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HIGHLIGHTS

o We proposed three CNN-based code authorship identification systems.

o We explained various source code representations and our feature learning technique.
o We then fed the code representations into a CNN-based code authorship model.

e Large-scale code authorship process of different programming languages is conducted.
o Our technique identified a large number of programmers (1,600) with 99.5% accuracy.
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Code authorship identification code authorship identification model to identify the code’s author. Evaluation results from using our
Program features privacy approach on data from Google Code Jam demonstrate an identification accuracy of up to 99.4% with
Convolutional neural network 150 candidate programmers, and 96.2% with 1,600 programmers. The evaluation of our approach also

Deep learning identification

; . shows high accuracy for programmers identification over real-world code samples from 1987 public
Software forensics and security

repositories on GitHub with 95% accuracy for 745 C programmers and 97% for the C++ programmers.
These results indicate that the proposed approaches are not language-specific techniques and can identify
programmers of different programming languages.
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1. Introduction assigning each piece to the programmer who wrote it. Thus, the ad-
vancements in this field could assist in several aspects of software
Recently, the code authorship identification task has gained forensics, such as software authorship disputes [2], code integrity
increased attention in the research community [1] due to its im- investigations [3], code plagiarism detection [4], and copyright
portance in software forensics. Code authorship identification is infringement [5]. Moreover, code authorship identification can be
the process of identifying programmers based on their distinctive used to identify programmers of malicious code.
programming styles. Style is based on various factors, such as The success of code authorship identification depends on ef-
the programmer’s preferences in the way to write code, naming  fective features extraction process that captures the distinctive
of the variables, programming proficiency and experience, and  cparacteristics of programmers’ coding styles. This process is chal-
the thinking process to sol‘v_e any programming task: All of these lenging, since the “coding style” of a programmer could change
factors he'lp to extract specific features fro.m d gIven piece of a pro- when working in environments or when following certain soft-
grammer’s code to enable the authorship identification process by ware engineering paradigms [6]. Being able to extract such features

would enable accurate code authorship identification by assigning
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of convolving filters to local features [7]. These robust features in-
credibly help in the classification process. Several works [8,9] have
shown that CNN capabilities are not limited to computer vision
applications, since CNN models have shown interesting results in
natural language processing (NLP) tasks. Applying a CNN to NLP
tasks is well-explored in the literature [8]. CNNs have achieved
remarkable results in several NLP tasks, such as sentence model-
ing [10], search query retrieval [11], and semantic parsing [12],
among others [ 13]. However, to the best of our knowledge, no pre-
vious work has applied a CNN to structured codes for the purpose
of code authorship attribution. This work explores the applicability
of CNNs to identify programmers based on code samples. In this
work, we present different variations of CNN models trained using
different code representations. Moreover, we explore the adequacy
of different source code representations, as well as different CNN-
based deep learning architectures in the performance of the code
authorship identification task.

Summary of Contributions. We summarize the main contributions
of this work in multiple directions as follows.

e We designed feature learning and extraction techniques us-
ing CNN-based deep learning architectures. In this phase,
complete or incomplete source code is given as input to
a CNN-based deep learning architecture to generate high-
quality and distinctive code authorship attributes that allow
effective code authorship identification.

e Prior to the process of feeding the CNN with source code,
we represent source code samples using two well-known ap-
proaches for textual data analysis [14-16]. The first approach
is to apply term frequency-inverse document frequency (TF-
IDF), which reflects how important a word is to a document
in a collection or corpus. Thus, our approach does not require
any prior information on specific programming languages. As
a result, our approach is more resilient to language specifics
and to the number of code files available per author. The
second approach is to apply dense representations of the
source code using word embedding representation, which
allows words with similar meaning in the corpus to have a
similar representation.

e We conducted a large-scale code authorship identification
process with three different programming languages (C++,
Java, and Python) and demonstrated that our technique can
handle identification of a large number of programmers
(1600) while maintaining high accuracy (99.50%).

Organization. The remainder of the paper is structured as follows.
We review the related work in Section 2. We introduce the theoret-
ical background required for understanding our work in Section 3.
In Section 4 we present our CNN-based approaches to source code
authorship identification. We proceed with a detailed overview of
the experimental results from our approaches in Section 5. Finally,
we provide our conclusion in Section 7.

2. Related work

Authorship attribution at the document level began as early
as the late of 19th century with the first attempts to quantify
author writing style. However, it was only recently that researchers
started to investigate authorship attribution for software writers.

In the literature of software authorship attribution, most of
the works can be broadly divided into either single or multi-
author identification [17,18], for each sample of code. For both
approaches, the code sample can be source code written using a
programming language or a binary code generated from a compi-
lation process.

Unlike binary code identification techniques, which assume
only executable machine code is available [19,20,17], we review
techniques related to source code authorship identification that
assume the source code of the program is available, and that each
code sample is written by a single programmer.

Most of the literature on code authorship identification at-
tempted to solve the problem in two main steps: feature extraction
and authorship identification. The feature extraction step is con-
sidered the labor-intensive part, where manually handcrafted fea-
tures are extracted from code samples. These features are collected
based on the fact that programmers each have their own quantita-
tive and qualitative features to represent each programmer’s cod-
ing style. Examples are layout (spacing, indentation, and boarding
characters, etc.), style (variable naming, choice of statements, com-
ments, etc.) and environment (computer platform, programming
language, compiler, text editor, etc.). Following that, most previous
work on code authorship identification adopted either statistical
analysis techniques, machine learning classification approaches,
or ranking approaches that are based on similarity measurements
in order to do authorship identification for code samples [21].
In particular, Krsul et al. were among the first to explore the
possibility of identifying the author of a program by examining
handcrafted programming style characteristics [22]. In their work,
they adopted a statistical analysis technique called multivariate
discriminant analysis to classify code samples of 29 programmers.
Burrows [14] and Frantzeskou et al. [23] extracted n-grams from
source codes to establish profiles of authors’ styles in order to
rank the most likely author of any given source code. Burrows
and Frantzeskou approach did not achieve high accuracy as the
number of authors increased. Thus, Burrows et al. [24] extended
the work on code authorship identification by including more
handcrafted stylometric features to the n-grams’ representation
of the code, and slightly improved the earlier results. Frantzeskou
and colleagues [5] introduced a different approach based on byte-
level n-gram profiles in order to represent a source code author’s
style. Recent work done by Caliskan-Islam et al. [1] proposed a
technique to identify the author of source code using manually
crafted features from the code’s abstract syntax tree. Their work
modeled source code authorship attribution as a machine learning
problem, and fed the classifier with features extracted from the
abstract syntax tree to classify the code’s author. Using deep learn-
ing techniques, Abuhamad et al. [25] adopted recurrent neural net-
work to extract robust authorship attributions from code samples
represented as one-step sequences using TF-IDF. Using the deep
authorship attributions to construct a random forest classifier,
the authors demonstrated scalable capabilities for their approach.
Table 1 summarizes most of the related work for code authorship
identification in terms of the number of authors, achieved identi-
fication accuracy, and the programming languages used for pro-
grammer identification. Despite the interesting results previous
works demonstrated, several shortcomings are still to be handled.
First, most related works utilize handcrafted feature set using
extensive feature extraction process that generates sparse vector
representation of code authorship attribution. This requires further
feature evaluation and selection process. Even though the selected
features might enable high identification accuracy in a small sus-
pect set, handling a large-scale set of programmers (i.e. thousands
of programmers) can be a struggle. We propose a CNN approach
to generate compact and robust code authorship attribution that
enable large-scale code authorship identification. Second, most
related works use feature extraction process that is language-
dependent in a sense that extracted features perform better for one
language than for another. In this work, we evaluate our approach
in three programming languages and demonstrate its effectiveness
in handling different languages.

Another body of work that is related to our work is where CNN
models are applied in NLP identification tasks. These works are
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Table 1 Table 2
A summary of the related work. Summary of the notations.
Reference #Authors Accuracy Programming languages Notation Definition
Ivan Krsul [22] 29 73.00% C t Term
MacDonell et al. [34] 7 88.00% C C++ d Document
Ding and Samadzadeh [35] 46 62.70% Java D Corpus of documents
Frantzeskou et al. [ 16] 30 96.90% C++ D Corpus vocabulary
Lange and Mancoridis [36] 20 55.00% Java TE(t, d) Term frequency of t in d
Elenbogen et al. [37] 12 74.70% C++ DE(t, D) Number of documents with t in D
Steven Burrows et al. [6] 10 76.78% C IDE(t, D) Inverse document frequency for t in D
Steven Burrows et al. [21] 100 80.37% C, C++ TF-IDF(t, d, D) TF-IDF scores of d for all t in D
Caliskan-Islam et al. [1] 1600 92.83% C++, Python U Feature selection operation
Alsulami et al. [38] 70 88.86% C++ X Model input
Meng et al. [17] 284 65.00% C C++ Lwe Word embedding layer
Dauber et. al. [18] 106 99.00% C++ w Model weights of a given layer
b Model bias
f Activation function
pool, max Max-pool operation
growing at an accelerated pace due to the remarkable results of ¢ Feature map of given layer
CNN models. The CNN has achieved good performance on various E"””" Ezztlg;efgigr‘;fg;e ith CNN layer
datasets mostly for topic categorization and sentiment analysis o Concatenation opel:;ation
tasks [26]. Adopting the same architecture achieved good results o Matrix multiplication operation
on a text categorization task by adding an additional layer for 0 Model parameters
semantic clustering [27]. A different CNN architecture was pro- loss(6, D) The softmax cross-entropy loss given 6 for dataset D
posed for sentence classification for the purpose of sentiment anal- ieg(e) LRZ regularization
egularization strength

ysis [10]. Johnson et al. introduced an interesting CNN architecture
that does not require pre-trained word representations [28], such
as Word2Vec [29] or Stanford University’s Global Vectors for Word
Representation GloVe [30]. The architecture applies convolving
filters directly to one-hot vectors as the initial representation. The
work also introduced some enhancements to the initial represen-
tation of input data in order to reduce the number of network pa-
rameters. An extension of the work was proposed that uses unsu-
pervised “region embedding” [31]. Another interesting application
of CNN models was presented in the relation classification task [32]
and [33]. We find the application of CNN models to NLP tasks
prompts an encouraging direction for our research. Applying a
CNN to a given task requires choosing many hyperparameters and
strategies, including input representation, the model architecture,
and the training procedure. We explain our approach in details in
Section 4.

3. Theoretical background

In this section, we introduce the methods used for code rep-
resentation and convolution neural networks. For the readability
purpose, we have summarized the used notations in Table 2.

3.1. Data representation

In most NLP tasks, textual data (i.e., sentences or documents)
are represented as a matrix where the rows are the representation
of tokens, words or characters. These rows, i.e., vector represen-
tations of words, are also called word embeddings. Word embed-
dings are usually low-dimensional representations learned from
a given corpus using a frequency-based approach or prediction-
based approach. The frequency-based approaches include methods
based on TF-IDF, co-occurrence representation, and variations of
both. The prediction-based approaches include methods such as
Word2Vec [29], GloVe [30], or word embeddings learned as part of
a deep learning model. The method for learning word embeddings
as part of the deep learning model starts by representing words
or terms by one-hot vectors that highlight the index of a given
term/word in the entire corpus vocabulary. Using the one-hot
vectors as input, the deep learning models learn the embeddings
for terms and documents as part of their training process.

Using the TF-IDF scheme simplifies the model architecture since
code files are represented as one-step fixed-sized sequences calcu-
lated in a separate stage before the training process. Alternatively,

using word embedding scheme as an integral part of the training
process generates a compact and optimized representation that
preserve the order of used terms in the code files. This makes word
embeddings more desirable to capture the code features when
representing short pieces of textual contents, i.e. short pieces of
code. This work provides some insights for using different ap-
proaches for code representation (i.e., word embeddings and TF-
IDF) considering their impact on the performance of the proposed
code authorship identification system.

3.1.1. Word embedding representation

The natural way to apply word embedding would be by using
Word2Vec or GloVe since there are available tools (and even pre-
trained models) to generate accurate word embeddings. However,
handling code samples is different from handling natural language
due to the inherent inflexibility of the written code expressions
established by the syntax rules of the compilers. Thus, we use
a variation of one NPL model [13] that was adopted in other
works [39,26], for text data representation. The main purpose of
using that model’s variation is to learn word embeddings that most
relate to the task at hand [13]. The words or terms are fed into
the model as indices taken from a finite corpus vocabulary, D,
where they are mapped with feature vectors by the first layer of the
network using a lookup table operation. For a given task, relevant
representation is learned via backpropagation.

More formally, V t € D, there exists an internal d-dimensional
representation extracted from the word embedding layer Ly. For
agivent:

Lwe(t) = (W)}

,where W € R®>I®! s the Lz parameters to be learned, (W)} is the
ith row € R? of W and d is the dimension of word representations.
A sequence of words, say a piece of code, with n terms can be
represented by extracting the representation of every term in the
sequence to form a representation matrix
Lue([t]]) = (W), (W)L ... (W)).
This matrix can be the input representation for the following layers
of the model. The weights W of Ly are then included in the
training process so that the generated word representations are
optimized base on the overall evaluation of the model.
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3.1.2. TF-IDF representation

The TF-IDF method is a common tool for representing textual
data in NLP and data-mining tasks. Using TF-IDF as an initial rep-
resentation for code files is motivated by its wide ranging applica-
tions on processing textual data. Frequency-based representation
for terms and n-grams is commonly used in information retrieval,
and has been adopted elsewhere for code authorship identifica-
tion [ 14-16]. TF-IDF features describe an author’s preferences for
using certain terms, or his/her preference for specific commands,
data types, and libraries.

TF-IDF is a weighting scheme that provides representations for
documents based on the weights of terms. These weights reflect
the importance of terms to a certain document in a corpus, which
can be expressed by the frequency of terms in the document
normalized by terms popularity in the corpus. It is straightforward
to consider term frequency as indication for term importance in
a certain document. However, overcoming the effects of popular
terms in a corpus dictates normalizing term frequency by term
popularity (i.e., the proportion of documents in which it appears).
In TF-IDF, aterm ¢t in a file d of a corpus D is assigned a weight using
the formula

TF-IDK(t, d, D) = TK(t, d) x IDE(t, D),
where TE(t, d) is the term frequency (TF) of t in d and
IDF(t, D) = log(|D|/DF(t, D)) + 1,

where |D| is the number of documents in D and DF(t, D) is the
number of documents containing the term ¢.

Intuitively, programmers develop tendency to use methods and
variable naming strategies to make their code recognizable for fu-
ture maintenance. This intuition is emphasized in our preliminary
experiment, which shows that the distribution of TF-IDF values
of used terms is distinguishable among programmers. Moreover,
we observed that the TF-IDF scores of reserved keywords from
the used language are among the top extracted features. For ex-
ample, some programmers used the ‘cout’ command, a command
for printing out a message in C++, more frequent than others
when solving programming problems Google Code Jam. Thus, the
frequent use of specific commands can be considered as part of the
coding style that indicates a programmer’s preference in using the
language to achieve the programming goal.

3.2. Convolutional neural networks

The convolutional neural network is a category of neural net-
work that requires minimal preprocessing efforts. The CNN was in-
spired by the biological process that occurs in the animal visual cor-
tex, where cortical neurons are restricted to handle responses from
separate regions of the visual field. CNN adopts similar concept
in the sense of using convolving filters (i.e., weights or neurons)
to handle local regions within the visual field, usually called as
receptive fields. Filters of different receptive fields partially overlap
to cover the entire input data presented as the visual field. Through
an optimization process, filters are optimized to transform the
data in a way that enables performing a certain task, e.g., image
classification, object localization or image description. Initially, the
CNN was designed to process visual imagery. However, several
applications have shown the applicability of the CNN to natural
language processing tasks [26,27,10]. The structure of the CNN
follows the traditional structure of neural networks, where inputs
are mapped to outputs through nonlinear operations involving a
large number of parameters within a number of hidden layers.
The main alteration on the traditional structure is that the CNN
includes a number of convolutional layers as part of the operation.
Convolutional layers aim to extract features from local regions
within the input by using convolving filters. Each filter is applied

to regions across the input dimensions by computing the dot
products of the filter and the region contents at all positions. The
output of the convolution process is usually referred to as feature
map ¢, which will be passed to the following layer by applying a
nonlinear function. A pooling process is usually applied after single
or multiple convolutional layers to aggregate information within
regions in the feature map. For a region, R, another feature map,
s, can be generated as: s; = pool(f(c;)) Vi € R;, where pool is a
function that selects one element out of the entries of the region,
R;. Among different choices, max-pooling is commonly used, where
the maximum value is selected. The resultant aggregated feature
map, s, is more robust and invariant to changes in the input data.
The convolution and pooling processes can be repeated a number
of times by including more convolutional layers. Using multiple
convolutional layers enables generating features that are less sen-
sitive to local transformations in the input [40].

4. CNN-based code authorship identification systems

In this section, we introduce our approaches for the code au-
thorship identification problem. Since this work adopts a close-
world assumption, only programmers included in the dataset can
be identified. This work assume that a programmer develops a
distinct coding style preserved in her/his code samples. This coding
style can be recognized and identified given sufficient number of
samples. All the proposed solutions have two main phases: code
presentation and CNN architecture. We briefly explain those two
phases in the following and in more details in the subsequent
sections.

Code Presentation. In the first phase, we start by adopting several
methods for optimizing the representation of documents, such
as eliminating stop words, normalizing representations, and re-
moving indistinct features. Then, a straightforward mechanism is
used to represent source code files based on a weighting scheme
commonly used in information retrieval. In our implementation,
we examined two methods namely, word embedding and TF-IDF.

CNN Architecture. Following the first phase, this phase contains
a CNN based architecture to learn and refine more distinctive
features of authorship from less distinctive ones. In the last layer
of the architecture, a softmax classifier is used to classify authors.

4.1. CNN architecture with word embedding approach

Let a code sample, x, be represented as an input sequence of
terms, where t; € R? is the term representation of the ith term
in the sequence; then, the input to the CNN model becomes x =
Xty = 11D D - - - Dy, where the operation @ is a concatenation
process. Since code samples have different lengths, sequences are
padded to a predefined length, n.

The input code sample is then subjected to a convolution pro-
cess by applying a filter, w € R"™, to h terms. For the h terms,
the convolution process generates a feature map, ¢; = f(w ©
Xiirn—1+b), where © is a matrix multiplication operation,b € Risa
bias, and f is a nonlinear function. Sliding over the entire sequence
of terms included in a code sample, (X1.h, X2:n415 - - - » Xn—h+-1:n), @
feature map,c = ¢y, Ca, ..., Cn_pt1 iS generated wherec € R

Following the convolution process, a max-pooling process is
applied to generate another feature map s = sq,S2, ..., Sp—h+1
where, s; = max(c;). Applying the max-pooling operation is equiv-
alent to selecting the most important feature that has the highest
value within the window of the pooling process. This process is
used for one CNN layer with one filter size and can be repeated for
multiple CNN layers with different filter sizes.
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Fig. 1. C-CNN architecture with word embedding layer. The CNN model include
multiple convolutional layers with different filter sizes.
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Fig. 2. S-CNN architecture with word embedding layer. The CNN model stacks
multiple convolutional layers with different filter sizes.

Concatenated CNN Architecture (C-CNN). The resultant feature maps
from different CNN layers can be concatenated as in Fig. 1. The
concatenated model architecture adopted in this work is a variant
of an earlier model [13]. We refer to this model architecture as a
concatenated CNN with word embedding, and it can be expressed
as

pool(conv(x)) @ pool(convy(x)) @ - - - @ pool(conv,(x))

where conv; is the feature map of the ith CNN layer.

Stacked CNN Architecture (S-CNN). Feature maps produced by CNN
layers can be stacked on top of each other as seen in Fig. 2. We refer
to this model architecture as stacked CNN with word embedding:

pool(convn ...(pool(conv4(x))).. )
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Fig. 3. S-CNN architecture with TFIDF representation. The CNN model stacks mul-
tiple convolutional layers with different filter sizes.

In both architectures, the final feature maps are connected
to a fully-connected softmax layer that signifies the probability
distribution over the authors of the code samples.

Using either approach, concatenated or stacked CNN layers
have shown remarkable results. Stacked CNN layers have been
used widely in the field of computer vision [40]. However, con-
catenated CNN layers have been successfully applied to several NLP
tasks [13,26,39]. In this work, we explore both model architectures.

As mentioned before, the code authorship identification process
can be formulated as a classification problem, where authors are
classified based on their distinctive authorship attributes. The ac-
curacy of this classification process relies on what is distinctive in
the data representation (features or attributes) of each author. To
examine the effectiveness of the proposed architectures for code
authorship identification based on the data representation of each
author’s data, we visualized five authors’ data at the word embed-
ding level and the output of the last layer of the C-CNN and S-CNN
architectures using the principal components analysis (PCA). PCA
is a statistical tool that is widely used as a visualization technique
that reflects the difference in observations of multidimensional
data for the purpose of simplifying further analysis [41,42]. Fig. 6
shows PCA visualizations of C++ code samples from five program-
mers, with nine samples each at the initial code presentation level
and the last layer of the CNN architecture. In Fig. 6(a) and 6(c), code
files are presented with the initial word embedding features, which
are insufficient to draw a decision boundary for all programmers. In
Fig.6(b)and 6(d), however, the deep representation have increased
the margin for decision boundary so distinguishing programmers
has become easier. This visualization of the representation space
(word embedding features and deep representation) illustrates the
quality of code representations obtained by the deep learning tech-
nique. We have noticed that the learned word embeddings using
the C-CNN architecture form more distinctive representation in
comparison to the one obtained using the word embeddings of the
S-CNN architecture. The change in the quality of word embeddings
using different architectures is due to the end-to-end learning
process for the whole architecture as word representations are
optimized as part of the overall architecture training process. This
canbe seenin Fig. 6(c), where the file representations are very close
and less distinctive, compared to the word embedding representa-
tions generated by the C-CNN structure illustrated in Fig. 6(a).
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4.2. CNN architecture with TF-IDF approach

The second approach uses TF-IDF representation as the input
representation of code samples as described in Section 3. TF-IDF
has been used for several NLP and data mining tasks. However,
handling programming codes requires several prepossessing steps
to eliminate stop words and remove unnecessary code characters.
Moreover, TF-IDF features that could attributed to authors are
not limited to unigrams, rather than n-grams. Previous work [1]
shows that bi-grams and tri-grams are important in identifying
programmers. This work uses the TF-IDF representation of uni-
grams, bi-grams, and tri-grams to represent code samples.

Let code sample x be represented as

[TF-IDF(t, X, D), TF-IDF(ts, X, D), ..., TE-IDF(ty, X, D)],

where n is the total number of terms in the corpus D; then,
extracting TF-IDF features could result in very sparse and high-
dimensional vector representations due to the large existence of
unique uni-grams, bi-grams, and tri-grams in the entire corpus.
Most of these features are not relevant to our task of identifying
programmers. We apply a straightforward univariate feature selec-
tion method to select the top-k features. The TF-IDF representation
for code sample x; become

xi= |J TFIDK(;, d;, D),
j=1,...|D|

where U is a feature selection operator.

To illustrate the impact of choosing different top-k TF-IDF fea-
tures on the accuracy of code authorship identification, we created
a dataset of 1000 C++ programmers. Fig. 5 demonstrates the
impact of choosing different top-k TF-IDF features on the accuracy
of authorship identification. The figure shows that the accuracy of
our model increases up to some value for the number of features
(i.e.,reaches the peak when we select the top 2500 features for each
code sample); then, it decays quickly. The accuracy, even with the
smallest number of features, is relatively high.

To examine the effectiveness of the proposed architectures for
code authorship identification on the data representation of each
author’s data, we visualized five authors’ data at the word embed-
ding level and the output of the last layer of the S-CNN architecture
using PCA. In Fig. 6(e) code files are presented with the initial TF-
IDF features, which are insufficient to draw a decision boundary
for all programmers. In Fig. 6(f), however, the deep representation
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Fig. 5. Accuracy as the number of features of TF-IDF increased.

have increased the margin for the decision boundary, so distin-
guishing programmers has become easier. This visualization of the
representation space (TF-IDF features and deep representations)
illustrates the quality of code authorship representation obtained
using the deep learning technique.

Unlike the word embedding approach, TF-IDF produces fixed-
size representation for code samples. Moreover, TF-IDF represen-
tation neglect the order of terms in a code sample. Thus, a con-
volution process would highlight the importance of these input
features, x; € R¥, by data transformation using a filter, w € R%, and
generating a feature map, ¢ € R¥, with zero-padding. We apply
a max-pooling operation to extract the most important features.
In this architecture, we stack multiple CNN layers on top of each
other, where the output of the last layer is connected to a fully-
connected softmax layer. This model architecture is illustrated in
Fig. 3.

5. Experiment and evaluation

In this section, we present the results of the three proposed
architectures of Section 4. For our experiment implementation,
we used TensorFlow [43], an open source library for building
and training neural networks using data flow graphs. We ran our
experiments on a workstation with 24 cores, one GeForce GTX
TITAN X graphics processing uni (GPU), and 256 GB of memory.
We note that our use of the GeForce GTX TITAN X GPU was purely
performance-driven, and the specific platform does not affect the
end-results. Upon the release of our scripts and data, our findings
can be reproduced in any other experimental settings. First, we
provide an introduction to the dataset used for our evaluation.
Then, we give an overview of the model architectures we con-
structed and the hyperparameters for these models. Following
that, we present the training data requirements and model training
details. Finally, we present the main results of our proposed ap-
proaches and how these approaches scale up to identify with high
accuracy the authorship of code written by up to 1600 program-
mers.

5.1. Corpus

Google Code Jam (G(J) is an international programming compe-
tition run by Google since 2008 [44]. At GC], programmers from all
over the world use several programming languages and develop-
ment environments to solve programming problems over multiple
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Fig. 6. The PCA visualization of code samples represented initially by word embedding or TF-IDF and the corresponding deep representation of code authorship attributions
from the last layer of different CNN architectures. The visualization shows code sample representations for five programmers with nine samples each.

rounds. Each round of the competition involves writing a program
to solve a small number of problems—three to six, within a fixed
amount of time. We evaluate our approach on the source code of
solutions to programming problems from GCJ.

The most commonly used programming languages at GCJ are
C++, Java, and Python, in that order. Each of those languages has a
sufficient number of source code samples from each programmer,
and thus, we used them for our evaluation. For a large-scale eval-
uation, we used the contest code from 2008 to 2016, with general
statistics, as shown in Table 3. The table shows the number of files
per author across the years, with the total number of authors per
programming language, and the average file size, or lines of code
(LoC). For the evaluation, we created a dataset that includes files
from across all the years from 2008 to 2016 in a “cross-years” view,
as shown in Table 3.

Table 3
Datasets used in our study with corresponding statistics, including the number of
authors with at least a specific number of files across all years.

No. of authors for languages

Competition year Author files

C++ Python Java
Across years 9 6635 2300 1279
Average lines of code 71.53 44.44 86.70

5.2. Constructed models for experiments

Using a cross-validation process, different model architectures
were tested in terms of accuracy and performance. The CNN ar-
chitecture can be designed using a number of hyperparameters,
such as the number of convolutional layers in which each applies
a number of filters with size k and strides s over the input data.
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Table 4
Model Architectures for the concatenated and stacked CNN structures.
Word embedding Convolutional layers Layers depth # options
[3,4,5],
C-CNN 32,64, 128,256 [3,5,7], 128 12
[3,5,7,9]
[3,4,5], [32, 64, 128],
S-CNN 32,64, 128,256 [3,5,7], [32, 64, 128], 12
[3,5,7,9] [32, 64, 128, 256]

A convolutional layer is usually followed by a max-pooling layer,
as a down-sampling operation using a filter of size k with stride s.
After a sequence of convolutional layers, fully-connected layers are
used to map the features extracted by the convolutional layers to
the output labels. Table 4 describes the different CNN architectures
to be tested. The table includes 24 possible model architectures,
three for each embedding size and with a total of 12 for each
proposed architecture (i.e.,, C-CNN or S-CNN architectures). We
used either three or four layers in each model. For example, for
word embedding of size 128, we used three layers with filter sizes
3,4, and 5, and a depth equal to 128 filters. We decided to use the
most common choice of max-pooling in the literature by applying
1 x 4filters with a stride of 4, down-sampling only 25% of the input
activations.

In the C-CNN models, we fixed all hyperparameters except
word embedding size and filter size. In the S-CNN models, we
also fixed all hyperparameters except word embedding size and
filter size, but we followed layer depths of 32, 64, and 128 in all
the three-layer CNN architectures and layer depths of 32, 64, 128,
and 256 for the four-layer CNN architecture. Then, we conducted a
cross-validation evaluation. We adopted stratified nine-fold cross-
validation, where each fold contains one file for each author. Given
the filter size and embedding size, the collected results are the
average performance of the model on each fold after repeating the
nine-fold cross validation five times with different random seeds.

Finally, the reported results are the average of each model, given
the word embedding size. For example, the results of the models
with convolutional layers [3, 4, 5],[3,5,7],and [3, 5, 7, 9] and word
embedding size 32 were averaged and then reported in the results
Section 5.4.

5.3. Model training

The weights of model W € R™" in a given layer are ini-
tialized from a zero-mean Gaussian distribution with standard
deviation equals to +/2/n [45]. The b biases are initialized to zero.
For training our deep learning structure, we used moment estima-
tion algorithm (Adam optimizer) [46]. The Adam optimizer is an
efficient stochastic optimization method that only requires first-
order gradients with few memory requirements. Using estimations
of the first two moments of the gradients, the Adam optimizer
assigns different adaptive learning rates for different parameters.
The method was inspired by combining the advantages of two
popular stochastic optimization methods, AdaGrad [47], which is
efficient in handling sparse gradients, and RMSProp [48], which is
efficient in on-line and non-stationary settings [46].

To control the training process and to prevent overfitting, two
different regularization methods were used, namely: dropout reg-
ularization and L2 regularization. Dropout regularization [49] ran-
domly and temporally excludes a number of units on the forward
pass, and weight updates on the backward pass during the training
process. This approach was proven to enable the neural network
to reach better generalization capabilities [49]. L2 regularization
penalizes certain parameter configurations. Given loss function

loss(6, D), where 6 is the set of all the model parameters and D
is the dataset of length n samples, the regularization loss becomes

totalj,ss(0, D) = loss(6, D) + [A x Reg(0)],

where A is a constant that controls the importance of regularization
and

161

Reg(6) = (316"
j=0

where p is equal to 1 or 2 (hence the L1 and L2 nomenclature).

In the training process of the deep learning architecture, we
used a mini-batch size ranging from 64 to 128 samples. The idea
of using mini-batches is to reduce the variance in gradients of
individual observations since observations could be significantly
different. Instead of computing the gradient of one observation,
the mini-batch approach computes the average gradient for a
number of observations at a time. This approach is widely accepted
and commonly used in the literature. The training termination
mechanism was either to reach 10k iterations or to hit an early
termination threshold for the loss value. Since the output of the
model is programmers’ labels, the loss function used to train the
model is softmax cross-entropy loss:

N
E(Pn, ﬁn) = - an lOgﬁny
n=1

where, pp(x) = softmax(x) = " - (Z el v
J

The learning process aims to minimize the loss between esti-
mated distribution p, and actual distribution p,. For the training
process, we explored different hyperparameters to conclude with
a learning rate of 1le~* without reducing the learning rate over
time, dropout with a keep-probability of 0.6, and L2 regularization
strength A = 1e72.

5.4. Evaluation results

In this section, we present our results for the three proposed
approaches. We used the dataset in Table 3. There are three large-
scale datasets corresponding to three programming languages,
with programmers who have at least nine code files to be selected.
The number of code files per author in this experiment was deemed
sufficient for extracting distinctive code authorship attribution
features [1]. An accuracy metric was used to evaluate our results.
Accuracy is defined as the percentage of code files correctly at-
tributed over the total number of tested code files. Using accuracy
instead of other evaluation metrics (e.g. precision and/or recall)
is good enough, because the classes are balanced in terms of the
number of presented files per author in the dataset. As mentioned
in Section 5.2, we conducted stratified nine-fold cross-validation
evaluation. Given the filter size and embedding size, the collected
results are the average performance of the model on each fold after
repeating the nine-fold cross validation five times with different
random seeds. Moreover, the reported results are the average of
each model given the word embedding size.

Experiment 1. In this experiment, we implemented the CNN ar-
chitecture of Fig. 1. Fig. 7 shows how well our approach using
the concatenated CNN structure scales for a large number of pro-
grammers, and for the various programming languages. The results
report the accuracy for different word embedding sizes in learning
code authorship attribution. Each reported accuracy result is the
average over different filter size settings (i.e., applying filter sizes
3,4, and 5 and 3, 5, and 7) when the words embedding size is
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Fig. 7. The accuracy of the authorship identification of programmers in three programming languages using C-CNN with word embedding size 32, 64, 128, and 256.
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Fig. 8. The accuracy of the authorship identification of programmers in three programming languages using S-CNN with word embedding size 32, 64, 128, and 256.

fixed. Fig. 7(a) shows that the concatenated CNN approach with
words embedding of size 256 outperforms models with other
options for words embedding and achieved 96.3% accuracy for 150
C++ programmers. As we increased the number of programmers,
accuracy reached 88.3% for 1600 programmers. Using the same
CNN architecture with the dataset of Java programming in Table 3,
similar results were obtained, as illustrated in Fig. 7(b), with 94.8%
accuracy when the number of programmers is 150. As we scaled
up the experiment to more programmers, we achieved 87.7% accu-
racy for 1000 programmers. For the Python language dataset, our
approach achieved an accuracy of 87.2% for 150 programmers and
72.3% for 1500 programmers, as shown in Fig. 7(c). These results
indicate that our deep learning approach is capable of learning
deep representation of code authorship attributions to enable large
scale authorship identification regardless of the used programming
language and with a little influence from word embedding size.

Experiment 2. In this experiment, we implemented the stacked
CNN model of Fig. 2 to explore the effect of increasing the depth
of the CNN model. Using this approach was motivated by the
remarkable results achieved by deep CNN models in the field of
computer vision [50]. Giving the model more depth rather than
breadth (e.g., a concatenated approach or wider layers), would
enable us to investigate the impact of deep networks in our task.
Similar to Experiment 1, the reported accuracy results are based
on different word embedding sizes, where each reported accuracy
is the average over different filter size settings (i.e., applying filter
sizes 3, 4, and 5, and 3, 5, and 7) when the word embedding
size is fixed. Fig. 8(a) shows that our approach with the stacked
CNN architecture and words embedding of size 256 outperforms
models with other options for word embedding and achieved
99.5% accuracy for 150 C++ programmers. As we increased the
number of programmers, the accuracy reached 81.75% for 1600
programmers. Given the same CNN structure with the dataset of
Javalanguage, similar results are obtained, as illustrated in Fig. 8(b)
with 82.8% accuracy when the number of programmers is 150. As
we scaled the experiment to more programmers, we achieved 80%
accuracy for 1000 programmers. For the Python language dataset,
our approach achieved an accuracy of 72% for 150 programmers
and 62.66% for 1500 programmers, as shown in Fig. 8(c). The results
of this experiment show some degradation in accuracy, compared
to results achieved in Experiment 1 (e.g., 12% (= 94.8 — 82.8)

and 15.2% (= 87.2 — 72) for identifying 150 Java and Python
programmers, respectively). This could be due to using an end-to-
end training mechanism, which requires a significant amount of
data to train. Also, it becomes more difficult for deeper networks
to map code representation to the output layer as the number of
hyperparameters involved increases. The word embeddings gen-
erated from the word embedding layer becomes less influential
owing to the distance from the final output of the model. Using
different approaches to generate fixed code representation could
make it easier for the stacked CNN to achieve better results, and
we keep this for future work.

Experiment 3. In this experiment, we implemented the S-CNN
model with TF-IDF representation as shown in Fig. 3, which achieved
the best results of all our proposed models. The first bar of Fig. 9(a),
labeled S-CNN, shows that our approach with a TF-IDF-based
S-CNN structure outperforms other proposed architectures, and
achieved 96.7% accuracy for 150 C++ programmers. As we in-
creased the number of programmers, the accuracy decreased
slightly to reach 92.2% for 1600 programmers. Given the same S-
CNN architecture with the dataset of Java language, similar results
were obtained, as illustrated in Fig. 9(b) with 92.2% accuracy
when the number of programmers is 150. As we scaled the ex-
periment to more programmers, we achieved 90.9% accuracy for
1000 programmers. For the Python language dataset, our approach
achieved an accuracy of 93.9% for 150 programmers and 88.1%
for 1500 programmers, as shown in Fig. 9(c). Compared to S-CNN
approach with word embeddings, S-CNN with TF-IDF represen-
tation achieved better identification accuracy (e.g., an accuracy
improvement of 9.4% (92.2 — 82.2) and 21.9% (93.9 — 72 for
identifying 150 Java and Python programmers). This indicates that
our deep learning approach using TF-IDF is capable of learning
deep representation of code authorship attributions that enable
achieving large-scale authorship identification, regardless of the
programming language. Also, these results show the importance of
code representation so the CNN can achieve large-scale authorship
identification.

Since TF-IDF with S-CNN achieved the best results in the three
experiments, we combined the idea of the C-CNN and S-CNN to
investigate whether we can get better performance. In Fig. 9(a),
we report the results of S-CNN with two and three concatenated S-
CNN branches (labeled 2S-CNN and 3S-CNN, respectively), where
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Fig. 9. The accuracy of the authorship identification of programmers in three programming languages using iS-CNN with TF-IDF, where i = 1, 2, and 3.

the whole structure contains either two or three stacked CNN
models. The new architecture illustrated in Fig. 4 achieved the
best accuracy under 3S-CNN with a depth of three CNN layers.
The 3S-CNN architecture achieved 99.4% accuracy for 150 C++
programmers. As we increased the number of programmers, the
accuracy decreased slightly to reach 96.2% for 1600 programmers.
Given the same CNN architecture for the dataset of the Java lan-
guage, similar results were obtained, as illustrated in Fig. 9(b) with
99.6% accuracy when the number of programmers is 150. As we
scaled the experiment to more programmers, we achieved 95.8%
accuracy for 1000 programmers. For the Python language dataset,
our approach achieved an accuracy of 98.8% for 150 programmers
and 94.6% for 1500 programmers, as shown in Fig. 9(c).

Experiment 4. Since the results from the 3S-CNN architecture with
TF-IDF representation are the best of all the proposed architec-
tures, we examined the 3S-CNN model of Fig. 4 on code samples
collected from 1987 public GitHub repositories. The aim of this
experiment is to demonstrate the applicability of our approach to
real-world applications using real dataset. We collected samples
from repositories with one contributor and set C and C++ as
the primary language. We filtered all programmers with fewer
than five samples to settle with 142 and 745 from C++ and C
programmers, respectively. For programmers who had more than
10 samples, we randomly selected 10 samples only. For the ground
truth of our dataset, we collected repositories with a single contrib-
utor under the assumption that the collected samples were written
by the same contributor to the repository. We acknowledge that
this assumption is not always valid, because parts of the code
samples might have been copied from other sources [18]. Even
though this GitHub dataset could include some reused code in
the samples, the 3S-CNN architecture with TF-IDF representation
achieved 95% accuracy for 745 C programmers and 97% for the
C++ programmers. This result shows that our approach is still
effective when handling real-world datasets.

6. Limitations

This work introduces large-scale code authorship identification
approach using CNN. The proposed approach achieves high iden-
tification accuracy in diverse settings using different code repre-
sentation techniques and CNN architectures. However, there are
several unexplored issues that we highlight in the following.

Authorship verification. During the processing and preparing of the
G(]J dataset (cross-years dataset in Table 3), we accumulated code
samples for authors who used the same username in different-year
competitions. Our assumption was that participants used the same
information through the competition. We acknowledge that this
assumption does not always hold and there could be users who
used the same username that had been used by different partic-
ipant during past competitions. Another authorship assumption
was regarding the Github dataset, since we considered all code
samples in a repository are written by the contributor. To verify
authorship of code samples in both datasets can be achieved by

considering a separate prior stage for checking the consistency
of code authorship attribution across different samples to insure
authorship before using the dataset.

Multiple authors. The experiments of this work show high accu-
racy of identifying programmers based on their sole code sam-
ples. In reality, however, code samples are written by several pro-
grammers considering large software projects [ 17,18]. Future work
might explore the possibility of identifying multiple programmers
in one code sample.

Mixed-languages. Experimenting with three different program-
ming languages (C++, Java, and Python), our approach shows
resilience to language specifics by achieving high accuracy for
all used languages. However, all experiments were conducted to
include programmers with code samples of one language individ-
ually. As programmers might use different languages, exploring the
robustness of authorship attribution across different languages is
an interesting direction for future work.

Comprehensive code authorship attribution. This work uses code
authorship attribution extracted by the CNN model fed with either
word embedding or TF-IDF code representation, which are oblivi-
ous to some coding style traits such as layout features (i.e., spacing
and indentation). Although previous work [1] has demonstrated
a positive impact of including layout features, this work has not
incorporated these features to simplify the approach and avoid the
relatively complicated process of manually crafting these layout
features. We leave exploring the effects of including layout features
in the accuracy of the proposed approach for future work.

7. Conclusion

Knowing the author of a source code has a significant impact
on the advancement of malicious software forensics, copyright
dispute resolutions, and detection of software plagiarism. In this
work, we presented three code authorship identification structures
that utilize word embedding and TF-IDF with CNN-based deep
learning process to extract distinctive features for authorship iden-
tification. We conducted an empirical study of 1600 programmers
from GCJ through the years 2008 to 2016 who used one of three
programming languages: C++, Java, or Python, and real-world
code samples from 1987 public repositories on GitHub. Our eval-
uation showed that the proposed approach is robust and scalable,
and achieved high accuracy in various settings. Our approach can
distinguish up to 1600 C++ programmers with 96.2% accuracy,
1000 Java programmers with 95.8% accuracy, and 1500 python
programmers with 94.6% accuracy. In the future, we will explore
the effects of copying code samples of other programmers on the
performance of our approach and the way to extend our approach
for multi-author code authorship identification.

Acknowledgments

This research was supported by the Global Research Lab. (GRL)
Program of the National Research Foundation (NRF) funded by



114

M. Abuhamad, J.-s. Rhim, T. AbuHmed et al. / Future Generation Computer Systems 95 (2019) 104-115

the Ministry of Science, ICT and Future Planning, Korea (NRF-
2016K1A1A2912757) and the NRF (Korea) grant (NRF-2016R1D1
A1B03934816).

References

(1l

[2

3]

[4

[5

[6

(7

[8

[9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]

A. Caliskan-Islam, R. Harang, A. Liu, A. Narayanan, C. Voss, F. Yamaguchi, R.
Greenstadt, De-anonymizing programmers via code stylometry, in: Proceed-
ings of the 24th USENIX Conference on Security Symposium, SEC’'15, USENIX
Association, Berkeley, CA, USA, 2015, pp. 255-270.

LJ. Wilcox, Authorship: The coin of the realm, the source of complaints, JAMA
280(3)(1998) 216-217.

C.H. Malin, E. Casey, ].M. Aquilina, Malware forensics: Investigating and ana-
lyzing malicious code, Syngress, 2008.

S. Burrows, S.M.M. Tahaghoghi, ]. Zobel, Efficient plagiarism detection for
large code repositories, Softw. - Pract. Exp. 37 (2) (2007) 151-175.

G. Frantzeskou, E. Stamatatos, S. Gritzalis, C.E. Chaski, B.S. Howald, Identifying
authorship by byte-level n-grams: The source code author profile (SCAP)
method, Int. J. Digit. Evid. 6 (1) (2007) 1-18.

S.Burrows, A.L. Uitdenbogerd, A. Turpin, Temporally robust software features
for authorship attribution, in: 2009 33rd Annual IEEE International Computer
Software and Applications Conference, vol. 1, 2009, pp. 599-606.

Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to
document recognition, Proc. IEEE 86 (11) (1998) 2278-2324.

R.Johnson, T. Zhang, Semi-supervised convolutional neural networks for text
categorization via region embedding, in: Advances in Neural Information
Processing Systems, 2015, pp. 919-927.

S. Lai, L. Xu, K. Liu, J. Zhao, Recurrent convolutional neural networks for text
classification, in: AAAI vol. 333, 2015, pp. 2267-2273.

P. Blunsom, E. Grefenstette, N. Kalchbrenner, A convolutional neural network
for modelling sentences, in: Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics, 2014.

Y. Shen, X. He, ]. Gao, L. Deng, G. Mesnil, Learning semantic representations
using convolutional neural networks for web search, in: Proceedings of the
23rd International Conference on World Wide Web, 2014, pp. 373-374.
W.-t. Yih, X. He, C. Meek, Semantic parsing for single-relation question an-
swering, in: Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), vol. 2, 2014, pp. 643-
648.

R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, P. Kuksa, Natural
language processing (almost) from scratch, J. Mach. Learn. Res. 12 (Aug)
(2011) 2493-2537.

S. Burrows, S.M.M. Tahaghoghi, Source code authorship attribution using n-
grams, in: A. Spink, A. Turpin, M. Wu (Eds.), in: Proceedings of the Twelfth
Australasian Document Computing Symposium, ADCS’07, 2007, pp. 32-39.
V. Keselj, F. Peng, N. Cercone, C. Thomas, N-gram-based author profiles for
authorship attribution, in: Proceedings of the Conference Pacific Association
for Computational Linguistics, PACLING, vol. 3, 2003, pp. 255-264.

G. Frantzeskou, E. Stamatatos, S. Gritzalis, S. Katsikas, Effective identification
of source code authors using byte-level information, in: Proceedings of the
28th International Conference on Software Engineering, ICSE '06, New York,
NY, USA, 2006, pp. 893-896.

X. Meng, B.P. Miller, K.-S. Jun, Identifying multiple authors in a binary pro-
gram, in: European Symposium on Research in Computer Security, Springer,
Oslo, Norway, 2017, pp. 286-304.

E. Dauber, A. Caliskan, R. Harang, R. Greenstadt, Git blame who?: Stylis-
tic authorship attribution of small, incomplete source code fragments, in:
Proceedings of the 40th International Conference on Software Engineering:
Companion Proceeedings, ACM, 2018, pp. 356-357.

N. Rosenblum, X. Zhu, B. Miller, Who wrote this code? Identifying the authors
of program binaries, in: Computer Security-ESORICS 2011, Springer, 2011, pp.
172-189.

A. Caliskan, F. Yamaguchi, E. Dauber, R. Harang, K. Rieck, R. Greenstadt, A.
Narayanan, When coding style survives compilation: De-anonymizing pro-
grammers from executable binaries, in: Proceedings of the 25th Network and
Distributed System Security Symposium, NDSS 2018, Internet Society, San
Diego, CA, USA, 2018.

S. Burrows, A.L. Uitdenbogerd, A. Turpin, Comparing techniques for author-
ship attribution of source code, Softw. - Pract. Exp. 44 (1) (2014) 1-32.

I. Krsul, E.H. Spafford, Refereed paper: Authorship analysis: Identifying the
author of a program, Comput. Secur. 16 (3) (1997) 233-257.

G. Frantzeskou, E. Stamatatos, S. Gritzalis, S.K. Katsikas, Source code author
identification based on n-gram author profiles, in: Artificial Intelligence
Applications and Innovations, 3rd IFIP Conference on Artificial Intelligence
Applications and Innovations, AIAI, 2006, June 7-9, 2006, Athens, Greece,
2006, pp. 508-515.

[24]

(25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

[37]

(38]

(39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

S. Burrows, A.L. Uitdenbogerd, A. Turpin, Application of information retrieval
techniques for source code authorship attribution, in: Database Systems for
Advanced Applications, 14th International Conference, DASFAA 2009, Bris-
bane, Australia, April 21-23, 2009. Proceedings, 2009, pp. 699-713.

M. Abuhamad, T. AbuHmed, A. Mohaisen, D. Nyang, Large-Scale and language-
oblivious code authorship identification, in: Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, CCS’18, ACM,
New York, NY, USA, 2018, pp. 101-114.

Y. Kim, Convolutional neural networks for sentence classification, in: Pro-
ceedings of the 2014 Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP, Association for Computational Linguistics, 2014,
pp. 1746-1751.

P.Wang, . Xu, B. Xu, C. Liu, H. Zhang, F. Wang, H. Hao, Semantic clustering and
convolutional neural network for short text categorization, in: Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing
(Volume 2: Short Papers), vol. 2, 2015, pp. 352-357.

R. Johnson, T. Zhang, Effective use of word order for text categorization with
convolutional neural networks, in: Proceedings of the 2015 Conference of
the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, 2015, pp. 103-112.

M. Tomas, K. Chen, G. Corrado, ]. Dean, Efficient estimation of word rep-
resentations in vector space, in: Proceedings of Workshop at International
Conference on Learning Representations 2013, 2013.

J. Pennington, R. Socher, C. Manning, Glove: Global vectors for word repre-
sentation, in: Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing, EMNLP, 2014, pp. 1532-1543.

R. Johnson, T. Zhang, Supervised and semi-supervised text categorization
using LSTM for region embeddings, in: Proceedings of the 33rd International
Conference on International Conference on Machine Learning - Volume 48,
ICML'16, JMLR.org, 2016, pp. 526-534.

T.H. Nguyen, R. Grishman, Relation extraction: Perspective from convolu-
tional neural networks, in: Proceedings of the 1st Workshop on Vector Space
Modeling for Natural Language Processing, 2015, pp. 39-48.

D. Zeng, K. Liu, S. Lai, G. Zhou, J. Zhao, Relation classification via convolutional
deep neural network, in: Proceedings of COLING 2014, the 25th International
Conference on Computational Linguistics: Technical Papers, 2014, pp. 2335-
2344,

S.G. Macdonell, A.R. Gray, G. MacLennan, P.]. Sallis, Software forensics for dis-
criminating between program authors using case-based reasoning, feedfor-
ward neural networks and multiple discriminant analysis, in: Neural Informa-
tion Processing, 1999. Proceedings. ICONIP '99. 6th International Conference
on, vol. 1, 1999, pp. 66-71.

H. Ding, M.H. Samadzadeh, Extraction of java program fingerprints for soft-
ware authorship identification, J. Syst. Softw. 72 (1) (2004) 49-57.

R.C. Lange, S. Mancoridis, Using code metric histograms and genetic algo-
rithms to perform author identification for software forensics, in: Proceedings
of the 9th Annual Conference on Genetic and Evolutionary Computation,
GECCO0 07, 2007, pp. 2082-2089.

B.S. Elenbogen, N. Seliya, Detecting outsourced student programming assign-
ments, J. Comput. Sci. Coll. 23 (3) (2008) 50-57.

B. Alsulami, E. Dauber, R. Harang, S. Mancoridis, R. Greenstadt, Source code
authorship attribution using long short-term memory based networks, in:
Computer Security - ESORICS 2017: 22nd European Symposium on Research
in Computer Security, Oslo, Norway, September 11-15, 2017, Proceedings,
Part [, 2017, pp. 65-82.

Y. Zhang, B.C. Wallace, A sensitivity analysis of (and practitioners’ guide
to) convolutional neural networks for sentence classification, CoRR
abs/1510.03820 (2015).

Y.-L. Boureau, J. Ponce, Y. LeCun, A theoretical analysis of feature pooling
in visual recognition, Proceedings of the 27th International Conference on
Machine Learning, ICML-10, 2010, pp. 111-118.

A.T. Basilevsky, Statistical Factor Analysis and Related Methods: Theory and
Applications, vol. 418, John Wiley & Sons, 2009.

B.S. Everitt, G. Dunn, Applied Multivariate Data Analysis, vol. 2, Wiley Online
Library, 2001.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, M. Kudlur, ]. Levenberg, R. Monga, S. Moore, D.G. Murray,
B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, X. Zheng,
TensorFlow: A system for large-scale machine learning, in: Proceedings of the
12th USENIX Conference on Operating Systems Design and Implementation,
0SDI'16, 2016, pp. 265-283.

Google Code Jam, 2016. https://code.google.com/codejam/. (Accessed on
15/02/2018).

K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification, in: Proceedings of the IEEE
International Conference on Computer Vision, 2015, pp. 1026-1034.

D.P. Kingma, ]. Ba, Adam: A method for stochastic optimization, in: Interna-
tional Conference on Learning Representations, ICLR, vol. 5, 2015.


http://refhub.elsevier.com/S0167-739X(18)31552-8/sb1
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb1
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb1
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb1
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb1
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb1
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb1
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb2
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb2
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb2
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb3
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb3
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb3
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb4
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb4
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb4
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb5
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb5
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb5
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb5
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb5
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb6
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb6
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb6
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb6
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb6
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb7
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb7
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb7
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb8
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb8
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb8
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb8
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb8
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb9
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb9
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb9
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb12
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb12
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb12
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb12
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb12
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb12
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb12
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb13
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb13
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb13
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb13
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb13
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb15
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb15
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb15
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb15
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb15
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb17
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb17
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb17
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb17
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb17
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb18
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb18
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb18
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb18
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb18
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb18
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb18
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb19
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb19
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb19
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb19
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb19
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb20
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb20
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb20
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb20
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb20
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb20
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb20
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb20
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb20
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb21
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb21
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb21
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb22
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb22
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb22
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb25
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb25
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb25
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb25
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb25
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb25
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb25
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb26
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb26
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb26
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb26
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb26
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb26
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb26
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb27
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb27
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb27
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb27
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb27
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb27
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb27
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb27
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb27
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb31
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb31
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb31
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb31
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb31
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb31
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb31
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb34
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb34
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb34
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb34
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb34
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb34
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb34
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb34
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb34
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb35
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb35
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb35
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb37
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb37
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb37
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb39
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb39
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb39
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb39
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb39
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb41
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb41
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb41
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb42
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb42
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb42
https://code.google.com/codejam/
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb46
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb46
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb46

M. Abuhamad, J.-s. Rhim, T. AbuHmed et al. / Future Generation Computer Systems 95 (2019) 104-115 115

[47] ].Duchi, E. Hazan, Y. Singer, Adaptive subgradient methods for online learning
and stochastic optimization, J. Mach. Learn. Res. 12 (Jul) (2011) 2121-2159.

[48] T.Tieleman, G.Hinton, Lecture 6.5-RMSProp: Divide the gradient by a running
average of its recent magnitude, COURSERA Neural Netw. Mach. Learn. 4 (2)
(2012).

[49] N. Srivastava, G.E. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov,
Dropout: a simple way to prevent neural networks from overfitting, J. Mach.
Learn. Res. 15 (1) (2014) 1929-1958.

[50] Y.LeCun,Y.Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015) 436.

Mohammed Abuhamad received the B.S. degree in com-
puter science from The UG in 2007, and the M.S. in artifi-
cial intelligence from The National University of Malaysia
in 2013. He is currently a Ph.D. candidate and active
member in the Information Security Research Laboratory
(ISRL) at Inha University, South Korea. His research inter-
ests lie in software security, authentication, privacy, and
deep learning.

Ji-su Rhim received the B.S. degree in computer engi-
neering from Chungnam National University in 2007. He
is currently a master degree student and active member
at the intelligence mobile Laboratory at Inha university,
South Korea. His research interests lie in software secu-
rity, mobile intelligence, and deep learning.

Tamer Abuhmed received the Ph.D. degree in informa-
tion and telecommunication engineering from Inha Uni-
versity in 2012. He is currently an Assistant Professor
with the Department of Computer Engineering at Inha
University, South Korea. His research interests include
applied cryptography and information security, network
security, Internet security, and machine learning and its
application to security and privacy problems.

Sana Ullah received the Ph.D. degree in information
and communication engineering from Inha University,
Incheon, South Korea, in 2011. From December 2011 to
March 2014, he was an Assistant Professor with the Col-
lege of Computer and Information Science, King Saud Uni-
versity, Riyadh, Saudi Arabia. He is currently an Assistant
Professor with the Department of Computer and Software
Technology, University of Swat, Mingora, Pakistan. Dr.
Ullah is currently an Editor for the Springer Journal of
Medical Systems (JOMS), KSII Transaction of Internet and
Information Systems, Wiley Security and Communication
Network, Journal of Internet Technology, and International Journal of Autonomous
and Adaptive Communications Systems. He was a Guest Editor for many top
journals including Elsevier’s Journal of Information Science, Springer’s Journal of
Medical Systems, and Springer Journal of Telecommunication Systems. He was
also the Co-Chair/TPC member for a number of international conferences including
BodyNets, IEEE PIMRC, IEEE Healthcom, IEEE Globecom, and IEEE WCNC.

Sanggil Kang received the M.S. and Ph.D. degrees in Elec-
trical Engineering from Columbia University and Syra-
cuse University, USA in 1995 and 2002, respectively. He
is currently an associate Professor in the Department
of Computer Engineering at INHA University, Korea. His
research interests include Semantic Web, Artificial Intel-
ligence, Multimedia Systems, Inference Systems, etc.

DaeHun Nyang received the B.Eng. degree in electronic
engineering from Korea Advanced Institute of Science
and Technology in 1994, and the M.S. and Ph.D. degrees in
computer science from Yonsei University, South Korea, in
1996 and 2000, respectively. He was a Senior Member of
the Engineering Staff with the Electronics and Telecom-
munications Research Institute, South Korea, from 2000
to 2003. Since 2003, he has been a Full Professor with
the Computer Engineering Department, Inha University,
South Korea, where he is currently the Founding Di-
rector of the Information Security Research Laboratory.
His research interests include cryptography and network security, privacy, usable
security, biometrics, and their applications to authentication and public key cryp-
tography. He is a member of the Board of Directors and Editorial Board of the Korean
Institute of Information Security and Cryptology.


http://refhub.elsevier.com/S0167-739X(18)31552-8/sb47
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb47
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb47
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb48
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb48
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb48
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb48
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb48
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb49
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb49
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb49
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb49
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb49
http://refhub.elsevier.com/S0167-739X(18)31552-8/sb50

	Code authorship identification using convolutional neural networks
	Introduction
	Related Work
	Theoretical Background
	Data Representation
	Word Embedding Representation
	TF-IDF Representation

	Convolutional Neural Networks

	CNN-based Code Authorship Identification Systems
	CNN Architecture with Word Embedding Approach
	CNN architecture with TF-IDF approach

	Experiment and Evaluation
	Corpus
	Constructed Models for Experiments
	Model Training
	Evaluation Results

	Limitations
	Conclusion
	Acknowledgments
	References


