Level 1–3 model approaches for CTE prediction

In standard pavement design, three levels of determination are
used to predict the CTE for a given mix design. Level-1 uses a stan-
dardized test method experimentally measuring the CTE for the
mix design, following the specifications set by AASHTO T336 [7].
Level-2 CTE determination is based on a linear combination of
the CTE values for the dominant mineral composition of the coarse
aggregate as well as the cement paste (which is a combination of
cement and water) [25]. The linear combination is based off the
percent volume of each component in the total mixture, and is
given by CTEmix ¼ aPasteCTEpaste þ aCACTECA þ afACTEfA [25], where
aPaste is the percent volume of the cement paste, aCA is the percent
volume of the dominant mineral composition of the coarse aggre-
gate, and aFA is the percent volume of the dominant mineral com-
position of the fine aggregate. From the provided database, three
different dominant mineral compositions were present in the
coarse aggregate (quartz, dolomite, and basalt), which have CTE
values of 9.3 � 10�6, 8.9 � 10�6, and 7.8 � 10�6 �C�1, respectively
[7]. Furthermore, the water-to-cement ratio of the cement paste
directly affects its coefficient of thermal expansion. For the dataset
the water-to-cement ratio was held constant to 0.4, which yields a
corresponding cement paste CTE of between 18 and
20 � 10�6 �C�1. For the analysis in this work we used
18 � 10�6 �C�1. Lastly, the level-3 determination for the concrete
CTE is based off of a collection of historical data for the CTE values
of the dominant mineral composition of the coarse aggregate [25].
4. CTE model comparison results and discussion

The performance of the models was based on a combination of
the R2 value and the normalized root mean square error (RMSE).
The RMSE was normalized by dividing by the standard deviation
(r = 0.45 � 10�6 �C�1) of the CTE data, as outlined in Section 3.3.
This normalization gives the quality of the RMSE prediction rela-
tive to the mean value of the data. The results of the analysis are
shown in Table 2. Detailed discussions of each result are subse-
quently provided.

4.1. Level-2 and 3 approximations

This section focuses on the ability of level-2 and 3 models to
predict the concrete CTE values in the given dataset. Comparisons
to the performance of level-1 measurements cannot be made as
level-1 directly measures the CTE. The parity plots of the level-2
and 3 approximations are shown in Fig. 3 and Fig. 4, respectively.
The level-3 prediction yields three distinct lines in the parity plot,
which correspond to the three different CTE values for the domi-
nant mineral compositions (quartz, dolomite, and basalt) that were



Fig. 3. Parity plot of CTE values predicted using level-2 approximation.

Fig. 4. Parity plot for CTE predictions using level-3 approximation.

Fig. 5. Results for 100 rounds of 2-fold cross validation using multivariate linear regressio
represent perfect fits), and histograms of (c) RMSE and (d) R2 values.
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present in the dataset. It is clear that the inclusion of a linear com-
bination of materials in level-2 enables more variation than com-
pared to the level-3 approximation. Instead of the three distinct
lines observed for the level-3 method, the level-2 method values
are more clumped around the line of best fit. However, the linear
combination causes more variance in the values, and there is actu-
ally a larger spread, i.e., less predictive ability. Although level-3
only predicts with three lines, these lines were more tightly fit
around the line of best fit than the level-2 predictions. The R2 for
the level-2 and 3 approximations are negative, and their RMSE val-
ues are larger than the standard deviation of the actual CTE values.
These R2 and RMSE results imply that just taking the mean value of
the data set would give a better predictor than using either level
model, and that level-2 and level-3 methods give a reasonable
overall estimate for the typical CTE, but have essentially no ability
to predict relative changes in CTE with changing mix for our data
set.

4.2. Multivariate linear regression

An MVLR model was explored as a simple baseline fitting
approach. Inputs to the MVLR are detailed in Table 1 and the
results for the 2-fold and 10-fold cross validations are shown in
Fig. 5 and Fig. 6, respectively. The MVLR performs better than the
level-2 and level-3 predictions for both 2- and 10-fold cross valida-
tion on all metrics (see Table 2). However, although the best-case
parity plots show some modest correlation, the mean RMSE/r is
greater than 1 and the mean R2 is negative for both 2- and
10-fold tests, which shows better predictive abilities than the
level-2 and level-3 methods but does not indicate strong predictive
abilities. It is also interesting to note that several data points were
predicted poorly in all the tests and stand out in the far right of the
plot. This consistent failure of the model on these points suggests
that the MVLR model could not capture some nonlinearities in
the concrete CTE for these mixes. This result supports the need
for a nonlinear regression model like random forest.

4.3. Random forest

In addition to the predictions made in Section 4.2 using MVLR, a
random forest model was fitted using cross validation to predict
the concrete CTE, and the results from 2- and 10-fold cross valida-
n. Parity plots for (a) best and (b) worst fits as determined by RMSE (45-degree lines



Fig. 6. Results for 100 rounds of 10-fold cross validation using multivariate linear regression. Parity plots for (a) best and (b) worst fits as determined by RMSE (45� lines
represent perfect fits), and histograms of (c) RMSE and (d) R2 values.
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tions are shown in Fig. 7 and Fig. 8, respectively. The overall predic-
tive ability of the random forest model is significantly better than
the MVLRmodel, as shown by the statistics in Table 2. In particular,
the 2- (10-) fold RMSE/r values of 0.78 (0.39) are both significantly
less than one, and the 2- (10-) fold R2 values of 0.48 (0.76) are pos-
itive and not too far from the ideal of 1.0 for the 10-fold, both
strongly suggesting the model has the ability to predict trends in
the CTE data. This conclusion can be seen more intuitively by
examining the parity plots in Figs. 7 and 8, all of which show a
clear correlation and similarity to the perfect agreement 45� line.
Furthermore, the three outliers seen in the MVLR are no longer
always outliers, although some of them still stand out in some of
the worst fit cases. The statistics are much better for 10- vs.
2-fold cross validation, suggesting that using just half the data to
build the model may be inadequate for a robust model. Focusing
on just the 10-fold cross validation, Fig. 8 shows that the spread
in R2 is 0.68–0.85 and in RMSE/r is 0.60–0.90, which shows that
essentially every fold studied yielded significant predictive ability
Fig. 7. Parity plots for the a) best and b) worst fits of the random forest model, as well as c
the random forest model.
for the model. This result suggests that the model can be used to
predict new data at least for similar systems. In addition to predic-
tions of CTE, random forests can also be used to assess feature
importance. This study found that the coarse aggregate type and
the fine aggregate type are the most important features in predict-
ing concrete CTE, a result also found by Yang and Kim [10].

As summarized in Table 2, the random forestmodel dramatically
outperforms themore simplistic predictions of CTE, namely level-1,
level-2, andMVLR, and is theonlymodelwhere the analysis suggests
any ability to predict trendswithin our data set. This result suggests
that non-linear regression approaches, widely used in machine
learning, are an essential tool for accurate modeling of CTE.
5. Using machine learning for reducing the necessary tests for
CTE

One potential use of the ML model is to reduce the number of
experimental tests needed to obtain a target predictive ability for
) histograms of RMSE and d) R2 values for 100 rounds of 2-fold cross validation using



Fig. 8. Parity plots for the best and worst fits of the random forest model, as well as histograms of RMSE and R2 values for 100 rounds of 10-fold cross validation using the
random forest model.
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a new mix. In this study, the predictive model was used to assess
howmuch data might be needed to obtain a target RMSE/r by ana-
lyzing the predictive capabilities of the random forest model as a
function of the number of data points used in training the model.
A random forest was trained using an increasing fraction of the
data set and tested using the remaining data, similar to the meth-
ods of cross validation used previously. However, the data was not
sectioned into equally-sized folds for training and testing as for k-
fold cross validation. Instead, the data was randomly separated
into only 2 subsets, one each for training and testing, and the size
of the training set was varied. Any data points not used for training
were then used for validation. RMSE/r values for a given size train-
ing set are averaged over 100 randomly selected training sets of
that size. A plot showing the trend of the average RMSE/r of the
testing set assessed for the random forest as a function of the num-
Fig. 9. RMSE/r for the testing set as a function of the number of data points from this data
in RMSE/r seen by adding up to 20 data points for training, and a leveling off around 50 d
fit, which gives RMSE/standard deviation of 0.21.
ber of data points used in training is shown in Fig. 9. The error bars
represent standard deviations of the RMSE/r of the 100 trainings,
wherer is kept constant as the standard deviation of the total data
set, as used above.

In this analysis, the lowest RMSE/rwas achieved by training the
model with the entire data set. However, using 55 of the 110 data
points (50% of the data set) to train themodel produced a noticeable
decrease in the RMSE/r. The uncertainty of each predictionwas also
lowered when predicting using a larger portion of the data set for
training up until training using all but one data point. The model
proves to be effective in predicting the CTE of concrete in the dataset
with only half of the mixes in the total design matrix being mea-
sured. Using a similar machine learning model in the future would
therefore likely be able to reduce the number of tests required to
determine mechanical properties for a similar test matrix.
set used for training. A decreasing trend can be noticed, with the greatest decreases
ata points for training. The final point on the right represents using all the data in the



Fig. 10. Results of predictions for 90 day CS predicted using the random forest model and 10 fold CV.
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6. Machine learning models for other concrete properties

While CTE is the property discussed in most detail in this anal-
ysis, other mechanical properties of concrete were also predicted
using the random forest model and assessed using k-fold cross val-
idation. All mechanical properties measured in the data set (CS,
modulus of elasticity, modulus of rupture, splitting tensile
strength, CTE, and Poisson’s ratio) were predicted using random
forests [15]. Each of these additional mechanical properties were
predicted at ages of 7, 14, 28, and 90 days, and results of these pre-
dictions can be found in the Supplementary Information.

Because the CS of concrete has been analyzed and predicted
using other machine learning methods [1–5,11–13], the results of
the methods used in this work for CS are discussed for comparison.
The results of the predictions for CS at an aging time of 90 days are
summarized in Fig. 10.

Our methods yield an RMSE of 1.9 MPa for data with a range of
27 MPa, yielding an error to range ratio of 0.07. A representative
previous study achieved RMSE of 3.8 MPa given data with a range
of 82 MPa [2], yielding an error to range ratio of 0.05. This compar-
ison suggests that our methods yield accuracy consistent with
those of previous studies.
7. Conclusions

The machine learning model used in this study was effective in
the prediction of concrete CTE for the mixes tested. Analysis of the
RMSE of each prediction method revealed that the random forest
model’s predictions were the most accurate of the models
reviewed during this process. In particular, the random forest’s
predictions were significantly more accurate than estimations
using the level-2 and level-3 inputs [7]. Furthermore, the predic-
tions of the random forest model were more accurate than those
obtained through multivariate linear regression, demonstrating
the need for a non-linear model. Of all the models considered, only
the random forest showed any ability to predict trends within the
data, although the other methods can estimate the overall typical
CTE value. Therefore, such a modeling approach can be used in
conjunction with databases similar to the one used for this exper-
iment to predict CTE for new concrete mixes.

This study suggests that for randomly sampled values of the 10
independent variables considered here, reductions in the number
of measurements required to accurately predict the CTE of con-
crete can be achieved with machine learning methods, as shown
in Fig. 9. Using 50% of the available data set, the CTE of a given
mix in the data set can be predicted with better accuracy than
could be achieved using level-2 or level-3 prediction methods.
When compared to results of training the machine learning model
using just one experimental CTE value, errors were reduced by
about 30% when 20 data points were used for training and about
40% when 50 data points were used. Further improvements in
machine learning models and expansion of available CTE data for
concrete could lead to predictions of concrete CTE approaching
the accuracy of laboratory measurements without requiring an
experiment for every desired value.

The RMSE/r values obtained by predicting the mechanical
properties of concrete used in this study suggest that machine
learning can be effectively applied for a range of concrete proper-
ties. Detailed results are given for CTE, but results are also pre-
sented for the CS, modulus of elasticity, modulus of rupture,
splitting tensile strength, CTE, and Poisson’s ratio. Previous
machine learning models of concrete properties have focused on
CS, and our models show comparable accuracy to the study by
Yeh, et al. [2]. Overall, the results show significant opportunity
for machine learning to obtain more accurate predictions of
mechanical properties of concrete or reduce the number of neces-
sary measurements in developing databases, or both.
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