
Future Generation Computer Systems 95 (2019) 52–67

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Support mechanisms for cloud configuration using XML filtering
techniques: A case study in SaaS
Yang Cao, Chung-Horng Lung ∗, Samuel A. Ajila, Xiaolin Li
Department of Systems and Computer Engineering, Carleton University, Ottawa, Ontario, Canada K1S 5B6

h i g h l i g h t s

• Multi-tenancy can considerably complicate SaaS management and deployment.
• Formal methods used for multi-tenancy configuration management is complicated.
• XML filtering methods have been used for information dissemination.
• Yfilter XML filtering method to support SaaS configuration management is described.

a r t i c l e i n f o

Article history:
Received 13 August 2018
Received in revised form 26 October 2018
Accepted 12 December 2018
Available online 2 January 2019

Keywords:
Cloud Computing
Software-as-a-Service
Multi-Tenancy
Feature Modeling
XML Filtering
Yfilter

a b s t r a c t

Software-as-a-service (SaaS) has attracted substantial attention as a software delivery and service model
in a cloud computing environment. SaaS delivery can help organizations significantly reduce the cost of
using software, because the resources for running SaaS applications are shared among tenants (end users
or organizations). However, multi-tenancy can considerably complicate SaaS development, deployment,
and maintenance as a result of a large number of co-existing tenant-specific constraints or features.
Manually configuring and maintaining tenant-specific features will increase the cost, introduce possible
errors, and limit scalability and flexibility. The paper addresses the problem of large variations and
complex configurations. Specifically, the objective is to develop mechanisms to support automatic multi-
tenant software features analysis and matching for the purposes of efficient deployment and operations
in the cloud. The emphasis of this paper is on thematching between the tenant-specific requirements and
the SaaS features managed by the cloud provider. This paper proposes a novel approach for cloud feature
matching using XML filtering techniques to support the process of multi-tenant SaaS deployment and
management. Feature modeling has been widely used to capture requirements and constraints. On the
other hand, XML filtering techniques are mature and have been adopted in various problem domains.
We used Yfilter, a proven and XML filtering technique, to support two multi-tenant applications: (i)
Identifying SaaS configurations (in XPath representations) that satisfy tenant-specific requirements and
constraints (in XML notation); and (ii) Identifying tenants that have subscribed to a specific set of SaaS
features. The applications can effectively facilitate SaaS subsequent management and operations due to
various changes, e.g., functionalities, constraints, cost, etc. The experimental results demonstrate that
the proposed approach can automatically and correctly identify cloud system configurations that match
tenant-specific requirements or identify the group of tenants that have subscribed to a particular set of
cloud features. In addition, the execution time of our proposed approach is only a small fraction compared
to the existing approach using the formal method, e.g., FaMa, and the configuration space is also much
smaller.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Cloud computing consists of on-demand computing services
with shared-access of configurable resources. There are threemain

∗ Corresponding author.
E-mail addresses: ycao5@scs.carleton.ca (Y. Cao), chlung@sce.carleton.ca

(C.-H. Lung), ajila@sce.carleton.ca (S.A. Ajila), xiaolin@cmail.carleton.ca (X. Li).

cloud services: infrastructure-as-a-service (IaaS), platform-as-a-
service (PaaS), and software-as-a-service (SaaS). In addition, there
are three common cloud deployment models: public, private, and
hybrid. Cloud computing provides elastic services with lower cost
in a pay-per-usemodel. Cloud services share similarities withWeb
services, but there are also distinct challenges that need to be
addressed for cloud services exclusively [1]. Cloud services can be
used by individual users or multiple tenants, where a tenant could

https://doi.org/10.1016/j.future.2018.12.025
0167-739X/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2018.12.025
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2018.12.025&domain=pdf
mailto:ycao5@scs.carleton.ca
mailto:chlung@sce.carleton.ca
mailto:ajila@sce.carleton.ca
mailto:xiaolin@cmail.carleton.ca
https://doi.org/10.1016/j.future.2018.12.025

Y. Cao, C.-H. Lung, S.A. Ajila et al. / Future Generation Computer Systems 95 (2019) 52–67 53

be an organizationwith a group of users sharing the same software
system.

Multi-tenancy is an emerging technique that enables the cloud
providers to achieve a large scale of resource sharing. Multi-
tenancy can be realized for IaaS, PaaS, or SaaS. This paper presents a
generic framework that can be used to support cloud service oper-
ations and management. This research, however, does not address
actual deployment. Our approach has been applied to case studies
in SaaS. Users subscribed to SaaS can access applications over the
Internet on subscription basis. Concrete examples include email,
customer relationship platform (CRM) to support management
of sales, marketing, etc., in a central location [2], and a weather
system [3].

The problems associatedwith developing, deploying, andmain-
taining cloud computing, particularly multi-tenancy, are primarily
caused by resource sharing, a large number of possible configura-
tions [4–6], and various constraints such as cloud type or location.
For SaaS, typically, a pre-packaged and configurable system [7] is
provided to tenants, rather than the traditional on the premise
model. In addition, there are difficulties of managing the tradeoffs
over various non-functional requirements, such as performance,
security, privacy, availability, and cost. As a result, the develop-
ment of a multi-tenant application is much more difficult than
the development of a single tenant application [6,7]. It is imprac-
tical to rely on tenants to make decisions on partitioning their
applications and selecting appropriate configurations that satisfy
tenant-specific requirements, constraints, and preferences. And,
doing it manually is time consuming and error prone even for the
professionals (e.g. cloud service providers), especially when the
configuration space and the number of tenants is large. Formal
methods, e.g., [8–10], have been proposed to solve the problem.
However, formal methods typically are limited to small scale and
the processing time usually is high.

The objective of this paper is to address the problem of large
variations and complex configurations [5,11,12]. Particularly, the
goal is to develop mechanisms to support automatic multi-tenant
software features analysis and matching for efficient deployment
and operations in the cloud. The focus of this paper is on the
matching between the tenant-specific requirements and the SaaS
features managed by the cloud provider. The importance of au-
tomatic matching between tenant-specific requirements and SaaS
features cannot be over emphasized. To the best of our knowledge,
there is little research reported in the literature to facilitate auto-
matic matching between desirable tenant-specific configurations
and SaaS features.

In our previous work [13], we presented the preliminary idea
to support matching of SaaS features with features requested by
multiple tenants using Yfilter [14]. Yfilter has been systematically
evaluated in various applications in the open source community.
Further, Yfilter is scalable to a very large number, e.g., 50,000
queries which are equivalent to features in our problem. In this
paper we extend the scope to identify the group of tenants that
have subscribed to a particular set of cloud features and more
experiments for further validation and analysis using a larger set of
features. In addition, a thorough analysis of the technical concepts
is presented.

The main contributions of this paper are summarized as fol-
lows:

• The introduction of a reference framework used for
constraint-based multi-tenant feature management with fo-
cus on SaaS.

• The novel application of XML-based techniques for cloud
services, including (i) encoding the feature models for the
SaaS system and tenant-specific requirements or preferences
with XPath representations [15], and (ii) the application of
Yfilter [14] technique to achieve three things:

◦ Automatic selection of SaaS features from a possible
large set of options and complex constraints that meet a
tenant’s requirements. This step can help feature based
configuration for each tenant and can be used for poten-
tial further deployment.

◦ Automatic identification of tenants that have subscribed
to a set of SaaS features. This step can be used if some
SaaS features or associated business policies are up-
dated.

◦ Reduction in the amount of configuration space and the
computation time.

The rest of this paper is organized as follows. Section 2 describes
related work. Section 3 presents an overview of the proposed ref-
erence framework. Section 4 describes the automatic matching for
multi-tenant feature configurations using the XML-based filtering
techniques. Section 5 illustrates case studies based on the proposed
approach. Section 6 describes the tool used in the experiments and
case studies. Finally, Section 7 concludes the paper and discusses
some future research directions.

2. Related work

This section describes three related research areas: feature
modeling, existing research onmulti-tenant software systems, and
techniques in XML that are related to our research. A discussion
and summary of those techniques that are related to our research
is presented at the end.

2.1. Feature modeling and related work

Feature model [16] is a representation of visible and useful
aspects of a software product or software product lines. It is a
visual representation bymeans of feature diagrams and it is widely
used in the design and development of Software Product Lines
(SPLs) [17,18]. Feature is a noticeable user visible aspect, quality
attribute or functional characteristic of a software product [19].
Basic feature models have a reduced set of syntax that describes
the relationship between a ‘‘parent’’ feature and a ‘‘child’’ feature
using a set of operators [17]. Basic feature model operators are
mandatory – the child feature is required; optional – the child
feature is optional;OR – at least one [sub] featuremust be selected;
and XOR – one of the [sub] features is selected. A feature diagram
is tree-like structure with special operators, e.g., AND, OR, XOR, and
constraints that define features and their valid combinations in
configurations [20]. In this paper, we have used feature modeling
to capture both cloud provider features (i.e., SaaS) and tenant-
specific requirements.

Feature modeling has been applied to SaaS to manage configu-
ration and customization of service variants [3,21,22]. In particular,
the research work by [23] extended variability modeling to cus-
tomize the SaaS application and guide the SaaS provider for service
deployment. Feature modeling was also used by [23] and oth-
ers [24–26] to select the best cloud service (PaaS or IaaS) provider
for a given application. The tool FAMILIAR proposed by [23] is used
to merge feature models of all available PaaS solutions into an
aggregated feature model. However, the authors did not present
how to automatically identify a cloud provider based on feature
models. Wittern et al. [24,25] utilized service feature modeling
(SFM) to represent service design concerns and their potential
combinations. They also adopted a method to rank service design
alternatives based on stakeholder preferences. Their ranking ap-
proach is built uponmulti-criteria decisionmaking (MCDM)which
was also adopted for selecting cloud services by [27]. But, the
processing time for configuration ranking could be high and the
interpretation of the ranking could be challenging [25].

54 Y. Cao, C.-H. Lung, S.A. Ajila et al. / Future Generation Computer Systems 95 (2019) 52–67

Authors in [28] investigated three approaches for the develop-
ment andmanagement ofmulti-tenant SaaS software: application-
based, feature-based, and a hybrid approach. The paper presents
a theoretical analysis by comparing the number of instance types
that is generated by each method. Based on their comparison, the
feature-based approach generates fewer runtime instance types.

The research work by [8] developed a tool called FaMa [29]. The
tool is used to convert a feature model to a formal representation,
e.g., Boolean satisfiability (SAT), constraint satisfaction problem
(CSP), or binary decision diagram (BDD), and it uses a correspond-
ing solver to perform analysis on the featuremodel. Although FaMa
is a good tool for analyzing feature models, it generates a large
number of configuration options that needs further refinement.
The approach has not been demonstrated to be able to analyze
medium to large size feature models in a reasonable time, which
is a concern for its scalability. Further, a formal framework called
FLAME based on Z specification language [30]. FLAME is used for
specifying the semantics for feature models, i.e., FaMa, and that for
various variability modeling languages. The framework supports
filtering of an SPL which can be used to select a set of features or
products of a SPL for a given configuration.

Hajlaoui et al. [9] also investigated three algorithms based on
graph edit distance which is followed by ranking the QoS as a
weighted graph matching problem. The experiments were only
conducted for a small number of features. In addition, the results
for precision and recall could spread to a wide range. Recently,
Xiang et al. [10] introduced an approach that combines a many-
objective optimization algorithm and two SAT solvers to generate
the optimal feature selection problem. One solver is used to repair
invalid configurations when dealing with many-objective optimal
feature selection problem, the other one is introduced to produce
dissimilar solutions. As a result, both the number of features and
constraints are reduced significantly. Hence, the computation time
is dramatically reduced.

2.2. Multi-tenancy and related work

A tenant is defined as a cloud customer consisting of a group
of users (or software developers)) sharing the same view of a
software system. Multi-tenancy is defined as multiple tenants or
processes or organizations sharing resources (both physical and
virtual) while they remain logically independent. Multi-tenant (or
multi-tenancy) is away of providing to each tenant a ‘‘share’’ of the
instance of an application (or service) that is isolated from other
‘‘shares’’ of the same instance with respect to performance, secu-
rity, and data privacy.Multi-tenancy is different frommulti-user or
multi-instance [4]. In multi-tenancy, compared to multi-instance,
each tenant may have high degree of configurability of the soft-
ware system and the number of tenants can be very large. Some
key features of multi-tenancy include hardware resource sharing,
large configuration space, and a limited number of instances of
a single application or database system. In addition, there is the
possibility of having different workflows for the same application
for different tenants [4], and even different versionsmay be needed
for the same tenant [6]. As a result, a number of challenges arise
such as scalability, operational costs, flexibility, and security. These
challenges are key considerations for multi-tenant SaaS systems
development, deployment, and management [6].

A great deal of research has been conducted on this topic.
However, most of the existing research on multi-tenant SaaS sys-
tems has focused on shared infrastructure (i.e., virtualization tech-
niques), security management, data architecture, and middleware
extensions [31]. On the other hand, the challenge due to a large
amount of tenant configuration space for multi-tenancy has not
been adequately explored.

Thework by [4] described the fundamentals of themulti-tenant
approach and compared it with the multi-user and multi-instance

approaches. Further, the authors presented the main challenges
for the multi-tenant approach, which includes the large config-
uration space. In addition, the authors also identified four con-
figuration types: layout styles, general configuration, file I/O, and
workflow. Different types of configuration enable the tenant to
have a customized user-experience as if the system is a dedicated
environment for the tenant. Both [4] and [31] adopted the 3-
tier architecture (authentication, configuration, and database) to
support multi-tenancy.

Walraven et al. [6] discussed the multi-tenant systems and the
challenges associatedwith the systems. The authors advocated the
essentiality of automatic transformation or mapping of tenant-
specific feature configurations and SaaS application features. The
authors concluded that there was a lack of methodical support
for the development of multi-tenant applications and hence pro-
posed a service line engineering approach in support of co-existing
tenant-specific configurations. This work, however, only focuses
on the methodology and falls short of demonstrating any auto-
matic transformation technique.

In [32], the authors investigated the scalability challenge in
customizing tenant-specific features for SaaS. They considered two
stakeholders – service customer (tenant) and SaaS service provider
– and investigated the impact of feature interactions on scalability
for a multi-tenant SaaS system. Feature mapping is one of the key
tasks in their framework, which is based on configuration file used
to describe the required features.

In [28], the authors investigated feature placement algorithms
for multi-tenancy for cost-effective resource allocations. The al-
gorithm is used to determine where to place feature instances
and the amount of resources for them. Random feature models
were generated to evaluate the optimization algorithm based on
an integer linear problem solver and a heuristic algorithm. Based
on the evaluation, using feature instances increased the achievable
level of multi-tenancy.

Garćıa-Galán et al. [33] described the increasing complexity
of highly-configurable services (HCS) for XaaS due to variabilities
of the decision space. The critical tasks involved for HCS include
description, discovery and selection of services. The authors intro-
duced SYNOPSIS, a newdomain specific language, that captures the
decision space based on feature modeling. SYNOPSIS can be used
for validity checking for HCS and selection of the most suitable
configurations with respect to user requirements. Selecting the
best configurations is similar to the theme of our paper. However,
we utilize XML and its related techniques to represent and select
HCS. The next subsection briefly describes XML and its related
techniques that are used in this paper.

A few other approaches related to multi-tenant SaaS have been
published in the literature. Alwis and Gamage [34] proposed a
model-driven approach and used a UML 2.0 based profile to de-
velop SaaS applications. Dutta and Gupta [35] studied the cus-
tomization issues in SaaS applications and used XML to store
tenants’ customization data in a database. The approach, however,
does not address feature selection. Espadas et al. [36] developed
a tenant-based resource allocation model for multi-tenant SaaS
applications. Walraven et al. [37] designed a middleware layer
that supports dependency injection and tenant data isolation using
Google App Engine to handle customization and multi-tenancy.
Tsai et al. [38] proposed sub-tenancy architecture (STA) that al-
lows tenants to provide services for subtenant developers for SaaS
development and customization. Feature requirements, modeling,
and selection are central to the application development. The au-
thors advocated crowdsourcing for feature implementation and
selection.

Y. Cao, C.-H. Lung, S.A. Ajila et al. / Future Generation Computer Systems 95 (2019) 52–67 55

2.3. XML, JSON, XPath, and XML filtering techniques

XML [39] has been widely used to represent structured infor-
mation in a machine-readable format. It benefits from interoper-
ability and eliminates differences in proprietary protocols between
networks, operating systems, and computing platforms. JSON [40]
shares many similarities with XML and has become a popular data
exchange format. However, the use of JSON is primarily limited
to data exchange between servers and clients, especially on the
browser side due to its lightweight and frequent execution. XML,
on the other hand, is a language and has a rich set of features
associated with it [41]. Further, XML, if running on the server side,
does not revealmuch difference in performance compared to JSON.
In this work we used XML to encode tenant-specific requirements.

More importantly, the choice of XML over JSON is based on
the fact that XML-based techniques are more closely related to
our research than JSON and that XML-based methods have been
used for feature modeling. XPath, a query language is part of XSLT
standard and it is used to navigate using path expression through
the elements and attributes of an XML document. XPath is also a
language for retrieving, selecting, and filtering information from
an XML document. XML filtering is a well-established technique
in XML databases and XML publish/subscribe systems. XML filter-
ing can identify matching between an XML document d and an
XPath feature (query) representation F. The matching operation is
complex as it needs to identify whether d has an isomorphic tree-
like structure and values defined in F. Further, there are nested
query relationship and complex operators, e.g., ‘‘*’’ (wildcard), ‘//’
(ancestor/descendant operator), and ‘‘[]’’ (predicate).

The main benefit of using XPath feature modeling is its ability
to support expressions of tree-like structure of feature diagrams.
This characteristic can be used to avoid enumerating of all possible
combinations of features, which is time-consuming and error-
prone. There are a number of XML filtering techniques reported
in the literature. They include Yfilter [14], Afilter [42], Bfilter [43],
Gfilter [44], Hfilter [45], Pfilter [46], Sfilter [47,48], andWfilter [49].
The key difference for those filters is the data structure used. For
instance, Yfilter makes use of a nondeterministic finite automa-
ton (NFA) in a top-down fashion, Afilter uses a directed graph,
Gfilter adopts a tree-of-path coding scheme for query processing
via a bottom-up approach, and Bfilter builds on top of Yfilter
but delays the matching process until a branch point is matched.
A comparison of those filters can be found in Dai, et al. [43].
Among them, Yfilter is the representative technique, because it
has been thoroughly investigated and broadly evaluated against
other filtering techniques by multiple research groups in the open
source community. Moreover, Yfilter is open source and easier
to understand, as it makes use of the tree structure, and it has
been demonstrated that it can handle a large number of queries
(e.g., 50,000) [14].

Additionally, our choice of XPath is based on the fact that it is a
key element in Yfilter suite and is robust and scalable. An example
of XML-based feature modeling tool is XFeature [50], used for
representing feature diagrams, modeling of product families, and
instantiating applications from themodel. However, XFeature does
not support the automated analysis of feature diagrams, which is
crucial for a large number of configurations. Another example sim-
ilar to our method is the approach presented in [12] which adopts
XPath to support view specification based on feature diagram. The
authors also integrated XPath with the SPLOT [51], an open source
system for creating, editing, and sharing feature diagrams.

2.4. Discussion

Multi-tenancy has the potential to reduce cost, as multiple
users share the same application instance and resources. How-
ever, there is a lack of support to effectively manage different

tenant requirements or preferences [52]. Consequently, two ap-
proaches are common in practice: one-size-fits-all approach [6] or
an application-based approach [28]. The one-size-fits-all approach
may not work well for tenant-specific requirements, whereas the
application-based approachmay generate a large number of appli-
cation instances. On the one hand,multi-tenancy comeswithmany
variations such as SLAs (Service Level Agreements) [53], different
constraints, or even the workflow may be different for different
tenants. In addition, versioningmay be needed for the same tenant
on top of those variations. As a result, the configuration space
can grow rapidly. On the other hand, techniques based on formal
optimization-based methods, e.g., SAT, CSP, or BDD [17,54], have
yet to demonstrate the efficiency for a large number of config-
urations that the multi-tenancy systems often may exhibit. In
addition to the optimization-based service selection methods, two
other main approaches are MCDM-based and logic-based [1]. The
configuration space issue still exists for those approaches.

Therefore, as the feature configuration space grows rapidly and
the number of tenants and requirements increase, there is a need
for an efficient and scalable approach to automatically transform
and map SaaS provider features to tenant-specific requirements.
Furthermore, feature modeling has been adopted by various re-
searchers formulti-tenant SaaS system. Featuremodeling has been
extensively used for variability management, which has a direct
impact ondevelopment anddeployment complexity, performance,
and consistency [28]. Also, XML techniques have been used by vari-
ous researchers where scalability is critical, e.g., publish/subscribe
systems [14,42–44] and databases and information sciences [55–
61].

In this research work, we adopt feature modeling to capture
commonalities andvariabilities of SaaS systems and tenant-specific
requirements, and use XML to encode tenant-specific features. In
comparison to other approaches especially the formal methods,
e.g., [17], the configuration space of our Yfilter-based approach
is much smaller, because common paths for features in a feature
diagram are shared. In other words, Yfilter aggregates common
paths rather than enumerates all possible feature options. As a
result, the processing time is also low, which is suitable for large
numbers of features and tenants.

3. Constraint-based cloud deployment framework

This sectionpresents an overviewof our constraint-basedmulti-
tenant approach for supporting cloud deployment. The framework
is a modification of the method presented in [6]. Contrary to their
approach, our framework is generic and applicable to the three
types of cloud services (i.e., IaaS, PaaS, and SaaS). In addition, our
framework is not geared towards application services as is the case
of their approach; instead, our proposed approach is designed to
be used to support the deployment and management of software
systems in the cloud. In other words, our framework is not just
to support SaaS deployment, but a set of support mechanisms for
cloud deployment and management for cloud services (IaaS, PaaS,
and SaaS) which can be represented with a high-level abstraction
of features. The current focus of the paper is on SaaS and the
framework is applied as a case study to support SaaS deployment
using XPath feature representation and Yfilter technique for XML
matching (cf. Sections 4 and 5).

As depicted in Fig. 1, the framework consists of four processes
(shown in round rectangles): Cloud Services Analysis and Con-
figuration Management, Tenant Requirements Analysis and Con-
figuration Management, Cloud Service Deployment, and Shared
Services and Configuration Management. Fig. 1 also shows the
main activities, artifacts, input/output, and data dependency.

The Cloud Services Analysis and Configuration Management
(top left in Fig. 1) models cloud services/products represented

56 Y. Cao, C.-H. Lung, S.A. Ajila et al. / Future Generation Computer Systems 95 (2019) 52–67

Fig. 1. Constraint-based cloud deployment framework.

using feature diagrams. The starting point is the cloud service
analysis and problem domain analysis. A cloud specific model is
generated and the outputs include functional and non-functional
features, tenant-independent software configurations, and cost
constraints.

Similarly, the Tenant Requirements Analysis and Configuration
Management process starts with Tenant Requirements Analysis to
identify features and constraints. A tenant-specific feature model
is then generated as a result of Feature Modeling.

Following that, the Matching Engine performs the matching
activity, which is a key focus proposed in this paper, between
the cloud and tenant-specific features. The primary outcomes of
the matching process are cloud services model decisions and the
feature-to-cloud-product mappings.

The ‘‘cloud services model decisions’’ (top in Fig. 1) are pre-
sented to the user for decision making in terms of the choice of
cloud provider, type of cloud service, constraints, costs, etc. In ad-
dition, the user has the freedom tomodify the initial requirements
or add more requirements. This is the major reason why both
the domain and tenant requirements analysis are semi-automated.
The idea is to give freedom of choice in cloud provider and cloud
service to the user based on cost constraints.

Architecture Design deals with components that are generic or
specific. Generic components are shared among a large number of
tenants, while specific components are tailored to one or a small
number of tenants, based on the feature analysis.

Note that this paper focuses on two processes: Cloud Ser-
vices Analysis and Configuration Management and Tenant Re-
quirements Analysis and Configuration Management in support of
feature-based configuration and cloud deployment. Between these
two processes, the Matching for configuration is the key concern
of this paper. The actual deployment related activities, i.e., Cloud
Deployment Decision, Software Deployment and Operation, and
Configuration Activation, of the cloud service is beyond the scope
of the paper.

4. Automatic XML-based matching

This section presents a summary of an XML-based matching
technique in support of SaaS configuration. The approach consists
of five steps:

1. Perform feature modeling for the SaaS system
2. Encode SaaS features with XPath representations
3. Perform tenant-specific feature modeling
4. Encode the tenant-specific features with XML
5. Perform XML filtering and matching operation with Yfilter.

The filtering and matching operation can be used for two
different types of applications:

a. Type I: Identify the matched SaaS system features
based on the tenant-specific requirements and con-
straints.

b. Type II: Identify all interested tenants for a particular
set of the SaaS services, type, or applications.

In what follows, we first briefly explain steps 1 and 3. Next, we
describe steps 2 and 4 that deal with encoding feature diagrams
using XML techniques, which is followed by an introduction to the
Yfilter filtering and matching technique.

4.1. Perform feature modeling

Both steps 1 and 3 are the same as the traditional feature mod-
eling or SPL process. The feature diagram for a tenant (the result
of step 3, which includes tenant-specific constraints) typically is a
subset of that of the SaaS systems. Tenant-specific feature model,
hence, can be easily obtained by modifying the feature model of
the SaaS application.

In SPL, various relation types can be modeled: mandatory, op-
tional, XOR (only one feature can be selected), OR (at least one

Y. Cao, C.-H. Lung, S.A. Ajila et al. / Future Generation Computer Systems 95 (2019) 52–67 57

Fig. 2. Feature diagram for the security aspect of Saleforce.com CRM.

feature is selected), AND (each feature must be selected), includes,
and excludes [21].

Fig. 2 presents a simplified feature diagram developed for the
security aspect for the Saleforce.com customer relationship man-
agement (CRM) system as an example. There are fivemain features
in Salesforce.com CRM: SaaS app front end, SaaS app server, In-
frastructure service, Virtualization, and Data center. A mandatory
relationship is illustrated between the SaaS app server layer and
the Sessionmanagement, Data isolation, User access authorization,
and Role securitymanagement. Password change frequency shows
an example of an optional relationship for Password. Data isolation
can be either Shared or Separate schema for an XOR relationship.
The OR relationship is illustrated in the Authorization feature,
e.g., at least one authentication method, Social sign on, Federated
authentication, or Password, must be selected.

4.2. Apply XML-based matching technique for features

Steps 2 and 4 deal with encoding feature diagrams using XML
techniques,whichwill be used for theYfilter filtering andmatching
technique.

As mentioned earlier in Section 4, there are two potential types
of applications for our proposed approach. This section uses a Type
I application for illustration. An example for Type II application is
presented in Section 5 Case Studies.

To meet the objective of Type I application, the authors in [17]
proposed to use the FaMa technique [29]. In their approach, the
feature diagram is translated into logical representations and
mapped to a corresponding solver. Then, the result is mapped to
the feature domain again to present it to users. The choice of the
solver depends on the type of analysis required for the feature
diagram, e.g., a SAT solver for Boolean satisfiability checking. The

FaMa approach has yet to demonstrate how to overcome some
limitations, such as: (1) the space complexity for the medium and
large size feature diagrams can grow exponentially; and (2) the
logical representation for feature diagrams is not straightforward
because of the conversion between the feature diagram and the
logical representation.

In this paper, we use XPath and XML representations to encode
the feature diagrams for a SaaS system and tenants, respectively.
Following that, we apply Yfilter to identify tenant-specific feature-
based configuration.

4.2.1. Encoding feature diagrams with XML and XPath
Nodes in a feature diagram correspond to location steps of an

XPath feature representation. Each location step contains an axis,
a node test, and zero or more predicates. An axis specifies the hier-
archical relationship between nodes. For example, the parent/child
(‘‘/’’) operator or ancestor/ descendant operator (‘‘//’’).

A path starting from the root node and ending at a leaf node can
be encoded as a single XPath feature representation. For example,
the path starting from Security and ending at DataLocation, as
depicted in Fig. 2, is encoded as an XPath feature representation:

/Security/InfrastructureServiceLayer/DataSecurity/DataLocation.
The flexible grammar of XML and XPath is used to represent

various relationships captured in feature diagrams. Table 1 lists
the XML andXPath query representations for feature relationships,
which is briefly explained as follows.

For amandatory feature in a feature diagram, the corresponding
XML and XPath representations are straightforward, as depicted in
Table 1 . For an optional feature, the keyword select is used, which
is coupled with a Boolean value 1 (or 0) representing the presence
(or absence) of the feature.

Next, an OR feature group specifies a group of features from
which at least one feature must be selected. Hence, the OR feature

58 Y. Cao, C.-H. Lung, S.A. Ajila et al. / Future Generation Computer Systems 95 (2019) 52–67

Table 1
XML and XPath representation feature.
Feature relationship XML XPath feature representation

Mandatory
<featureName/> /featureName
Example: Example:
<Security><SaaS app front end layer/></Security>. /Security/SaaS app front end layer/.

Optional

<featureName select=‘‘0’’/>, /featureName[@select=‘‘0’’],
<featureNameselect=‘‘1’’/>. /featureName[@select=‘‘1’’].
Example: Example:
<Password change frequency select=‘‘0’’>, /Password change frequency[@select=‘‘0’’],
<Password change frequency select=‘‘1’’>. /Password change frequency[@select=‘‘1’’].

OR

<featureName><branch1/><branchi/> /featureName/branch1 , /featureName/branchi ,
<branchN/>< /featureName> /featureName/branchN .
Example: Example:
<Table security><Create/><Read/></Table security>. /Table security/Create, /Table security/Read, /Table security/Update,

/Table security/Delete.

AND

<featureName><branch1/><branch2/> /featureName[branch1][branch2]/branchN
<branchN/></featureName> Example:
Example: /Password[PasswordFormat]/MaxInvalidLoginAttempts[@num≤3].
<Password><PasswordFormat></PasswordFormat>
<MaxInvalidLoginAttemps num=‘‘3’’/></Password>.

XOR

/featureName/branch1 , /featureName/branchi ,
<featureName><branchi/></featureName> /featureName/branchN .
Example: (Notes: Post-processing is required for XOR.)
<DataIsolation><SharedSchema/></DataIso lation>. Example:

/DataIsolation/SharedSchema, /DataIsolation/SeparateSchema.

Attribute constraint

<featuerName attribute=‘‘value’’/>, /featureName[@attribute=‘‘value’’],
<featureName>someValue</featureName>. /featureName[text()=‘‘someValue’’].
Example: Example:
<Data security><Data location>Canada</Data location></Data
security>.

/Data security/Data location[text()=‘‘Canada’’].

group is represented as multiple XPath feature representations
that are selected. An AND feature group consists of features from
which every feature must be selected. Therefore, a tree-structure
XPath feature representation (using the ‘‘[]’’ operator) can be used
to encode the semantics of the AND relationship. The example for
AND in Table 1 shows that branch1, branch2, and branchN are all
selected.

The XOR feature group consists of features from which only
one can be selected. A two-step process is required to handle
the XOR relationship: (1) The features that are covered with XOR
are represented as a set of XPath feature representations; and (2)
a post-processing phase is applied to verify the exclusive rela-
tionship among features. Lastly, a feature diagram may include
attribute constraints which are represented as value-based pred-
icates in XPath feature representations. In Table 1, the XML and
XPath examples represent the corresponding part of the feature
diagram as depicted in Fig. 2. For illustration purposes and due to
the space limitation, only a fragment of XML and XPath feature
representations are shown in the examples. To handle the includes
and excludes relationships, which idea is similar to optional feature,
select = 1 (used for includes) and select = 0 (used for excludes)
together with the actual name. The difference is that additional
post-processing is required aftermatching to verify the correctness
of the includes or excludes relationship, as the attributes could be for
different nodes for the features.

4.2.2. Applying Yfilter matching technique
Our proposed matching approach using Yfilter, step 5, can be

applied in two different ways. This section first describes the ap-
plication of identifying the SaaS cloud features that match tenant-
specific requirements, constraints, and/or preferences. For this ap-
plication, after encoding the cloud-side feature diagram as a set
of XPath feature representations, these XPath feature representa-
tions are organized as a nondeterministic finite automaton (NFA),
e.g., Fig. 3, a formal model adopted by Yfilter. An XML document
which contains the configuration for each tenant is evaluated
against the NFA using Yfilter. The generated results from Yfilter are

a set of SaaS cloud features that satisfy the tenant’s requirements
and constraints.

Note that for Type I application, the matching operation is not
required every time a tenant specifies requirements in the analysis
stage if the featuremodel of the SaaS system is visible to tenants. In
this case, the SaaS features can be presented to tenants to choose
from. Rather, the step can be used when there are complex tenant-
specific constraints, e.g., features based on various feature opera-
tors: AND, OR, XOR, includes, excludes. This step can also be useful
to identify feature-based configuration for tenants or to support
potential downstream deployment based on identified features.

On the other hand, Type II application can be used to identify
all tenants that have subscribed to a certain set of SaaS features.
In this case, the encoded XPath for SaaS will be evaluated against
the aggregated XPath features for multiple or all tenants. The
application becomes very similar to the publish/subscribe system
where the filtering operation has been used to identify all sub-
scribers (i.e., tenants in our case) that are interested in a particular
publication document (e.g., a set of SaaS system features that may
need to be updated).

Fig. 3 depicts an example of three features expressed in XPath
and the corresponding NFA used in Yfilter. The NFA tree consists of
three features F0, F1, and F2. Each circle in the figure represents a
state, and double circles denote an accepting state; such states are
associatedwith the features they represent, e.g., text()= ‘‘Canada’’.
A directed edgewith a solid arrow represents a state transition. The
symbol on an edge represents the input that triggers the transition.
The special symbol ‘‘∗’’ is a wildcard which matches any element.
The symbol ‘‘ε’’ is used to mark a transition that requires no input.
The operator ‘‘//’’ in an XPath feature representation is mapped to
a combination of a ‘‘ε’’ transition and a self-loop transition with a
‘‘∗’’ input tag. The operator ‘‘//’’ results in a state being visitedmany
times.

Yfilter processes an XML document by searching from the root
of the NFA and tracks all matched transition states for each start
tag. There is a selection operator for each accepting state to handle
the value-based predicate in the corresponding path. For a tree-
structure XPath feature representation, Yfilter splits such a tree

Y. Cao, C.-H. Lung, S.A. Ajila et al. / Future Generation Computer Systems 95 (2019) 52–67 59

Fig. 3. Three sample XPath feature representations and a sample Tenent’s requirements in XML format.

feature representation into a set of simple path expressions and
applies a join operation after selections. The join operator finally
validates the correctness of the tree structure.

The aggregated XPath feature representations in Fig. 3 can be
viewed (top right) as the feature set for the cloud system and the
sample XML fragment (middle right) represents a set of tenant-
specific requirements. In this example, the matched features are
F0 and F2 (bottom right) which satisfy the tenant’s requirements.

A key benefit of using anNFA-based approach is the tremendous
reduction in the space size. The space complexity of our approach
is O(n), where n is the number of nodes in a cloud-side feature
diagram. For time complexity, although the NFA can result in fast
growth due to an increase in the number of states when we match
a recursive tag element in an XML document with a descendant
operator (‘‘//’’) in an XPath, the average performance of Yfilter is
still sufficiently fast as reported in [14]. For example, the processing
time of Yfilter is only around 30 ms when the number of queries is
slightly larger than 50,000.

4.3. Validation of the proposed approach

It has been proven that Yfilter can correctly generate thematch-
ing results based on formal NFA for XPath representations and cor-
rectly identifies matched subscribers encoded in XML for the pub-
lish/subscribe application domain [14]. It has also been adopted for
various applications in information processing. In order to apply
Yfilter and its related technologies to our problem domain, we
need to map two critical components: aggregated XPath repre-
sentations (conceptually represented in NFA) and incoming XML
messages. The analogical mapping from the SaaS problem to pub-
lish/subscribe systems can be realized as follows:

• The aggregated set of XPath features for an SaaS system are
mapped to the aggregated subscriptions in publish/subscribe
systems

• Features encoded in XML for each tenant are mapped to
publisher’s document in publish/subscribe systems

In other words, these two problem domains are analogous:
when a publication document is available in a publish/subscribe
system, Yfilter is used to identify matched subscriptions (or sub-
scribers) against the aggregated subscription tree. Similarly, in the
Type I application, given a tenant’s feature set, Yfilter is used to
identify a set of matched features against an aggregated feature
tree provided by the SaaS provider. The matching operation for
these two application domains is conceptually identical; hence

Yfilter also can generate correct matching results for our proposed
application.

The number of features (or queries in the publish/subscribe
domain) used in some XML filtering technique is much larger
than the numbers of features reported in the traditional SPLs. In
comparison, the authors [54] showed an example of diagnosis of
over 5000 features which is considered a very large number for the
traditional SPLs for≈ 50 s. (Note that diagnosis of features may re-
quire different computational cost, but the result reveals the range
of time it needs.) For multi-tenant SaaS systems, the number of
tenants alone can be in thousands or higher, and the total number
of features for real systems could also be in thousands, e.g., 10,000
in [5]. Configuration complexity management and scalability are
two key challenges for large systems [11,12,62]. For instance, the
security feature, as depicted in Fig. 2, can be integrated into the
feature diagram, as shown in Fig. 4, which can generate a large
number of combinations even for a simple case study, especially
when using a formal solver based on SAT, CSP, or BDD, such as
FaMa [29].

Since tenant requirements and preferences usually change over
time [52], andnew tenants can join or tenant groups can evolve, the
mapping algorithmmayneed to be executed frequently. Therefore,
an efficient and scalable automatic mapping technique is essential
in SaaS deployment [6]. The proposed application of Yfilter, related
techniques, and the use of NFA can meet these challenges.

5. Case studies

We have conducted experiments using our proposed approach
on a subset of features for Amazon EC2 service [63] and Sales-
force.comCRM system [2]. The first case study illustrates the Type I
application. The second case study is a variation of the first one and
it shows that specific constraints can be considered with the pro-
posed XML matching technique. Examples of constraints include
identification of a cloud provider that supports certain features,
public versus private clouds, or specific location information for
the security concern. Finally, the third case study is an example of
Type II application.

5.1. Amazxon web services—identifying tenant-specific SaaS features

In [17], the authors modeled Amazon EC2, EBS, S3 and RDS
with feature diagrams as shown in Fig. 4. The feature diagram was
analyzed with FaMa [29].

Although only functional features are considered, this small fea-
ture diagram yields 1758 different valid product options generated

60 Y. Cao, C.-H. Lung, S.A. Ajila et al. / Future Generation Computer Systems 95 (2019) 52–67

Fig. 4. Feature diagram for Amazon EC2 [17].

Table 2
XPath feature representation for Fig. 4.
Feature id XPath feature representations (Note that each path starts with /AmazonEC2)

1 /LoadBalancer[@select=‘‘1’’]
2 /LoadBalancer[@select=‘‘0’’]
3 /VirtualMachine[@select=‘‘0’’]
4 /VirtualMachine[@select=‘‘1’’]/OS/Windows[text()=‘‘StdWindows’’]
5 /VirtualMachine[@select=‘‘1’’]/OS/Windows[text()=‘‘SQLStd’’]
6 /VirtualMachine[@select=‘‘1’’]/OS/Windows[text()=‘‘SQLWeb’’]
7 /VirtualMachine[@select=‘‘1’’]/OS/Linux[text()=‘‘StdLinux’’]
8 /VirtualMachine[@select=‘‘1’’]/OS/Linux[text()=‘‘RedHat’’]
9 /VirtualMachine[@select=‘‘1’’]/OS/Linux[text()=‘‘Suse’’]

10 /VirtualMachine[@select=‘‘1’’]/InstanceType/Default/S
11 /VirtualMachine[@select=‘‘1’’]/InstanceType/Default/M
12 /VirtualMachine[@select=‘‘1’’]/InstanceType/Default/L
13 /VirtualMachine[@select=‘‘1’’]/InstanceType/Default/XL
14 /VirtualMachine[@select=‘‘1’’]/InsanceType/HighMem[@RAMRightBound=4]
15 /VirtualMachine[@select=‘‘1’’]/InstanceType/HighMem[@RAMRightBound=8]
16 /VirtualMachine[@select=‘‘1’’]/InstanceType/HighMem[@RAMRightBound=16]
17 /VirtualMachine[@select=‘‘1’’]/InstanceType/HighIO
18 /VirtualMachine[@select=‘‘1’’]/InstanceType/HighCPU[@cuRightBound=3]
19 /VirtualMachine[@select=‘‘1’’]/InstanceType/HighCPU[@cuRightBound=16]
20 /VirtualMachine[@select=‘‘1’’]/InstanceType/Cluster/Cluster4XL
21 /VirtualMachine[@select=‘‘1’’]/InstanceType/Cluster/GPU4XL
22 /VirtualMachine[@select=‘‘1’’]/InstanceType/Cluster/Cluster8XL
23 /VirtualMachine[@select=‘‘1’’]/DetailedMonitoring[text()=‘‘0’’]
24 /VirtualMachine[@select=‘‘1’’]/DetailedMonitoring[text()=‘‘1’’]
25 /VirtualMachine/Dedicated[@select=‘‘0’’]
26 /VirtualMachine/Dedicated[@select=‘‘1’’]
27 /Storage[@selected=‘‘0’’]
28 /Storage[@selected=‘‘1’’][text()=‘‘Provisioned’’]
29 /Storage[@selected=‘‘1’’][text()=‘‘Std’’]
30 /AmazonEC2/VirtualMachine[@select=‘‘1’’]/InsanceType/HighMem/HighMemXL

by FaMa. Moreover, the execution time for identifying only one
valid partial configuration from this feature diagram is 135ms [17].

The execution time for the optimization operation is evenmore
than one hour. As more features are considered, the matching
task becomes far more complex. The high execution time using
the approach in [17] is mainly caused by enumerating all possible
configurations offered by a feature diagram one by one.

Using our proposed approach, the encoded XPath feature rep-
resentation for Fig. 4 is listed in Table 2, which contains 30
features in total. There are three tenants used in the experiment.
The requirements of tenant A are captured in an XML document,
as shown in Fig. 5. Table 3 summaries the features specified for
tenants A, B, and C.

The next step is to apply Yfilter to find the matched features
provided by the SaaS for a tenant. As expected, the resulting fea-
tures identified by Yfilter for tenant A, as depicted at the bottom
of Fig. 5, are consistent with the features listed in Table 3. Results

for tenants B and C are also correct, but are not presented here
for brevity because they are similar to Fig. 5. In addition, Yfilter
only takes around 5 ms for the matching operation. The measured
processing time is given in Table 4. The processing time is much
lower than the time taken using the method presented in [17]
which is 135 ms for only one valid configuration without the opti-
mization operation or ∼5600 ms with the optimization operation.
The execution time grows exponentially to∼32000,∼370000ms,
and∼1 h 30+ for two, three, and four configurations, respectively,
with the optimization operation.

5.2. Saleforce.com — matching specific tenant constraints

This section presents another case study that is aimed to match
specific tenant constraints. For instance, some features may be
offered by different 3rd party providers. Our proposed approach

Y. Cao, C.-H. Lung, S.A. Ajila et al. / Future Generation Computer Systems 95 (2019) 52–67 61

Fig. 5. Requirements and matching results for tenant A.

Fig. 6. Feature diagram for the performance aspect of Salesforce.com CRM.

Table 3
List of selected features for each tenant.
Tenant List of selected features

A

Load Balancer: optional
Virtual Machine: mandatory; Memory: RAM
maximum 8; CPU: maximum 3; Cluster: 4XL; OS:
Std Linux;
Storage: Std

B

Load Balancer: opt ional
Virtual Machine: mandatory; Memory: RAM
maximum 16; CPU: maximum 3; Cluster: 4XL; OS:
Std Linux;
Storage: Provisioned

C

Load Balancer: mandatory
Virtual Machine: mandatory; InstanceType: Default:
Large; OS: Std Windows
Storage: optional

can be used to identify features that satisfy a certain constraint.

We use a subset of the performance feature of the Salesforce.com

CRM system as an illustration. The feature diagram for the system

is presented in Fig. 6.

Table 4
Processing time for the EC2 example.
Tenant A B C

Matching time (ms) 5.4 5.8 5.7

This example also shows two features, A and B, which may rep-
resent (i) 3rd party service providers, e.g., PaaS, (ii) cloud-specific
constraints, e.g., location for the security reason, or (iii) cloud type,
e.g., public or private. For this simple example, we assume that
A and B represent cloud providers. Some features are common in
both providers, but some are unique to only one provider, e.g., the
optional feature LoadBalancer is only available from provider B.

The first step is to encode SaaS features with XPath. All 15
encoded XPath representations for this simplified SaaS feature
set are listed in Table 5. There are additional characteristics in
this example. First, if the same feature is supported by multiple
providers, the featurewill appear for each tenant butwith provider
specific information. Take features F2 and F3 in Table 5 as an
example. They are identical and available from both providers A
and B. In this case, the same feature is repeated for each tenant
in XPath representation, but with different provider information.
Another point worth mentioning in this example is the features

62 Y. Cao, C.-H. Lung, S.A. Ajila et al. / Future Generation Computer Systems 95 (2019) 52–67

Fig. 7. A Tenant’s features in XML: an illustration.

related to predicates. For instance, Features F5 and F6 are identical,
except the cost values are different, $100 and $75 for provider A
and provider B, respectively. The actual values are captured in the
predicate format which can also be specified in a range.

The second step for the approach is to capture tenants’ features
in XML. From Fig. 7, the set of features specified for a tenant
consists of Real-time feature, High SpaceUsage with cost = $100,
High ResourceUsagewith cost= $300, LoadBalancer, HttpRequest-
Throughput, and DBThroughput.

The next step is to apply Yfilter for the mapping between the
sample tenant’s features (as shown in Fig. 7) and the set of features
for providers A and B in XPath format (as depicted in Table 5). The
matched features identified by Yfilter for the tenant are features
F1, F5, F7, F9, and F11 (see Table 5). The features that cloud provider
A supports (F1: Real-time performance, F5: High SpaceUsage with
a price of $100, F7: High ResourceUsage with a price of $300, and
F9: HttpRequestThroughput and DBThroughput) satisfy the sample
tenant’s features. However, only cloud provider B supports the
optional LoadBalancer feature (F10 and F11) in the sample tenant’s
requirements as shown in Fig. 7. Themeasured processing time for
this case study is 4.5 ms.

This case study demonstrates that the matched results can be
used to select a provider (a constraint in this case). Subsequently,
the matched results can be transformed to the corresponding fea-
ture configurations in support of subsequent operations, which is
out of the scope of the paper. The concept can be easily extended
to choose a particular cloud type, e.g., public, private, or hybrid, or
other specific characteristics that satisfy a tenant’s specific require-
ments or constraints.

5.3. Amazon web services—identifying specific tenants for a set of
cloud features

This section presents an example of the Type II application using
the proposed approach. Specifically, the objective of this case study
is to show that the proposed approach can be used to identify all
tenants that are interested in or have subscribed to a certain set of
SaaS features. The concept is similar to the XML publish/subscribe
systems. This application can be useful for a scenariowhere a set of
SaaS features are to be updated and there is a need to identify those
tenants that may be affected for maintenance or management
purpose.

The features presented in Table 3 are used to illustrate the
application. The XPath representations generated by the Yfilter
tool suite for those features (see Table 3) are listed in Table 6.
Tenant A has 7 features, Tenant B, 7 features, and Tenant C, 4
features; and the total number of features is 18. The top 4 features
are common to tenants A andB.Hence, there are 14unique features
in this example. In NFA-based XML filtering techniques, such as
Yfilter, common features can be aggregated at one node in the
NFA representation, which can save memory space and process-
ing time. In other words, there are 14 nodes in the NFA for this
example.

This experiment assumes that the SaaS provider offers those 14
unique features and wants to identify the tenants subscribed to
a particular set of features. For instance, if the provider wants to
identify the tenants for these two features:

/EC2/VirtualMachine[@select = ‘‘1’’]/InstanceType/Cluster/
Cluster4XL

/EC2/VirtualMachine[@select= ‘‘1’’]/OS/Linux[text()= ‘‘StdLinux’’]
Yfilter will return tenants A and B (the third and fourth features

that are common to A and B). Yfilter also will return tenant C if
load balancer is the feature of interest (both tenants A and B have
not subscribed to this feature). XML-based filtering techniques can
also support more complex XML documents in comparison to the
traditional databases. For example, the entire 14 features can be
used to identify tenants that are interested in each feature. Table 7
shows all tenants that are associated with each feature.

6. Tool support

XPath is the required format to represent queries (or features
in our problem) for Yfilter. We adopt feature diagrams in the
requirements management stage for an SaaS system. Hence, there
is a need to convert feature diagrams to XPath representations
in order to use Yfilter. This section first describes the tool we
have developed and used to validate our proposed approach to
the matching problem for multi-tenant SaaS systems. Following
that, we describe case studies to demonstrate how those tools are
used. In addition, some potential directions for tool integration are
highlighted to support automation.

The Yfilter tool suite can be used to generate XPath queries from
DTD (Document Type Definition). Therefore, we translate the fea-
turemodel to a DTD file. This step currently is performedmanually
for proof-of-concept and evaluation of the XML related techniques
for the multi-tenant matching problem. We have developed a tool
to translate the DTD representation to generate all possible XPath
representations corresponding to the featuremodel. The generated
XPath representations are subsequently used by Yfilter for the
matching purpose to validate the proposed approach and test the
performance of our approach.Whenwe need a new featuremodel,
e.g., for a new tenant or modifications of an existing one, we just
need tomodify an existing featuremodel and DTD representations
which can be then used to generate all possible XPath representa-
tions for the new feature model automatically.

On the other hand, the XPath query generator provided by
Yfilter cannot take the relationship between elements into account
when generating queries that are needed for feature diagrams,
e.g., AND, OR, etc. Hence, we have also modified the XPath gen-
erator to create XPath feature representations that are consistent
with the feature diagram. For instance, if element A and element
B have an OR relationship, they will not appear in one XPath
representation at the same time. Another example is if attribute
C of element D is marked as mandatory, attribute C will always
appears with element D in XPath queries.

To illustrate the tool support, we have combined two feature
diagrams—Fig. 2 for the security aspect of the Salesforce.com CRM
system and Fig. 4 features for Amazon EC2. The combined feature
diagram has 71 features.

Fig. 8 depicts a partial list of the DTD representations for the
combined 71 features as shown in Figs. 2 and 4. The complete list of
DTD representations is presented in the Appendix. A feature starts
with the keyword ELEMENT. For instance, Fig. 8 shows four top
level features on the first row, which consists of Security in Fig. 2,
and LoadBalancer, VirtualMachine, and Storage for AmazonEC2 in
Fig. 4. LoadBalancer does not have any child, hence it is trailed
with EMPTY. ATTLIST stands for attribute list. For instance, the
attribute list for LoadBalancer (the 3rd row) shows that either
0 or 1 is needed for the feature, as LoadBalancer is an optional

Y. Cao, C.-H. Lung, S.A. Ajila et al. / Future Generation Computer Systems 95 (2019) 52–67 63

Table 5
XPath representation for the feature diagram in Fig. 6.
id XPath feature representations Cloud provider

1 /Performance/ResponseTime/Real-time A
2 /Performance/ResponseTime/Standard A
3 /Performance/ResponseTime/Standard B
4 /Performance/SpaceUsage/Extreme[@cost=200] A
5 /Performance/SpaceUsage/High[@cost=100] A
6 /Performance/SpaceUsage/High[@cost=75] B
7 /Performance/ResourceUsage/High[@cost=300] A
8 /Performance/ResourceUsage/High[@cost=450] B
9 /Performance/Throughput[HttpRequest-Throughput]/DBThroughput A

10 /Performance/LoadBalancer[@select=‘‘0’’] B
11 /Performance/LoadBalancer[@select=‘‘1’’] B
12 /Performance/QoS/NetworkQoS A
13 /Performance/QoS/NetworkQoS B
14 /Performance/QoS/BackupQoS A
15 /Performance/QoS/BackupQoS B

Table 6
Xpath representations for features in Table 3.
Tenant XPath feature representations

A

/EC2/VirtualMachine[@select="1"]/InstanceType/HighIO
/ EC2/LoadBalancer[@select="0"]
/EC2/VirtualMachine[@select="1"]/InstanceType/Cluster/Cluster4XL
/EC2/VirtualMachine[@select="1"]/OS/Linux[text()="StdLinux"]
/EC2/VirtualMachine[@select="1"]/InstanceType/HighCPU[@cuRightBound=3]
/EC2/Storage[@selected="1"][text()="Std"]
/EC2/VirtualMachine[@select="1"]/InstanceType/HighMem[@RAMRightBound=8]

B

/EC2/VirtualMachine[@select="1"]/InstanceType/HighIO
/EC2/LoadBalancer[@select="0"]
/EC2/VirtualMachine[@select="1"]/InstanceType/Cluster/Cluster4XL
/EC2/VirtualMachine[@select="1"]/OS/Linux[text()="StdLinux"]
/EC2/VirtualMachine[@select="1"]/InstanceType/HighMem[@RAMRightBound=16]
/EC2/VirtualMachine[@select="1"]/InstanceType/HighCPU[@cuRightBound=16]
/EC2/Storage[@selected="1"][text()="Provisioned"]

C

/EC2/LoadBalancer[@select="1"]
/EC2/VirtualMachine[@select="1"]/OS/Windows[text()="StdWindows"]
/EC2/Storage[@selected="0"]
/EC2/VirtualMachine[@select="1"]/InstanceType/Default/L

Table 7
Identification of tenants for cloud features: An illustration.
XPath Feature Tenant

/EC2/VirtualMachine[@select="1"]/InstanceType/HighIO A, B
/ EC2/LoadBalancer[@select="0"] A, B
/EC2/VirtualMachine[@select="1"]/InstanceType/Cluster/Cluster4XL A, B
/EC2/VirtualMachine[@select="1"]/OS/Linux[text()="StdLinux"] A, B
/EC2/VirtualMachine[@select="1"]/InstanceType/HighCPU[@cuRightBound=3] A
/EC2/Storage[@selected="1"][text()="Std"] A
/EC2/VirtualMachine[@select="1"]/InstanceType/HighMem[@RAMRightBound=8] A
/EC2/VirtualMachine[@select="1"]/InstanceType/HighMem[@RAMRightBound=16] B
/EC2/VirtualMachine[@select="1"]/InstanceType/HighCPU[@cuRightBound=16] B
/EC2/Storage[@selected="1"][text()="Provisioned"] B
/EC2/LoadBalancer[@select="1"] C
/EC2/VirtualMachine[@select="1"]/OS/Windows[text()="StdWindows"] C
/EC2/Storage[@selected="0"] C
/EC2/VirtualMachine[@select="1"]/InstanceType/Default/L C

feature specified in the feature diagram. On the other hand, OS
(the 6th row) is a mandatory feature and it has two alternatives,
i.e., Windows and Linux.

The Yfilter’s XPath query generator can generate nested and
non-nested queries or features. A nested representation is an
XPath representationwhich has preconditions. For example, /Ama-
zonEC2[Storage[@select= ‘‘1’’]/ Std]/LoadBalancer[@select= ‘‘1’’] is a
nested feature which means that the tenant chooses LoadBalancer
while the tenant also has selected Std for Storage. But for our
mapping purpose, we only need to generate non-nested features,
because all features can be covered based on the semantics of
a feature diagram. As a result, it can substantially reduce the
number of combinations and reduce the computation time. For

this particular example, if nested features are considered, the
total number of automatically generated XPath representations
exceeds 6000. Without considering nested XPath, the DTD can
automatically generate all possible 71 XPath representations for
the combined features as shown in Figs. 2 and 4. Fig. 9 shows
48 XPath representations for Amazon EC2 using Yfilter’s XPath
generator from the DTD as depicted in the Appendix. For space
reason, the security aspect is not included in this figure.

For our approach, the feature model of the SaaS system is
first developed. A feature model for each tenant is then built.
The second step can be avoided if the feature model of the SaaS
system is available to the tenants. In other words, each tenant can
simply select and discard particular features from the available

64 Y. Cao, C.-H. Lung, S.A. Ajila et al. / Future Generation Computer Systems 95 (2019) 52–67

Fig. 8. DTD representations (a partial list) for Combined Feature Diagrams in Figs. 2
and 4.

Fig. 9. Yfilter generated XPath representations from DTD.

SaaS feature model. This approach can be an easy means to specify
requirements in SPL. On the other hand, our approach relies on
Yfilter which in turn makes use of XPath. Hence, the selected
features need to be translated to XPath expressions for Yfilter to
identify the matched system features.

On the other hand, our approach is highly effective because for
real systems, the number of features can be large, thousands of
features whose combinations could be imposed bymany and often

nontrivial rules [5,12]. For such systems, the proposed matching
approach can effectively facilitate the management of the con-
figuration complexity, which is one of the crucial challenges that
the simple tenant selection mechanism (e.g., using GUI) cannot
address properly.

7. Conclusions and future work

Multi-tenant SaaS applications are emerging primarily due to
the cost reduction through resource sharing. One of the challenges
formulti-tenant SaaS systems is the rapid growing co-existing con-
figurations across multiple tenants. In addition, multiple tenants
can have diverse sets of features and constraints, including layout
style, general configuration, file I/O, and workflow [6]. Currently,
there is still a lack of methodical support for the development
of emerging multi-tenant applications in support of co-existing
tenant-specific configurations. Feature modeling and automatic
matching of tenant-specific feature configurations and constraints
to the cloud SaaS features plays a crucial role in the effective
management of multi-tenant SaaS applications.

The main contribution of the paper is a novel approach that
supports the automatic matching of tenant-specific feature config-
urations, which can be used to facilitate SaaS deployment, feature
updates, and management. We presented a framework to provide
support mechanisms for constraint-based cloud services and pro-
posed the use of Yfilter for the matching process. Yfilter has been
adopted for large problem space in various datamanagement areas
and is a highly reliable and efficient solution. We have also devel-
oped a tool to automatically generate XPath feature expressions
based on feature diagrams and DTD. We applied our proposed
approach to two use cases. The experimental results demonstrated
the correctness and effectiveness of our proposed approach both in
time and space usages, as shown in Section 5 Case Studies.

A few directions warrant future research. For our case stud-
ies, only one configuration option was generated from Yfilter. If
multiple configuration options are generated by Yfilter, selection
of the most suitable one can be determined based on cost or
other criteria,which is currently under investigation.MCDM-based
approaches [1] have been proposed for service selection. One chal-
lenge is the size of configuration space and the number of criteria
could be large. After the filtering process, the number of configu-
ration options will be significantly lower, which can facilitate an
efficient adoption of a MCDM-based method. Another direction
is the development of a GUI tool that allows the user/designer
to select the features from SaaS and then automatically gener-
ate the DTD representations. This would be useful if the number
of features is not large or there are not complex tenant-specific
constraints. We are also investigating the integration of existing
feature modeling tools with Yfilter to provide enhanced support.
A number of feature modeling tools are available. Some examples
include EMF featuremodel [64], SPLOT [51], and tools compared by
Dammagh and Troyer [65]. SPLOT supports the creation of a feature
tree in Simple XML FeatureModel (SXFM) format. The tool has also
been extended to even generate XPath notations [12]. In this case,
there is no need to encode a feature with DTD and then generate
corresponding XPath notations.

Our paper focused on SaaS, but the concept of features is generic
to IaaS, PaaS, and SaaS cloud services. Some cloud providers sup-
port more than one type of cloud services, e.g., Google Cloud Plat-
form (Google) [66], Microsoft Azure (Microsoft) [67], and Amazon
AWS (Amazon) [63]. Hence, the other direction is to investigate the
proposed approach for other cloud services, i.e., IaaS and PaaS, and
potential integration of multiple cloud services.

Acknowledgment

This project was partially sponsored by Natural Sciences and
Engineering Research Council of Canada (NSERC).

Y. Cao, C.-H. Lung, S.A. Ajila et al. / Future Generation Computer Systems 95 (2019) 52–67 65

66 Y. Cao, C.-H. Lung, S.A. Ajila et al. / Future Generation Computer Systems 95 (2019) 52–67

Appendix

The complete list of DTD representations for the combined 71
features depicted in Fig. 2 (security for Saleforce.com) and Fig. 4
(Amazon EC2).

References

[1] L. Sun, H. Dong, O.L. Hussain, F.K. Hussain, E.E. Chang, Cloud service selection:
state-of-the-art and future research directions, J. Netw. Comput. Appl. 45
(2014) 134–150.

[2] Salesforce.com, 2018 https://www.salesforce.com (last accessed 20.10.18).
[3] L.P. TIzzei, M. Nery, V.C.V.B. Segura, R.F.G. Cerqueira, Using microservices and

software product line engineering to support reuse of evolving multi-tenant
SaaS, in: Proceedings of the 21st ACM International Systems and Software
Product Line Conf, 2017, pp. 205–214.

[4] C.-P. Bezemer A. Zaidman, A, Multi-tenant SaaS applications: Maintenance
dream or nightmare? in: Proceedings of IWPSE-EVOL, 2010, pp. 88–92.

[5] A. Metzger, K. Pohl, Software product line engineering and variability man-
agement: achievements and challenges, in: Proceedings of the Future on
Software Engineering, 2014, pp. 70–84.

[6] S. Walraven, D. Van Landuyt, E. Truyen, K. Handekyn,W. Joosen, Efficient cus-
tomization of multi-tenant software-as-a-service applications with service
lines, J. Syst. Softw. 91 (2014) 48–62.

[7] P. Helland, Condos and clouds, Commun. ACM 56 (1) (2013) 50–59.
[8] D. Benavides, S. Segura, P. Trinidad, A.R.Cortes, FAMA: Tooling a framework

for the automated analysis of feature models, in: Proceedings of 1st Inter-
national Workshop on Variability Modeling of Software-Intensive Systems
(VaMoS), 2007, pp. 129–134.

[9] J.E. Hajlaoui,M.N. Omri, D. Benslimane, AQoS-aware approach for discovering
and selecting configurable IaaS cloud services, Int. J. Comput. Syst. Sci. Eng. 32
(4) (2017) 1–16.

[10] Y. Xiang, Y. Zhou, Z. Zheng, M. Li, Configuring software product lines by
combining many-objective optimization and SAT solvers, ACM Trans. Softw.
Eng. Methodol. 26 (4) (2018) 1–47.

[11] L. Chen, M.A. Babar, A survey of scalability aspects of variability modeling
approaches, in: Proceedings of the 13th IEEE International Software Product
Lines Conference (SPLC), 2009, pp. 1–8.

[12] A. Hubaux, P. Heymans, P.-Y. Schobbens, D. Deridder, Supporting multiple
perspectives in feature-based configuration, Softw. Syst. Model. 12 (3) (2013)
641–663.

[13] Y. Cao, C.-H. Lung, S. Ajila, Constraint-based multi-tenant SaaS deployment
using feature modeling and XML filtering techniques, in: Proceedings of 12th
International Workshop on Software Cybernetics in collaboration with the
39th Annual IEEE International Computer Software and Applications Conf,
2015, pp. 454–459.

[14] Y. Diao,M. Altinel,M. Franklin, H. Zhang, P. Fischer, Path sharing and predicate
evaluation for high-performance XML filtering, ACM Trans. Database Syst. 28
(4) (2003) 467–516.

[15] XPath, XML Path Language 1.0, http://www.w3.org/TR/xpath (last accessed
02.08.18).

[16] K. Kang, S. Cohen J. Hess, W. Novak, A. Peterson, Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-021,
(1990) Software Engineering Institute, Carnegie Mellon University.

[17] J. Garćıa-Galán, O.F. Rana, P. Trinidad, A. Ruiz-Cortes, Migrating to the cloud:
a software product line based analysis, in: Proceedings of 3rd International
Conference on Cloud Computing and Services Science, 2013, pp. 416–426.

[18] K. Pohl, G. Bockle, F. van der Lindeen, Software Product Line Engineering:
Foundations, Principles and Techniques, Springer-Verlag, 2005.

[19] S. Apel, C. Kästner, An overview of feature-oriented software development, J.
Object Technol. (JOT) 8 (5) (2009) 49–84.

[20] K. Czarnecki, A. Wasowski, Feature diagrams and logics: There and back
again, in: Proceedings of the 11th IEEE International Software Product Line
Conference (SPLC), 2007, pp. 23–34.

[21] M. Bošković, G. Mussbache, E. Bagheri, D. Amyot, D. Gasevic, M.M. Hatala,
Aspect-oriented feature models, in: Proceedings of MODELS Workshops,
2011, pp. 110–124.

[22] B. Tekinerdogan, K. Öztürk, Feature-driven design of SaaS architectures,
software engineering frameworks for the cloud computing paradigm, in:
Software Engineering Frameworks for the Cloud Computing Paradigm, 2013,
pp. 189–212.

[23] R. Mietzner, A. Metzger, F. Leyman, K. Pohl, Variability modelling to support
customization and deployment on multi-tenant aware software as a service
applications, in: Proceedings of ICSE Workshop on Principles of Eng. Service
Oriented Systems, 2009, pp. 18–25.

[24] E. Wittern, J. Kuhlenkamp, M. Menzel, Cloud service selection based on
variability modeling, in: Proceedings the 10th International Conference on
Service Oriented Computing, 2012, pp. 127–141.

[25] E. Wittern, C. Zirpins, Service feature modeling: modeling and participatory
ranking of service design alternatives, Softw. Syst. Model. 15 (2) (2016) 553–
578.

[26] C. Quinton, L. Duchien, P. Heymans, S. Mouton, E. Charlier, Using feature
modelling and automations to select among cloud solutions, in: Proceedings
of 3rd International Workshop on Product Line Approaches in Software.
Engineering, 2012, pp. 17–20.

[27] M. Abdel-Basset, M. Mohamed, V. Change, NMCDA: a framework for evaluat-
ing cloud computing services, Future Gener. Comput. Syst. 86 (2018) 12–29.

[28] H. Moens, F.D. Truck, Feature-based application development and manage-
ment of multi-tenant applications in clouds, in: Proceedings of the 18th
International Software Product Line Conference, 2014, pp. 72–81.

[29] FaMa, http://www.isa.us.es/fama/ (last accessed May 2018).
[30] Flame Framework, http://www.isa.us.es/fama/?FLAME_framework, (last ac-

cessed 02.08.18).
[31] B. Sengupta, A. Roychoudhury, Engineering multi-tenant software-as-a-

service systems, in: Proceedings of ICSE Workshop on Principles of Eng.
Service Oriented Systems, 2011, pp. 15–21.

[32] H. Moens, E. Truyen, S. Walraven, W. Joosen, B. Dhoedt, F.D. Truck, Cost-
effective feature placement of customizable multi-tenant applications in the
cloud, J. Netw. Syst. Manag. 22 (4) (2014) 517–558.

[33] J. J. Garćıa-Galán, P. Trinidad, Modelling and analysing highly-configurable
services, in: Proceedings of the 21st Int’l Systems and Software Product Line
Conference – Volume A, 2017, pp. 114–122.

[34] W. Alwis, C. Gamage, Amulti-tenancy aware architectural framework for SaaS
application development, J. Inst. Eng. 46 (3) (2013) 21–31.

[35] M. Dutta, P. Gupta, Customization issues in cloud based multi-tenant SaaS
applications, Int. J. Eng. Comput. Sci. 3 (4) (2014) 5447–5452.

[36] J. Espadas, A. Molina, G. Jimenez, M. Molina, P. Ramirez, D. Concha, A tenant-
based resource allocation model for scaling software-as-a-service applica-
tions over cloud computing infrastructures, Future Gener. Comput. Syst. 29
(2011) 273–286.

[37] S. Walraven, E. Truyen, W. Joosen, A Middleware Layer for Flexible and Cost-
efficient Multi-Tenant Applications, in: Proceedings of the 12th International
Conference on Middleware, 2011, pp. 370–389.

[38] W.-T. Tasi, P. Zhong, Y. Chen, Tennat-centric sub-tenancy architecture in
software-as-a-service, CAAI Trans. Intell. Technol. 1 (2) (2016) 150–161.

[39] XML, Extensible Markup Language, http://www.w3.org/XML (last accessed
02.08.18).

[40] JSON, Introducing JSON, http://json.org/ (last accessed 02.08.18).
[41] E.R. Harold, W.S. Means, XML in a Nutshell, O’Reilly, 2004.
[42] K. Candan,W.-P. Hsiung, S. Chen, D. Agrawal, AFilter: Adaptable XML filtering

with prefix-caching and suffix-clustering, in: Proceedings of International
Conference on VLDB, 2006, pp. 559–570.

[43] L. Dai, C.-H. Lung, S. Majumdar, BFilter: Efficient XML message filtering and
matching in publish/subscribe systems, J. Softw. 11 (4) (2016) 376–402.

[44] S. Chen, H.G. Li, J. Tatemura, W.-P. Hsiung, Scalable filtering of multiple
generalized-tree-pattern queries over XML streams, IEEE Trans. Knowl. Data
Eng. 20 (12) (2008) 1627–1640.

[45] W. Sun, Y. Qin, P. Yu, Z. Zhang, Z. He, HFilter: Hybrid finite automaton based
stream filtering for deep and recursiveXMLdata, database and expert systems
applications, in: LectureNotes onComputer Science, Vol. 5181, 2008, pp. 566–
580.

[46] P. Saxena, R. Kamal, System architecture and effect of depth of query on XML
document filtering using PFilter, in: Proceedings of International Conference
on Contemporary Computing, 2013, pp. 192–195.

[47] J. Kwon, P. Rao, B. Moon, S. Lee, Fast XML document filtering by sequencing
twig patterns, ACM Trans. Internet Technol. 9 (4) (2009) 1–51.

[48] D. Lee, H. Shin, J. Kwon, W. Yang, S. Lee, Sfilter: Schema based filtering
system for XML streams, in: Proceedings of the International Conference on
Multimedia and Ubiquitous Engineering, 2007, pp. 266–271.

[49] R. Martins, J. Pereira, Wfilter: Efficient XLM _Filtering for Large Scale Pub-
lish/Subscribe Systems, in: Proceedings of Symp. on INForum, 2011, pp. 1–14.

[50] V. Cechticky, A. Pasetti, O. Rohlik, W. Schaufelberger, XML-based feature
modelling software reuse: Methods techniques tools, in: Lecture Notes in
Computer Science, Vol. 3107, 2004, pp. 101–114.

[51] SPLOT, 2016 Software Product Lines Online Tools, http://www.splot-
research.org/ (last accessed 20.10.18).

[52] J. Garćıa-Galán, L. Pasquale, P. Trinidad, A. Ruiz-Cortes, User-centric adapta-
tion analysis of multi-tenant services, ACM Trans. Autonom. Adapt. Syst. 10
(4) (2016) 24, pp. Jan. 2016.

[53] T. Zheng, X. Zheng, Y. Zhang, Y. Deng, E. Dong, R. Zhang, X. Liu, SmartVM:
a SLA-aware microservice deployment framework, World Wide Web (2018)
1–19.

http://refhub.elsevier.com/S0167-739X(18)31950-2/sb1
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb1
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb1
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb1
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb1
https://www.salesforce.com
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb3
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb3
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb3
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb3
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb3
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb3
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb3
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb4
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb4
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb4
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb5
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb5
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb5
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb5
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb5
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb6
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb6
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb6
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb6
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb6
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb7
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb8
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb8
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb8
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb8
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb8
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb8
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb8
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb9
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb9
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb9
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb9
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb9
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb10
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb10
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb10
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb10
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb10
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb11
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb11
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb11
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb11
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb11
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb12
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb12
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb12
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb12
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb12
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb13
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb13
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb13
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb13
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb13
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb13
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb13
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb13
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb13
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb14
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb14
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb14
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb14
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb14
http://www.w3.org/TR/xpath
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb17
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb17
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb17
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb17
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb17
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb18
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb18
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb18
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb19
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb19
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb19
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb20
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb20
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb20
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb20
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb20
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb21
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb21
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb21
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb21
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb21
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb22
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb22
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb22
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb22
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb22
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb22
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb22
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb23
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb23
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb23
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb23
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb23
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb23
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb23
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb24
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb24
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb24
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb24
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb24
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb25
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb25
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb25
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb25
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb25
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb26
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb26
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb26
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb26
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb26
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb26
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb26
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb27
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb27
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb27
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb28
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb28
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb28
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb28
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb28
http://www.isa.us.es/fama/
http://www.isa.us.es/fama/?FLAME_framework
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb31
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb31
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb31
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb31
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb31
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb32
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb32
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb32
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb32
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb32
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb33
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb33
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb33
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb33
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb33
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb34
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb34
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb34
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb35
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb35
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb35
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb36
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb36
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb36
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb36
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb36
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb36
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb36
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb37
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb37
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb37
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb37
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb37
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb38
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb38
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb38
http://www.w3.org/XML
http://json.org/
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb41
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb42
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb42
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb42
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb42
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb42
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb43
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb43
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb43
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb44
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb44
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb44
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb44
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb44
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb45
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb45
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb45
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb45
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb45
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb45
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb45
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb46
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb46
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb46
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb46
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb46
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb47
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb47
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb47
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb48
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb48
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb48
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb48
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb48
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb49
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb49
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb49
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb50
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb50
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb50
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb50
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb50
http://www.splot-research.org/
http://www.splot-research.org/
http://www.splot-research.org/
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb52
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb52
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb52
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb52
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb52
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb53
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb53
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb53
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb53
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb53

Y. Cao, C.-H. Lung, S.A. Ajila et al. / Future Generation Computer Systems 95 (2019) 52–67 67

[54] J. White, D. Schmidt, D. Benavides, P. Trinidad, Automated diagnosis of
product-line configuration errors in feature models, in: Proceedings of 12th
International. Software Product Line Conference, 2008, pp. 225–234.

[55] W.-C. Hsu, I.-E. Liao, CIS-X: A compacted index scheme for efficient query
evaluation of XML documents, Inform. Sci. 241 (2013) 195–211.

[56] F. Li, H. Wang, L. Hao, J. Li, H.H. Gao, Approximate joins for XML at label level,
Inform. Sci. 282 (2014) 237–249.

[57] J. Liu, Z.M.Ma, L. Yan, Efficient labeling scheme for dynamic XML trees, Inform.
Sci. 221 (2013) 338–354.

[58] X. Liu, L. Chen, C. Wan, D. Liu, X. Xiong, Exploiting structures in keyword
queries for XML search, Inform. Sci. 240 (2014) 56–71.

[59] J. Lu, T.W. Ling, Z. Bao, C.Wang, ExtendedXML tree patternmatching: theories
and algorithms, IEEE Trans. Knowl. Data Eng. 23 (3) (2011) 1–15.

[60] S. Madria, Y. Chen, K. Passib, S. Bhowmick, Efficient processing of XPath
queries using indexes, Inf. Syst. 32 (2017) 131–159.

[61] A. Termehchy, M. Winslett, Using structural information in XML keyword
search effectively, ACM Trans. Database Syst. 36 (1) (2011) 1–49.

[62] S. Urli, M. Blay-Fornarino, P. Collet, Handling complex configurations in
software product lines: a tooled approach, in: Proceedings of the IEEE 18th
International Software Product Line Conference (SPLC), 2014, pp. 112–121.

[63] AWS, 2016, Amazon Web Services, https://aws.amazon.com/ (last accessed
16.11.16).

[64] EMF, FeatureModel, EclipseModeling Framework Technology Project (EMFT)
http://www.eclipse.org/proposals/feature-model/ (last accessed 02.08.18).

[65] M.E. Dammagh, L.D. Troyer, Feature modeling tools: evaluation and lessons
learned, in: Advances in Conceptual Modeling, Recent Developments and
New Directions, in: Lecture Notes in Computer Science, vol. 6999, Springer,
2011, pp. 120–129.

[66] Google Cloud Platform, https://cloud.google.com/ (last accessed 13.08.18).
[67] Microsoft Azure, (2018) https://azure.microsoft.com/ (last accessed

02.08.18).

Yang Cao received the B.S. and M.S. degrees in Com-
puter Science and Engineering from Northeastern Uni-
versity, Shenyang, China and the Ph.D. degree in Com-
puter Science from Carleton University, Ottawa, Canada.
She worked as Postdoc in University of Illinois Urbana-
Champaign from 2015 to 2017. She is working in Mi-
crosoft Beijing as a Software Engineer in the big data and
AI platform team.

Chung-Horng Lung received the B.S. degree in Com-
puter Science and Engineering from Chung-Yuan Chris-
tian University, Taiwan and the M.S. and Ph.D. degrees
in Computer Science and Engineering from Arizona State
University. He was with Nortel Networks from 1995 to
2001. In September 2001, he joined the Department of
Systems and Computer Engineering, Carleton University,
Ottawa, Canada,where he is nowaProfessor. His research
interests include: Software Engineering, Cloud Comput-
ing, and Communication Networks.

Samuel A. Ajila received B.Sc. (Hons.) in Computer
Science from University of Ibadan, Nigeria, M.Sc. in Com-
puter Science from University of Ife, Nigeria, DEA and
Ph.D. in Computer Science and Engineering from LO-
RIA, Université de Lorraine, Nancy, France. He was with
Nelson Mandela University, Port Elizabeth, South Africa
as a Senior Lecturer and HOD in Computer Science and
Information Systems from 1998 to 2001. In September
2001, he joined theDepartment of Systems andComputer
Engineering, Carleton University, Ottawa, Canada where

he is currently an Associate Professor. His research interests include Software
Engineering, Cloud Computing, Machine Learning, and Big Data Analytics.

Xiaolin Li received the B.S degree in Electronic Infor-
mation Engineering from Sanxi University, Shanxi, China
and theM.S. in Computer Science from Shanghai Jiaotong
University, Shanghai, China and the secondM.A.Sc. in Sys-
tem and Computer Engineering from Carleton University,
Ottawa, Canada. She is working as a Software Engineer at
Cisco, Ottawa, Canada.

http://refhub.elsevier.com/S0167-739X(18)31950-2/sb54
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb54
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb54
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb54
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb54
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb55
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb55
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb55
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb56
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb56
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb56
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb57
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb57
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb57
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb58
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb58
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb58
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb59
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb59
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb59
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb60
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb60
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb60
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb61
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb61
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb61
https://aws.amazon.com/
http://www.eclipse.org/proposals/feature-model/
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb65
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb65
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb65
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb65
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb65
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb65
http://refhub.elsevier.com/S0167-739X(18)31950-2/sb65
https://cloud.google.com/
https://azure.microsoft.com/

	Support mechanisms for cloud configuration using XML filtering techniques: A case study in SaaS
	Introduction
	Related Work
	Feature modeling and related work
	Multi-tenancy and related work
	XML, JSON, XPath, and XML filtering techniques
	Discussion

	Constraint-based cloud deployment framework
	Automatic XML-based matching
	Perform feature modeling
	Apply XML-based matching technique for features
	Encoding Feature Diagrams with XML and XPath
	Applying Yfilter Matching Technique

	Validation of the proposed approach

	Case studies
	Amazxon web services—identifying tenant-specific SaaS features
	Saleforce.com — Matching specific tenant constraints
	Amazon web services—identifying specific tenants for a set of cloud features

	Tool support
	Conclusions and future work
	Acknowledgment
	Appendix
	References

