
Future Generation Computer Systems 95 (2019) 68–78

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

An efficient cloud scheduler design supporting preemptible instances
Álvaro López García ∗, Enol Fernández del Castillo, Isabel Campos Plasencia
Institute of Physics of Cantabria, Spanish National Research Council — IFCA (CSIC—UC), Avda, los Castros s/n, 39005 Santander, Spain

h i g h l i g h t s

• Discussion on resource allocation in Clouds from the resource provider point of view.
• Novel scheduling algorithm that allows to execute preemptible instances.
• The scheduler does not incur in a noticeable an extra overhead.
• New cloud usage and payment models in current Cloud Management Frameworks.

a r t i c l e i n f o

Article history:
Received 5 February 2018
Received in revised form 10 December 2018
Accepted 26 December 2018
Available online 3 January 2019

Keywords:
Cloud computing
Scheduling
Preemptible instances
Spot instances
Resource allocation

a b s t r a c t

Maximizing resource utilization by performing an efficient resource provisioning is a key factor for any
cloud provider: commercial actors can maximize their revenues, whereas scientific and non-commercial
providers can maximize their infrastructure utilization. Traditionally, batch systems have allowed data
centers to fill their resources as much as possible by using backfilling and similar techniques. However, in
an IaaS cloud,where virtualmachines are supposed to live indefinitely, or at least as long as the user is able
to pay for them, these policies are not easily implementable. In this work we present a new scheduling
algorithm for IaaS providers that is able to support preemptible instances, that can be stopped by higher
priority requests without introducing large modifications in the current cloud schedulers. This scheduler
enables the implementation of new cloud usage and payment models that allow more efficient usage of
the resources and potential new revenue sources for commercial providers.We also study the correctness
and the performance overhead of the proposed scheduler against existing solutions.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Infrastructure as a Service (IaaS) Clouds make possible to pro-
vide computing capacity as a utility to the users following a pay-
per-use model. This fact allows the deployment of complex execu-
tion environmentswithout an upfront infrastructure commitment,
fostering the adoption of the cloud by users that could not afford
to operate an on-premises infrastructure. In this regard, Clouds
are not only present in the industrial ICT ecosystem, and they are
beingmore andmore adopted by other stakeholders such as public
administrations or research institutions.

Indeed, clouds are nowadays common in the scientific comput-
ing field [1–4], due to the fact that they are able to deliver resources
that can be configured with the complete software needed for an
application [5]. Moreover, they also allow the execution of non-
transient tasks, making possible to execute virtual laboratories,
databases, etc. that could be tightly coupledwith the execution en-
vironments. This flexibility poses a great advantage against tradi-
tional computational models – such as batch systems or even Grid

∗ Corresponding author.
E-mail addresses: aloga@ifca.unican.es (A. López García),

enolfc@ifca.unican.es (E. Fernández del Castillo), iscampos@ifca.unican.es
(I. Campos Plasencia).

computing – where a fixed operating system is normally imposed
and any complimentary tools (such as databases) need to be self-
managed outside the infrastructure. This fact is pushing scientific
datacenters outside their traditional boundaries, evolving into a
mixture of services that deliver more added value to their users,
with the Cloud as a prominent actor.

Scientific cloud resource providers must face different resource
scheduling challengeswhen comparedwith commercial providers.
One important aspect is that normally, science cloud users do not
usually pay for these resources – or at least they are not charged
directly – for their consumption, and normally resources are paid
via other indirect methods (like access grants), with users tending
to assume that resources are for free. On the one hand tradi-
tional scientific computing facilities tend to work on a fully sat-
urated manner, aiming at the maximum possible resource utiliza-
tion level. However, on the other hand, cloud promises on-demand
and interactive access to the resources, and as a matter of fact, this
is being considered as one of the post promising facts of the cloud
computing model [4]. These two aspects seem to be contradictory,
as a saturated infrastructure cannot react to on-demand requests
with ease. In this context, scheduling mechanisms and strategies
that allow for a mixed allocation model become fundamental [6].

https://doi.org/10.1016/j.future.2018.12.057
0167-739X/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2018.12.057
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2018.12.057&domain=pdf
mailto:aloga@ifca.unican.es
mailto:enolfc@ifca.unican.es
mailto:iscampos@ifca.unican.es
https://doi.org/10.1016/j.future.2018.12.057

A. López García, E. Fernández del Castillo and I. Campos Plasencia / Future Generation Computer Systems 95 (2019) 68–78 69

Maximizing resource utilization by performing an efficient re-
source provisioning and workload scheduling is a fundamental
for a scientific cloud provider (arguably this is an essential aspect
for any resource provider). However, this is not a trivial task,
since it is common that compute servers spawned in a scientific
cloud infrastructure are not terminated at the end of their lifetime,
resulting in idle resources, a state that is are not desirable as long
as there is processing that needs to be done [4,7]. As already ex-
plained, this situation happens since scientific cloud users are not
paying directly for their consumption, in contrast with commercial
clouds, where users are being charged for their allocated resources,
regardless if there is a real usage or not. Therefore, users tend to
take care of their virtual machines, terminating them whenever
they are not needed anymore. Moreover in the cases where users
leave their resources running forever, the provider is still obtaining
revenues for those resources.

Cloud operators try to solve this problem by setting resource
quotas, hence limiting the amount of resources that a user or
group is able to consume by doing a static partitioning of the re-
sources [8]. However, this unflexible scheduling strategy
automatically leads to an underutilization of the infrastructure
since the partitioning needs to be conservative enough so that
other users could utilize the infrastructure. Quotas impose hard
limits that leading to dedicated resources for a group, even if the
group is not using the resources.

On top of this, as already introduced before, cloud users expect
to have on-demand resource provisioning, as this has been always
promoted as one of the most compelling cloud characteristics [9].
In order to provide such access, an overprovisioning of resources
is expected [10] in order to fulfill a user request, leading to an
infrastructure where utilization is not maximized, as there should
be always enough resources available for a potential request.

Taking into account that some processing workloads executed
on the cloud do not really require on-demand access (but rather
they are executed for long periods of time), a compromise be-
tween these two aspects (i.e. maximizing utilization and providing
enough on-demand access to the users) can be provided by using
idle resources to execute these tasks that do not require truly on-
demand access [10]. This approach indeed is common in scientific
computing, where batch systems provide scheduling strategies to
maximize the resource utilization through backfilling techniques,
where opportunistic access is provided to these kind of tasks.

However, unlike in batch processing environments, virtual ma-
chines (VMs) spawned in a Clouddonot have fixed duration in time
and are supposed to live forever—or until the user decides to stop
them. Commercial cloud providers provide specific VM types (like
the Amazon EC2 Spot Instances1 or the Google Compute Engine
Preemptible Virtual Machines2) that can be provisioned at a frac-
tion of a normal VMprice, with the caveat that they can terminated
whenever the provider decides to do so. This kind of VMs can
be used to backfill idle resources, thus allowing to maximize the
utilization andproviding on-demand access, since normal VMswill
obtain resources by evacuating Spot or Preemptible instances.

In this paper we propose an efficient scheduling algorithm that
combines the scheduling of preemptible and non preemptible in-
stances in a flexibleway. The proposed solution ismodular in order
to allow different allocation, selection and termination policies,
thus allowing resource providers to easily implement and enforce
the strategy that is more suitable for their needs.

In order to evaluate our work we extend the OpenStack Cloud
middleware with a prototype implementation of the proposed
scheduler, as a way to demonstrate and evaluate the feasibility
of our solution. The OpenStack Preemptible Instances Extension

1 http://aws.amazon.com/ec2/purchasing-options/spot-instances/.
2 https://cloud.google.com/preemptible-vms/.

(OPIE) [11] has been developed as a prototype plugin for the
OpenStack Cloud Management Framework. We have performed
an evaluation of the performance of this solution, in comparison
with the existing OpenStack scheduler as well as other prototype
implementations delivering the same functionality.

The remainder of the paper is structured as follows. In Section 2
we present the related work in this field. In Section 3 we propose
a design for an efficient scheduling mechanism for preemptible
instances. In Section 4 we present an implementation of our pro-
posed algorithm, as well as an evaluation of its feasibility and
performance with regards with a normal scheduler. Finally, in
Section 6 we present this work’s conclusions.

2. Related work

The resource provisioning from cloud computing infrastruc-
tures using Spot Instances or similar mechanisms has been ad-
dressed profusely in the scientific literature in the last years [12].
However, the vast majority of this work has been done from the
users’ perspective. These works involve the usage and exploitation
of Spot Instances [13] and few works tackle the problem from the
resource provider standpoint.

Due to the unpredictable nature of the Spot Instances, there are
several research papers that try to improve the task completion
time – making the task resilient against termination – and reduce
the costs for the user. Andrzejak et al. [14] propose a probabilistic
model to obtain the bid prices so that the costs and performance
and reliability can be improved. In [15–18] the task checkpointing
is addressed so as to minimize costs and improve the whole com-
pletion time.

Related with the previous works, Voorsluys et al. have stud-
ied the usage of Spot Instances to deploy reliable virtual clusters
[19,20], managing the allocated instances on behalf of the users.
They focus on the execution of compute intensive tasks on top
of a pool of Spot Instances, in order to find the most effective
way to minimize both the execution time of a given workload
and the price of the allocated resources. Similarly, in [21] the
authors develop a workflow scheduling scheme that reduces the
completion time using Spot Instances.

Jain et al. have performed studies in the same line, but focused
on using a batch system that leverages the Spot Instances [22],
learning from its previous experience – in terms of spot prices
and workload characteristics – in order to dynamically adapt the
resource allocation policies of the batch system.

Regarding Big Data analysis, several authors have studied how
the usage of Spot Instances could be used to execute MapReduce
workloads reducing the monetary costs, such as in [23,24]. The
usage of Spot Instances for opportunistic computing is another
usage that has awaken a lot of interest, especially regarding the
design of an optimal bidding algorithm that would reduce the
costs for the users [25,26]. There are already existing applications
such as the vCluster framework [27] that can consume resources
from heterogeneous cloud infrastructures in a fashion that could
take advantage of the lower price that the Spot Instances should
provide.

In spite of the above works, to the best of our knowledge, there
is a lack of research in the feasibility, problematic, challenges and
implementation of preemptible instances from the perspective of
the IaaS provider. Singh and Chana [6] performed an extensive
survey of resource scheduling in cloud environments where it can
be seen that there is a clear lack of preemptible scheduling (or
any similar mechanism). In spite of the user’s interest in exploiting
preemptible instances and the large commercial actors providing
this alternative payment and access model, it is hard to find open
source products or implementations of preemptible instances.

http://aws.amazon.com/ec2/purchasing-options/spot-instances/
https://cloud.google.com/preemptible-vms/

70 A. López García, E. Fernández del Castillo and I. Campos Plasencia / Future Generation Computer Systems 95 (2019) 68–78

Amazon provides the EC2 Spot Instances,3 where users are able
to select how much they are willing to pay for their resources
by bidding on their price in market where the price fluctuates
accordingly to the demand. Those requests will be executed taking
into account the following points:

• The EC2 Spot Instances will run as long as the published Spot
price is lower than their bid.
• The EC2 Spot Instancewill be terminatedwhen the Spot price

is higher than the bid (out-of-bid).
• If the user terminates the Spot Instance, the complete usage

will be accounted, but if it gets terminated by the system, the
last partial hour will not be accounted.

When an out-of-bid situation happens, the running instances
will be terminated without further advise. This rough explanation
of the Amazon’s Spot Instances can be considered similar to the
traditional job preemption based on priorities, with the difference
that the priorities are being driven by an economic model instead
by the usual fair-sharing or credit mechanism used in batch sys-
tems.

Google CloudEngine (GCE)4 has released anewproduct branded
as Preemptible Virtual Machines.5 These new Virtual Machine (VM)
types are short-lived compute instances suited for batch process-
ing and fault-tolerant jobs, that can last for up to 24 h and that can
be terminated if there is a need for more space for higher priority
tasks within the GCE.

Marshall et al. [10] delivered an implementation of preemptible
instances for the Nimbus toolkit in order to utilize those instances
for backfilling of idle resources, focusing on HTC fault-tolerant
tasks. However, they did not focus on offering this functionality to
the end-users, but rather to the operators of the infrastructure, as
a way to maximize their resource utilization. In this work, it was
the responsibility of the provider to configure the backfill tasks that
were to be executed on the idle resources.

Nadjaran Toosi et al. have developed a Spot Instances as a Ser-
vice (SIPaaS) framework, a set of web services that makes possible
to run a Spot market on top of an OpenStack cloud [28]. How-
ever, even if this framework aims to deliver preemptible instances
on OpenStack cloud, it is designed to utilize normal resources
to provide this functionality. SIPaaS utilizes normal resources to
create the Spot market that is provided to the users by means of a
thin layer on top of a given OpenStack, providing a different API
to interact with the resources. From the CMF point of view, all
resources are of the same type, being SIPaaS the responsible of
handling them, in different ways. In contrast, our work leverages
two different kind of instances at the CMF level, performing dif-
ferent scheduling strategies depending on which kind of resource
it is being requested. SIPaaS also delivers a price market similar to
the Amazon EC2 Spot Instancesmarket, therefore they also provide
the Ex-CORE auction algorithm [29] in order to govern the price
fluctuations.

Carvalho et al. have proposed [30] a capacity planning method
combined with an admission service for IaaS cloud providers of-
fering different service classes. This method allows providers to
tackle the challenge of estimating the minimum capacity required
to deliver an agreed Service Level Objective (SLO) across all the
defined service classes. In the aforementioned paper Carvalho et al.
lean on their previous work [31,32], where they proposed a way
to reclaim unused cloud resources to offer a new economy class.
This class, in contrast with the preemptible instances described
here, still offer a SLO to the users, being the work on Carvalho et al.

3 http://aws.amazon.com/ec2/purchasing-options/spot-instances/.
4 https://cloud.google.com/products/compute-engine.
5 https://cloud.google.com/preemptible-vms/.

focused on the reduction of the changes that the SLO is violated due
to an instance reclamation because of a capacity shortage.

Recent interest has been awaken in the OpenStack Cloud Man-
agement Framekwork Scientific Interest Group (SIG) [33] where
preemptible instances are seen as an opportunity to increase re-
source utilization. In this context, the CERN OpenLab has produced
a prototype implementation (called Reaper Service6) of a service
that captures the scheduling errors that are provuced by the sched-
uler whenever there is a failure. Once the error has been produced,
this service checks if there are preemptible instances available to
be terminated so that enough free resources are available. This ser-
vice, although similar in concept to our solution, requires that there
is a previous failure in the scheduler, whereas the solution that we
will propose in this work does not require a scheduling failure to
terminate the required preemptible instances. It is expected that
this extra step will incur in a higher scheduling latency, as we will
show in the 6.

2.1. Scheduling in the existing cloud management frameworks

Generally speaking, existing Cloud Management Frameworks
(CMFs) donot implement full-fledgedqueuingmechanismas other
computing models do (like the Grid or traditional batch systems).
Clouds are normally more focused on the rapid scaling of the
resources rather than in batch processing, where systems are gov-
erned by queuing systems [34]. The default scheduling strategies
in the current CMFs are mostly based on the immediate allocation
or resources following a first-come, first-served basis. The cloud
schedulers provision them when requested, or they are not provi-
sioned at all (except in some CMFs that implement a FIFO queuing
mechanism) [35].

However, some users require for a queuing system – or some
more advanced features like advance reservations – for running
virtual machines. In those cases, there are some external services
such asHaizea [36] forOpenNebula or Blazar7 forOpenStack. Those
systems lay between the CMF and the users, intercepting their
requests and interacting with the cloud system on their behalf,
implementing the required functionality.

Besides simplistic scheduling policies like first-fit or random
chance node selection [35], current CMF implement a scheduling
algorithm that is based on a rank selection of hosts, as we will
explain in what follows:

OpenNebula 8 uses by default a match making scheduler, im-
plementing the Rank Scheduling Policy [36]. This policy first
performs a filtering of the existing hosts, excluding those
that do not meet the request requirements. Afterwards, the
scheduler evaluates someoperator defined rank expressions
against the recorded information fromeachof thehosts so as
to obtain an ordered list of nodes. Finally, the resourceswith
a higher rank are selected to fulfill the request. OpenNebula
implements a queue to hold the requests that cannot be
satisfied immediately, but this queuing mechanism follows
a FIFO logic, without further priority adjustment.

OpenStack 9 implements a Filter Scheduler [37], based on two
separated phases. The first phase consists on the filtering
of hosts that will exclude the hosts that cannot satisfy the
request. This filtering follows a modular design, so that it is
possible to filter out nodes based on the user request (RAM,
number of vCPU), direct user input (such as instance affinity

6 https://gitlab.cern.ch/ttsiouts/ReaperServicePrototype.
7 https://launchpad.net/blazar.
8 http://opennebula.org/.
9 http://www.openstack.org.

http://aws.amazon.com/ec2/purchasing-options/spot-instances/
https://cloud.google.com/products/compute-engine
https://cloud.google.com/preemptible-vms/
https://gitlab.cern.ch/ttsiouts/ReaperServicePrototype
https://launchpad.net/blazar
http://opennebula.org/
http://www.openstack.org

A. López García, E. Fernández del Castillo and I. Campos Plasencia / Future Generation Computer Systems 95 (2019) 68–78 71

or anti-affinity) or operator configured filtering. The second
phase consists on the weighing of hosts, following the same
modular approach. Once the nodes are filtered andweighed,
the best candidate is selected from that ordered set.

CloudStack 10 utilizes the term allocator to determinewhich host
will be selected to place the new VM requested. The nodes
that are used by the allocators are the ones that are able to
satisfy the request.

Eucalyptus 11 implements a greedy or round robin algorithm.
The former strategy uses the first node that is identified as
suitable for running the VM. This algorithm exhausts a node
before moving on to the next node available. On the other
hand, the later schedules each request in a cyclic manner,
distributing evenly the load in the long term.

Algorithm 1: Scheduling Algorithm.

1: function Schedule Request(req,H)
INPUT: req: user request
INPUT: H: all host states
2: hosts← [] ▷ empty list
3: for all hi ∈ H do
4: if Filter(hi, req) then
5: Ωi ← 0
6: for all r,m in ranks do ▷ r is a rank function,m the

rank multiplier
7: Ωi ← Ωi +mj ∗ rj(hi, req)
8: end for
9: hosts← hosts+ (hi, Ωi) ▷ append to the list

10: end if
11: end for
12: return hosts
13: end function

All the presented scheduling algorithms share the view that the
nodes are firstly filtered out – so that only those that can run the
request are considered – and then ordered or ranked according to
some defined rules. Generally speaking, the scheduling algorithm
can be expressed as the pseudo-code in the Algorithm 1.

3. Preemptible instances design

The initial assumption for a preemptible aware scheduler is that
the scheduler should be able to take into account two different in-
stance types –preemptible andnormal – according to the following
basic rules:

• If it is a normal instance and there are no free resources for it,
it must check if the termination of any running preemptible
instance will leave enough space for the new instance.

– If this is true, those instances should be terminated –
according to some well defined rules – and the new VM
should be scheduled into that freed node.

– If this is not possible, then the request should con-
tinue with the failure process defined in the scheduling
algorithm—it can be an error, or it can be retried after
some elapsed time.

• If it is a preemptible instance, it should try to schedule it
without other considerations.

10 https://cloudstack.apache.org.
11 https://www.eucalyptus.com/.

It should be noted that the preemptible instance selection and
termination does not only depend on pure theoretical aspects,
as this selection will have an influence on the resource provider
revenues and the service level agreements signed with their users.
Taking this into account, it is obvious that modularity and flexibil-
ity for the preemptible instance selection and is a key aspect here.
For instance, an instance selection and termination algorithm that
is only based on theminimization of instances terminated in order
to free enough resources may not work for a provider that wish to
terminate the instances that generate less revenues, event if it is
needed to terminate a larger amount of instances.

Therefore, the aim of our work is not only to design an schedul-
ing algorithm, but also to design it as a modular system so that it
would be possible to create any more complex model on top of it
once the initial preemptible mechanism is in place.

The most evident design approach is a retry mechanism based
on two selection cycles within a scheduling loop. The scheduler
will take into account a scheduling failure and then perform a
second scheduling cycle after preemptible instances have been
evacuated—either by the scheduler itself or by an external service.
However, this two-cycle scheduling mechanism would introduce
a larger scheduling latency and load in the system. This latency is
something perceived negatively by the users [38] so the challenge
here is how to perform this selection in a efficient way, ensuring
that the selected preemptible instances are the less costly for the
provider.

3.1. Preemptible-aware scheduler

Our proposed algorithm (depicted in Fig. 1) addresses the pre-
emptible instances schedulingwithin one scheduling loop,without
introducing a retry cycle, bur rather performing the scheduling
taking into account different host states depending on the instance
that is to be scheduled. This design takes into account the fact
that all the algorithms described in Section 2.1 are based on two
complimentary phases: filtering and raking., but adds a final phase,
where the preemptible instances that need to be terminated are
selected. The algorithm pseudocode is shown in 2 and will be
further described in what follows.

As we already explained, the filtering phase eliminates the
nodes that are not able to host the new request due to its current
state – for instance, because of a lack of resources or a VM anti-
affinity –, whereas the raking phase is the one in charge of assign-
ing a rank or weight to the filtered hosts so that the best candidate
is selected.

I our preemptible-aware scheduler, the filtering phase only
takes into account preemptible instances when doing the filtering
phase. In order to do so we propose to utilize two different states
for the physical hosts:

hf This state will take into account all the running VM inside that
host, that is, the preemptible andnonpreemptible instances.

hn This state will not take into account all the preemptible in-
stances inside that host. That is, the preemptible instances
running into a particular physical host are not accounted in
term of consumed resources.

Whenever a new request arrives, the scheduler will use the hf
or hn host states for the filtering phase, depending on the type of
the request:

• When a normal request arrives, the scheduler will use hn.
• When a preemptible request arrives, the scheduler will use

hf .

https://cloudstack.apache.org
https://www.eucalyptus.com/

72 A. López García, E. Fernández del Castillo and I. Campos Plasencia / Future Generation Computer Systems 95 (2019) 68–78

Fig. 1. Preemptible instances scheduling algorithm.

This way the scheduler ensures that a normal instance can
run regardless of any preemptible instance occupying its place,
as the hn state does not account for the resources consumed by
any preemptible instance running on the host. After this stage, the
resulting list of hosts will contain all the hosts susceptible to host
the new request, either by evacuating one or several preemptible
instances or because there are enough free resources.

Once the hosts are filtered out, the ranking phase is started.
However, in order to perform the correct ranking, it is needed to
use the full state of the hosts, that is, hf . This is needed as the
different rank functions will require the information about the
preemptible instances so as to select the best node. This list of
filtered hosts may contain hosts that are able to accept the request
because they have free resources and nodes that would imply the
termination of one or several instances.

In order to choose the best host for scheduling a new instance
new ranking functions need to be implemented, in order to pri-
oritize the costless host. The simplest ranking function based on
the number of preemptible instances per host is described in
Algorithm 3.

This function assigns a negative value if the free resources are
not enough to accommodate the request, detecting an overcommit
produced by the fact that it is needed to terminate one or several

Algorithm 2: Preemptible-aware Scheduling Algorithm.

1: function Select hosts(req,Hf ,Hn)
INPUT: req: user request
INPUT: Hf : host full-states
INPUT: Hn: host normal-instances states
2: hosts← [] ▷ empty list
3: for all hfi, hni ∈ Hf ,Hn do
4: if Is Preemptible(req) then
5: hi ← hfi
6: else
7: hi ← hni
8: end if
9: if Filter(hi, req) then

10: Ωi ← 0
11: for all r,m in ranks do ▷ r is a rank function,m the

rank multiplier
12: Ωi ← Ωi +mj ∗ rj(hfi, req)
13: end for
14: hosts← hosts+ (hfi, Ωi) ▷ append to the list
15: end if
16: end for
17: return hosts
18: end function
19: function Schedule Request(req,Hf ,Hn)
INPUT: req: user request
INPUT: Hf : host full-states
INPUT: Hn: host normal-instances states
20: hosts← Select hosts(req,Hf ,Hn)
21: host ← Best Host(hosts)
22: Select and Terminate(req, host)
23: return host
24: end function

Algorithm 3: Ranking function detecting overcommit of re-
sources.
1: function Overcommit Rank(req, hf)
INPUT: req: user request
INPUT: hf : host state
2: if req.resources > hf .free_resources then
3: return−1
4: end if
5: return 0
6: end function

preemptible instances. However, this basic function only estab-
lishes a naive ranking based on the termination or not of instances.
In the case that it is needed to terminate various instances, this
functiondoes not establish any rankbetween them, somore appro-
priate rank functions need to be created, depending on the business
model implemented by the provider. Our design takes this fact into
account, allowing formodularity of these cost functions that can be
applied to the raking function.

For instance, commercial providers tend to charge by complete
periods of 1 h, so partial hours are not accounted. A ranking func-
tion based in this business model can be expressed as Algorithm
4, ranking hosts according to the preemptible instances running
inside them and the time needed until the next complete period.

Once the ranking phase is finished, the scheduler will have built
an ordered list of hosts, containing the best candidates for the new
request. Once the best host selected it is still needed to selectwhich
individual preemptible instances need to be evacuated from that
host, if any. Our design adds a third phase, so as to terminate the
preemptible instances if needed.

A. López García, E. Fernández del Castillo and I. Campos Plasencia / Future Generation Computer Systems 95 (2019) 68–78 73

Algorithm 4: Ranking function based on 1 h consumption periods.
1: function Period Rank(req, hf)
INPUT: req: user request
INPUT: hf : host state
2: weight ← 0
3: for all instance ∈ get_instances(hf) do
4: if (is_spot(instance) then
5: if (instance.run_time mod 3600) > 0 then
6: weight ← weight + instance.run_time

mod 3600
7: end if
8: end if
9: end for

10: return−weight
11: end function

This last phase will perform an additional raking and selection
of the candidate preemptible instances inside the selected host, so
as to select the less costly for the provider. This selection leverages
a similar ranking process, performed on the preemptible instances,
considering all the preemptible instances combination and the
costs for the provider, as shown in Algorithm 5.

Algorithm 5: Preemptible instance selection and termination.

1: procedure Select and Terminate(req, hf)
INPUT: req: user request
INPUT: hf : host state
2: selected_instances← []
3: for all instances ∈ get__all_preemptible_combinations(hf)

do
4: if

∑
(instances.resources) > req.resources then

5: if cost(instances) < cost(selected_instances)0 then
6: selected_instances← instances
7: end if
8: end if
9: end for

10: Terminate(selected_instances)
11: end procedure

4. Evaluation

In the first part of this section 4.2 we will describe an imple-
mentation – done for the OpenStack Compute CMF –, in order to
evaluate our proposed algorithm. We have decided to implement
it on top of theOpenStack Compute software due to itsmodular de-
sign, that allowed us to easily plug our modified modules without
requiring significant modifications to the code core.

Afterwards we will perform two different evaluations. On the
one hand we will assess the algorithm correctness, ensuring that
the most desirable instances are selected according to the config-
ured weighers (Section 4.4). On the other hand we will examine
the performance of the proposed algorithm when compared with
the default scheduling mechanism (Section 4.5).

4.1. OpenStack compute filter scheduler

The OpenStack Compute scheduler is called Filter Scheduler
and, as already described in Section 2, it is a rank scheduler,
implementing two different phases: filtering and weighting.

Filtering The first step is the filtering phase. The scheduler applies
a concatenation of filter functions to the initial set of avail-
able hosts, based on the host properties and state – e.g. free

RAM or free CPU number – user input – e.g. affinity or anti-
affinitywith other instances – and resource provider defined
configuration. When the filtering process has concluded, all
the hosts in the final set are able to satisfy the user request.

Weighing Once the filtering phase returns a list of suitable hosts,
the weighting stage starts so that the best host – according
to the defined configuration – is selected. The scheduler will
apply all hosts the same set of weigher functions wi(h), tak-
ing into account each host state h. Those weigher functions
will return a value considering the characteristics of the host
received as input parameter, therefore, total weight Ω for a
node h is calculated as follows:

Ω =

n∑
mi · N(wi(h))

Where mi is the multiplier for a weigher function, N(wi(h)) is the
normalized weight between [0, 1] calculated via a rescaling like:

N(wi(h)) =
wi(h)−minW
maxW −minW

where wi(h) is the weight function, and minW , maxW are the
minimum and maximum values that the weigher has assigned
for the set of weighted hosts. This way, the final weight before
applying themultiplication factorwill be always in the range [0, 1].

After these two phases have ended, the scheduler has a set of
hosts, ordered according to the weights assigned to them, thus it
will assign the request to the host with the maximum weight. If
several nodes have the sameweight, the final hostwill be randomly
selected from that set.

4.2. Implementation evaluation

We have extended the Filter Scheduler algorithm with the
functionality described in Algorithm 6.We have also implemented
the ranking functions described in Algorithms 3 and 4 as weighers,
using the OpenStack terminology.

Moreover, the Filter Scheduler has been also modified so as to
introduce the additional select and termination phase (Algorithm
5). This phase has been implemented following the same modular
approach as the OpenStack weighting modules, allowing to define
and implement additional cost modules to determine which in-
stances are to be selected for termination.

As for the cost functions, we have implemented a module fol-
lowing Algorithm 4. This cost function assumes that customers are
charged by periods of 1 h, therefore it prioritizes the termination of
Spot Instances with the lower partial-hour consumption (i.e. if we
consider instances with 120 min, 119 min and 61 min of duration,
the instance with 120 min will be terminated).

This development has been done on the OpenStack Newton
version,12 andwas deployed on the infrastructure thatwe describe
in Section 4.3.

4.3. Configurations

In order to evaluate our algorithm proposal we have set up a
dedicated test infrastructure comprising a set of 26 identical IBM
HS21 blade servers, with the characteristics described in Table 1.
All the nodes had an identical base installation, based on anUbuntu
Server 16.04 LTS, running the Linux 3.8.0 Kernel, where we have
deployed OpenStack Compute as the Cloud Management Frame-
work. The system architecture is as follows:

12 https://github.com/indigo-dc/opie.

https://github.com/indigo-dc/opie

74 A. López García, E. Fernández del Castillo and I. Campos Plasencia / Future Generation Computer Systems 95 (2019) 68–78

Algorithm 6: Preemptible Instances Scheduling Algorithm.

1: function Select Destinations(req)
INPUT: req: user request
2: host ← Schedule(req)
3: if host is overcommitted then
4: Select and Terminate(req,host)
5: end if
6: return host
7: end function

8: function Schedule(req)
INPUT: req: user request
9: Hf ← host_states(full)

10: Hp ← host_states(partial)
11: if is_spot(req) then
12: Hfiltered ← filter(req,Hf)
13: else
14: Hfiltered ← filter(req,Hp)
15: end if
16: Hweighted ← weight(req,Hf)
17: best ← select_best(Hweighted)
18: return best
19: end function

20: procedure Select and Terminate(req, hf)
INPUT: req: user request
INPUT: hf : host state
21: selected_instances← []
22: for all instances ∈ get_all_preemptible_combinations(hf) do
23: if

∑
instances.resources > req.resources then

24: if cost(instances) < cost(selected_instances)0 then
25: selected_instances← instances
26: end if
27: end if
28: end for
29: Terminate(selected_instances)
30: end procedure

Table 1
Test node characteristics.

CPU 2 x Intel Xeon Quad Core E5345 2.33 GHz
RAM 16 GB
Disk 140 GB, 10 000 rpm hard disk

Network 1 Gbit Ethernet

• A Head node hosting all the required services to manage the
cloud test infrastructure, that is:

– The OpenStack Compute API.
– The OpenStack Compute Scheduler service.
– The OpenStack Compute Conductor service.
– The OpenStack Identity Service (Keystone)
– A MariaDB 10.1.0 server.
– A RabbitMQ 3.5.7 server.

• An Image Catalog running the OpenStack Image Service
(Glance) serving images from its local disk.
• 24 Compute Nodes running OpenStack Compute, hosting the

spawned instances.

The network setup of the testbed consists on two 10 Gbit
Ethernet switches, interconnected with a 10 Gbit Ethernet link. All
the hosts are evenly connected to these switches using a 1 Gbit
Ethernet connection.

Table 2
Configured VM sizes.
Name vCPUs RAM (MB) Disk (GB)

small 1 2000 20
medium 2 4000 40
large 4 8000 80

Table 3
Test-1, preemptible instances evaluation using the same VM size. The label marked
with (a) indicate the terminated instance. Time is expressed in minutes.
Host Instances Preemptible Instances

ID Time ID Time

host-A A1 272 AP1 96
A2 172 AP2 207

host-B B1 136 BP1(a) 71
B2 200 BP2 91

host-C C1 97 CP1 210
C2 275 CP2 215

host-D D1 16 DP1 85
DP2 199
DP3 152

aSelected instance.

Wehave considered the VM sizes described in Table 2, based on
the default set of sizes existing in a default OpenStack installation.

4.4. Algorithm evaluation

The purpose of this evaluation is to ensure that the proposed
algorithm is working as expected, so that:

• The scheduler is able to deliver the resources for a normal
request, by terminating one or several preemptible instances
when there are not enough free idle resources.
• The scheduler selects the best preemptible instance for termi-

nation, according to the configured policies by means of the
scheduler weighers.

4.4.1. Scheduling using same virtual machine sizes
For the first batch of tests, we have considered same size in-

stances, to evaluate if the proposed algorithm chooses the best
physical host and selects the best preemptible instance for termi-
nation. We generated requests for both preemptible and normal
instances – chosen randomly –, of random duration between 10
min and 300 min, using an exponential distribution [39] until the
first scheduling failure for a normal instance was detected.

The compute nodes used have 16 Gbit of RAM and eight CPUs,
as already described. The VM size requested was the medium one,
according to Table 2, therefore each compute node could host up
to four VMs.

We executed these requests and monitored the infrastructure
until the first scheduling failure for a normal instance took place,
thus the preemptible instance termination mechanism was trig-
gered. At that moment we took a snapshot of the nodes statuses,
as shown in Tables 3 and 4. These tables depict the status for
each of the physical hosts, as well as the running time for each
of the instances that were running at that point. The shaded cells
represents the preemptible instance that was terminated to free
the resources for the incoming non preemptible request.

Considering that the preemptible instance selection was done
according to Algorithm 5 using the cost function in Algorithm 4,
the chosen instance has to be the one with the lowest partial-
hour period. In Table 3 this is the instance marked with (a): BP1.
By chance, it corresponds with the preemptible instance with the
lowest run time.

A. López García, E. Fernández del Castillo and I. Campos Plasencia / Future Generation Computer Systems 95 (2019) 68–78 75

Table 4
Test-2, preemptible instances evaluation using the same VM size. The label marked
with (a) indicate the terminated instance. Time is expressed in minutes.
Host Instances Preemptible Instances

ID Time ID Time

host-A
AP1 247
AP2 463
AP3 403
AP4 410

host-B B1 388 BP1 344
B2 103 BP2 476

host-C C1 481 CP1 (a) 181
C2 177 CP2 160

host-D D1 173 DP1 384
DP2 168
DP3 232

aSelected instance.

Table 5
Test-3, preemptible instances evaluation using different VM sizes. The labels
marked with (a) indicate the terminated instances. Time is expressed in minutes.
S, M, L stand for small, medium and large respectively.
Host Instances Preemptible Instances

ID Time Size ID Time Size

host-A
AP1 298 L
AP2 (a) 278 M
AP3 (a) 190 S
AP4 (a) 187 S

host-B B1 494 L BP1 178 L

host-C CP1 297 L
CP2 296 M
CP3 296 S

host-D D1 176 M
D2 200 M
D3 116 L

aSelected instances.

Table 4 shows a different test execution under the same condi-
tions and constraints. Again, the selected instance has to be the one
with the lowest partial-hour period. In Table 4 this corresponds to
the instance marked again with (a): CP1, as its remainder is 1 min.
In this case this is not the preemptible instancewith the lowest run
time (being it CP2).

4.4.2. Scheduling using different virtual machine sizes
For the second batch of tests we requested instances using

different sizes, always following the sizes in Table 2. Table 5 de-
picts the testbed status when a request for a large VM caused the
termination of the instances marked with (a): AP2, AP3 and AP4.
In this case, the scheduler decided that the termination of these
three instances caused a smaller impact on the provider, as the
sum of their 1 h remainders (55) was lower than any of the other
possibilities (58 for BP1, 57 for CP1, 112 for CP2 and CP3).

Table 6 shows a different test execution under the same condi-
tions and constraints. In this case, the preemptible instance termi-
nation was triggered by a new VM request of size medium and the
selected instance was the one marked with (a): BP3, as host-B will
have enough free space just by terminating one instance.

4.5. Performance evaluation

Aswehave already said in Section 3,wehave focused ondesign-
ing an algorithm that does not introduce a significant latency in the
system. This latency will introduce a larger delay when delivering
the requested resources to the end users, something that is not
desirable by any resource provider [4].

In order to evaluate the performance of our proposed algorithm
we have done a comparison with the default, unmodified Open-
Stack Filter Scheduler [37]. Moreover, for the sake of comparison,

Table 6
Test-4, preemptible instances evaluation using different VM sizes. The labels
marked with (a) indicate the terminated instances. Time is expressed in minutes.
S, M, L stand for small, medium and large respectively.
Host Instances Preemptible Instances

ID Time Size ID Time Size

A1 234 L AP1 172 M
A2 122 M

host-B BP1 272 L
BP2 212 M
BP3 (a) 380 S

host-C C1 182 S
C2 120 M
C3 116 L

host-D
DP1 232 L
DP2 213 S
DP3 324 M
DP4 314 S

aSelected instances.

wehave implemented a scheduler basedon a retry loop aswell. This
scheduler is a simple modification of the original Filter Scheduler
that performs a normal scheduling loop, and if there is a scheduling
failure for a normal instance, it performs a second pass taking
into account the existing preemptible instances. The preemptible
instance selection and termination mechanisms remain the same.
Lastly, we have performed the same testwith the Reaper prototype
service [40] already discussed in Section 2.

We have scheduled 130 Virtual Machines of the same size
on our test infrastructure and we have recorded the timings for
the scheduling function, thus calculating the means and standard
deviation for each of the following scenarios:

• Using the original, unmodified OpenStack Filter scheduler
with an empty infrastructure.
• Using the preemptible instances Filter Scheduler, the retry

scheduler and the Reaper prototype service:

– Requesting normal instances with an empty infrastruc-
ture.

– Requesting preemptible instanceswith an empty infras-
tructure.

– Requesting normal instances with a saturated infras-
tructure, thus implying the termination of a preemptible
instance each time a request is performed.

We have then collected the scheduling calls timings and we
have calculated the means and deviations for each scenario, as
shown in Fig. 2. Numbers in these scenarios are quite low, since the
infrastructure is a small testbed, but these numbers are expected
to become larger as the infrastructure grows in size.

As it can be seen in the aforementioned Fig. 2, our solution
introduces a delay in the scheduling calls, as we need to calculate
additional host states (we hold two different states for each node)
and we need to select a preemptible instance for termination (in
case it is needed). In the case of the retry scheduler, this delay
does not exists and numbers are similar to the original sched-
uler. However, when it is needed to trigger the termination of a
preemptible instance, having a retry mechanism (thus executing
the same scheduling call two times) introduces a significantly
larger penalty when compared to our proposed solution. Also, the
numbers for the Reaper service are higher, as it requires that the
scheduler raises an exception that is then handled by the Reaper
prototype. We consider that the latency that we are introducing is
within an acceptable range, therefore not impacting significantly
the scheduler performance.

During the execution of these tests we had to face several inte-
gration problems due to incompatible changes between versions,

76 A. López García, E. Fernández del Castillo and I. Campos Plasencia / Future Generation Computer Systems 95 (2019) 68–78

Fig. 2. Comparison of the time consumed by the different scheduling options in different scenarios. Error bars represent the standard deviation. Original refers to the
unmodified OpenStack Filter Scheduler [37], retry scheduler refers to the original scheduler modified to perform an additional scheduling cycle, reaper service refers to the
usage of the Reaper Prototype [40]. Preemptible scheduler refers to this work.

lack of documentation or clear integration recipes that prevented
us from performing further tests with other frameworks described
Section 2. We consider that all of these issues are a consequence
of the rapid development pace of cloud management frameworks
and not a failure on the existing tools.

5. Exploitation and integration in existing infrastructures

The functionality introduced by the preemptible instances
model that we have described in this work can be exploited not
only within a cloud resource provider, but it can also be leveraged
on more complex hybrid infrastructures.

5.1. High performance computing integration

One can find in the literature several exercises of integration of
hybrid infrastructures, integrating cloud resources, commercial or
private, with High Performance Computing (HPC) resources. Those
efforts focus on outbursting resources from the cloud, when the
HPC systemdoes not provide enough resources to solve a particular
problem [41].

On-demand provisioning using cloud resources when the batch
system of the HPC is full is certainly a viable option to expand the
capabilities of a HPC center for serial batch processing.

We focus however in the complementary approach, this is,
using HPC resources to provide cloud resources capability, so as
to complement existing distributed infrastructures. Obviously HPC
systems are oriented to batch processing of highly coupled (paral-
lel) jobs. The question here is optimizing resource utilizationwhen
the HPC batch system has empty slots.

If we backfill the empty slots of a HPC system with cloud jobs,
and a new regular batch job arrives from the HPC users, the cloud
jobs occupying the slots needed by the newly arrived batch job
should be terminated immediately, so as to not disturb regular
work. Therefore such cloud jobs should be submitted as Spot
Instances.

Enabling HPC systems to process other jobs during periods in
which the load of the HPC mainframe is low, appears as an attrac-
tive possibility from the point of view of resource optimization.

However the practical implementation of such idea would need
to be compatible with both, the HPC usage model, and the cloud
usage model.

In HPC systems users login via ssh to a frontend. At the frontend
the user has the tools to submit jobs. The scheduling of HPC jobs is
done using a regular batch systems software (such as SLURM, SGE,
etc...).

HPC systems are typically running MPI parallel jobs as well
using specialized hardware interconnects such as Infiniband.

Let us imagine a situation in which the load of the HPC system
is low. One can instruct the scheduler of the batch system to allow
cloud jobs toHPC systemoccupying those slots not allocated by the
regular batch allocation.

In order to be as less disrupting as possible the best option is
that the cloud jobs arrive as preemptible instances as described
through this paper. When a batch job arrives to the HPC system,
this job should be immediately scheduled and executed. Therefore
the scheduler should be able to perform the following steps:

• Allocate resources for the job that just arrived to the batch
queue system
• Identify the cloud jobs that are occupying those resources,

and stop them.
• Dispatch the batch job.

In the case of parallel jobs the scheduling decision may depend
on many factors like the topology of the network requested, or the
affinity of the processes at the core/CPU level. In any case parallel
jobs using heavily the low latency interconnect should not share
nodes with any other job.

5.2. High throughput computing integration

Existing High Throughput Computing Infrastructures, like the
service offered by EGI,13 could benefit froma cloud providers offer-
ing preemptible instances. It has been shown that cloud resources
and IaaS offerings can be used to run HTC tasks [42] in a pull mode,

13 https://www.egi.eu/services/high-throughput-compute/.

https://www.egi.eu/services/high-throughput-compute/

A. López García, E. Fernández del Castillo and I. Campos Plasencia / Future Generation Computer Systems 95 (2019) 68–78 77

where cloud instances are started in a way that they are able to
pull computing tasks from a central location (for example using a
distributed batch system like HTCondor).

However, sites are reluctant to offer large amounts of resources
to be used in this mode due to the lack of a fixed duration for cloud
instances. In this context, federated cloud e-Infrastructures like the
EGI Federated Cloud [43], could benefit from resource providers
offering preemptible instances. Users could populate idle resources
with preemptible instances pulling their HTC tasks, whereas inter-
active and normal IaaS users will not be impacted negatively, as
they will get the requests satisfied. In this way, large amounts of
cloud computing power could be offered to the European research
community.

6. Conclusions

In this work we have proposed a preemptible instance schedul-
ing design that does not modify substantially the existing schedul-
ing algorithms, but rather enhances them. The modular rank and
cost mechanisms allows the definition and implementation of any
resource provider defined policy by means of additional pluggable
rankers. Our proposal and implementation enables all kind of ser-
vice providers – whose infrastructure is managed by open source
middleware such as OpenStack – to offer a new accessmodel based
on preemptible instances, with a functionality similar to the one
offered by the major commercial providers.

We have checked for the algorithm correctness when select-
ing the preemptible instances for termination. The results yield
that the algorithm behaves as expected. Moreover we have com-
pared the scheduling performance with regards equivalent default
scheduler, obtaining similar results, thus ensuring that the sched-
uler performance is not significantly impacted.

Among the existing solutions for implementing preemptible
instances there are some complementarities that areworth explor-
ing. The Reaper service could benefit from the scheduling mecha-
nism that is being presented here, so that instead of waiting for a
scheduling failure to react, the preemptible instance termination
could be performed directly by the scheduler if it detects that it is
needed to free resources occupied by the preemptible instances.
This way the scheduling time could be reduced significantly.

This implementation allows to apply more complex policies on
top of the preemptible instances, like instance termination based
on price fluctuations (that is, implementing a preemptible instance
stockmarket), preemptible instancemigration so as to consolidate
them or proactive instance termination tomaximize the provider’s
revenues by not delivering computing power at no cost to the
users.

Acknowledgments

The authors acknowledge the financial support from the Eu-
ropean Commission Horizon 2020 via INDIGO-DataCloud project
(grant number 653549) and EGI-ENGAGE (grant number 654142)
and the Ministry of Economy and Competitiveness for the support
through theNational Plan under contract number FPA2013-40715-
P.

The authors want also to thank the IFCA Advanced Computing
and e-Science Group.

References

[1] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey, B. Berriman, J. Good,
On the use of cloud computing for scientific workflows, in: 2008 IEEE Fourth
International Conference on eScience, IEEE, 2008, pp. 640–645, http://dx.doi.
org/10.1109/eScience.2008.167.

[2] A. Iosup, S. Ostermann,M. Yigitbasi, Performance analysis of cloud computing
services formany-tasks scientific computing, IEEE Trans. Parallel Distrib. Syst.
22 (2011) 931–945.

[3] J.-S. Vöckler, G. Juve, E. Deelman, M. Rynge, B. Berriman, Experiences using
cloud computing for a scientific workflow application, Condor 300 (1–2)
(2011) 15–24, http://dx.doi.org/10.1145/1996109.1996114.

[4] Á. López García, E. Fernández-del Castillo, P. Orviz Fernández, I. Campos
Plasencia, J. Marco de Lucas, Resource provisioning in science clouds: Re-
quirements and challenges, in: Software: Practice and Experience, 2017, http:
//dx.doi.org/10.1002/spe.2544, n/a–n/a.

[5] G. Juve, E. Deelman, Resource provisioning options for large-scale scientific
workflows, in: 2008 IEEE Fourth International Conference on eScience, 2008,
pp. 608–613, http://dx.doi.org/10.1109/eScience.2008.160.

[6] S. Singh, I. Chana, A survey on resource scheduling in cloud computing: Issues
and challenges, J. Grid Comput. 14 (2) (2016) 217–264.

[7] D. Salomoni, I. Campos, L. Gaido, J.M. de Lucas, P. Solagna, J. Gomes, L.Matyska,
P. Fuhrman, M. Hardt, G. Donvito, L. Dutka, M. Plociennik, R. Barbera, I.
Blanquer, A. Ceccanti, E. Cetinic, M. David, C. Duma, A. López-García, G. Moltó,
P. Orviz, Z. Sustr, M. Viljoen, F. Aguilar, L. Alves, M. Antonacci, L.A. Antonelli,
S. Bagnasco, A.M.J.J. Bonvin, R. Bruno, Y. Chen, A. Costa, D. Davidovic, B. Ertl,
M. Fargetta, S. Fiore, S. Gallozzi, Z. Kurkcuoglu, L. Lloret, J. Martins, A. Nuzzo,
P. Nassisi, C. Palazzo, J. Pina, E. Sciacca, D. Spiga, M. Tangaro, M. Urbaniak, S.
Vallero, B. Wegh, V. Zaccolo, F. Zambelli, T. Zok, Indigo-datacloud: A platform
to facilitate seamless access to e-infrastructures, J. Grid Comput. 16 (3) (2018)
381–408, http://dx.doi.org/10.1007/s10723-018-9453-3.

[8] A. Lopez Garcia, L. Zangrando, M. Sgaravatto, V. Llorens, S. Vallero, V. Zaccolo,
S. Bagnasco, S. Taneja, S.D. Pra, D. Salomoni, G. Donvito, A.L. Garcia, L. Zan-
grando, M. Sgaravatto, V. Llorens, S. Vallero, V. Zaccolo, S. Bagnasco, S. Taneja,
S.D. Pra, D. Salomoni, G. Donvito, Improved cloud resource allocation: How
INDIGO-Datacloud is overcoming the current limitations in cloud schedulers,
J. Phys. Conf. Ser. 898 (9) (2017) 92010, http://dx.doi.org/10.1088/1742-6596/
898/9/092010, arXiv:1707.06403.

[9] L. Ramakrishnan, P.T. Zbiegel, S. Campbell, R. Bradshaw, R.S. Canon, S. Coghlan,
I. Sakrejda, N. Desai, T. Declerck, A. Liu, Magellan: experiences from a science
cloud, in: Proceedings of the 2nd International Workshop on Scientific Cloud
Computing, ScienceCloud ’11, San Jose, California, USA, ACM, New York, NY,
USA, 2011, pp. 49–58, http://dx.doi.org/10.1145/1996109.1996119.

[10] P. Marshall, K. Keahey, T. Freeman, Improving utilization of infrastructure
clouds, in: Proceedings - 11th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, CCGrid 2011, 2011, pp. 205–214, http://dx.doi.
org/10.1109/CCGrid.2011.56.

[11] A.L. Garcia, Openstack preemptible instances extension, 2018, http://dx.doi.
org/10.5281/zenodo.1544248.

[12] B. Jennings, R. Stadler, Resource management in clouds: Survey and research
challenges, J. Netw. Syst. Manage. 23 (3) (2015) 567–619, http://dx.doi.org/
10.1007/s10922-014-9307-7.

[13] M.D. De Assunção, C.H. Cardonha, M.A. Netto, R.L. Cunha, Impact of user
patience on auto-scaling resource capacity for cloud services, Future Gener.
Comput. Syst. 55 (2016) 41–50, http://dx.doi.org/10.1016/j.future.2015.09.
001.

[14] A. Andrzejak, D. Kondo, S.Y.S. Yi, Decision model for cloud computing under
SLA constraints, modeling, analysis, in: Simulation of Computer and Telecom-
munication Systems (MASCOTS), in: 2010 IEEE International Symposium on
http://dx.doi.org/10.1109/MASCOTS.2010.34.

[15] S. Yi, D. Kondo, A. Andrzejak, Reducing costs of spot instances via checkpoint-
ing in the amazon elastic compute cloud, in: Proceedings - 2010 IEEE 3rd
International Conference on Cloud Computing, CLOUD, 2010, pp. 236–243,
http://dx.doi.org/10.1109/CLOUD.2010.35.

[16] S. Yi, A. Andrzejak, D. Kondo, Monetary cost-aware checkpointing and migra-
tion on amazon cloud spot instances, IEEE Trans. Serv. Comput. 5 (4) (2012)
512–524, http://dx.doi.org/10.1109/TSC.2011.44.

[17] S. Khatua, N. Mukherjee, Application-centric resource provisioning for ama-
zon EC2 spot instances, in: Lecture Notes in Computer Science (including
subseries LectureNotes inArtificial Intelligence and LectureNotes in Bioinfor-
matics) LNCS, vol. 8097, 2013, pp. 267–278, http://dx.doi.org/10.1007/978-3-
642-40047-6_29, arXiv:12111279v1.

[18] D. Jung, S. Chin, K. Chung, H. Yu, J. Gil, An efficient checkpointing schemeusing
price history of spot instances in cloud computing environment, in: Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) LNCS, vol. 6985, 2011, pp.
185–200, http://dx.doi.org/10.1007/978-3-642-24403-2_16.

[19] W. Voorsluys, S.K. Garg, R. Buyya, Provisioning spot market cloud resources
to create cost-effective virtual clusters, in: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics) LNCS, vol. 7016, 2011, pp. 395–408, http://dx.doi.org/10.
1007/978-3-642-24650-0_34, arXiv:1110.5972, (PART 1).

[20] W. Voorsluys, R. Buyya, Reliable provisioning of spot instances for compute-
intensive applications, in: Proceedings - International Conference on Ad-
vanced Information Networking and Applications, AINA, 2012, pp. 542–549,
http://dx.doi.org/10.1109/AINA.2012.106, arXiv:1110.5969.

[21] D. Jung, J. Lim, H. Yu, J. Gil, E. Lee, A workflow scheduling technique for
task distribution in spot instance-based cloud, in: Ubiquitous Information
Technologies and Applications, Springer, 2014, pp. 409–416.

http://dx.doi.org/10.1109/eScience.2008.167
http://dx.doi.org/10.1109/eScience.2008.167
http://dx.doi.org/10.1109/eScience.2008.167
http://refhub.elsevier.com/S0167-739X(18)30270-X/sb2
http://refhub.elsevier.com/S0167-739X(18)30270-X/sb2
http://refhub.elsevier.com/S0167-739X(18)30270-X/sb2
http://refhub.elsevier.com/S0167-739X(18)30270-X/sb2
http://refhub.elsevier.com/S0167-739X(18)30270-X/sb2
http://dx.doi.org/10.1145/1996109.1996114
http://dx.doi.org/10.1002/spe.2544
http://dx.doi.org/10.1002/spe.2544
http://dx.doi.org/10.1002/spe.2544
http://dx.doi.org/10.1109/eScience.2008.160
http://refhub.elsevier.com/S0167-739X(18)30270-X/sb6
http://refhub.elsevier.com/S0167-739X(18)30270-X/sb6
http://refhub.elsevier.com/S0167-739X(18)30270-X/sb6
http://dx.doi.org/10.1007/s10723-018-9453-3
http://dx.doi.org/10.1088/1742-6596/898/9/092010
http://dx.doi.org/10.1088/1742-6596/898/9/092010
http://dx.doi.org/10.1088/1742-6596/898/9/092010
http://arxiv.org/abs/1707.06403
http://dx.doi.org/10.1145/1996109.1996119
http://dx.doi.org/10.1109/CCGrid.2011.56
http://dx.doi.org/10.1109/CCGrid.2011.56
http://dx.doi.org/10.1109/CCGrid.2011.56
http://dx.doi.org/10.5281/zenodo.1544248
http://dx.doi.org/10.5281/zenodo.1544248
http://dx.doi.org/10.5281/zenodo.1544248
http://dx.doi.org/10.1007/s10922-014-9307-7
http://dx.doi.org/10.1007/s10922-014-9307-7
http://dx.doi.org/10.1007/s10922-014-9307-7
http://dx.doi.org/10.1016/j.future.2015.09.001
http://dx.doi.org/10.1016/j.future.2015.09.001
http://dx.doi.org/10.1016/j.future.2015.09.001
http://dx.doi.org/10.1109/MASCOTS.2010.34
http://dx.doi.org/10.1109/CLOUD.2010.35
http://dx.doi.org/10.1109/TSC.2011.44
http://dx.doi.org/10.1007/978-3-642-40047-6_29
http://dx.doi.org/10.1007/978-3-642-40047-6_29
http://dx.doi.org/10.1007/978-3-642-40047-6_29
http://arxiv.org/abs/12111279v1
http://dx.doi.org/10.1007/978-3-642-24403-2_16
http://dx.doi.org/10.1007/978-3-642-24650-0_34
http://dx.doi.org/10.1007/978-3-642-24650-0_34
http://dx.doi.org/10.1007/978-3-642-24650-0_34
http://arxiv.org/abs/1110.5972
http://dx.doi.org/10.1109/AINA.2012.106
http://arxiv.org/abs/1110.5969
http://refhub.elsevier.com/S0167-739X(18)30270-X/sb21
http://refhub.elsevier.com/S0167-739X(18)30270-X/sb21
http://refhub.elsevier.com/S0167-739X(18)30270-X/sb21
http://refhub.elsevier.com/S0167-739X(18)30270-X/sb21
http://refhub.elsevier.com/S0167-739X(18)30270-X/sb21

78 A. López García, E. Fernández del Castillo and I. Campos Plasencia / Future Generation Computer Systems 95 (2019) 68–78

[22] N. Jain, I. Menache, O. Shamir, On-demand, spot, or both: Dynamic resource
allocation for executing batch jobs in the cloud, in: 11th International Confer-
ence on Autonomic Computing (ICAC 14).

[23] N. Chohan, C. Castillo, M. Spreitzer, M. Steinder, See spot run: Using spot
instances for mapreduce workflows, in: HotCloud 2010, 2012, pp. 1–7.

[24] H. Liu, Cutting mapreduce cost with spot market, in: USENIX HotCloud’11,
2011, p. 5.

[25] Y. Song,M. Zafer, K.-W. Lee, Optimal bidding in spot instancemarket, in: 2012
Proceedings IEEE, INFOCOM, 2012, pp. 190–198, http://dx.doi.org/10.1109/
INFCOM.2012.6195567.

[26] K. Sowmya, R.P. Sundarraj, Strategic bidding for cloud resources under dy-
namic pricing schemes, in: Cloud and Services Computing (ISCOS), in: 2012
International Symposium on, 2012, pp. 25–30, http://dx.doi.org/10.1109/
ISCOS.2012.28.

[27] S.-Y. Noh, S.C. Timm, H. Jang, Vcluster: A framework for auto scalable virtual
cluster system in heterogeneous clouds, Clust. Comput. 17 (3) (2013) 741–
749, http://dx.doi.org/10.1007/s10586-013-0292-5.

[28] A. Nadjaran Toosi, F. Khodadadi, R. Buyya, SipaaS: Spot instance pricing as
a service framework and its implementation in openstack, in: Concurrency
and Computation: Practice and Experience, 2015, pp. 3672–3690, http://dx.
doi.org/10.1002/cpe.3749.

[29] A.N. Toosi, K. Vanmechelen, F. Khodadadi, R. Buyya, An auction mechanism
for cloud spot markets, ACM Trans. Auton. Adapt. Syst.(TAAS) 11 (1) (2016) 2.

[30] M. Carvalho, D.A. Menascé, F. Brasileiro, Capacity planning for IaaS cloud
providers offering multiple service classes, Future Gener. Comput. Syst. 77
(2017) 97–111, http://dx.doi.org/10.1016/j.future.2017.07.019.

[31] M. Carvalho, W. Cirne, F. Brasileiro, J. Wilkes, Long-term SLOs for reclaimed
cloud computing resources, in: Proceedings of the ACM Symposium on Cloud
Computing - SOCC’14, 2014, pp. 1–13, http://dx.doi.org/10.1145/2670979.
2670999.

[32] M. Carvalho, D. Menasce, F. Brasileiro, Prediction-based admission control for
IaaS clouds with multiple service classes, in: Proceedings - IEEE 7th Interna-
tional Conference on Cloud Computing Technology and Science, in: CloudCom
2015, 2016, pp. 82–90, http://dx.doi.org/10.1109/CloudCom.2015.16, (2).

[33] OpenStack Scientific Working Group, The Crossroads of Cloud and HPC :
OpenStack for Scientific Research, CreateSpace Independent Publishing Plat-
form, 2017.

[34] I. Foster, Y. Zhao, I. Raicu, S. Lu, Cloud computing and grid computing
360-degree compared, in: Grid Computing Environments Workshop, 2008,
in: GCE’08, 2008, pp. 1–10, URL http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?
arnumber=4738445.

[35] R. Buyya, J. Broberg, A.M. Goscinski, B. Rochwerger, C. Vázquez, D. Breitgand,
D. Hadas, M. Villari, P. Massonet, E. Levy, A. Galis, I.M. Llorente, R.S. Montero,
Y. Wolfsthal, K. Nagin, L. Larsson, F. Galán, Cloud Computing: Prin-Ciples
and Paradigms, vol. 87, John Wiley & Sons, 2010, http://dx.doi.org/10.1002/
9780470940105.ch15.

[36] B. Sotomayor, R.S. Montero, I.M. Llorente, I. Foster, Virtual infrastructure
management in private and hybrid clouds, IEEE Internet Comput. 13 (2009)
14–22, http://dx.doi.org/10.1109/MIC.2009.119.

[37] O. Litvinski, A. Gherbi, Experimental evaluation of openstack compute sched-
uler, Procedia Comput. Sci. 19 (Ant) (2013) 116–123, http://dx.doi.org/10.
1016/j.procs.2013.06.020.

[38] Á. López García, E. Fernández-del Castillo, Efficient image deployment in
cloud environments, J. Netw. Comput. Appl. 63 (2016) 140–149, http://dx.doi.
org/10.1016/j.jnca.2015.10.015.

[39] D.E. Knuth, The Art of Computer Programming, vol. 2, Addison-Wesley, 1981.
[40] T. Tsioutsias, Reaper service prototype, 2018, URL https://gitlab.cern.ch/

ttsiouts/ReaperServicePrototype/.

[41] M. Ben Belgacem, B. Chopard, A hybrid HPC/cloud distributed infrastructure:
Coupling EC2 cloud resources with HPC clusters to run large tightly coupled
multiscale applications, Future Gener. Comput. Syst. 42 (2015) 11–21, http:
//dx.doi.org/10.1016/j.future.2014.08.003.

[42] A.McNab, F. Stagni,M.U. Garcia, Running jobs in the vacuum, J. Phys. Conf. Ser.
513 (3) (2014) 32065, http://dx.doi.org/10.1088/1742-6596/513/3/032065.

[43] E. Fernández-del Castillo, D. Scardaci, Á. López García, The EGI federated cloud
e-infrastructure, Procedia Comput. Sci. 68 (2015) 196–205, http://dx.doi.org/
10.1016/j.procs.2015.09.235.

Dr. Alvaro Lopez Garcia is a research associate at CSIC.
He holds a Ph.D. in Science, Technology and Computing
from the University of Cantabria (UC). He was a visiting
researcher at the IN2P3/CNRS Computing Center in Lyon,
France and a research associate at the Italian National
Institute forNuclear Physics (INFN). He is also an assistant
professor at the UC, teaching several Computer’s Archi-
tecture subjects, as well as professor at the official Master
degree in Data Science of the Universidad Internacional
Mendendez Pelayo (UIMP). He has taken part in sev-
eral national and European projects such as EGEE-II/III,

Int.Eu.Grid, EUFORIA, EGI-InSPIRE, EGI-Engage (task leader for the Federated Cloud
JRA) and INDIGO-DataCloud (task leader for the Cloud Computing Virtualization
JRA). He is currently co-coordinating the DEEP-Hybrid-DataCloud H2020 project
andparticipating in the EOSC-Hub andAARC-II projects. In the last years he has been
working on the adoption of the cloud by scientific datacenters. He is an individual
member of the OpenStack foundation, being an Active Technical Contributor for
several development cycles.

Dr. Enol Fernández del Castillo is a CSIC researcher,
based at the IFCA in Santander (Spain), where he joined
in 2009. Since 2003, he has been involved in EU funded
grid-computing projects. He holds a Ph.D. in Computer
Engineering from Universidad Autonoma de Barcelona
(UAB) where he developed a grid scheduler for running
interactive and parallel jobs. He is currently part of the
software provisioning team for the EGI.eu infrastructure
and a member of EGI.eu Federated Cloud. He is involved
in the IBERCLOUD initiative for setting up a cloud for sci-
entific users of Spanish and Portuguese NGIs (IBERGRID).

Dr. Isabel Campos Plasencia is a researcher at CSIC since
2008. She is the Director of the Spanish NGI, represen-
tative of Spain in the EGI Council. She holds a Ph.D. in
Theoretical Physics, and has held positions as research
associate at DESY, Brookhaven National Laboratory, and
at the Leibniz Computer Center in Munich. She has a
wide experience in international collaborations oriented
to distributed computing technology. She has over 45
publications in peer-reviewed journals and has partici-
pated or presented over 72 communications to interna-
tional conferences.

http://refhub.elsevier.com/S0167-739X(18)30270-X/sb23
http://refhub.elsevier.com/S0167-739X(18)30270-X/sb23
http://refhub.elsevier.com/S0167-739X(18)30270-X/sb23
http://refhub.elsevier.com/S0167-739X(18)30270-X/sb24
http://refhub.elsevier.com/S0167-739X(18)30270-X/sb24
http://refhub.elsevier.com/S0167-739X(18)30270-X/sb24
http://dx.doi.org/10.1109/INFCOM.2012.6195567
http://dx.doi.org/10.1109/INFCOM.2012.6195567
http://dx.doi.org/10.1109/INFCOM.2012.6195567
http://dx.doi.org/10.1109/ISCOS.2012.28
http://dx.doi.org/10.1109/ISCOS.2012.28
http://dx.doi.org/10.1109/ISCOS.2012.28
http://dx.doi.org/10.1007/s10586-013-0292-5
http://dx.doi.org/10.1002/cpe.3749
http://dx.doi.org/10.1002/cpe.3749
http://dx.doi.org/10.1002/cpe.3749
http://refhub.elsevier.com/S0167-739X(18)30270-X/sb29
http://refhub.elsevier.com/S0167-739X(18)30270-X/sb29
http://refhub.elsevier.com/S0167-739X(18)30270-X/sb29
http://dx.doi.org/10.1016/j.future.2017.07.019
http://dx.doi.org/10.1145/2670979.2670999
http://dx.doi.org/10.1145/2670979.2670999
http://dx.doi.org/10.1145/2670979.2670999
http://dx.doi.org/10.1109/CloudCom.2015.16
http://refhub.elsevier.com/S0167-739X(18)30270-X/sb33
http://refhub.elsevier.com/S0167-739X(18)30270-X/sb33
http://refhub.elsevier.com/S0167-739X(18)30270-X/sb33
http://refhub.elsevier.com/S0167-739X(18)30270-X/sb33
http://refhub.elsevier.com/S0167-739X(18)30270-X/sb33
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=4738445
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=4738445
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=4738445
http://dx.doi.org/10.1002/9780470940105.ch15
http://dx.doi.org/10.1002/9780470940105.ch15
http://dx.doi.org/10.1002/9780470940105.ch15
http://dx.doi.org/10.1109/MIC.2009.119
http://dx.doi.org/10.1016/j.procs.2013.06.020
http://dx.doi.org/10.1016/j.procs.2013.06.020
http://dx.doi.org/10.1016/j.procs.2013.06.020
http://dx.doi.org/10.1016/j.jnca.2015.10.015
http://dx.doi.org/10.1016/j.jnca.2015.10.015
http://dx.doi.org/10.1016/j.jnca.2015.10.015
http://refhub.elsevier.com/S0167-739X(18)30270-X/sb39
https://gitlab.cern.ch/ttsiouts/ReaperServicePrototype/
https://gitlab.cern.ch/ttsiouts/ReaperServicePrototype/
https://gitlab.cern.ch/ttsiouts/ReaperServicePrototype/
http://dx.doi.org/10.1016/j.future.2014.08.003
http://dx.doi.org/10.1016/j.future.2014.08.003
http://dx.doi.org/10.1016/j.future.2014.08.003
http://dx.doi.org/10.1088/1742-6596/513/3/032065
http://dx.doi.org/10.1016/j.procs.2015.09.235
http://dx.doi.org/10.1016/j.procs.2015.09.235
http://dx.doi.org/10.1016/j.procs.2015.09.235

	An efficient cloud scheduler design supporting preemptible instances
	Introduction
	Related work
	Scheduling in the existing Cloud Management Frameworks

	Preemptible Instances Design
	Preemptible-aware scheduler

	Evaluation
	OpenStack Compute Filter Scheduler
	Implementation Evaluation
	Configurations
	Algorithm Evaluation
	Scheduling using same Virtual Machine sizes
	Scheduling using different Virtual Machine sizes

	Performance evaluation

	Exploitation and integration in existing infrastructures
	High Performance Computing Integration
	High Throughput Computing Integration

	Conclusions
	Acknowledgments
	References

