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a b s t r a c t

Deep learning has drawn a lot of attention recently. It is successful in a variety of applications fromnatural
language processing to autonomous vehicle control. A main difference from traditional learning is that
deep learning learns the representations of the data, i.e., the features, via greedy layer-wise pre-training.
The characteristics of deep learning promotes it as a power tool tomine the data from Internet of Vehicles
(IoV). The paper focuses on the economic aspect of IoV and investigates deep learning enabled IoVmarket
for data trading and processing. The economic model of IoV consists of three side: the data provider, the
service provider, and the user. The data provider collects the data for the user. The user buys the raw data.
The data is further processed by the service provider, who provides the learned features for the user to
obtain some profit. To optimize the profit of three-sided participators, a Stackelberg game is proposed to
model the interactions among them. We derive the equilibrium pricing mechanism of the providers and
corresponding demands of the users. The existence and the uniqueness of the equilibrium strategies are
proved. Our analysis reveals that the strategy of each participator is related to the utility of the user and
the data/service provider’s cost. To the best of our knowledge, this is the first time that the data provider
and the service provider directly interact with the user in the data market.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

With the rapid development of wireless communication, mo-
bile computing, sensor techniques, and mobile social networking,
many objects in our daily lives are interconnected through the
Internet. The past few years have witnessed the proliferation of
Internet of Things (IoT) paradigm [1–5]. Via smartphones, diverse
sensors/actuators, Radio Frequency IDentification (RFID) tags, an
enormous amount of data fromdifferent aspects and sectors is gen-
erated everyday. For instance, it is reported Google approximately
processes 20,000 TB data and Flicker approximately generates
about 3.6 TB data everyday [6]. It is expected that by 2020, the total
amount of data worldwide will reach 35 ZB [7].
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The services offered by IoT paradigm highly depend on the
available data. However, approximately 90% of the generated data
is unstructured [8]. The multimedia data collected from the Inter-
net and mobile devices is a typical example of this unstructured
data [6]. Fully utilizing the collected data to generate commercial
value is a huge challenge in many scenarios [9]. Many data pre-
processing and machine learning methods are proposed to extract
useful information from the data. Machine learning technology en-
ables many aspects of modern people’s life, including web search,
recommendation systems, natural language understanding as well
as social networking [10–15]. Machine learning facilitates many
services to Internet of Vehicles (IoV) [16]. With the aid of multiple
sensors deployed in vehicles and roads, cloud platforms collect
traffic information and current status from the vehicles [17]. Via
data analysis and prediction, drivers are provided by accurate
travel time estimation to improve their driving plans [18]. Indeed,
by carefully mining the datasets from the IoV, there are many
services that can be provided to the drivers, even if the same
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Table 1
The details of ResNet with different depths. All the results are cited from [28].
Depth Parameters Test error (%)

20 0.27M 8.75
32 0.46M 7.51
56 0.85M 6.97

110 1.7M 6.43

dataset are used. The possible services include: autonomous ve-
hicle control, traffic event detection, traffic situation prediction,
parking lot management, driving plan making [19–21].

We characterize the entities involved in the paradigm as three
parts: data providers, service providers, and service users. Data
providers are those devices generating raw data. They can be
cameras, sensors, smartphones, and so on. Service providers collect
the rawdata fromdata providers. The rawdata is processed and an-
alyzed by service providers via learning models. Based on various
purposes, various services are offered to service users. For example,
service providersmayprovide extracted features from the rawdata
to service users, or they directly provide the predicting results to
service users. Therefore, service providers provide platforms for
the interactions between data providers and service users.

Participating in such service scenarios is a cost task for both data
providers and service providers. On one hand, it consumes data
providers’ resources, such as battery, computing power and so on.
In some scenarios, data providers are facing the problem of privacy
leakage if the sensing data involves their private information [22].
For example, by submitting the images from specified scenarios,
the providers expose their habits and preferences. In the IoV sce-
narios, uploading traffic information also reveals the locations of
the vehicles.

On the other hand, extracting useful information consumes
service providers’ energy power, computing power and so on. A
complicated learning model has the potential to discover intricate
structures in the input data and offer better services. A larger
amount of data also helps to improve the learning accuracy. How-
ever, the complicated model with more learning data requires
more computation power and memory storage. Therefore, data
providers and service providers are not interested in these tasks
unless they receive satisfying rewards from service users to cover
their participating costs.

From the perspective of service users, they obtain gains by
purchasing data analysis services from the service provider [23].
The service quality is related to the amount of raw data bought
from data providers, as well as the machine learning models used
by service providers. For example, as the size of available training
set onMNIST [24] and CIFAR-10 [25] datasets increases, prediction
performance is improved [26]. But a service user has to pay for
the data. There is a tradeoff between the amount of raw data a
service user buys and the service quality the user gets. Meanwhile,
different learningmodels offer various service quality. Table 1 lists
the details of ResNet with different depths on CIFAR-10 dataset.
It shows that as the neural network goes deeper, the test error
decreases. However, the total number of model parameters and
FLOPs are also increasing. In some cases there is strong correlation
between the computation a model requires and the accuracy it
achieves [27]. Therefore, there is a tradeoff among service users,
data providers, and service providers.

To address the aforementioned issues, in the paper we focus
on the economics of IoT/IoV, which is an under-investigated is-
sue, especially when the computation cost of service providers
is involved. We investigate two critical questions: (1) How much
data should service users buy from data providers to satisfy their
requirements? (2) What are the best prices that service providers
and data providers charge service users for their services?

The abovequestions are significantly important in the economic
scenario. We develop a game-theoretical economic framework
to model the interactions among three parties. We consider a
monopolistic scenario, i.e., there is one data provider, one service
provider, and one service user, as the scenario is fundamental for
the market. We model the interaction as a two-stage Stackelberg
game. In the first stage, there is a non-cooperative game where
the data provider and the service provider decide the price of
the data and the service. Then in the second stage, the service
user determines its demands of service units and data units to
maximize its profit. We assume this scenario is a pricing market
with complete information: each participator in the game has the
complete knowledge of all the participator in the market. Then
the Nash equilibrium of each subgame is derived. We also conduct
extensive experiments to reveal the best price of the providers, the
best demand of the user, as well as the profit of the participators.

The paper is organized as follows. Section 2 describes the re-
lated work, including deep learning and data pricing mechanisms.
Section 3 presents the market model and formulates the optimal
problem. Then the optimal pricing mechanism is discussed in
Section 4. Section 5 presents some numerical results. Conclusion
is drawn in Section 6.

2. Related work

2.1. Deep learning

Although the concept of ‘‘neural networks’’ has a long history,
the past few years have witnessed an upsurge of research interest
in deep neural networks. In 2006, Hinton et al. proposed a greedy
layer-wise unsupervised training strategy for Deep Belief Net-
works [29]. The method overcame the issue that gradient-based
optimization with random initialization may get stuck in poor
solutions [30]. The work showed that the nonlinear, distributed
representations in the deep hidden layers are high-level abstrac-
tions of the input. It is possible to interpret these representations
and generate images from them. The success of greedy layer-wise
unsupervised training strategy evoked the new wave of neural
networks research. The term ‘‘Deep Learning’’ was coined in the
year. Later in 2012, the group led by Hinton won the ImageNet
classification benchmark, which is considered as a standard com-
petition in computer vision community. The group achieved 15.3%
top-5 test error rate, compared to 26.2% achieved by other standard
machine learning methods. The winner, i.e., ‘‘AlexNet’’, consists
of five convolutional layers and three fully-connected layers. The
work stimulated huge public interests in deep learning research.
Since then, an enormous amount of research effort has been going
into deep neural networks worldwide.

The success of deep learning can be attributed to many factors.
The convolutional neural network (CNN) is an essential factor
among them. CNN is not new, which can be traced back to the
1980s [31]. By composing multiple nonlinear transformations on
the original inputs, the representations are learned. This is a dis-
tinct pattern that deep learning differs from the traditional learn-
ing: the features of the data are learned by the greedy layer-wise
unsupervised training manner. The low-level features are firstly
extracted and then high-level features are obtained by multiple
nonlinear transformations. The high-level features are more ab-
stract and discriminative. AlexNet inspires many subsequent deep
neural networks, such as Network-in-network [32], VGGNets [33],
GoogLeNet [34], Highway [35], ResNets [28], DenseNet [36]. The
neural networks are also going deeper. AlexNet has 8 layers, while
Highway, ResNets, DenseNet all surpass 100 layers.

The deep neural networks are proposed for tasks in computer
vision at the beginning, such as image classification and object
detection. Currently, deep neural networks based technologies
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have already achieved significant success in a large number of
applications with good performance, including speech recogni-
tion, natural language processing, web search, autonomousmobile
robots, self-driving cars, drug discovery and genomics.

2.2. Pricing the data

There have been existing efforts to combine data analysis mod-
els with economic mechanisms [37]. The pricing is an effective
means of coordination between the service provider and the ser-
vice user. In the digital market, the service providers make profits
via offering various services to the service users. The service users
arewilling to pay for the services of interest and get certain utilities
from them. A well-developed digital market is in the context of
Internet. Internet service providers (ISPs) offer their subscribers
wired and/or wireless connectivity and bandwidth.

The basic goal of pricing is to incentivize users to adjust their
demands so as to maximize the overall resource utilization. The
resource utilization could be the profits of providers, the utili-
ties of users, and capacity usage. Generally speaking, the pric-
ing schemes could be classified into two different categories:
static pricing and dynamic pricing, depending on resource con-
dition, usage flexibility [38]. The pricing schemes could be fur-
ther divided into three pricing schemes: usage-based, service-
based, time-dependent [39]. These pricing schemes are success-
fully adopted in the field of wireless resource allocation [40,41,39],
Internet resource allocation [42].

However, the significant role that pricing can play is beyond
the area of Internet service. Recently, pricing the data in IoT has
received attention due to the fact that IoT continues to thrive. There
is plenty of literature on data and service trading [43–48]. [49]
presents a survey of big data market. Unlike that of Internet,
the market for trading data and service adopts the pay-as-you-go
scheme to charge the users. In [45,50–53], machine learning based
data trading in IoT is discussed. However, in [50,51] the users pay
at a fixed-fee,while [45,52,53] ignore the costs of service providers.

Our work is similar to the work in [50–52]. However, in [50,51]
the data is bought by the service provider and the user pays a
fixed service fee to the service provider. The providers’ cost is
not considered in [52]. Besides, the users in our market interact
with the data provider and service provider directly. The service
provider then processes the data from the data provider per user’s
request.

3. Market model and problem description

In the paper we consider the following scenario. A certain
dataset is bought by a mobile user from the data provider. The
mobile user cannot support the computation requirement of ma-
chine learning model due to limited energy and computing ca-
pacity. Therefore, the service provider is engaged in the market
and extracts the features from the dataset for the user. Then the
user can use the learning representations for further tasks. In other
cases, there are some other kinds of data services, such as financial
crisis prediction, stock price prediction, traffic status prediction.

There are three kinds of participants: one data provider, one
service provider, and one service user. Fig. 1 shows the pricing
model considered in the paper. The data provider collects the
raw data by sensing the environments, taking photos, detecting
human’s activities. The service provider processes the raw data
and provides different services to service users. In the paper the
service provider extracts best features from the raw data according
to users’ requests. The service user buys the raw data from the data
provider and buys data analysis service from the service provider
to process the raw data. We assume each request from the service
user is independent. The data provider collects the raw data and

Fig. 1. Basic market relation among the DP, SP, and SUs.

the service provider processes the data according to each request
from the service user. The raw data and the data analysis services
cannot be reused. In order to focus on the data trading, we ignore
the communication cost. Table 3 lists related notations used in the
paper.

The data provider collects the raw data for further usage. The
raw data can be classified into three classes: crowdsensing data,
social networking data, sensing data [44]. In IoV, data can be
provided by different on-board sensors, such as RADAR, GPS, video
cameras, as well as sensors monitoring vehicle’s status, fatigue
detector and sleep detector monitoring driver’s activities [54,55].
Driver’s mobile phones also belong to common data source. In the
scenario, the vehicle, including all on-board devices, is considered
as a data provider.

The data provider encapsulates the data into data units. Each
data unit represents a data sample, carrying the complete seman-
tics. An example of the data unit is an imagewith the size of 32×32
in CIFAR-10 dataset [25]. The service user buys the raw data in
terms of the data unit. Thus, the service provider processes the
data based on the data unit. The maximum data units that a data
provider can provide is N .

No matter where the data comes, it consumes the data
provider’s resource. The resource can be in terms of battery, com-
puting power, memory space, time and so on. The cost goes up in
proportion to the amount of the data unit. To simplify the analysis,
the cost function c iDP (ni) is assumed to be linear increasing function
of the data unit. This kind of cost functions is widely used in mo-
bile crowdsensing/crowdsourcing [56,48], cloud computing [57],
Internet of things [50], as well as Internet service [58]. Based on
the analysis, the cost function of the data provider is defined as:

c iDP (ni) = cdu · ni (1)

where ni is the amount of data units that the service user i buys,
and cdu is the cost of per data unit.

The data provider also decides the price of per data unit, de-
noted as pdu. Therefore, via selling the sensing data, the profit of
the data provider is

pDP (ni) = pdu · ni − c iDP (ni) (2)

s.t. ni, pdu > 0 (3)

If positive profit can be obtained, the data provider is willing to
collect the data. From the perspective of the data provider, the
problem of profit maximization is formulated as: PDP :

max
∑
n

(pdu · ni − c iDP (ni)) (4)

The service provider processes the raw data and provides vari-
ous data services to the service users. They can be cloud platforms,
data centers, and computing clusters [59]. There are some available
service platform: Google Cloud Machine Learning [60], Amazon’s
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Predictive Analyticswith AWS [61], andMicrosoft’s AzureMachine
Learning [62].

The service provider plays a significant role in themarket. From
the perspective of the service provider, several steps are required
to process the raw data, including: identifying the learning task,
collecting and cleaning the data for training, engineering data
features for predicting, experimenting with different models and
parameters to optimize the accuracy, embedding the resulting
learned system for further operations [63]. In these steps, feature
engineering is important. The performance of machine learning
methods heavily depends on the features of the dataset [64]. In
traditionalmachine learning field, constructing amachine learning
is labor-intensive. Domain experts are required to design a feature
extractor to transform the raw data into a suitable representation
or feature vector [65]. Much attention is paid to the design of data
preprocessing and data transformation for a better representation.
The service provider uses deep learning models to process data.
A distinct pattern of deep learning that distinguishes it from tra-
ditional learning methods is that the representations of the data
are learned by neural networks [66]. The idea of greedy layer-
wise unsupervised pretraining are used to extract features, from
low-level representations into high-level representations. The im-
portant deep learning models include Network-in-Network [32],
VGG Nets [33], GoogLeNet [34], Highway Nets [35], ResNet [28],
DenseNet [36].

In our experiments we found that the learned representations
determine the predicting performance. For instance, we obtain the
inputs of the softmax layers from these neural networks. Then
these learned features are used as the inputs of classifiers. The per-
formance of these one-layer networks is similar to theperformance
of the original neural networks. It is found that, to some extent,
the predicting accuracy of deep learning models is proportional to
network size [33,67]. However, more connections and parameters
are introduced by increasing the size of neural networks, which
results in the high demands of memory storage and computation
requirement. To obtain better services, the service users have to
pay higher price.

Each service provider charges the service user for a service unit
at the price of psu. The resource demand of a service user i, denoted
as ri, depends on the choice of learning model, which further
determines the service performance partly. The cost function of the
service provider has the same characteristics with that of the data
provider. When a service provider provides ri service units to user
i, the cost function is given by:

c iSP (ri) = csu · ri (5)

where csu is the cost of per service unit.
The interactions between the service provider and the service

user i is to decide ri by controlling psu. Therefore, if a service user
enters the market and decides to buy ri service units, the profit of
the service provider for the user is:

pSP (ri) = psu · ri − c iSP (ri) (6)

s.t. ri, psu > 0 (7)

The service capacity of the service provider is constrained by
limited-resource. From the perspective of the whole market, the
profit maximization of the service provider can be formulated as:
PSP :

max
∑
n

(ri · psu − c iSP (ri)) (8)

s.t.
∑
n

ri ≤ RSP (9)

Let us consider the service user now. The service user buy
the raw data from the data provider and the data analysis from

Table 2
The performance of ResNet20 and ResNet56 with different training data size. The
results of 50000/10000 split are cited from [28].
Training size Testing size ResNet20 (%) ResNet56 (%)

10000 10000 18.01 16.11
40000 10000 8.89 8.38
50000 10000 8.75 6.97

the service provider. Each service user obtains gain from both
providers. Therefore, the service quality, e.g., the satisfaction rate
of the user, is defined as a utility function of the service user. It
consists of two parts:

ui
SU = θ (ri) + δ(ni) (10)

where θ (ri) is thewilling-to-pay-service function of user i, and δ(ni)
is the utility function of user i obtained from the raw data. In order
to obtain the gain with the data, we conduct some experiments.
The standard CIFAR-10 dataset is with a training set of 50,000
samples and a testing set of 10,000 samples [25]. We further ran-
domly choose 10,000 samples and 40,000 samples from the origi-
nal training set as new training sets. Then ResNet20 and ResNet56
are trained on the new datasets and tested on the original testing
dataset. Table 2 shows the results. Therefore, the utility function is
monotonically increasing and has a diminishing marginal utility of
the amount of data units. We define the function as:

δ(ni) = ai1 · ln(1 + ai2 · ni) (11)

s.t. ni, ai1, a
i
2 > 0 (12)

where ai1 and ai2 are performance-related parameters of user i.
The willingness of a user depends on the learning performance.

We previously has discussed that the high-quality learningmodels
usually requiremore computation and storage resources, as Table 1
shows. We define the willing-to-pay service function θ (ri) of user i
as:

θ (ri) = bi1 · ln(1 + bi2 · ri) (13)

s.t. ri, bi1, b
i
2 > 0 (14)

where bi1 and bi2 are performance-related parameters of user i.
The function is also monotonically increasing and has a dimin-

ishing marginal utility of the service unit. It is coincident with
the results in Table 1. From Table 2 we conclude that in the
scenario with fewer training data (i.e., 40000/10000 setting), the
service user could improve the learning performance by demand-
ing more service units (ResNet56 with 40000/10000 compared
with ResNet20 with 50000/10000). It shows that the learning
performance is determined by both the service provider and the
data provider. Therefore, the utility function of the service user is
defined by the two parts. The two functions satisfy the following
conditions:

• θ ′(·) > 0 and δ′(·) > 0: The functions are monotonically
increasing;

• θ ′′(·) < 0 and δ′′(·) < 0: The functions have diminishing
marginal utilities.

Each service user has to buy the rawdata from the data provider
and the service from the service provider. The profit of the service
user i is:

piSU (ni, ri) = ui
SU − ri · psu − ni · pdu (15)

From the perspective of each service user, the profit-optimal
problem can be formulated as: P i

SU :

max piSU (ni, ri) (16)
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Table 3
Related notations used in the paper.
Notation Description

pdu Price of per data unit
cdu Cost of per data unit
ni Amount of data units that service user i buys
pDP Profit function of data provider
psu Price of per service unit
csu Cost of per service unit
c iSP (ri) Cost of service provider due to user i’s request
ri Amount of service units that service user i buys
RSP The service capacity that service provider can provide
pSP Profit function of service provider
ai1, a

i
2 Performance-related parameters of user i on data unit

bi1, b
i
2 Performance-related parameters of user i on service unit

4. Optimal pricing mechanism

The interactions among three parties are controlled by adjust-
ing thedata price and the service price so that the data provider and
the service provider are able to maximize their profit. Meanwhile,
the service user can determine the amount of service units anddata
units to optimize the profit. We can formulate the economic sce-
nario as a Stackelberg game [68]. The Stackberg game often arises
in user-provider interactionswhere the optimal actions are closely
related to the pricing strategies. In standard model of Stackelberg
game, there is a leader and several followers. The leader sets a
price strategically, and the followers decide how much resource
to buy based on leader’s price. In the proposed game, there are
two leaders, i.e., the service provider and the data provider. The
participating service user is the follower. We consider the game as
a variant of the Stackelberg game. The prices of service units and
data units directly impact the demand of the service user. Thus,
we model the scenario as a two-stage game. In first stage, there
is a non-cooperative game where the service provider and the
data provider determine their prices. In second stage, the service
user determine the demands of service units and data units to
maximize the profit. Thewhole stages of the game can be described
as follows:

• Stage I—Data provider side: The data provider is a leader in
the Stackelberg game, who decides the optimal price p∗

du of
per data unit:

Subgame GDP : p∗

du = argmax pDP (17)

• Stage I—Service provider side: The service provider is also a
leader in the Stackelberg game,whodecides the optimal price
p∗
sp of per service unit:

Subgame GSU : p∗

sp = argmax pSP (18)

• Stage II—ServiceUser side: Each service user acts as a follower
in the game. Given p∗

du and p∗
sp, the user determines the

demand n∗

i and r∗

i to maximize its profit. n∗

i and r∗

i are also
the user’s best response:

Subgame GSU : (n∗

i , r
∗

i ) = argmax piSU (19)

We consider stage I as subgame 1, and stage II as subgame 2.
The Stackelberg game is usually solved via backward induction

to derive the sub-game perfect equilibrium [68–71]. At the equilib-
rium, each player maximizes its own profit, and no player has the
incentive to change its strategy. In the following we discuss the
equilibrium of each sub-game. We assume the game is a pricing
scenario with complete information: each player in the game has
the complete knowledge of all the players in themarket. According
to the definition of Subgame Perfect Nash Equilibrium (SPNE),
SPNE is a strategy profile that achieves a Nash Equilibrium at every
subgame [72].

4.1. Analysis

The prices of data unit and service unit directly impact the
demands of service user. When the data provider/service provider
varies the price pdu/psu, the service user changes its demand ni/ri.
To maximize its profit, the data provider/service provider set the
price p∗

du/p
∗
su.

Theorem 1. When ai1 · ai2 > cdue2 and bi1 · bi2 > csue2, then the
unique Nash Equilibrium demand strategy (n∗

i , r
∗

i ) and the unique
Nash Equilibrium pricing strategy (p∗

du, p
∗
su) in the game exist. The

unique NE in the game is:

n∗

i =
ai1√

ai1a
i
2cdu

−
1
ai2

(20)

r∗

i =
bi1√

bi1b
i
2csu

−
1
bi2

(21)

p∗

du =

√
ai1a

i
2cdu (22)

p∗

su =

√
bi1b

i
2csu (23)

Proof. According to (15), the profit function of the service user i is:

piSU (ni, ri) = ai1 ·ln(1+ai2 ·ni)+bi1 ·ln(1+bi2 ·ri)−ri ·psu−ni ·pdu (24)

By differentiating piSU (ni, ri) with respect to ni and ri, we have:

∂piDU (ni, ri)
∂ni

=
ai1 · ai2

1 + ai2 · ni
− pdu (25)

∂piSU (ni, ri)
∂ri

=
bi1 · bi2

1 + bi2 · ni
− psu (26)

The second derivatives of piSU (ni, ri) with respect to ni and ri are:

∂2piSU (ni, ri)
∂n2

i
= −

ai1 · (ai2)
2

(1 + ai2 · ni)2
(27)

∂2piSU (ni, ri)
∂r2i

= −
bi1 · (bi2)

2

(1 + bi2 · ri)2
(28)

If ∂2piSU (ni,ri)

∂n2i
< 0, ∂2piSU (ni,ri)

∂r2i
< 0, closed-form Nash Equilibrium

demand strategy (n∗

i , r
∗

i ) exists. The secondderivatives of piSU (ni, ri)
are negative due to the fact that ai1 > 0 and bi1 > 0. Therefore, the
NE demand strategy (n∗

i , r
∗

i ) in subgame 2 is:

n∗

i =
ai1
pdu

−
1
ai2

(29)

r∗

i =
bi1
psu

−
1
bi2

(30)

Given (n∗

i , r
∗

i ), the service provider and the data provider set the
price p∗

du and p∗
sp that is best response. Replacing the value of n

∗

i and
r∗

i from (29) and (30) in (2) and (6), we have:

pDP (ni) = ai1 −
pdu − cdu

ai2
−

ai1 · cdu
pdu

(31)

pSP (ri) = bi1 −
psu − csu

bi2
−

bi1 · csu
psu

(32)
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It obviously satisfies the conditions that the second derivatives
of pDP (ni) and pSP (Ri) with respect to pdu and psu respectively are
negative:

∂2pDP (ni)
∂p2du

= −
2cdu · ai1

p3du
(33)

∂2pSP (ri)
∂p2su

= −
2csu · bi1

p3su
(34)

As the first derivatives of pDP (ni) and pSP (Ri) with respect to pdu
and psu have only one positive solution, a unique NE exits in stage
I, i.e.,

p∗

du =

√
ai1a

i
2cdu (35)

p∗

su =

√
bi1b

i
2csu (36)

At NE, the pricing strategy satisfies p∗

du and p∗
su. Note that closed-

form solutions of (n∗

i , r
∗

i ) have to satisfy n∗

i > 0 and r∗

i > 0. We
derive n∗

i > 0 and r∗

i > 0 now. Replacing the value of p∗

du and p∗
su

from (35) and (36) in (29) and (30), we have:

n∗

i =
ai1√

ai1a
i
2cdu

−
1
ai2

> 0 (37)

r∗

i =
bi1√

bi1a
i
2csu

−
1
bi2

> 0 (38)

Thus, we must have

ai1 · ai2 > cdu (39)

bi1 · bi2 > csu (40)

Meanwhile, only when the service user, the data provider and
the service provider can obtain positive profit, they are willing to
participate the market. At SPNE, the profit of each participator is:

pi∗SU (n
∗

i , r
∗

i ) = ai1 ln(1 + ai2n
∗

i ) + bi1 ln(1 + bi2r
∗

i ) − r∗

i p
∗

su − n∗

i p
∗

du

= ai1(ln

√
ai1a

i
2

cdu
− 1) + bi1(ln

√
bi1b

i
2

csu
− 1)

(41)

p∗

DP (n
∗

i ) = ai1 −
p∗

du − cdu
ai2

−
ai1 · cdu
p∗

du

= ai1 +
cdu
ai2

− 2

√
ai1 · cdu

ai2
(42)

p∗

SP (r
∗

i ) = bi1 −
p∗
su − csu
bi2

−
bi1 · csu
p∗
su

= bi1 +
csu
bi2

− 2

√
bi1 · csu

bi2
(43)

In the market, the profit has to satisfy pi∗SU (n
∗

i , r
∗

i ) > 0, p∗

DP (n
∗

i ) > 0,
p∗

SP (r
∗

i ) > 0. Meanwhile, each service user is willing to buy the
goods only when it can obtain positive profit from corresponding
provider. Each term of pi∗SU (n

∗

i , r
∗

i ) should be positive. Therefore,
from (41)–(43) we have:⎧⎪⎪⎪⎨⎪⎪⎪⎩

ai1 · ai2 > cdue2

bi1 · bi2 > csue2

ai1 · ai2 ̸= cdu
bi1 · bi2 ̸= csu

(44)

Fig. 2. Optimal demand of data unit under varied parameters. The coefficient is the
ratio ai1a

i
2/cdu .

Combining the condition (44) with (39), (40), SPNE exits only
when:{

ai1 · ai2 > cdue2

bi1 · bi2 > csue2
(45)

In the case, the result follows.

From the above analysis it is concluded that the service user’s
utility function plays a significant role in the scenario. In the perfect
information game, the parameters of the user’s utility function and
the unit cost of the provider jointly determine user’s demands and
participator’s profit. In the following we will show their relation-
ships via various experiments.

5. Numerical results

We conduct experiments to numerically evaluate the demand,
the profit of the user, as well as the price and the profit of the data
provider. We examine the performance under varied parameters.
As the game is symmetrical design, i.e., the service provider and
the data provider have the same form of the profit function, in the
following we focus on the performance of the data provider. The
service provider can obtain similar results.1

The user’s demand n∗

i decreases as a
i
1 increases, as Fig. 2 shows.

The ratio ai1/a
i
2 impacts the demandheavily.When ai1/a

i
2 increases,

the gain obtained by single data unit diminishes. In order to maxi-
mize its profit, the user has to buy more data. However, if the cost
of per data unit of data provider is high, the user can obtain its NE
point by shrinking the demand to minimize the user’s cost.

Unlike the results in Fig. 2, the provider’s price p∗

du increases as
parameters ai1 of user’s utility function increases, as Fig. 3 shows.
When ai1 increases, the user’s utility also increases when the same
amount of raw data is bought. The user prefers to buy fewer
data. To maintain a reasonable profit, the rise in price happens.
Intuitively, the higher cost of per data unit increases provider’s
cost. Thus, the provider set a higher price to achieve the NE.

Fig. 4 reveals the relation between the NE price p∗

du of data
unit and the NE demand n∗

i of service user. In the experiment
ai1a

i
2/cdu = 10. Since the price quoted by the data provider

1 The heterogeneity of the service providers (data provider) can be determined
by the specified parameters. When we derive the Nash Equilibrium of the pro-
posed game-theoretical framework, we use the completed information, which is a
common-used assumption in relatedwork. In the case, the Nash Equilibrium points
can be achieved no matter what utility functions the participators choose, as the
knowledge is available by the participators. Therefore, themarketmodel be applied
to the market where they are heterogeneous.
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Fig. 3. Optimal price of data unit under varied parameters. The coefficient is the
ratio ai1a

i
2/cdu .

Fig. 4. Optimal demand of data unit under varied optimal price of data unit. The
coefficient ratio ai1a

i
2/cdu = 10.

Fig. 5. Optimal profit of data provider from each user under varied parameters. The
coefficient is the ratio ai1a

i
2/cdu , and ai1/a

i
2 = 1.

increases, the demand decreases quickly. The demand becomes
stable when the price p∗

du > 0.05.
Fig. 5 shows the profit of the data provider and Fig. 6 shows the

profit of the service user. Note that the user’s profit in Fig. 6 is the
total profit that is obtained from the data provider and the service
provider. It is found that both the user and the provider obtain an
increasing profit as parameter ai1 increases. Since a bigger ai1 leads
to a higher utility of the user. The user is willing to buy more data
to maximize its profit. The provider also obtain the benefits as the

Fig. 6. Optimal profit of user under varied optimal price of data unit. The coefficient
is the ratio ai1a

i
2/cdu , and ai1/a

i
2 = 1.

user can tolerate higher prices due to bigger utility parameters.
If the cost of per data unit that the data provider consumes is
minimized, the provider and the user can improve their profit. Both
Figs. 5 and 6 support the results.

6. Conclusion

IoV generate a lot of data every data. However, data does not
equal to information. How to extract useful information from the
data is a challenging task. Deep learning succeeds in many appli-
cations recently. It shows its power in learning the representations
of the raw data. In the paper we study deep learning enabled
IoV services. The economic aspect of IoV data is investigated. We
consider the scenariowhere the data provider, the service provider
and the user are responsible for generating the raw data, providing
the data service via deep learning models, and buying the data and
the service, respectively. As each participator wants to maximize
its own profit, they have conflicted interests. A game theoretical
framework is proposed to characterize the interaction among these
participators. Specially, the proposed Stackelberg game consists of
two stage. In the first stage, there is a non-cooperative gamewhere
the data provider and the service provider decide the price of the
data and the service. In the second stage, the user determines the
demand of service units and data units to maximize the profit.
Via game-theoretical analysis, we show that the proposed game-
theoretical framework drives each participator to choose the equi-
librium strategy. Therefore, the optimal profit is achieved.
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