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A B S T R A C T

In the last decades, finite element limit analysis has shown to be an efficient method to determine the load-
carrying capacity of slab bridges in bending. However, the load-carrying capacity of concrete slabs can be
limited by the shear capacity and the redistribution of shear forces when subjected to high-intensity loads such as
tire pressure from heavy vehicles. In this paper, an optimised layer model is presented which include limitations
on both shear and bending. The layer model is based on a sandwich model, which provides a simple way to
determine a safe stress distribution for reinforced concrete slabs with shear reinforcement subjected to shear and
bending. The yield criteria in the layer model are formulated as second-order cones which enables an efficient
implementation in finite element limit analysis where general convex optimisation algorithms are used. The
interaction of section forces is investigated for different combinations of shear forces, moments and torsion. The
optimised layer model is used, in combination with finite element limit analysis, to evaluate concrete slabs
subjected to different load configurations. The results show that the layer model performs very well with finite
element limit analysis and it is possible to determine a safe distribution of shear forces, moments and torsion
very efficiently. However, the model cannot handle local effects such as punching shear and concentrated loads
near the support.

1. Introduction

The load-carrying capacity of reinforced concrete slab bridges can
be limited by the shear capacity and the capability of the structure to
redistribute the internal forces. The shear problem arises when heavy
vehicles with axle loads are crossing the slab bridges. This is especially
critical for wide slab bridges where the redistribution of internal forces
is essential for the load-carrying capacity. In practice, the shear pro-
blem is often solved by increasing the thickness of the slab to avoid
shear reinforcement. However, there can be geometrical constraints
fora slab bridge, which limits the thickness. In that case, shear re-
inforcement, together with redistribution of shear, can be used to in-
crease the load-carrying capacity.

Limit analysis based on the assumption of perfect plastic materials
has shown to be an efficient method to determine the load-carrying
capacity of reinforced concrete slabs in bending. The most well-known
methods are the Yield Line Method [1] and the Strip Method [2]. The
yield line method is based on the upper bound theorem and assumes
infinite shear capacity. The strip method is based on the lower bound
theorem and assumes zero torsional moment which makes it ineffective

with respect to redistribution of internal forces.
In the last decades, finite element limit analysis based on the lower

bound theorem has shown to be an efficient method to determine the
load-carrying capacity of slabs. In the early development, the non-linear
yield criteria were linearised [3–5] to enable implementation with the
optimisation algorithms for linear programming available at that time.
The non-linear convex optimisation algorithms have since been devel-
oped, which initiated implementation of non-linear yield criteria [6–8].
For slabs, the conic yield criteria [9] are often used, which can be
implemented with second-order cone programming. However, the
conic yield criteria only consider bending- and torsional moments.

In recent years, lower bound plate elements which account of shear-
bending interaction have been developed. Such an element with a
quadratic moment distribution has been implemented with von Mises
yield criteria for steel plates [10]. Recently, a lower bound plate ele-
ment with linear moment distribution has been implemented with the
conic yield criteria and with limitations on shear-moment interaction
[11]. However, surface loads on the linear element have to be modelled
as line loads on the edges of the element. This affects the shear forces in
the supported elements, where 1/3 of the load goes directly into the
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support.
The shear limitation and shear-bending interaction must ideally be

based on a mechanical model, e.g. a sandwich model [12], which is not
the case in [11]. In the sandwich model, bending moments and tor-
sional moments are carried by cover layers, and the shear forces are
carried by the concrete core layer or shear reinforcement. If the core is
not cracked, the shear forces can be carried by the concrete core. If the
core is cracked, shear reinforcement carries the shear forces, and the
residual concrete shear strength is neglected. In the recent development
of the sandwich model, called the extended sandwich model, the ag-
gregate interlock is included in the model. Thus, the concrete con-
tributes to the shear capacity of slabs with as well as without shear
reinforcement [13,14]. Another approach to model the shear capacity
of slabs with and without shear reinforcement, which has been used
with non-finite element analysis, is the multi-layered models [15,16]. In
these models, the slab is divided into multiple layers, each of which has
a material model, i.e. a model for the stress-strain relationship. The
response of the slab is then calculated by integration of the stresses and
strains in the layers. Common for the extended sandwich model and the
multi-layered model is that they can calculate the shear capacity of
slabs with and without shear reinforcement and thus capture brittle
shear failures. However, extended sandwich model and the multi-
layered models, which utilise the tensile strength of the concrete,
cannot be combined with limit analysis which is based on the as-
sumption of perfect plastic material behaviour.

A sandwich model has been developed for a lower bound element to
model reinforced concrete shells [17] in which the stresses in the ele-
ment are limited by the modified Coulomb yield criteria. The shell
element consists of three layers in a 3D stress state and is formulated for
semi-definite programming [18]. Three layers are, in most cases, not
enough to obtain the maximum bending and torsional capacity. Fur-
thermore, semi-definite programming, which is a special type of convex
programming, is in general slow compared to conic programming
normally used in finite element limit analysis of slabs.

In this paper, an optimised layer model for finite element limit
analysis of slabs with shear reinforcement, which includes limitations
on moments, torsion and shear forces, is presented. The layer model is
based on the concept of the sandwich model [12], where the number of
layers, as well as the thickness of each layer, can be optimised to obtain
the maximum bending and torsional capacity for orthogonal reinforced
slabs. The layer model is implemented in finite element limit analysis of
slabs. The implementation of the layer model is done with conic pro-
gramming which in this case requires a reformulation of the modified

Coulomb yield criteria for a 3D stress state. The implementation in
conic programming makes the model very efficient with respect to
calculation time.

The interactions between bending moments, torsional moments and
shear forces are demonstrated with the layer model on different slabs
and load configurations. It is shown that the model is capable of
handling moment, shear and shear-moment failure. However, the
model cannot handle local effects, e.g. punching shear and arch effect
near the supports. This is demonstrated with a load on a small area on a
large slab. In the example, it is also shown how to detect if a collapse
mechanism is due to local effects or not.

In the last example, the layer model is used together with finite
element limit analysis to determine the collapse load of a reinforced
concrete slab bridge subjected to tire loads at different positions. It is
shown that the model can determine the collapse load of the slab with a
safe and optimal distribution of stresses for different load configura-
tions very efficiently.

2. Finite element limit analysis of slabs

Finite element limit analysis is a numerical method that combines
the discretisation of a structural model, known from the conventional
finite element method (FEM), with limit analysis of perfect plastic
materials. When applying the lower bound theorem, the objective is to
find the maximum load-carrying capacity where the internal stresses
and the external loads are in equilibrium, and the stresses are within the
yield criteria. The equilibrium can be formulated as

H r rc= + (1)

where H is the equilibrium matrix, is a vector with all the stress
variables, rc is a load vector with all the constant loads, and r is a load
vector which is multiplied with the variable load factor . The yield
criteria can be formulated generally as g ( ) 0i for a single or a
combination of stress variables. The objective, to maximise the load-
carrying capacity, can be obtained by maximising . The optimisation
problem can be formulated as

g i n
H r r

maximize
subject to

( ) 0 1, 2i

c= +
= … (2)

where n is the number of yield criteria. These yield criteria are always
convex. Thus, the optimisation problem is convex, which always has a
unique solution for the maximum load [18].

Nomenclature

Asx , Asy reinforcement area per unit length in the x -and y-direction
Asz reinforcement area in the z-direction per unit area
c layer thickness
fc compressive strength of concrete
fy yield strength of reinforcement
g general yield criterion
h height of cross-section
H equilibrium matrix
mn moment normal to element edge
mnt torsional moment normal to element edge
mpx , mpy moment capacity about the y- and x -axis
mx , my moment about the y- and x -axis
mxy, myx torsional moment
n0 normal force in the principal shear force direction
nx , ny, nz normal force in x -, y- and z-direction
, nyx in-plane shear force
p surface load
r load vector

rc load vector with constant loads
sx , sy stirrup spacing in x - and y-direction
v0 principal shear force
vn shear force normal to element edge
vpx , vpy shear capacity in the x - and y-direction
vx , vy shear force in the x - and y-direction
z area coordinate
zc position of concrete layer
zs position of reinforcement layer

auxiliary variable
vector containing all section forces and moments
load factor

µ coefficient of friction
reinforcement degree

c stress in concrete layer
s stress in reinforcement layer
xx , yy normal stress in x - and y-direction
xy, yx in-plan shear stress
1, 1 largest and smallest principal stress
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2.1. Equilibrium conditions for quadratic plate element

A triangular element with quadratic moment distributions is used to
discretise the slab model. The element is shown in Fig. 1. The three
corner nodes (1–3) and the three nodes on the edges (4–6) define the
distribution of bending- and torsional moments. The internal equili-
brium in the element is given as
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xx yx
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+ = (3)

where mx and my are the bending moments, mxy is the torsional mo-
ment, vx and vy are the shear forces, and p is a surface load. From the
internal equilibrium, it is seen that the shear forces can be determined
as the partial derivative of the moments. Thus, the shear forces are
varying linearly, and the shear force distribution can be established by
the use of the three corner nodes (1–3). The shear forces in the side
nodes (4–6) are interpolated from the shear forces at the corner nodes.
The sectional forces in the internal nodes (7–10) are interpolated from
nodes (1–6) and are added to check that the sectional forces in the
element are within the yield criteria. The coordinates of the internal
nodes, as area coordinates, are
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Equilibrium between the elements is obtained at the edges as shown
in Fig. 2. The momentmn, the torsional momentmnt and the shear force
vn are obtained by transformation of the moments and shear forces in
the nodes at the edges. The transformation and the equilibrium equa-
tions are collected in the equilibrium matrix H in Eq. (1). A thorough
description of the transformation of section forces and the equilibrium
between the elements can be found in [19] for a plate element with
shear, moment and torsion continuity.

3. Layer model for shear-bending limitations

An optimised layer model for shear-bending limitations in finite
element limit analysis is presented in this section. The model is based
on the same assumptions used for the well-known sandwich model
[12], which has been adopted in the fib Model code [20]. The sandwich
model, shown in Fig. 3a, provides a simple way to determine a safe
stress state in a slab of a reinforced concrete slab subjected to moments,
torsion and shear forces. In the model, it is assumed that the moments
and torsion are carried by two reinforced concrete cover layers at the
top and bottom of the slab. The shear forces are carried by the re-
inforced concrete core where a diagonal compression field in the con-
crete together with tension in the reinforcement ensure equilibrium
with the shear actions. Fig. 3b illustrates the diagonal compression field
in the core, which is in the direction of the principal stress in the core
calculated from the shear forces vx and vy together with the forces from
the stirrups and the reinforcement in the cover layers.

The bending and torsional capacity depend on the size and number
of the cover layers. However, two cover layers are rarely enough to
obtain optimality for all four bending capacities and the torsional ca-
pacity. If an orthogonal reinforced slab with different amounts of re-
inforcement in each direction is considered, the optimal size of the
cover layer, i.e. the compression zone, will have different sizes for the
four optimal bending capacities. The optimal size of the cover layer to
obtain maximum torsional moment capacity [9], if the stresses in the
cover layer are constant, is given as

c h
2torsion

x y=
+

(5)

where x
A f
f h

sx y

c
= and y

A f
f h

sy y

c
= are the reinforcement degrees and h

is the total height of the cross-section. Note that the true maximum
torsional capacity requires a non-linear stress distribution [21], but the
approximation of constant stress zones results in an insignificant
smaller capacity. From Eq. (5), it is seen that the optimal size of the
compression zone calculated with respect to the torsional capacity only
coincides with the optimal size with respect to bending capacity if the
slab is isotropic reinforced in the (x y, )-plane and all the reinforcement
is yielding at maximum bending. Thus, more cover layers are needed to
obtain the maximum moment capacities and the maximum torsional
capacity. Furthermore, the concrete and reinforcement also need to be
in different layers to get the optimal lever arms for the moment capa-
cities.

The optimised layer model is shown in Fig. 4. The concrete cover
layers are divided into multiple layers, which are optimized with re-
spect to the bending and torsional capacities. The concrete and the
reinforcement are divided into separate layers to make the size of the
concrete cover layers independent of the position of the reinforcement.
In this way, the optimised layer model also enables the possibility of
more than two reinforcement layers in the (x y, )-plane. Furthermore,
the separation of concrete and reinforcement requires individual yield
criteria for the materials. Even though this result in more yield criteria,
it is considered an improvement compared to the sandwich model. The
conic yield criteria for a reinforced concrete disk, which are adopted for
the cover layers in the original sandwich model, can overestimate the
shear capacity for high reinforcement degrees [22] which lead to an
overestimate of the torsional capacity.

The layer model has so far been optimised with respect to the
bending and torsional capacities without considering the shear capa-
cities. The optimisation of the bending and torsional capacities can be
described as minimisation of the cover layers and maximisation of the
lever arm between the concrete in compression and reinforcement in
tension. Thus it results in maximisation of the concrete core given
maximum bending and torsional capacities. If the total core thickness is
maximized with respect to the shear capacities only, the core thickness
will be h since an increase of some value k of the core thickness will
increase the shear capacities with k if a constant stress distribution is
assumed (This is shown in Eq. (20) in Section 5.1). However, the stir-
rups need to be able to create compressive stresses in the concrete to
carry the shear forces which is a geometric limitation of the core
thickness. In this paper, it is assumed that the stirrups can create
compression stresses in the concrete which are equivalent to the yield
capacity of the stirrups, i.e. the stirrups are perfectly anchored.

The number of core layers is chosen to be one, which limits the
distribution of stresses in the whole core to be constant. Such a stress
distribution is in most cases not optimal with respect to the shear

Fig. 1. Quadratic equilibrium slab element. v v m m m[ ]j
i

x y x y xy= where i is
the element number and j is the node number.
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capacity and shear-bending interaction. However, there exists no spe-
cific number of core layers which is optimal since the optimal stress
distribution changes due to moments and torsion. The effect of having
only one core layer is further addressed in Section 5.1.

In the following, the equilibrium conditions and the yield criteria
will be presented for the optimised layer model.

3.1. Equilibrium conditions

The stresses in the concrete and reinforcement layers, shown in
Fig. 4, need to be in equilibrium with the sectional forces. The resulting
normal forces in a slab are zero, which gives the equilibrium conditions

c A n
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+ = =
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= =

(6)

where ci is the thickness of layer i, Asx and Asy are the horizontal re-
inforcement areas per unit length in layer j, cx i, and cy i, are the normal
stresses in layer i, sx j, and sy j, are the stresses in the reinforcement layer
j, cz,1 is the normal stress in the z-direction in the concrete core and sz
is the normal stress in the stirrups, Asz is the stirrup cross-sectional area
and sx and sy are the stirrup spacings.

The resulting transverse shear force need to be equal to the sectional
shear forces vx and vy, and the resulting inplane shear force need to be
equal to zero which gives the equilibrium conditions

c v
c v

c n 0

czx x

czy y
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1 ,1

1 ,1

2
,

=
=

= =
= (7)

where vx and vy are the transverse shear forces, czx,1 and czy,1 are the
transverse shear stresses in the core, and cxy i, is the shear stress in

concrete layer i.
The resulting bending and torsional moments need to be equal to

the sectional momentsmx andmy and sectional torsionmxy, which gives
the equilibrium conditions
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= (8)

where zc i, is the distance from the centre of the section to the centre of
concrete layer i, and zsx j, and zsy j, are the distances from the centre of
the section to the reinforcement layer j.

3.2. Yield criteria for concrete and reinforcement layers

The reinforcement is modelled as bars which can carry tension
forces only. Thus the yield criterion for the reinforcement is given as

f0 s y where s is the stress in the reinforcement bar, and fy is the
yield strength.

The concrete is modelled as a Modified Coulomb material [22] with
tensile strength f 0t = . The corresponding yield criteria are shown in
Fig. 5a in a - -system. The yield criteria appear as follows when ex-
pressed in terms of principal stresses:

k f
0
c

1

1 3 (9)

where 1 is the largest principal stress, 3 is the smallest, fc is the uni-
axial compressive strength and k µ µ( 1 )2 2= + + . The coefficient µ
for normal strength concrete is often taken as 0.75. Note that the in
practice, fc in the yield criteria must be multiplied with an effectiveness
factor 1 which takes into account the fact that concrete is not a
perfectly plastic material [22]. For the sake of simplicity in this paper,
is set to 1.

The cover layers are assumed to be in a state of plane stress. The
modified Coulomb yield criteria for plane stress conditions are shown in
Fig. 5b which can be transformed into ( , , )xx yy xy -space as follows:

f f

( )( )

( )( )

xx yy xy

c xx c yy xy

2

2+ + (10)

The concrete core can carry a 3D stress state, where the full yield cri-
teria in Eq. (9) need to be considered. In practice, however, the amount
of reinforcement in slabs are rarely large enough to create concrete
compressive stresses larger than fc. It is therefore in most cases only
necessary to check if the largest principal stress is 01 . An exact
criterion for when it is only necessary to check the largest principal

Fig. 2. Equilibrium between element edges.

Fig. 3. (a) Sandwich model. (b) Diagonal compression field n0,1 in the principal shear v0 direction.
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stress will be derived in Section 4.1 and given in Eq. (19).

4. Implementation of the optimized layer model in finite element
limit analysis

The layer models, which account for transverse shear forces, have
previously been implemented with semi-definite programming [17]. In
this section, an exact implementation with second-order cone pro-
gramming is presented. Second-order cone programming is a very ef-
ficient class of semi-definite programming. Thus the calculation time is
reduced by implementation with second-order cone programming.

The equilibrium conditions for the optimised layer model described
in Section 3.1 can be implemented as a system of linear equations. The
yield criterion for the reinforcement steel is a linear inequality which
does not require reformulation to be implemented with second-order

cone programming. The yield criteria for the cover layers are for-
mulated directly as second-order cones as shown in Eq. (10). In the
following, the implementation of the yield criteria for the core is pre-
sented.

4.1. Exact implementation of yield criteria for the concrete core with
second-order cones

The concrete core, c1 in Fig. 4, carries the transverse shear forces by
confinement from the reinforcement and stirrups. The horizontal shear
stresses xy from the torsional moment are zero in the core. The stress
tensor for the core is therefore given as

0
0
xx xz

yy yz

zx zy zz

=
(11)

where xz zx= and yz zy= . According to the modified Coulomb cri-
teria in Eq. (9), the principal stresses of the stress tensor must be less or
equal to zero. The principal stresses are given as the eigenvalues of the
stress tensor. Thus, the yield criterion can be formulated as a positive
semi-definite inequality given as

0 (12)

where “ ” is the positive semi-definite operator which states that all
eigenvalues must be positive or equal to zero.

The stress tensor in Eq. (11) has a Chordal sparsity structure and
contains real numbers only. Thus, the positive semi-definite inequality
in (12) can be reformulated as

0

0

0

xx xz
xz x

yy yz

yz y

zz x y= + (13)

where x and y are auxiliary variables. The eigenvalues of a 2 2×
symmetric matrix can be formulated as a second-order equation. The
semi-definite inequalities in (13) can thus be reformulated as second-
order rotated cones given as

( )( )

( )( )

xx x xz

yy y yz

zz x y

2

2

= + (14)

Note that in standard convex solvers with rotated cones formulated as
x x x1 2 3

2 it is implicit that x x, 01 2 . It is therefore not necessary to
state the inequalities 0, 0, 0xx yy x and 0y .

A proof of the reformulation shown in Eq. (13) can be found in [23].
However, it should be noted that the reformulation is only possible if
one or more of the shear stresses are zero [24].

The full modified Coulomb yield criteria in Eq. (9) can be for-
mulated as semi-definite inequalities by replacing 1 in the second

Fig. 4. Example of optimised layer model for numerical limit analysis with one core c( )1 , four cover layers (c2–c5), stirrups and two layers of reinforcement.
(x y, )-plane defines centre plane of slab.

Fig. 5. (a) Modified Coulomb criteria with f 0ct = . (b) Modified Coulomb cri-
teria for plane stress conditions.
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inequality with an auxiliary variable 1. The yield criteria are then
given as

k f
0

c

1 1

1 3 (15)

Since the stress matrix is symmetric and of real numbers, the ei-
genvalues can be shifted by adding a constant to the diagonal. Utilising
this property, the modified Coulomb yield criteria can be formulated as

I

If k

0

( ) 0

0
c

1

1

1

+

+ +

(16)

where I is the identity matrix. The matrices in (16) also have a Chordal
structure since xy is still zero. Thus, the same reformulation as in (13)
can be used on (16), and the modified Coulomb criteria for the core can
be formulated as cones given as

f k

f k

f k

( )

( )

( )

( )

0

xx xz

yy yz

zz

xx c xz

yy c yz

zz c

1 2
2

1 3
2

1 2 3

1 4
2

1 5
2

1 4 5

1

= +

+ +

+ +

+ + = +

(17)

where i are auxiliary variables.
The modified Coulomb criteria for the core have been reformulated

from two semi-definite inequalities to four conic inequalities. Two of
the four cones ensure that the principal stresses are not in tension and
two ensure that the principal stresses do not exceed the compression
strength. However, it is rarely possible to reach compression stresses up
to the compression limit in the core since it is the reinforcement and the
stirrups that determine the maximum possible stresses. The maximum
normal compression stresses in the core are given as

h
c

f h
c

f f, ,xx max x c yy max y c zz max z c,
1

,
1

,= = =
(18)

where x
A f
f h

sx y

c
= and x

A f
f h

sy y

c
= are the reinforcement degrees,

z
A f
f s s

sx y

c x y
= is the stirrup degree with the stirrup spacing sx and sy, and c1

is the thickness of the core. In Eq. (17) it is seen that the minimum
compression strength occurs when 01 = , i.e. at plane stress state with
the compression strength fc. Inserting the maximum compression
stresses from Eq. (18) in the modified Coulomb yield criteria for plane
stress in Eq. (10), the limit for when it is not necessary to check the
compression strength can be found as

h
c

max( , ) 1x y z
1

+
(19)

It can be concluded that the yield criteria for the core can be im-
plemented with Eq. (14) if the inequality (19) holds. Otherwise, the
yield criteria must be implemented by the use of Eq. (17).

5. Numerical examples

The layer model presented in Section 3 has been implemented with
numerical limit analysis as described in Section 2. The implementation
is made according to Section 4. In the following examples, a slab ele-
ment with isotropic reinforcement in the (x,y)-plane is used to de-
termine the yield surfaces obtained by the layer model. Furthermore, it
will be shown how the layer model performs with finite element limit
analysis. If nothing else is stated, the cross-sectional properties shown
in Table 1 is used. With these properties, one cover layer in the top and

bottom is optimal with a thickness of c c 0.052 3= = m and the core
thickness is c 0.41 = m.

5.1. Layer model

A layer model of a slab unit, as shown in Fig. 4, is analysed to de-
monstrate the moment, torsion and shear capacities as well as the in-
teraction of section forces. The cover layers are optimised with respect
to the bending- and torsional capacities.

The conventional yield criteria for slabs in bending are the conic
yield criteria [9]. The assumptions for the conic yield criteria are the
same as for this layer model when shear forces are neglected. The yield
surfaces calculated with the layer model are shown in Fig. 6 for the case
v v 0x y= = . It is seen that the layer model produces two cones, which
are identical with the conic yield criteria. However, it should be noted
that the yield surface produced by the layer model and the conic yield
criteria only coincide if both layers of reinforcement yield at maximum
bending moment as they do for maximum torsional moment. In any
other cases, the yield surface of the layer model will be within the conic
yield criteria since the latter overestimates the torsional capacity [22].

For one-way bending, the interaction between moment capacity and
shear capacity can be calculated analytically for the presented layer
model with one core layer and isotropic reinforcement in the (x,y)-
plane. The moment capacity mpx is a linear function of the amount of
reinforcement Asx . From Eq. (10), the shear capacity vpx can be for-
mulated as

v c
A f
c

A f
s s

cpx x z
sx y sz y

x y
1

1
1= =

(20)

where c1 is the thickness of the core shown in Fig. 4. Note that Eq. (20)
is similar to the shear capacity of a reinforced concrete disk [22]. Eq.
(20) shows that vpx

2 is a linear function of Asx . Hence, the moment ca-
pacity mpx as a function of the shear force vx can be formulated as

m v m v
v

( ) 1px x px
x

px
,0

,0

2

=
(21)

where mpx,0 is the moment capacity for pure bending and vpx,0 is the
shear capacity for pure shear. The same result was obtained in [25]. The
shear-bending interaction in Eq. (21) is only optimal for the layer model
with one core layer and reinforcement with the same centroid as the
core layer. The optimal stress distribution in the core with respect to the
shear capacity becomes non-linear when a moment mx is acting on the
cross-section, or the centroid of the reinforcement does not coincide
with the centroid of the core. Thus the maximum shear capacity cannot
be obtained with one or more core layers with a constant stress dis-
tribution. In Fig. 7, the reduction due to the few core layers with con-
stant stress distributions is shown as a function of the relative centroid
of the reinforcement e

e
s
c
. If 1e

e
s
c

= the reinforcement and the concrete
core have the same centroid. It is seen that one core reduces the shear
capacity significantly more than two or three cores. Hence, more than
one core layer increases the shear capacity in most cases. However,
when choosing the number of core layers, the computational time must
also be considered. An extra core layer adds four conic constraints at
every node as shown in Eq. (17). In the following, the layer model with
one core layer is still considered.

The interaction between the torsional capacity and the shear forces

Table 1
Cross-sectional properties of slab.

Height, h 0.5 [m]
Concrete strength, fc 45 [MPa]
Reinforcement degree, x y= 0.1 [–]
Stirrup degree, z 0.1 [–]
Reinforcement cover 0.05 [m]

T.W. Jensen, et al. Engineering Structures 195 (2019) 51–61

56



is shown in Fig. 8. The shear forces in both directions affect the tor-
sional capacity since reinforcement in the x- as well as the y-direction is
needed to carry the torsional moment. The figure shows that the
combined shear capacity can be formulated as a second-order in-

equality ( ) ( ) 1v
v

v
v(0)

2

(0)

2
x

px
y

py
+ when the torsion is zero. When the

torsional moment increases towards the maximum torsional capacity,
the combined shear capacity approaches a linear inequality formulated
as 1v

v m
v

v m( ) ( )
x

px xy
y

py xy
+ . Thus the maximum possible principal shear

force is in the x- or y-direction, i.e. the directions of the reinforcement,
when the torsional moment increases towards the maximum torsional
capacity.

5.2. Quadratic element

The moment distribution in the element shown in Fig. 1 is quad-
ratic. Thus, the maximum moments can occur anywhere on the element
and not just at the corner and side nodes (1–6) as for a linear element.
Extra nodes in the centre (nodes 7–10 on Fig. 1) are added to ensure
that the section forces are within the yield criteria at these nodes as
well. The sectional forces and moments in the centre nodes are inter-
polated from the nodes at the corner and edges. In Fig. 9, the maximum
moment is shown for an element with no centre node, one centre node
and three centre nodes. The moment is limited by the yield criterion

m1 1 at the nodes.
The figure shows that if the yield criteria are not checked in the

centre of the element, the moment can be overestimated by 67%. If one

or four nodes are placed in the centre, the overestimates are 33% and
25% respectively. However, the variation of the moment in the element
is very large for all cases which can result in large shear forces ac-
cording to the equilibrium Eqs. (3). Furthermore, these extreme varia-
tions of moments within an element are rarely the optimal distribution
for a slab discretised by many elements as is shown in the next example.

5.3. Clamped square slab

The clamped square slab with uniform surface load is a benchmark
example for convergence test in finite element limit analysis of slabs in
bending. The exact solution is p 42.851m

l
p

2= [26] when the conic yield
criteria for isotropic reinforced slabs are used [9]. In the previous
section, it is shown that the optimised layer model coincides with the
conic yield criteria for specific cross-sections. Thus the layer model
implemented in finite element limit analysis can be compared with the
analytic solution for bending where shear forces are not considered.
The results obtained by the use of elements with 6, 7 and 10 nodes are
shown in Fig. 10. The figure shows that the element with 10 nodal
checkpoints converges from a lower value than the exact one. The
elements must converge from a lower value to be a true lower bound
element. The elements with 6 and 7 nodal checkpoints can overestimate
the capacity. However, the overestimates are very small compared with
the maximum possible violation of the yield criteria for the elements
shown in Fig. 9 and they are decreasing with an increasing number of
elements.

The yield criteria for each layer in an optimised layer model are
checked at every node in the element. Hence, the extra nodes result in
extra computation time. For a dense mesh, the elements with 6 or 7
nodes are therefore preferred since the calculations still lead to

Fig. 6. Yield surfaces for combinations of (m m m, ,x y xy) with v v 0x y= = .

Fig. 7. Reduction of pure shear strength for layer models with 1, 2 and 3 core
layers compared to shear strength with optimal stress distribution. The
minimum principal stress is assumed to be fc3 . ec is the centroid of the total
core, and es is the centroid of the reinforcement.

Fig. 8. Yield surface of torsion and shear forces only. Contour line spacing:
50 [kNm/m].
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sufficient accurate results as shown in Fig. 10. It should be noted that all
computation times for the clamped square slab are within seconds.

5.4. Cantilever slab subjected to a single load

The capability to limit the shear forces is demonstrated with a
cantilever slab subjected to a single load, as shown in Fig. 11. The slab
is analysed with different amounts of shear reinforcement. To ensure a
shear failure, the degree of reinforcement in the span direction is in-
creased to 0.6x = , while the other material parameters are shown in
Table 1.

The results are shown in Fig. 11. If the shear forces are not limited,
the load-carrying capacity increases towards infinity for a decreasing
distance from the load to the support which is not the case for the
model with shear limitations. For the slab with the lowest amount of
shear reinforcement, the load-carrying capacity is constant for the load
placed at x 0= to x 1.4= m. This is due to the compressive strength of
the core, which is reached to carry the shear forces. After x 1.4= m, the
load-carrying capacity decreases due to an increasing moment and a
decreasing compression in the core. As the distance from the load to the
support increases, the load-carrying capacity of the model with shear
limitations is approaching the load-carrying capacity of the model
without shear limitation.

The same behaviour is seen for the slab with a shear reinforcement
degree of 0.1z = . However, the magnitude and position of the load
where the load-carrying capacity starts to decrease are different.
Because of the high reinforcement degree in the span direction, the
load-carrying capacity will increase with an increasing shear re-
inforcement degree until z

k
f

1
2 2 c

1= .

5.5. Slab subjected to a concentrated load

In this section, load configurations with a single concentrated load
on a simply supported single span wide slab are analysed to investigate
when the local effects dominate the load-carrying capacity. The cross-
sectional properties used in the analyses are shown in Table 1. The slab
spans 5m and is 5m wide. The element, shown in Fig. 1, is used for the
analysis with one centre node and a size of 0.1m.

The slab is analysed with varying size of the square loading area in
the centre of the slab. The results are shown in Fig. 12 for three dif-
ferent shear capacities. It is seen that the same capacity is obtained for
the case with infinite shear capacity and the two cases with limited
shear capacity for load sizes of 0.6–2m. In this range, failure of the slab
is dominated by bending for all cases. Approximately the same results
can be obtained with the yield line method or finite element limit
analysis with the conic yield criteria. However, these methods do not
ensure that the slab does not fail in shear.

The failure mode can be interpreted from the collapse mechanism
which is extrapolated from the dual variables (see [11]). The collapse
mechanism along the centre line of the slab is shown in Fig. 13. The
figure shows that a plastic hinge has been developed in the middle of
the span for a 0.6= . In this case, the whole slab is failing in bending. A
second failure is shown in the figure for a 0.2= where the load-carrying
capacity is decreasing at a very fast rate due to a decrease in the loading
area. It is seen that the failure, in this case, is concentrated around the
loaded area where there is a vertical drop. The failure is local which in
the context of the present model may be interpreted as a shear/
punching shear failure. In reality, however, punching shear failures are
always associated with formations of diagonal cracks around the loaded
area [27] which activate the stirrups crossing the cracks. The punching

Fig. 9. Maximum possible moment in element with quadratic moment distribution. Moment limitation at control points: m1 1. (a) 6 control points,
m 1.67max = . (b) 7 control points, m 1.33max = . (c) 10 control points, m 1.25max = .

Fig. 10. Convergence of a clamped square slab with a uniform load. Analytical
solution: p 42.851 mp

l2
= .

Fig. 11. Load carrying-capacity of cantilever slab subjected to the surface load
p. All dimensions are in [m]. The reinforcement degree x is increased to 0.6.
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shear capacity due to failure in diagonal cracks can be calculated using
the theory of rigid plasticity [22,28]. As a consequence of the Coulomb
material model for concrete and the normality condition of plastic
theory, the horizontal projection of the diagonal cracks is at least

h0.75 [22]. If the contribution from the concrete is neglected and if it is
assumed that the stirrups are closely spaced, the minimum punching
shear capacity can then be estimated as

P f ha h(4·0.75 (0.75 ) )min z c
2= + (22)

where a is the size of the square load. The minimum punching shear
capacity of the slab with the properties in Table 1 and the load size
a 0.2= is 3338 kN. The results of the layer model, shown in Fig. (12), is
1370 kN for the load size a 0.2= , where a failure equivalent to the
punching shear failure occurred. The difference between the two cal-
culations clearly shows the limitation of the layer model combined with
finite element limit analyse of slabs where sectional shear forces and
moments are limited at each point by the yield criteria. However, the

presented model considers shear-moment action in the whole slab at
the same time while a local punching shear calculation only considers
one failure mode. Hence, the model can redistribute the forces but
cannot capture local failure mechanisms. A common practical solution
to calculate the punching shear capacity with sectional analysis is to
check the shear forces at a nominal distance from the concentrated load

Fig. 12. Load carrying-capacity of a square slab with a square loading area in
the centre of varying size. All dimensions are in [m].

Fig. 13. Collapse mechanism along the centre line in span direction for the
example shown in Fig. 12. a [m] is the size of the square load and. 0.1z = .

Fig. 14. Load carrying-capacity of bridge subjected to moving axle loads. All
dimensions are in [m]. (∗) The relative load-carrying capacity is relative to the
load-carrying capacity of the axles placed in the centre of the span (x 1.75= )
and v vpx py= = .

Fig. 15. Shear force distribution. The direction of the arrows is arctan vy
vx
, and

the length is v v vx y0
2 2= + . The lines are calculated trajectories (streamlines).

(a) Finite element limit analysis. (b) Linear elastic finite element analysis.
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and not at the edge of the load. This approach is not treated further in
this paper.

5.6. Slab bridge subjected to four moving axle loads

To demonstrate the practical application of the layer model im-
plemented in finite element limit analysis, a slab bridge subjected to
four moving axle loads is analysed. The moving loads require multiple
calculations to find the most critical position of the loads. Thus, a time-
efficient calculation method is required.

In practice, the standards have additional limitations to the concrete
strength and the stress-state in the slab which are not accounted for in
the analysis. For example, the angle between the minimum principal
stress and the (x y, )-plane must be within a certain interval [29,20].
These additional limitations are not within the scope of this paper and
require further development to be implemented.

The dimensions of the bridge are shown in Fig. 14. The four axles
represent the heavy rear axles of a truck. The contact area of the tires is
0.3 0.6× m. The width of the axles is 2.8 m, and the distance between
the axles is 1.4 m. All the dimensions are according to the Danish
standard [30].

In the analyses, 5600 7-node elements are used, and the Mosek [31]
software package for Matlab is used to solve the optimisation problem.
The total calculation time on a standard laptop for each load position is
within 1min for the full layer model.

The results are shown in Fig. 14. When x 1.75= , the axles are placed
at the centre of the span. At this position, the load-carrying capacity for

0.05z = is 6% smaller than the analysis where the shear capacity is
neglected. The figure shows that the difference remains the same as the
axles moving towards the support. This indicates that the shear forces
are not critical for the load-carrying capacity of the bridge.

The shear force distribution of the optimal solution for the axle
loads placed x 1.0= m from the support is shown in Fig. 15a. The di-
rection of the arrows with respect to the x-axis is arctanV

V
y
x
. To evaluate

the extent of redistribution of internal forces, the shear distribution is
compared with a linear elastic finite element analysis. In the analysis,
the properties, shown in Table 1, is used with triangular Re-
issner–Mindlin elements with quadratically shape functions [32]. The
shear force distribution of the analysis is shown in Fig. 15b. To compare
the flow of shear forces, trajectories starting from the inner axle loads
are calculated and drawn in the figures with red lines. The figures show
that the shear forces obtained from the limit analysis are further dis-
tributed into the slab compared with the linear elastic analysis. This is
especially seen from two of the trajectories at the load at the coordinate
(4,1) where shear forces obtained from the limit analysis are primarily
directed in the y-direction and shear forces obtained from the linear
elastic analysis are approximately directed in the x-direction. The in-
crease of the load-carrying capacity due to the optimal redistribution of
internal forces is, for this example, 47%.

It should be noted that the shear force distribution of the optimal
solution shown in Fig. 15a is not unique. In the part of the slab where
the internal forces and moments are not on the yield surface, the op-
timisation algorithm can choose any shear force distribution which is
admissible and does not interfere with the optimal solution.

5.7. Calculation time

The efficiency of the implementation of the layer model in finite
element limit analysis is analysed. The core layer is implemented with
the conic constraints shown in Eq. (14) and with a semi-definite con-
straint shown in Eq. (12) for comparison. The bridge example in Fig. 14
with the load placed in the centre (x= 1.75m) is used for the analysis.
The results are shown in Table 2 for a different number of elements. The
load carrying capacity is the same for all calculation which indicates
that the solution has converged even for the smallest number of ele-
ments. The table shows that the model with the core layer implemented
with conic constraints is approximately 50% faster than the model with
the core layer implemented with a semi-definite constraint.

6. Conclusion

An optimised layer model has been presented which can handle
bending moments, torsional moments and shear limitations in re-
inforced concrete slabs. Contrary to the well-known sandwich model,
the layer model divides the slab into separate concrete and reinforce-
ment layers, which have individual yield criteria. This ensures that the
torsional capacity is not overestimated which will be the case if heavily
reinforced slabs are modelled with the sandwich model.

The interaction of section forces has been demonstrated. It has been
shown that the layer model can produce the same yield surface as the
conic yield criteria when bending and torsional moments are con-
sidered for a slab with isotropic reinforcement in the (x y, )-plane. The
interaction between shear forces shows that the shear capacity is con-
stant if no other section forces or moments are acting on the cross-
section. However, when a torsional moment is acting on the cross-
section, the interaction between the shear forces vx and vy in the layer
model with one core becomes linear for increasing torsional moments.

The optimised layer model has been implemented with finite ele-
ment limit analysis. The yield criteria for the core have been re-
formulated so that the model can be implemented with second-order
cone programming. For the case analysed, this implementation results
in approximately 50% faster calculation time than an implementation
with semi-definite constraints.

It has been demonstrated that the model can handle both moment,
shear and shear-moment failure. However, the model cannot handle
local effects such as punching shear and concentrated loads near the
support. It has been shown that the failure mechanisms can be used to
determine when these effects dominate the load-carrying capacity and
additional analysis is required to get the optimal load-carrying capacity.

As a practical example, the load-carrying capacity of a bridge sub-
jected multiple moving axle loads. The model takes into account shear-
bending actions and redistribution of internal forces. However, addi-
tional limitations on the concrete strength and stress-state, which the
standards require, are not considered in the examples and need further
development to be implemented.
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