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a b s t r a c t

Since traditional frequent pattern mining approaches assume that all the items in binary databases have
the same importance regardless of their own features, they have difficulty in satisfying requirements
of real world applications such as finding patterns with high profits. High utility pattern mining was
proposed to deal with such an issue, and various relevant works have been researched. There have been
demands for efficient solutions to find interesting knowledge from specific environments in which data
accumulates continuously with the passage of time such as social network service, wireless network
sensor data, etc. Although several algorithms have been devised to mine high utility patterns from
incremental databases, they still have performance limitations in the process of generating a large number
of candidate patterns and identifying actually useful results from the found candidates. In order to solve
the problems, we propose a new algorithm for mining high utility patterns from incremental databases.
The newly proposed data structures in a list form and mining techniques allow our approach to extract
high utility patternswithout generating any candidates. In addition,we suggest restructuring and pruning
techniques that can process incremental data more efficiently. Experimental results on various real and
synthetic datasets demonstrate that the proposed algorithm outperforms state-of-the-art methods in
terms of runtime, memory, and scalability.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

As one of various data mining techniques [1,2], pattern mining
has played an important role in finding useful knowledge hidden
from large amounts of data [3–10]. As a fundamental research
topic of pattern mining, frequent pattern mining identifies all
of the patterns that appear more frequently than a user-defined
threshold from a given binary database [3,11]. A binary database is
composed of a number of transactions, each of which has multiple
items. Then, each item is denoted as 0 (absence) or 1 (presence).
Traditional approaches assume that all the items in such a binary
type of data have the same importance regardless of their own
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characteristics. Hence, theymine patterns simply considering item
frequencies with various real-world features ignored. However,
each item in real-world databases has its own importance as well
as quantity information that may exceed 1. In this regard, frequent
patternmining does not satisfy the need to find patterns with high
profits in real-world applications such as market analysis. High
utility patternmining has been researched as an important topic in
the pattern mining area in order to deal with such problems [12–
15]. High utility pattern mining ([16,17]; Yun, Ryang, & Ryu, 2016)
considers non-binary features and the distinct importance of items
to the mining process, which has made it possible to extract more
useful patterns, called high utility patterns, satisfying a user-given
threshold.

In recent years, large-scale data have been generated contin-
ually in various real-world applications such as web data, wire-
less network sensor data, and social network service. As a result,
this trend has increased the importance of data analysis. Previous
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techniques for static data analysis have trouble in processing such
incremental data because they have to conduct their own mining
processes from scratch in order to reflect additional data [5,6,
18–21]. To overcome this problem, various incremental pattern
mining methods have been proposed [22–24]. Incremental can
be applied in a wide variety of fields. In this field, the erasable
itemset [25], Top-K itemset [26], uncertain itemset [27,28] and
high utility itemset [29]. In this paper, we explain the incremental
high utility patternmining combining high utility and incremental.
Incremental high utility pattern mining [14,23,30,31] is an ap-
proach proposed to mine high utility patterns from non-binary
databases in which the data are continually accumulated. The cor-
responding algorithms satisfy the Anti-monotone property using
their own overestimation techniques in order to minimize search
space for mining interesting patterns without any pattern loss
[32–35] (Anti-monotone property: if an item or pattern is found
to be invalid, all of its supersets become meaningless). Although
recent approaches can mine high utility patterns from incremen-
tal databases without working from scratch whenever new data
are entered and without missing any valid pattern, they suffer
from significant computational overhead problems in checking
the validity of candidate patterns. Motivated by the problems, we
propose an efficient algorithm for mining high utility patterns
from incremental databases with indexed list structures without
generating any candidates.

The main contributions of this paper are as follows: (1) propos-
ing efficient list-based data structures and techniques for mining
high utility patterns from incremental databases without any can-
didate generation; (2) devising a restructuring technique that can
efficiently reflect incremental data to the data structures within a
single database scan; (3) demonstrating that the proposed algo-
rithm outperforms previous state-of-the-art approaches through
performance evaluation tests on various real and synthetic datasets.

The remainder of this paper is as follows. Section 2 introduces
previous interesting works related to the proposed method. Sec-
tion 3 describes details of the proposed algorithm including the
newly suggested data structures, techniques for pattern pruning,
data structure restructuring, and recursive pattern mining, and
empirical examples for them. Section 4 reports the experimental
results of the proposed method and previous state-of-the-art ones
including their in-depth analyses. Finally, Section 5 concludes this
paper and introduces our future works.

2. Related work

In this paper, we introduce influential studies related to our
approach. We first explain the basic concept of fundamental pat-
ternminingmethods focusing on binary databases, called frequent
pattern mining. After that, we describe static approaches for high
utility patternmining on non-binary databases and dynamicmeth-
ods on incremental non-binary databases.

2.1. Frequent pattern mining

Frequent pattern mining is a series of processes for finding
all of the patterns that appear more frequently than a user-given
threshold from a given binary database (called frequent patterns).
Apriori [3] and FP-Growth [11] are well-known methods in this
field. Apriori is a level-wise method using a candidate generate-
and-test manner. Therefore, the algorithm extracts a large num-
ber of candidate patterns although meaningless patterns are pre-
pruned from the Anti-monotone property [3]. Assuming that k is
the length of the longest pattern among the ones generated from
a given database, Apriori processes 1 to k level tasks, i.e., it may
have to scan the database at least k times. FP-Growthwas proposed
to overcome the limitations of Apriori. The algorithm uses a tree

data structure, FP-Tree,which is constructed in twodatabase scans.
Once the tree structure is built, FP-Growthmines frequent patterns
based on a divide-and-conquer manner without any additional
database scan and candidate generation. However, since they have
been designed to deal with binary data types only, their usefulness
continues to decline.

2.2. High utility pattern mining from static databases

High utility pattern mining was proposed to solve the limita-
tions of traditional frequent pattern mining approaches. However,
the support-based Anti-monotone property used in frequent pat-
tern mining does not guarantee complete results of high utility
patterns from non-binary databases. That is, the property causes
pattern loss problems. In order to overcome this issue, Two-Phase
[32], which is the first high utility pattern mining algorithm based
on Apriori, employs an overestimated factor for satisfying the Anti-
monotone property in high utility pattern mining, called Trans-
action Weighted Utilization (TWU). TWU-based Anti-monotone
property is called TransactionWeightedDownwardClosure (TWDC)
[32], which means that, if a pattern has lower TWU than a given
minimumutility threshold, any of its super patterns is invalid. After
Two-Phase, various advanced approaches have been proposed,
such as Apriori-based methods, FUM and DCG+ [36], and FP-
Growth-based methods, UP-Growth [37] and UP-Growth+ [38].
Although they have different data structures and mining tech-
niques from one another, their procedures are mainly divided
into two parts: (1) Phase I — generates candidate patterns with
TWU values higher than or equal to the threshold; (2) Phase II —
identifies actual high utility patterns from the candidates through
additional database scanning processes. In recent years, many
studies on high utility mining have been published. EFIM-Closed
[39] and FDHUP[40] are tree-based high utility pattern mining
algorithm. Also, list-based approaches such as HUI-Miner [41],
FHM (Fournier-Viger 2014), and IMHUP [42] have been devised to
conduct high utility patternmining operations without generating
candidate patterns. However, their effectiveness is limited to static
data.

2.3. Incremental high utility pattern mining

In recent years, more and more data have been being gener-
ated in various application fields. Hence, the features and vol-
umes of data continue to change with the passage of time. Since
static approaches have to conduct their own mining operations
from scratch whenever new data are inputted, they suffer from
fatal computational overheads. Therefore, in order to guarantee
reasonable algorithm efficiency with respect to such incremental
stream data, we need to process newly inputted data only without
additional database scans and reflect them into the previously
processed without any error. FUP-HU [30] is an Apriori-based in-
cremental high utility patternmining algorithm,which is the result
of applying the concept of FUP, incremental frequent pattern min-
ing method [43], into Two-Phase. This method classifies patterns
within an original database into two types, Large and Small pat-
terns, by comparing their TWUvalueswith a given threshold. Large
patterns have TWU values higher than or equal to the threshold
while Small ones have lower values. After that, FUP-HUalso divides
patterns generated from additional databases (incremental data)
into the two types and then it mines high utility patterns in amore
efficient way by considering the changes in pattern types between
the original and additional data. PRE-HUI [44,45] is a variation of
FUP-HU, which uses two types of thresholds, Upper threshold and
Lower threshold, and employs a new concept for predicting the
changes of pattern states on incremental data, named Pre-large
concept [44,45]. The Upper threshold plays the same role as the
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Table 1
Example of a non-binary database and item profits.

TID Transaction TU Item Profit

Original DB

T1 (A, 2) (B, 1) (D, 1) (F, 1) 13 A 2
T2 (A, 1) (B, 2) (E, 2) 18 B 5
T3 (B, 1) (C, 2) (F, 2) 11 C 1
T4 (A, 2) (D, 1) (E, 2) (G, 1) 17 D 2
T5 (B, 2) (C, 1) (D, 1) (E, 2) 19 E 3
T6 (D, 2) (E, 1) 7 F 2

db1
+ T7 (C, 1) (E, 2) (F, 1) 9 G 5

T8 (A, 1) (B, 1) (C, 2) (D, 1) 11

db2
+ T9 (B, 1) (D, 2) (E, 1) 12

T10 (A, 3) (F, 1) (G, 2) 18

minimum utility threshold and the Lower threshold is a smaller
value than the Upper threshold. Pre-large patterns mean patterns
of which the TWU values are between the thresholds. The PRE-
HUI algorithm guarantees better performance than FUP-HU, but
it is not an exact approach because pattern losses can be caused
depending on how the Lower threshold is set.

An FP-Growth-basedmethod, IHUP [14] constructs its own tree
structure in a single database scan and extracts candidates for
high utility patterns. After that, the algorithm identifies actual
high utility patterns from the candidates through an additional
database scan. Whenever new incremental data are inputted, the
method processes them, updates the previously constructed tree
structure, and conducts its own mining operations. HUPID [23] is
an advanced tree-based approach, which employs its own data
structures, HUPID-Tree and TList. Based on a divide-and-conquer
manner, the method overcomes the drawbacks of Apriori-based
algorithms. In addition, its special techniques for reducing over-
estimated utility values have made a significant contribution to
improving algorithm performance by generating a smaller number
of candidate patterns. However, such a method still suffers from
significant computational overheads because useless candidate
patterns are still generated although the number may be further
reduced compared to the other algorithms. On the other hand,
the proposed method does not need to worry about this problem
because it can mine a complete set of high utility patterns on
incremental data without any candidate generation.

3. Indexed list based incremental high utility pattern mining
without candidate generation

In this paper, we propose a new algorithm for mining high
utility patterns from incremental databases without generating
any candidate, called Indexed list based Incremental High Utility
Pattern Mining (IIHUM). Our method includes new data structures
and techniques for pattern pruning, data structure restructuring,
and recursive pattern mining for incremental data processing.
We also provide important preliminaries for high utility pattern
mining and empirical examples for the proposed techniques.

3.1. Preliminaries

In utility pattern mining, a non-binary database with n transac-
tions canbedenoted asD= {T1, T2, . . . , Tn},which includes a set ofm
distinct items, I = {i1, i2, . . . , im}. Each transaction Td (1≤d≤n) has
a unique identifier, TID, and consists of multiple items belonging
to I (Td⊆I). Each item ip (1≤p≤m) has its own importance, called
external utility anddenoted eu(ip), and anon-binary quantity value
for Td, called internal utility and denoted as iu(ip, Td). The utility of
item ip in Td is calculated by multiplying its internal and external
utility values, denoted as u(ip, Td) = eu(ip) × iu(ip, Td). A pattern, P,
which can be generated fromD, is denoted as P= {i1, i2, . . . , ik} (P⊆I
and 1≤k≤m). P can also be expressed as k-itemset, which means a
set of items with length k.

Definition 1 (Utility of a Pattern in a Transaction). Given a pattern,
P, in a transaction, Td, Utility of P in Td is denoted and calculated as
u(P, Td) =

∑
u(ip, Td), where ip∈P and P⊆Td.

Definition 2 (Utility of a Pattern in a Database).Given a pattern, P, in
a database, D, Utility of P in D is denoted and calculated as follows:
u(P) =

∑
u(P, Td), where P⊆Td and Td∈D.

Definition 3 (Transaction Utility of a Transaction). Given a transac-
tion, Td, its utility, tu(Td), is calculated as follows: tu(Td) =

∑
u(ip,

Td), where ip∈Td.

For example, in the original database of Fig. 1, 2-length pattern
AB appears in the two transactions T1 and T2, where the utility of
the pattern for each transaction is u(AB, T1) = u(A, T1) + u(B, T1)
= 4 + 5 = 9 and u(AB, T2) = u(A, T2) + u(B, T2) = 2 + 10 = 12.
Therefore, the utility of ABbecomesu(AB)=u(AB, T1)+u(AB, T2)=
9+ 12= 21. Transaction utility values of T1 and T2 are calculated as
tu(T1)= u(A, T1)+ u(B, T1)+ u(D, T1)+ u(F, T1)= 4+5+2+2 = 13
and tu(T2) = u(A, T2) + u(B, T2) + u(E, T2) = 2 + 10 + 6 = 18 .

Let u(D) =
∑

tu(Td), where Td∈D be the total utility of D (the
sum of all tu values) and δ be a user-given threshold percent value.
Then, the corresponding minimum utility threshold is denoted as
minutil = u(D) × δ. For a pattern, P, If u(P) is not smaller than
minutil, P is called a high utility pattern; otherwise, a low utility
pattern. Then, high utility patternmining can be defined as a series
of processes for finding all of the patterns ofwhich theutility values
satisfy minutil. In high utility pattern mining, the TWDC model
[32] is typically used to maintain the Anti-monotone property
(also called downward closure property) [3,11]. In the model, each
pattern P has an overestimated utility value, TWU, which is de-
noted as twu(P) =

∑
tu(Td), where P⊆Td and Td∈D. If twu(P) is not

smaller than or equal tominutil, P becomes a transaction-weighted
high utility pattern (also called potential high utility pattern or
candidate high utility pattern). For example, u(D)= tu(T1)+ tu(T2)
+ tu(T3)+ tu(T4)+ tu(T5)+ tu(T6)=13+18+11+17+19+7 = 85
in the original database of Table 1. If a user-given threshold percent
value, δ, is 0.3 (30%), minutil = u(D) × δ = 85× 0.3 = 25.5. In
the case of pattern AB, although AB is not a high utility pattern
because u(AB) = 21 < minutil, it becomes a transaction-weighted
high utility pattern since twu(AB) = tu(T1) + tu(T2) = 13+18 = 31
> minutil. That is, AB is not considered a valid result, but it is not
pruned and the subsequent works for finding its super patterns are
conducted.

3.2. Overall process of mining high utility patterns without candidate
generation from incremental databases

Fig. 1 shows the overall architecture of the proposed algorithm.
It shows the data that flows in real time. The method first scans
a given original database once to construct our global list struc-
tures. Thereafter, the constructed list structures are restructured
according to a TWU ascending order and their index information
is properly set again. If new transaction data are entered, the
proposed method reflects them into the previously constructed
data structureswithout re-scanning the previously processed data.
In this process, TWU values of the items composing the global
structures are calculated again, and the updated data structures
are restructured according to the changed TWU ascending order.
After the data structures are restructured, the user gives a thresh-
old percent value to request a result of high utility patterns for
the current incremental database. Then, the algorithm recursively
generates conditional list data structures from the global data
structures. After all of the recursive works are finished, the user
can directly receive a complete set of high utility patterns without
any candidate check.
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Fig. 1. Overall architecture of the proposed algorithm.

3.3. Constructing global indexed utility lists with original database

The previously proposed approach for incremental high utility
pattern mining performs tree-based data processing works and
overestimation-based pattern mining operations. In other words,
since the approach generates a number of candidates through its
overestimation method, it has to perform additional works for
identifying whether each candidate is an actually meaningful re-
sult. We already know that such candidate checking works, called
Phase II, are time-consuming tasks [34,35,46,47] (The literature
says that the tree-based approaches have been found to consume
large amounts of time and space resources in Phase II). Moreover,
the number of generated candidate patterns can be increased ex-
ponentially according to the threshold settings, which means that
the previous approaches are not suitable for dealing with large-
scale incremental data. For this reason, we propose new efficient
data structures for mining high utility patterns from incremental
data without generating any candidate patterns.

The data in a given incremental database are refined and stored
in the global data structures of our framework, called Incremental
Indexed Utility List (IIU-List). A global IIU-List is assigned to each
item within the current database, {ip}, which is denoted as IIU-
List{ip}. Each IIU-List IU-List{ip} is composed of a number of en-
tries for storing the information of the transactions with ip. Fig. 2
presents the general form of a global IIU-List for an item. For each
entry (an entry is related to one transactionwith the current item),
NextItem points to the item label next to the current item in the
corresponding transaction; ActUtil is an actual utility value of the
current item in the transaction (the product of the internal and
external utility values); NextIdx indicates which entry in the IIU-
List corresponding to the next item the current item appears in.
SumUtil is the sum of all the ActUtil values in the current IIU-
List, which is equal to the actual utility of the current item. RUtil
indicates the maximum utility value that can be added to SumUtil
when the current item is expanded to the maximum. The details
of them are explained with proper definitions and examples in the
subsequent section.

Definition 4 (Remaining Utility of a Pattern). Let Td be a transaction
with pattern P and Td/P be a set of the items appearing after P in

Fig. 2. General design of global IIU-List.

Td. Then, the remaining utility of P in Td is denoted as ru(P, Td)
=

∑
u(ip, Td), where ip∈Td/P. ru is employed to perform pattern

pruning works through the Anti-monotone property based on an
overestimation manner, which is different from the TWU method
used in the previous tree-based approach. Its details are described
in the subsequent section.

For a given database, D, IIHUMconstructs a set of global IIU-Lists
in the following manner. The method sorts a transaction of D, Td
= {i1, i2, . . . , il}, in a canonical order such as a lexicographic order
(there is no problem if the transaction is not sorted because our
restructuring tasks are performed after the insertion process). Note
that we assume the order of the items in the example database
is the lexicographic order to give the readers more intuitive con-
tents. Let Td′

= {i1′, i2′, . . . , il′} be the sorted transaction. Then, the
proposed algorithm inserts each item to the set of global IIU-Lists
starting from the last item, il′. That is, if an IIU-List for il′, IIU-
List{il′}, does not exist in the global data structure, a new list for
the item is created and a new entry for il′ in Td′ is inserted into
the list. Note that the initial state of the global data structure is
empty. The reason why we process the items of the transaction in
a reverse order is that NextItem and NextIdx can be setmore easily
without additional calculationworks. In otherwords, since the first
processed item, il′, is the last item of the transaction, i.e., Td′/{il′} =

φ, NextItem and NextIdx are set to NULL. ActUtil is set to u(il′, Td′)
and added to SumUtil of the list (SumUtil = SumUtil + u(il′, Td′)).
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After that, IIHUMgenerates the next item, il−1
′. As in the case of the

previous item, a new IIU-List for il−1
′, IIU-List{il−1′}, is constructed

if the list does not exist in the global data structure. Thereafter, a
new entry for il−1

′ in Td′ is added to the list. Then, its ActUtil is
updatedwith u(il−1

′, Td′) and SumUtil of the list increases by u(il−1
′,

Td′). Since il−1
′ is not the last item, its NextItem and NextIdx are

set to the information of the previously processed item, il′, instead
of setting them to NULL. That is, NextItem of il−1

′ becomes the
label (name) of il′, and NextIdx of il−1

′ becomes the index number
of the entry for il′. The remaining items from il−2

′ to i1′ are also
processed in the sameway. By doing so,we can track how the items
are linked to each other and what utility value each item has. If
every item in the transaction is processed, we increase the TWU
values of the corresponding items, {twu(i1′), twu(i2′), . . . , twu(il′)},
by tu(Td′). After the insertion process is finished with respect to
the current incremental database, we can obtain a complete set
of global IIU-Lists (not yet restructured) and the TWU information
of the items composing the current database. Note that the TWU
information is not employed for calculating overestimated utility
values of patterns like the previous tree-based approach. Instead,
we use the information to restructure the global lists, so that the
proposed algorithm canmine high utility patterns more efficiently
(see the next section for more details). After the construction
process, RUtil of each IIU-List is initialized to 0 and then computed
during the restructuring process. The RUtil calculation process can
be conducted simultaneously with the restructuring process with
a few additional operations. Fig. 3 shows the set of global IIU-Lists
constructed from the original database of Table 1.

Example 1. Consider constructing a set of global IIU-Lists from the
original database in Table 1. Then, IIHUM inserts the data from
the first transaction T1 = {A, B, D, F} to the last one T6 = {D, E}.
Since the initial state of the global data structure is empty, the
algorithm generates an IIU-List for F, IIU-List{F}, and inserts a new
entry into the list, which is the first entry in the list. Therefore,
its index number is assigned to 1 and used to connect the entry
of another IIU-List for the next item. Since F is the last item in T1
(T1/{F} = φ), NextItem and NextIdx of the corresponding entry are
set to NULL, respectively. ActUtil and SumUtil of the entry become
u(F, T1′) = 2 and 0 + 2 = 2, respectively. In the case of the next
item D, the algorithm creates a new IIU-List for D, IIU-List{D}, and
an entry is added to the list. The current item D is not the last
item. Hence, its entry information does not have NULL; instead, its
NextItem and NextIdx are set to F and 1, respectively. Its ActUtil
and SumUtil are u(D, T1) = 2 and 0 + 2 = 2, respectively. The
remaining two items B and A are processed in the same way. Since
tu(T1′)= 13, twu(A), twu(B), twu(D), and twu(F) are updated as 13.
In the second transaction, T2 = {A, B, E}, there is no IIU-List for the
last itemE. Therefore, IIU-List{E} is generated and its first entry for E
is created, where its ActUtil and SumUtil become u(E, T2) = 6 and
0 + 6 = 0, respectively. Since T2/{E} = φ, NextItem and NextIdx
of the entry become NULL. Meanwhile, IIU-List for the next item B
already exists. Hence, the second entry is created to the list instead
of generating a new list, where its ActUtil, SumUtil, NextItem, and
NextIdx are set to u(B, T2)= 10, 5+ 10= 15, E, and 1, respectively.
In addition, the TWU values of A, B, and E are increased by tu(T2)=
18.

Note that the sequence of the constructed IIU-Lists is not im-
portant because the entries of the lists have their own sequence
information through the connections among them.

3.4. Restructuring global indexed utility lists

If the global IIU-Lists are completely constructed through a
single scan of the current incremental database, TWU values for all
the items are also calculated at the same time. Then, IIHUM sorts

Table 2
TWU values of the items in the original part of the example database.
ITEM G F C A D E B

TWU 17 24 30 48 56 61 61

the set of the constructed global list structures in a TWU ascending
order and updates the index information of the lists again. These
works are called IIU-List restructuring processes. Note that the
main purpose of the restructuring tasks is eventually to modify
the link information of the entries within the lists. Hence, the
sequence among the lists is not important. Instead, we only have to
remember the order in which the lists are referenced. However, in
this paper, we illustrate the re-arranged global IIU-Lists according
to the TWUascending order for the convenience of the readers. The
proposed method also sets the RUtil values of the lists during the
restructuring processes. Table 2 shows the TWUvalues of the items
composing the original part of the example database.

In order to restructure the global lists, the algorithm processes
the global list structures sorted in the previous order, i1′<i2′<. . .<
im′, from the first list IIU-List{i1′} to the last one IIU-List{im′} one by
one. First, for the selected list, IIU-List{ip′}(1≤p≤m), our method
processes its entries in sequence, where the other entries con-
nected to the selected entry are found using its index information.
Let E{ip′,Td′},1be an entry at the start point and E_set = {E{ip′,Td′},1,
E{ip′,Td′},2, . . . , E{ip′,Td′},o} be a set of o entries found from E{ip′,Td′},1
(including E{ip′,Td′},1). In the beginning, RUtil values of the global
lists are initialized to 0. Then, the algorithm first re-arranges the
global lists in the obtained TWU ascending order (recall that the
rearrangement of the global lists is provided for the convenience
of the readers. In the actual implementation, their actual locations
do not need to be changed. All we have to do is modify the entry
information within the global lists and set the visit sequence of
the lists). After that, the method selects the first entry in the
IIU-List corresponding to the first sequence of the previous or-
der (E{ip′,Td′},1). Then, we can also determine E_set = {E{ip′,Td′},1,
E{ip′,Td′},2, . . . , E{ip′,Td′},o}, which is sorted in the TWU ascending
order. Let E′_set= {E′

{ip′,Td′},1, E′
{ip′,Td′},2, . . . , E′

{ip′,Td′},o} be the state
of E_set after sorting it in the TWU ascending order. Starting from
the first entry of E′_set, entry modification works are performed.
FromE′_set,we can obtain the sumof the actual utility values for all
of its entries, which is a temporary value to calculate RUtil values
of the lists. The algorithm visits the location of E{ip′,Td′},i (1≤i≤o)
that E′

{ip′,Td′},1 points to and updates its NextItem and NextIdx as
the name and index number of E{ip′,Td′},2 (the next entry in E′_set).
At the same time, the sum decreases by ActUtil of E′

{ip′,Td′},1 and
RUtil of the IIU-List with E′

{ip′,Td′},1 increases by the decreased
sum. The algorithm performs the same operations for the next
entry of E′_set, E′

{ip′,Td′},2. In the case of the last entry, E′
{ip′,Td′},o,

NextItem and NextIdx of the entry that E′
{ip′,Td′},0 points to are set

toNULL because there is no further entry connected after E′
{ip′,Td′},o.

The other entries in the global list structures are processed in the
same way, and any entry once processed is not considered again.
If the above operations are performed with respect to every entry
of the global list structures, we can obtain a set of completely
restructured global IIU-Lists.

Example 2. Fig. 4 shows the processes of restructuring the global
IIU-Lists in Fig. 3. In Fig. 4(a), the entry data corresponding to
the first transaction in the original database do not satisfy the
current TWU ascending order. Therefore, in order to restructure
the entries, we determine their index information and sort the
entries in the TWU ascending order. After sorting them, A, B, D,
and F are changed to F, A, D, and B. The sum of the ActUtil values
in the entries is 13 (= 4 + 5 + 2 + 2 ). We visit the first entry of
the list for F, where its NextItem and NextIdx are modified to A
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Fig. 3. Global IIU-Lists constructed from the original database of Table 1.

and 1, respectively. RUtil of the list increases by 11 (= 13 – 2). In
the same manner, the first entries of IIU-Lists for A, D, and B are
processed as shown in the figure. Since there is no further entry
connected after the last entry in the list for B, NextItemandNextIdx
of the entry become NULL, respectively. Fig. 4(b) presents how to
conduct the restructuring works for the entry data corresponding
to the second transaction. If all the entries are processed in this
way, we can obtain a set of completely restructured global IIU-Lists
as shown in Fig. (c).

The reason why we restructure the global IIU-Lists in the TWU
ascending order is that the re-arranged data structures can allow
the proposed algorithm to mine high utility patterns from incre-
mental data in a more efficient way.

The previous tree-based incremental approach requires two
times of data structure scans for its own tree restructuring pro-
cesses. Meanwhile, the proposed data structure can be restruc-
tured in a single scan.

3.5. Updating global indexed utility lists with incremented data

If new transactions are inputted to the current incremental
database, IIHUM reads the additional part, not the entire data, and
reflects them to the previously constructed global IIU-Lists. Our
algorithm first sorts each new transaction Tnew = {i1, i2, . . . , il}
in the current TWU ascending order. Let Tnew′

= {i1′, i2′, . . . , il′}
be the sorted Tnew. Then, the algorithm reflects the items of Tnew′

starting from the last item il′. In the process of the insertion, if
IIU-List{il′}does not exist in the set of the global data structures,
it is newly constructed. A new entry for il′, E{il′,Tnew′}, is inserted
into IIU-List{il′}, which becomes the last entry. Since Tnew′/{il′} = φ,
NextItem and NextIdx of the entry become NULL, respectively. Its
ActUtil value becomes u(il′, Tnew′) and SumUtil of the list increases
by u(il′, Tnew′). Since there is no item processed previously, the
corresponding listmaintains the same state of RUtil. The remaining
items from il−1

′ to i1′ are processed in the same manner. Unlike
the case of il′, their NextItem and NextIdx information is set to
proper values to connect their own next entries belonging to Tnew′.
In addition, the RUtil values of the lists including the items are
increased by the sum of the ActUtil values for the items before
the current item. That is, RUtil of the list for i2′ increases by the
sum of the ActUtils for i3′ to il′. During the process, the TWU
values of the items, {twu(i1′), twu(i2′), . . . , twu(il′)}, are increased
by tu(Tnew′). If all the new transactions are reflected in the global
list structures, IIHUM initializes the RUtil values of the lists as
0 (if the TWU ascending order is not broken after the insertion
process, they are not initialized). The reason why they are set to
0 again is that reflecting new data can change the sequence of
the items. Such changes can also influence the results of RUtil
calculations. For example, the items after i1 in Tnew, Tnew/{i1} = {i2,
i3, . . . , il}, can be different from those after i1′ in Tnew′, Tnew′/{i1}.
Accordingly, we re-calculate exact RUtil information of the lists

during the restructuring process. RUtil of an IIU-List is an important
value for calculating the minimum overestimated utility value of
the item or pattern corresponding to the list. If RUtil is set too high,
pruning effect becomesweak;meanwhile, if it is set to low, pattern
losses can occur. That is, by calculating exact RUtil values, we can
reduce the search space for mining high utility patterns without
any pattern loss. After initializing the RUtil values, the proposed
method calculates the TWU ascending order for the current data,
restructures the global lists according to the order, and updates
new RUtil values for the lists.

Example 3. Consider updating the global IIU-Lists previously re-
structured in Fig. 4 with the new data belonging to db1+. The
original sequence of the first transaction in db1+ (T7) is C, E, and
F, which is sorted in the previous TWU ascending order. Then, the
result is F, C, and E. According to the changed sequence, the items
are inserted as shown in Fig. 5(a). In this process, SumUtil and
RUtil values of the IIU-Lists corresponding to the items are updated.
Recall that the sorted items are inserted in the reverse order for
efficient update tasks. That is, item E is first processed. SumUtil and
RUtil of the IIU-List for E are 21 and 20, respectively. ActUtil and
the remaining utility of E are 6 and 0 (because it is the last item).
Therefore, SumUtil of the list is updated as 27 while its RUtil is
unchanged. In the case of item C, those of the list for C are changed
from 3 to 4 and from 23 to 29, respectively. NextItem and NextIdx
of the newly inserted entry for C become E and 5 (we can fulfill
the entry information without additional operations because the
information can be obtained in the process of the previous item E).
SumUtil and RUtil of the list for F are 6 and 18. Since the actual and
remaining utility values of F in T7 are 2 and 7, respectively, SumUtil
and RUtil of the list become 8 and 25. Fig. 5(b) presents the state
of the global IIU-Lists after processing the second transaction, T7.
Because there is no change in the TWU order before and after db1+
is entered, the restructuring works are not conducted.

The reason why we focus on calculating exact RUtil values is
that they are employed to compute upper bounds of IIU-Lists that
decide whether the corresponding patterns are valid or not.

Definition 5 (Upper Utility Bound of a Pattern). Given an IIU-List,
l, its upper bound, upper(l) is denoted as upper(l) = SumUtil(l) +

RUtil(l) (for pattern P corresponding to l, we can also denote the
upper bound as upper(P) = SumUtil(P) + RUtil(P)). If upper(l) is
smaller than the given threshold, l and every IIU-List generated
from l become useless results. Then, we can prune them without
any pattern loss.

The reason why we perform the restructuring works whenever
new incremental data are entered is that we have to always reflect
the exact remaining utility information to the IIU-Lists. If the
IIU-List restructuring tasks are conducted without updating the
remaining utility values, fatal pattern losses can occur.
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Fig. 4. Result of restructuring the global IIU-Lists in Fig. 3.

Lemma 1. Let L = {l1, l2, . . . , lk} be a set of IIU-Lists and L′
= {l′1, l′2,

. . . , l′k} be a set of IIU-Lists restructured without RUtil updates. Then,
for each element of L′ and all the possible conditional lists generated

from L′, it does not guarantee that the upper bound is always larger

than or equal to minutil.



228 U. Yun, H. Nam, G. Lee et al. / Future Generation Computer Systems 95 (2019) 221–239

Fig. 5. Result of inserting new transactions into the global tree structure in Fig. 4.

Proof. Recall that the upper bound of an IIU-List is the result of
considering the actual utility values of the items appearing after
the item corresponding to the list. In other words, for lx(1≤ x≤ k),
upper(lx) = SumUtil(lx) + RUtil(lx), where SumUtil is a value that
is not affected by the list restructuring works. Meanwhile, since
RUtil is calculated from the utility values for the items that appear
after the item corresponding to lx, it may vary depending on the
order of the items. L has been sorted in a certain order such as
a lexicographic order or a previous TWU ascending order. Hence,
upper(lx) has reflected the utility values of all the items after lx.
Let Slx = {slx1, slx2, . . . , slxi} be a set of IIU-Lists that can be expanded
from lx. Then, for each slxh (1≤ h≤ i), we can guarantee that u(slxh)
≤ upper(lx). On the other hand, each l′ in L′ has been updated with
the index information based on the current TWU ascending order,
while its RUtil is a value calculated on the basis of the previous
order. Let Sl′x = {sl′x1, sl′x2, . . . , sl′xi} be a set of IIU-Lists that can be
expanded from l′x. Then, there can be any sl′x such that u(sl′x) >
upper(l′x). For this reason, pruning l′x without updating RUtils can
cause fatal pattern loss problems. ■

3.6. Mining high utility patterns from global indexed utility lists

If a mining request occurs after the current global IIU-Lists are
restructured, IIHUM finds all of the high utility patterns satisfying
a given threshold from the data structures. As data progressively
increases, low utility patterns can become high utility patterns,
and vice versa. Moreover, the minimum utility threshold can be
changed by the requests of the users. For this reason, in order to
mine high utility patterns without any pattern loss in such a dy-
namic environment, we need to maintain all the items composing
the current incremental database by storing them in our global

data structures regardless of their TWU values. Meanwhile, the
traditional approaches designed to process static data calculate
TWU values of items and their order in the first database scan and
remove items with lower TWUs than the given threshold in the
process of constructing their own data structures in the second
database scan. Therefore, they are not suitable for incremental
pattern mining because they have to perform the mining opera-
tions from scratch in order to extract a complete set of high utility
patterns from incremental data.

Assuming that the TWU ascending order of the current incre-
mental database is i1 < i2 < . . . < im, the proposed method
conducts the following processes starting from IIU-List{i1}. Recall
that, in the actual implementation, we do not need to re-arrange
the actual locations of the global lists because their entries already
have the index values that can track the items according to the
TWU ascending order. All we have to do is access the global lists
in the sequence of the order.

IIHUM first compares upper(i1) to minutil and then proceeds
with its pattern expansion processes if upper(i1) ≥ minutil. Other-
wise, i1 is omitted in the current mining process. If the item is not
pruned, SumUtil(i1) is compared to minutil again. If SumUtil(i1) ≥

minutil, i1 is extracted as a high utility pattern.

Lemma 2. Let P= {i1, i2, . . . , ik} be a pattern that can be obtained from
a given database, DB, and P′

= {i1, i2, . . . , ik, ik+1, . . . , ik+x} be a superset
of P (P′

∈ DB; 1 ≤ x; k + x ≤ length of the longest transaction in DB).
Then, upper(P) is always higher than or equal to u(P′).

Proof. Let LP be an IIU-List for P. Then, SumUtil(LP) indicates the
result of the utility value calculated from the transactions where
the items of P, i1, i2, . . . , ik, appear at the same time. That is,
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SumUtil(LP) = u(P). P′ that can be extended from P has a length
between k + 1 and k + x. Hence, its actual utility, u(P′), is influ-
enced by the characteristics of the additional items, ik+1, . . . , ik+x,
such as their frequencies, quantity values, and weights. Since the
actual utility factor does not satisfy the Anti-monotone property,
u(P′) may be larger or smaller than u(P). Meanwhile, upper(P) =

SumUtil(P) + RUtil(P) = u(P) + RUtil(P), where RUtil (P) is the
result of adding the actual utility values of every item that can
appear after P in the pattern extension process from P. That is,
upper(P) is themaximumvalue of the actual utility that P′ canhave.
For this reason, if upper(P) < minutil, u(P′) < minutil because u(P)
≤ upper(P). Consequently, by pruning the IIU-List for P in this case,
we canomit a number of operations that causeunnecessary results,
IIU-Lists for any super patterns of P. ■

For this reason, the proposed algorithm first computes the
upper boundvalue before determiningwhether to generate further
IIU-Lists from i1. If upper(i1) < minutil, we do not need to assign
the search space for finding any superset that can be generated
from i1. In other words, no conditional IIU-List for the item needs
to be constructed. On the other hand, if upper(i1) ≥ minutil, the
algorithm proceedswith the nextworks for generating conditional
IIU-Lists for 2-itemsets of which the prefix is i1. Starting from each
entry of IU-List{i1}, IIHUM searches for the entries connected by the
index information.

In other words, let l(ik) be an IIU-List for item ik ∈ DB and ESl(ik)
= {eik,1, eik,2, . . . , eik,n} be a set of the entries in l(ik). Then, the
algorithm tracks each element of ESl(ik), eik, m (1 ≤ m ≤ n), in the
following manner. In the beginning, IIHUM generates a temporary
IIU-List for prefix ik (denoted as lbase(ik)) in order tomaintain a set of
IIU-Lists for 2-itemsets with the prefix as shown in Fig. 6 (denoted
as LS(ik) = {lp1, lp2, . . . , lpq}. After that, for each eik, m, the algorithm
visits the entries connected to it one by one. Let ESeik,m = {eik,m,1,
eik,m,2, . . . , eik,m,o} be a set of the entries connected to eik,m. Then, for
each of the entries, eik,m,r (1 ≤ r ≤ o), the method finds whether
or not there is the IIU-List for the 2-itemset with the item of the
current entry. If so, a newentry is created as the currently last entry
into the list. Otherwise, the algorithm generates a new IIU-List for
the 2-itemset and adds a new entry to the list as the first entry.
Then, the item name and index information of the new entry is
updated to lbase(ik). ActUtil of the new entry becomes the sum of
ActUtil(eik,m) and ActUtil(eik,m,r), where the sum is also added to
SumUtil of the new IIU-List for the 2-itemset. After that, the next
eik,m,r is processed. In the case of the last eik,m,r, the new entry of
the IIU-List for the 2-itemset generated by eik,m,r sets its NextItem
and NextIdx information to NULL, respectively, because there are
no more items to process. Such works are repeated with respect to
every eik, m. Then, we can obtain the complete result of LS(ik).

Example 4. Consider mining 2-length high utility patterns from
the global IIU-Lists shown in Fig. 5(b) when minutil is 21 (= 105
× 0.2). In the figure, the upper bound of G, upper(G), is 17 (= 5 +

12). Therefore, all of the subsequent operations for G are omitted.
Since upper(F) = 33 > minutil, the algorithm conducts the pattern
expansion processes to construct conditional IIU-Lists for the 2-
itemsets generated when F is set to the prefix. Fig. 6 shows the
results of the conditional lists. The list at the left side of the figure
is a base-list for prefix F, denoted as _F. the others at the right
side are the IIU-Lists for the 2-itemsets, which are denoted as +i (i:
the newly added item). For example, +C means pattern FC, which
is the result of adding C to the prefix F. Tracking the indexes of
the IIU-List for F in Fig. 5(b) in sequence, the algorithm constructs
the conditional lists. The index information obtained from the first
entry of the list is as follows: F{A;2;1}→A{D;4;1}→D{B;2;1}→2
B{-;5;-}. After reading F{A;2;1}, the method inserts a new entry
into the list for _F. A and 2 are inputted to NextItem and ActUtil of

this entry, respectively; meanwhile, its NextIdx is set to the value
of +NextItem, i.e., the entry number of the list for +A. In this case,
NextIdx becomes 1. After reading A{D;4;1}, the entry information
of the list for +A is updated. NextItem and NextIdx are set in the
same manner. Meanwhile, in this entry, we insert 6, which is the
sum of the utility in A and that of the prefix. At the same time,
SumUtil of the list for+A is updated. The actual utility information
of A is temporarily maintained to compute RUtil values of the lists
for the 2-itemsets. If B{-;5;-} is processed, the RUtil information of
the lists is updated. The result of accumulating the utility values of
the entries is 11 (= 4 + 2 + 5), where 7 (the value excluding the
utility of A) is updated as the RUtil value of +A. If the above works
are repeatedwith respect to every entry for F in the global IIU-Lists,
we can obtain a complete set of the conditional lists as shown in
Fig. 6. Since the upper bounds of all the lists do not satisfy minutil,
pattern growth operations for F are finished.

There is an additional consideration when we construct con-
ditional IIU-Lists for patterns with k lengths (k > 2). In the case
of constructing a conditional IIU-List for a 2-itemset, ActUtil of an
entry in this list is calculated by adding ActUtil of the entry in
the list for the current prefix and that in the list for the newly
added item. Meanwhile, in the case of creating a conditional IIU-
List for k-itemsets, if ActUtil of its entry is computed in the same
manner, the result becomes larger than the actual value because
the utility value corresponding to the prefix is redundantly added
to the result. In other words, the list for a k-itemset is generated
from two IIU-Lists for k – 1-itemsets, where the utility of the prefix
is already reflected in each of the two lists when we create them.
Therefore, if ActUtil values of the entries in these two lists are
directly added to ActUtil of the entry in the list for the k-itemset,
the utility of the prefix is added twice. To solve the problem, we
subtract this value from the sum of the ActUtil values. By doing
so, we can determine exact results of ActUtil values in the lists for
k-itemsets without any additional operations.

Example 5. Fig. 7 shows how to construct conditional IIU-Lists for
longer patterns from the lists for the 2-itemsets in Fig. 6. Note that
minutil is set to 10.5 (= 105 × 0.1) to show the expansion pro-
cesses. Since the upper bound of +C (= FC) is larger than minutil,
pattern growth works are performed based on the list. First, the
information of +C is inserted to _FC as in the construction case of
the lists for 2-itemsets. After that, tracking the index information
of +C , the algorithm generates IIU-Lists for the items that can
participate in expanding _FC. Asmentioned earlier, we subtract the
overlapped utility value of the prefix in the process of calculating
ActUtil of each entry in the constructed lists. That is, when the
list for +B is constructed from _FC, ActUtil of the first entry is
calculated as follows: 6 + 9 – 4 = 11. In the IIU-Lists for the 2-
itemsets, +D and +E are not selected as the prefix for the next
mining operations because their upper bounds do not satisfy the
given threshold. However, it does not mean that the entries within
them are excluded in the other mining operations.

By recursively generating conditional IIU-Lists from the con-
structed global lists, we can obtain a complete set of high utility
patterns from a given incremental databasewithout extracting any
candidate.

If new incremental data are entered, the proposed algorithm re-
flects them to the previously constructed global IIU-Lists, restruc-
tures the updated data structures, performs its recursive pattern
expansion works, and provides the results to the user.

3.7. Algorithm for mining high utility patterns from incremental
databases

In this paper, we have proposed a method that can more ef-
ficiently mine high utility patterns from incremental databases
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Fig. 6. Conditional IIU-Lists for the 2-itemsets expanded from F.

Fig. 7. Conditional IIU-Lists for the 3-itemsets constructed from the IIU-Lists for the 2-itemsets in Fig. 6.

through the newly proposed data structures and mining tech-
niques. In this section, we explain how the proposed data struc-
tures and techniques are performed in our algorithm through the
following overall procedure shown in Fig. 8.

The proposed algorithm deals with a number of databases be-
cause it processes incremental data as shown in the input parame-
ters. After initializing a set of global IIU-Lists, the algorithmprocess
each database (lines 01–21). Since there is no TWU ascending
order previously calculated before processing the original (first)
database, a canonical order such as a lexicographic order is applied
to sort transactions of the database (line 04). Once the database is
processed, we can obtain the corresponding TWU ascending order,
which is used when processing the next incremental database.
For each transaction, the algorithm calculates and updates TWU
values of the items (line 06). After that, new IIU-Lists are created if
necessary, and new entries are generated and updated (lines 07–
12). Then, the method computes a new TWU ascending order for
the currently constructed L and conducts its restructuring works
(lines 14–15). Thereafter, if the user requests to mine patterns,
IIHUM recursively constructs conditional IIU-Lists to mine valid
high utility patterns (lines 17–20).

If the restructuring function is called, the algorithm initializes
RUtils of all the elements in L in order to re-calculate their exact
values after modifying the index information of the lists (line 01).
For each element in L, the algorithm conducts the restructuring
works as follows. For each entry of the current IIU-List, themethod
searches for all the entries connected to the current entry, which
are stored to a temporary entry set (line 04). Such operations are
easily performed through the NextItem and NextIdx information.
The collected entries are sorted in the newly obtained TWU as-
cending order. Then, the algorithm modifies the NextItem and
NextIdx information of the corresponding entries based on the

newly obtained order (lines 06–09). In this process, entries already
processed are ignored to prevent duplication of operations (lines
07–08). If we finish the restructuring works for every element
connected to a certain entry, the RUtil values of the IIU-Lists corre-
sponding to them are updated (line 11). After the above operations
are performedwith respect to all the entries in L, we can obtain the
completely restructured L.

If a mining request occurs, function Mine is called. After a set
of conditional IIU-Lists are initialized, the algorithm performs the
following operations with respect to the received parameters. For
each element in L, the method first checks whether its upper
bound satisfy minutil or not (line 03). If this condition is not
satisfied, all of the operations related to the corresponding IIU-
List are pruned; otherwise, the method checks again whether its
SumUtil (actual utility) satisfies minutil (line 04). Items or patterns
satisfying this condition become actual high utility patterns (line
05). However, just because the current item or pattern satisfies
the second condition does not mean that it can be pruned per-
manently. The reason is that valid high utility patterns may be
generated from such an item or pattern. After the prefix update
work (line 06), the algorithm generates a base-list for the prefix
(line 07). Thereafter, for each entry in the currently selected IIU-
List, the method updates its entry information to the base-list (line
09). Then, for each entry connected to the current one, the method
1) generates a new conditional IIU-List for the entry if necessary
(lines 11–12), 2) creates a new entry into the list, and 3) inserts
necessary information (lines 14–17). If the length of the currently
expanded pattern is 3 or longer, the duplicated utility value is
excluded in the process of calculating ActUtil of the new entry (line
15). If the above works are finished with respect to the selected
entry, the algorithm updates RUtil values of the corresponding IIU-
Lists. When all the entries of the currently selected IIU-List in L
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Table 3
Features of the real datasets.
Dataset Num. of Trans. Num. of items Avg. Trans. Size Data size

Accidents 340,183 468 33.8 33.8 MB
Chain-store 1,112,949 46,086 43.0 8.82 MB
Connect 67,557 129 8.1 31.40 MB
Retail 88,162 16,470 10.306 3.97 MB
Mushroom 8,124 120 23 0.545 MB
Kosarak 990,002 41,270 8.1 31.4 MB

Table 4
Characteristics of synthetic datasets.
Dataset Num. of Trans. Num. of items Avg. Trans. Size Data size

T10I4DxK
100,000

1,000 (fixed) 10 (fixed)
3.83 MB

– –
1,000,000 38.30 MB

Tx1Lx2Nx3 100,000 (fixed)
10,000 10 4.81 MB
– – –
40,000 40 21.90 MB

are processed, we can obtain a complete set of conditional IIU-
Lists that can be generated from the list. If the number of elements
in the set is 2 or more, the algorithm recursively calls the Mine
function in order to find high utility patterns with longer lengths
(lines 21–22). If there is only one element, the method compares
its actual utility value tominutil anddetermineswhether to extract
the corresponding pattern or not (lines 23–25). If all the recursive
works are terminated, we can obtain a complete set of high utility
patterns from the given incremental database.

4. Performance evaluation

4.1. Experimental environment and datasets

In this section, we conduct various experiments to compare
the proposed algorithm, IIHUM, with the state-of-the-art meth-
ods, FUP-HU [30], HUPID [23], and LIHUP [42]. All the algorithms
including IIHUM have been implemented in the C/C++ language
for our performance evaluation tests, which were performed on
4.0 GHz CPU, 32 GB RAM, and Windows 10 OS. We use two types
of benchmark datasets, real datasets for runtime and memory
performance evaluation and synthetic datasets for scalability tests.

Table 4 presents the features of the real datasets used to eval-
uate runtime and memory usage performance of the algorithms.
Accidents, Connect, Retail, Mushroom, and Kosarak are available at
the FIMI Repository (http://fimi.cs.Helsinki.fi); Chain-store is avail-
able at NU-MineBench 2.0 [48]. Chain-store, Retail, andKosarak are
sparse datasets composed of short-length transactions and include
a large number of distinct items. On the other hand, Accidents,
Connect, and Mushroom are dense datasets, which have relatively
long-length transactions and a small number of items. In the table
for the characteristics of the real datasets, Num. of Trans., Avg.
Trans. Size, and Num. of Items mean the number of transactions,
the average length of the transactions, and the number of distinct
items in each dataset, respectively. These real datasets are famous
benchmark datasets widely employed in the pattern mining area.

We use two groups of synthetic datasets to evaluate the scala-
bility of the algorithms. The datasets are available at the IBM data
generator [3]. Table 4 shows the characteristics of the synthetic
datasets. Since the datasets in Tables 3 and4 except for Chain-store
do not have their own internal and external utility information, we
have set the external utility values according to the log normal dis-
tribution between 0.01 and 10 and internal utility values randomly
from 1 to 10 as in the previous literature [12,13,23,30].

In order to conduct the performance evaluation for the high
utility pattern mining algorithms on incremental data processing

environments, we divide each of the employed datasets into 5
parts, where the first part becomes an original database and the
others become incremental databases. In the beginning, each algo-
rithm reads the original database, constructs its own data struc-
ture, performs the restructuring process, and mines high utility
patterns. In the same manner, the algorithm processes each of
the incremental databases. When all the tasks are finished, the
performance results of the methods are evaluated.

4.2. Performance comparison on real dense datasets

We first perform experiments for performance comparisons
among FUP-HU, HUPID, LIHUP, and our IIHUM using the real dense
datasets, Accidents, Connect, and Mushroom. These experiments
consist of runtime and memory tests on the settings of increasing
data sizes and changing threshold.

4.2.1. Runtime and memory tests on increasing data size
Figs. 9, 10, and 11 present the runtime results of the Accidents,

Connect, and Mushroom datasets on increasing data sizes, where
the threshold settings are 30% , 85%, and 20%, respectively. As
shown in the figures, the algorithms require more runtime re-
sources as the size of a given dataset becomes larger andmore data
are accumulated. The results of the Mushroom dataset in Fig. 11
show that all algorithms tend to decrease as the data size increases
in some sections. This seems to be a feature of the Mushroom
dataset. However, the proposed method guarantees the fastest
runtime speed in every case. As an Apriori-based algorithm, FUP-
HU shows the most inefficient runtime performance among the
comparedmethods. AlthoughHUPID is faster than FUP-HU, there is
still a significant performance gap between it and ours. The reason
why the competitors have worse performance than the proposed
algorithm is that they have to generate candidate patterns in the
process of extracting high utility patterns. They are not able to
mine valid patterns directly because of their own pattern mining
mechanism. Instead, they first extract candidate patterns based on
the overestimation methods and then conduct verification works
to find valid patterns from the candidates. A series of the works
for extracting candidate patterns is called Phase I, and that for
mining high utility patterns after Phase I is called Phase II. The time
spent in Phase 2 is known to be longer than the time consumed
in Phase 1 in many cases [23,30,37,38]. Moreover, the larger the
size of a given database is and the lower the threshold is, the
more runtime resources such algorithms require. The list-based
LIHUP is much faster than FUP-HU and HUPID, but slower than our
IIHUM. LIHUP and IIHUM can mine the high utility pattern with-
out generating candidate patterns in the incremental database.
However, LIHUP is not as good as our indexed list because it only
uses a list structure that is less efficient than our indexed list.
For this reason, our method can provide more efficient runtime
performance compared to the competitors. In the Connect datasets
in Fig. 10, when the data size is 20% or later, the results of FUP-
HU cannot be expressed partially. Because the algorithm requires a
runtime that is too long for the Connect dataset, such as 20,000 s for
a data size of 20%. The proposed algorithm also guarantees the best
performance in this dataset as shown in the figure. As the data size
becomes larger, HUPID and LIHUP show a larger runtime increase
than that of IIHUM. Meanwhile, our method presents more stable
runtimeperformance. For example, the runtime increasing degrees
of HUPID, LIHUP and IIHUM are approximately 4.9, 2.9 and 2.6
times, respectively, when the database size is increased from 20%
to 100%.

Figs. 12–14 show the results ofmemory usage for the Accidents,
Connect, and Mushroom datasets, where some of the memory
results of FUP-HU in Connect cannot be expressed partially from
the figure because of the aforementioned reason. Since FUP-HU is

http://fimi.cs.Helsinki.fi
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Fig. 8. Overall procedure of the proposed algorithm.

an Apriori-based algorithm, it seems to have goodmemory perfor-
mance at relatively highminutil settings as shown in Fig. 12. How-
ever, its memory efficiency is sharply decreased when the number
of the generated candidate patterns is explosively increased as
the threshold becomes lower. HUPID shows the worst memory
efficiency since themethodhas tomaintain complicated tree struc-
tures during the mining process and spend large memory space
in verifying a large number of candidates although the number

is smaller than that of FUP-HU. On the other hand, the proposed
algorithm and LIHUP does not require any additional memory for
such candidate checks because it does not extract any candidate
pattern. Moreover, since our method employs the indexed list
data structures and LIHUP employs the list data structures simpler
than the previous tree structures, it can achieve more efficient
memory performance than that of HUPID. As shown in Fig. 13,
the memory efficiency gap between HUPID and IIHUM is not large
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Fig. 9. Runtime test on Accidents (minutil = 30%).

Fig. 10. Runtime test on Connect (minutil = 85%).

Fig. 11. Runtime test on Mushroom (minutil = 20%).

Fig. 12. Memory usage test on Accidents (minutil = 30%).

Fig. 13. Memory usage test on Connect (minutil = 85%).

Fig. 14. Memory usage test on Mushroom (minutil = 20%).

Fig. 15. Runtime test on Accidents.

except for FUP-HU and LIHUP. And the result of Fig. 14 shows that
the memory efficiency gap of the three algorithms except FUP-
HU is not large. Connect datasets and Mushroom datasets are very
dense and smaller than Accidents datasets. Nevertheless, IIHUM
guarantees the most efficient memory performance as shown in
the figure since themethod constructs its own data structureswith
less memory and does not extract any candidate.

4.2.2. Runtime and memory tests on changing threshold settings
Figs. 15, 16, and 17 present the experimental results of runtime

and memory usage on changing threshold settings, where FUP-
HU cannot be expressed partially from the graphs because of its
too slow runtime speed and excessive memory usage. Although
HUPID operates normally at relatively high threshold settings, the
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Fig. 16. Runtime test on Connect.

Fig. 17. Runtime test on Mushroom.

method fails tomine highutility patterns asminutil becomes lower
because it requires excessive runtime and memory resources As
can be seen in Fig. 15, while the minutil changes from 30% to
15%, the runtime of LIHUP and IIHUM increases slowly. On the
other hand, the runtime of HUPID increases dramatically. While
minutil was changed from 30% to 20%, the runtime of FUP-HU,
HUPID, LIHUP and our IIHUM increased by about 9.4, 44.49, 4.49,
and 1.5 times, respectively. As you can see the other figures, we
can see that our algorithm is good for run time performance as
the threshold increases. The reason why HUPID fails to operate
normally at relatively low threshold settings is that the algorithm
has to construct a large number of local tree structures with com-
plicated forms during the recursive process and generate many
candidate patterns. Meanwhile, the proposed algorithm generates
more efficient list data structures in during the recursive process
and extracts no candidate patterns, which allows our approach to
mine actual high utility patterns more quickly and efficiently.

Figs. 18, 19, and 20 present the experimental results of memory
usage on changing threshold settings, where FUP-HU and HUPID
cannot be expressed partially from the graphs because of its ex-
cessivememory usage. Since both LIHUP and IIHUM are incremen-
tal approaches, they consume stable memory space to maintain
their own data structures regardless of threshold settings although
their memory usage is different from each other. Therefore, the
difference in their memory usage on changing threshold settings
is mainly affected by a series of the recursive pattern expansion
processes and the candidate pattern generation and verification
tasks. In Figs. 18 and 20, the memory usage of the FUP-HU sharply
increases as the threshold decreases. LIHUP and HUPID show a
relatively small memory usage change from the threshold of 30%
to 20%, and when the threshold is decreased, the memory usage

Fig. 18. Memory usage test on Accidents.

Fig. 19. Memory usage test on Connect.

Fig. 20. Memory usage test on Mushroom.

change rapidly increases in Fig. 18. Such a tendency also similarly
occurs in the results of Mushroom in Fig. 20. Meanwhile, because
the proposed method does not perform any operations for the
candidate generation and verificationworks, it can guaranteemore
stable memory consumption. We can determine from the above
experiments that the proposed algorithm can mine high utility
patterns most efficiently in almost all cases.

4.3. Performance comparison on real sparse datasets

In this section, we provide the results of the performance evalu-
ation tests for the sparse datasets, Chain-store, Retail, and Kosarak.
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Fig. 21. Runtime test on Chain-store (minutil = 0.2%).

Fig. 22. Runtime test on Retail (minutil = 0.2%).

4.3.1. Runtime and memory tests on increasing data size
Figs. 21–23 show the runtime results of the sparse datasets,

Chain-store, Retail, and Kosarak, where minutil has been set to
0.2%, 0.2%, and 2%. As shown in the figures, except for the FUP-
HU algorithm, other algorithms require more runtime resources
as the size of a given dataset becomes larger and more data are
accumulated. Chain-store and Kosarak are sparse dataset larger
than Retail. The proposed method shows a more stable runtime
increase than that of HUPID and LIHUP for the gradually increasing
data size. AlthoughHUPID and LIHUP canmine high utility patterns
for the dataset, its runtime efficiency lags behind that of ours. In ad-
dition, the larger the data size is, the worse the efficiency becomes.
FUP-HU has the worst performance in every case; meanwhile,
the others guarantee much better performance. Especially, we can
determine that IIHUM shows the best runtime performance in all
the cases because of its owndata structures andmining techniques.

Figs. 24, 25, and 26 present the memory usage results of the
Chain-store, Retail, and Kosarak datasets on increasing data sizes,
where the threshold settings are 0.2%, 0.2%, and 2%, respectively.
The proposed algorithm guarantees faster runtime performance
as well as more efficient memory usage as shown in the figure.
Because Chain-store and Kosarak are sparse dataset, it is hard for
HUPID to have the node sharing effect which is an advantage of the
tree structure. Hence, as the data size becomes larger, the memory
usage of the algorithm is increased more than that of the proposed
method. In the case of the Retail dataset, FUP-HU mines high
utility patterns but its memory efficiency is the worst because this
Apriori-based approach spends huge memory space in generating
an enormous number of candidate patterns and verifying them.
The figures show that LIHUP has less memory usage than FUP-HU
andHUPID, butmorememoryusage than IIHUM in almost all cases.

Fig. 23. Runtime test on Kosarak (minutil = 2%).

Fig. 24. Memory usage test on Chain-store (minutil = 0.2%).

Fig. 25. Memory usage test on Retail (minutil = 0.2%).

Fig. 26. Memory usage test on Kosarak (minutil = 2%).
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Fig. 27. Runtime test on Chain-store.

Fig. 28. Runtime test on Retail.

Fig. 29. Runtime test on Kosarak.

On the other hand, by using the proposed simple but efficient data
structure and mining final results of high utility patterns without
any candidate generation, IIHUM guarantees the most efficient
memory performance.

4.3.2. Runtime and memory tests on changing threshold settings
Figs. 27, 28, and 29 present the experimental results of runtime

on changing threshold. In the Chain-store datasets in Fig. 10, when
the threshold is 0.2% or later, the results of FUP-HU are excluded.
Because the algorithm requires a runtime that is too long for
the Chain-store dataset, such as 200,000 s. Although the method
succeeds in operating for the Retail dataset, it has significantly poor

Fig. 30. Memory usage test on Chain-store.

Fig. 31. Memory usage test on Retail.

Fig. 32. Memory usage test on Kosarak.

runtime performance compared to the other three algorithms. In
the Kosarak dataset in Fig. 29, the performance of the FUP-HU
was not good, and only the result of the threshold of 2% (approxi-
mately 130,000 s) could be shown. As shown in Figs. 27, 28, and
29, the proposed algorithm guarantees the best performance in
every case. HUPID has good performance with respect to the Retail
dataset with relatively small data size, but we can observe that
its runtime efficiency is sharply decreased in the case of Kosarak
with large data size. When the threshold is changed from 2% to
1.25%, HUPID, LIHUP, and our IIHUM are not significantly differ-
ent in Fig. 29. However, the runtime increases sharply when the
threshold changes from 1.25% to 1%. The difference in runtime is
that HUPID is the largest at 13.8 times and IIHUM is the smallest at
3.26 times.
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Fig. 33. Runtime scalability on T10.I4.DxK.

Fig. 34. Memory scalability on T10.I4.DxK.

Figs. 30, 31, and 32 present the experimental results of memory
usage on changing threshold settings, where FUP-HU and HUPID
cannot be expressed partiallywith result value from the graphs be-
cause of its excessivememory usage. In Figs. 30, 31, and 32, HUPID,
LIHUP, and IIHUM show almost constant memory consumption
regardless of the threshold settings.Meanwhile, thememory usage
of FUP-HU is gradually increased according to the decrease of the
threshold. Such observations indicate that the construction and
maintenance of their main data structures occupy most of the
memory usage in HUPID, LIHUP and IIHUM. On the other hand,
their recursive pattern mining processes (including the candidate
verification works in the case of HUPID) have little effect on the
overallmemory usage. However, since FUP-HUhas to generate and
verify an enormous number of high utility candidate patterns in
this case, it consumes more and more memory as shown in the
figure.Meanwhile, because the proposedmethoddoes not perform
anyoperations for the candidate generation and verificationworks,
it can guarantee more stable memory consumption. We can deter-
mine from the above experiments that the proposed algorithm can
mine high utility patterns most efficiently in almost all cases.

4.4. Scalability test

Weevaluate the scalability of the algorithmsusing the groups of
the synthetic datasets shown in Table 4, T10.I4.DxK, and Ta.Nb.Lc.
Figs. 33 and 34 are the experimental results of the scalability for the
first group, T10.I4.DxK, where minutil has been set to 0.01% and
x changes from 200 to 1000. The number of the other attributes
in T10.I4.DxK is fixed. In the experiment, we used a smaller file,
about 3/4 the size of each dataset, to get the results for all the
algorithms. Nevertheless, FUP-HU cannot be expressed partially

Fig. 35. Runtime scalability on Ta.Nb.Lc.

Fig. 36. Memory scalability on Ta.Nb.Lc.

with result value from the results of the experiments because
of its performance limitations. As the data size (i.e., the number
of transactions) increases, the runtime and memory usage of the
three algorithms HUPID, LIHUP, and IIHUM are also increased.
The FUP-HU has very high runtime and memory usage when the
item size is 200k, but it gets smaller at 400k and the runtime
and memory usage increase as the data size increases from 400k.
As data size increases, HUPID increases dramatically from 400k
compared to other algorithms. On the other hand, we can observe
that the proposed algorithm guarantees very stable runtime scal-
ability while the increasing rate of the runtime in LIHUP is much
larger than that of IIHUM. Such a tendency similarly appears in
the memory scalability test. The reason why the memory usage
in HUPID is larger when K is 200 than when it is 400 is that the
algorithm generates a larger number of candidate patterns when K
is 200 because of the utility values which have been set randomly.
Meanwhile, IIHUMdoes not have any effect because it generates no
candidates during the mining process. Therefore, we can see that
our algorithm IIHUM shows better runtime efficiency andmemory
efficiency than other algorithms.

Figs. 35 and 36 show the runtime and memory scalability tests
for the second synthetic dataset group, Ta.Nb.Lc, where minutil
has been set to 0.018% and the ranges of a, b, and c are 10 to 40,
10 000 to 40000, and 1000 to 4000, respectively. As in the case
of the previous scalability test, the results of FUP-HU cannot be
expressed partially with result value from the graphs because of
its performance limitations. HUPID shows the worst performance
when the item size is 10 since the algorithm generates a larger
number of candidate patterns compared to the other settings.
In other words, the algorithm performance of HUPID is strongly
influenced depending on the state of given datasets, which leads
to unstable performance as shown in the figures. LIHUP increases
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runtime dramatically as item size grows. When the item size is
10K, the runtime efficiency is much better than HUPID, but when
the item size is 20K, the runtime efficiency drops sharply. Also,
its memory efficiency is better than HUPID and less than IIHUM
in terms of memory usage compared to runtime. On the other
hand, ourmethod guarantees themost stable runtime andmemory
scalability on the datasets with an increasing number of attributes
because the algorithm is not related to any negative effects caused
by the candidate pattern generation and verification tasks.

From the various experimental results above, we can determine
that the proposed algorithm can extract high utility patterns most
efficiently in the incremental data mining environments.

5. Conclusions

In this paper, we proposed a new efficient algorithm for mining
high utility patterns on incremental non-binary databases. Based
on the newly designed indexed-list data structures, the proposed
method achieved the performance improvement of incremental
high utility pattern mining by preventing candidate patterns from
being extracted. In addition, we suggested a restructuring tech-
nique for dealingwith incremental datamore efficiently in our data
structures. Through the new data structures and various mining
techniques, we solved the problems of fatal performance degra-
dation caused by the previous state-of-the-art incremental ap-
proaches. The experimental results from the various real and syn-
thetic benchmark datasets proved that the proposed algorithm
can mine high utility patterns more efficiently from incremental
non-binary databases compared to the previous approaches. The
incremental data processing techniques proposed in this paper
can also be applied to different types of stream pattern mining
areas such as sliding window and damped window model-based
data mining environments. We are scheduled to research such
advanced works in our future work.
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