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a b s t r a c t

The ever-increasing computation tasks and communication traffic have imposed a heavy burden on
cloud data centers and also resulted in a significantly high energy consumption. To ease such burden,
edge computing is proposed to explore the distributed resources of edge devices (e.g., base stations) to
provision the cloud services for latency-sensitive applications at the network edge. Owing to the geo-
distribution of edge devices, edge computing is also an ideal energy efficient platform to leverage the
distributed green energy for energy efficient computing. Thus, it is natural to integrate Energy Internet
(EI) technology into edge computing for customizable energy scheduling. In such EI supported edge
computing, both the green energy generation rates and the data processing demands vary in different time
and space. To pursue high energy efficiency, it is desirable to maximize the utilization of green energy so
as to reduce the brown energy consumption. This requires careful task allocation and energy scheduling
to match the energy provision and demand. In this paper, we investigate the energy cost minimization
problemwith joint consideration of VMmigration, task allocation and green energy scheduling and prove
its NP-hardness. To tackle the computation complexity, a heuristic algorithm approximating the optimal
solution is proposed. Through extensive simulations, we show that the proposed algorithm can efficiently
reduce brown energy consumption and perform much close to the optimal solution.

© 2018 Published by Elsevier B.V.

1. Introduction

Nowadays, cloud computing provides various services to global
users with high resource utilization, strong computing ability,
and high service reliability. According to Cisco’s Global Cloud
Index Report (2015–2020), 92% of global computational work-
loads is processed in cloud. However, with the rapid increasing
of user tasks, the bulk data transmission and processing impose a
heavy burden on the communication bandwidth and computation
resource of cloud, bringingunbearable service delay to endusers [1–
3]. Moreover, the significantly high energy consumption of cloud
also becomes another critical issue with growing concerns [4,5].

∗ Corresponding author.
E-mail address: deze@cug.edu.cn (D. Zeng).

To handle this challenge, the concept of edge computing, which
extends cloud computing to the network edge, is proposed. Edge
computing utilizes the distributed resources in routers, gateways,
base stations and even mobile devices to offer ‘‘cloud’’ services
to the users in proximity [6,7], as shown in Fig. 1. By directly
processing user tasks in local edge devices, the transmission de-
lay and the traffic congestion on the Internet can be effectively
reduced, thereby improving the user experience [8]. Furthermore,
edge computing platform is formed by geo-distributed edge de-
vices, which can harvest green energy from the environment.
Such paradigm naturally provides an ideal platform to utilize the
local green energy [9]. Actually, many studies [10–13] have al-
ready mentioned the possibility and advantages of utilizing green
energy in edge cloud to reduce the brown energy consumption.
Meanwhile, Energy Internet (EI), as a newly emerging technology,
provides a promising means for flexible and customizable energy
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Fig. 1. A three-layer edge computing architecture.

scheduling in power grid [14,15]. Therefore, we can naturally inte-
grate EIwith edge computing to support the green energy powered
edge computing such that the energy can be also managed in a
fine-grainway like cloud resourcemanagement [16]. Thanks to the
support of EI, it is possible to jointly manage the edge resources,
including both computation and communication resources, and
the energy resources, especially the green energy, in green energy
powered edge computing.

To pursue sustainable green edge computing, it is always de-
sirable to maximize the utilization of green energy and lower
the reliance on brown energy. However, we notice that most of
existing studies (e.g., [10–13]) on green energy powered edge
computing only focus on scheduling local energy separately in each
node and none of them considers the energy transferring between
edge nodes. Thanks to the introduction of EI, it is possible to freely
transfer the green energy between the edge nodes. In green energy
powered edge computing, the availability of green energy vary in
different areas and time, while the user tasks are also dynamically
changing. This raises a critical challenge on how tomigrate the vir-
tual machine (VM) and allocate the tasks in response to the time-
varying and geo-distributed diverse green energy generation and
user task demands. In this case, a global and centralized scheduling
of green energy in all edge nodes shall be helpful to match the user
tasks and energy supply, e.g., transferring residual green energy
to the heavy-loaded nodes. In this paper, we are motivated to
study green energy scheduling, task allocation and VM migration
problem in order to reduce the brown energy consumption. The
following questions need to be answered: (1)Where shall we place
the VMs according to user tasks and energy availability? (2) How
to jointly schedule the green energy transmission between edge
nodes with the consideration of energy transferring attenuation?

To better understand the problem discussed above, let us con-
sider a simple edge computing platform with three nodes, as
shown in Fig. 2. The total energy consumption consists of two
aspects: (1) migration energy incurred by migrating VMs between
edge nodes, and (2) processing and communication cost of user
tasks in different edge nodes. Each edge node is with certain
amount of green energy, i.e., E1(t) = 10, E2(t) = 20 and E3(t) =

15, which can be transmitted to the other edge nodes with dif-
ferent attenuation ratios determined by the geographic locations.
For example, the attenuation ratios of green energy transmission
between edge nodes are A12 = 0.3, A23 = 0.1 and A13 = 0.2,
respectively. While the user task arrival rates vary on different
edge nodes, i.e., λ1 = 5, λ2 = 3 and λ3 = 2. A task can
only be processed in the edge node with the corresponding VM
(e.g., node n1 in Fig. 2(a)).We assume that the energy consumption

for processing one task in each edge node is 5. The communication
energy of one task relies on the distances between edge nodes. For
example, transmitting one task between nodes (n1, n2), (n2, n3),
and (n1, n3) are H12 = 2, H23 = 1 and H13 = 2, respectively.
Now, we consider how to migrate the VM and schedule the energy
between the three edge nodes, according to current green energy
availability and user task demands. A simple solution is to process
all user tasks in n1 and transmit green energy from both n2 and n3
to n1. In this case, we can see from Fig. 2(b) that the total energy
consumed for processing all 10 tasks is 50 and the communication
energy from n2 to n1 and n3 to n1 isλ2(t)·H12·1+λ3(t)·H13·1 = 13.
That is, the total energy consumption is 63 and the available green
energy on n1 is E1(t) + E2(t) · (1 − A12) + E3(t) · (1 − A13) = 38,
requiring 25 units of brown energy. If we migrate the VM to node
n2 with a migration energy of 3, as shown in Fig. 2(c), the total
energy consumption becomes 50 + 3 + λ1(t) · H12 + λ3(t) · H23 =

70 while the green energy is E1(t) · (1 − A12) + E2(t) + E3(t) ·

(1 − A23) = 41.5, resulting in a brown energy consumption of
28.5 units. By comparing the two solutions, we can observe that
different VM migration decision will lead to different commu-
nication and VM migration energy consumption. Moreover, the
location of VM might also affect energy consumption due to the
location-related attenuation ratio during transmission. To address
these issues, we aremotived to jointly investigate the green energy
scheduling and VM migration problem in green energy powered
edge computing. Our main contributions are as follows:

• To the best of our knowledge, we are the first to investi-
gate the VM migration and energy scheduling problem in
green energy powered edge computing, jointly considering
the time-varying green energy availability and user tasks.

• We formulate the VMmigration and energy scheduling prob-
lem as a mixed integer linear programming (MILP) and for-
mally prove its NP-hardness through reducing the general-
ized quadratic assignment problem.

• Based on our formulation, we design a heuristic relaxation-
based algorithm and prove that it can achieve an approxima-
tion ratio of K ·(1+β)−α

K−1 when the brown energy is needed or
α·(1+β)when no brown energy is needed. The efficiency and
correctness of our proposal is validated through extensive
simulation based experiments.

The remainder of the paper is organized as following. Sec-
tion 2 introduces our system model. The energy consumption
minimization problem is formulated into MILP in Section 3. Then
we propose a heuristic relaxation-based algorithm in Section 4 and
the effectiveness of proposed algorithm is verified by simulation
experiments in Section 5. Finally, we discuss the related work in
Section 6 and conclude our work in Section 7.

2. Systemmodel

In this section, we present the system model. The major nota-
tions used in this paper are listed in Table 1.

2.1. Network model

We use an indirected graph Gn = (I, E) to present the dis-
tributed edge network, which includes a set of edge nodes I and a
set of network edges E. Each edge eij ∈ E, i, j ∈ I is with a weight as
Hij, denoting the number of hops between nodes i and j. Specially,
we set the hops between the same node as 0, i.e., Hii = 0, ∀i ∈ I . At
each time slot t , the task arrival rate in node i ∈ I is denoted asλi(t).
As mentioned in Section 1, the user tasks can only be processed
in edge node with the corresponding VM with processing energy
consumption of E. In this paper, we assume that there is only one
VM in the network topology to process tasks. We define a binary
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Fig. 2. An example on the task Dispatching, VM migration and energy scheduling.

Table 1
Notations.
Constant

N The set of edge nodes
Hij The hops from nodes i to j
Aij The energy transferring attenuation ratio from nodes i to j
E The energy consumption of task processing
W The energy consumption of task transmission
V The energy consumption of VMmigration
λi(t) Newly arrival tasks in node i at time slot t
Gi(t) Green energy in node i at time slot t

Parameter

xi(t) A binary variable indicating whether node i is selected for task processing or not
µij(t) The green energy transferred from node i to j at time slot t
gi(t) The green energy consumption for processing tasks in node i at time slot t
si(t) The total energy consumption for processing tasks in node i at time slot t
ri(t) The remaining green energy in node i at the end of time slot t

xi(t) to indicate whether node i is selected to host the VM for task
processing or not, i.e.,

xi(t) =

{
1, if VM shall be located in edge node i at time slot t,
0, otherwise.

Obviously, when xi(t) ̸= xi(t − 1), VM migration incurs at time t ,
resulting in VMmigration with energy consumption V .

2.2. Green energy model

We use a graph Ge = (I, E) to present the green energy
scheduling and transferring between the edge nodes, including a
set of edge nodes I and a set of edges E. The node set I and edge set E
are the same as in graphGn. Unlike graphGn, each node i ∈ I is with
a parameter Gi(t) denoting the green energy generated by node i at
time slot t . As mentioned in Section 1, the user tasks can only be
processed in edge node iwhere xi(t) = 1 and the green energy can
be transferred between edge nodes. At each time slot t , an energy
scheduling decision must be made to transmit µij units of green
energy through edges eij ∈ E, ∀i, j ∈ I between node i and node j
with energy transferring attenuation ratio Aij. Specially, we set the
attenuation ratio between the same node as 0, i.e., Aii = 0, ∀i ∈

I , for tractability of our analysis. Obviously, different edge nodes
can provide different amount of green energy, and different green
energy scheduling decisions may lead to different green energy
loss.

3. Problem formulation

Based on our system model, we now formulate our VM migra-
tion and energy scheduling problem into a mixed-integer linear
programming (MILP) with the objective of minimizing the energy
cost.

3.1. VM migration and energy consumption

As shown in Gn graph, the VM can be freely migrated between
edge nodes and only the node with VM can be selected to process
user tasks. We are interested in finding the appropriate VMmigra-
tion decision to minimize the brown energy consumption. The VM
shall be adaptively migrated among the edge nodes so as to cater
to the spatial and time diverse green energy generation and task
demands. As we consider one VM in the whole network, we must
have∑
i∈I

xi(t) = 1. (1)

to ensure the existence of the VM, regardless of the VM migration
decision.

Since the number of arriving tasks and the amount of green
energy generated in each node is time-varying. We make the VM
migration and energy scheduling decision at the beginning of each
time slot t . Note that, there is only one VM in the network topology,
the tasks arrived at the nodes without VM must be transmitted to
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the node with VM for processing. Hence, the total energy required
for processing tasks includes three parts: processing tasks, VM
migration and task transmission. The total energy consumption
si(t) can be described as:

si(t) =

∑
j∈I

xi(t)(λj(t) · E + xj(t − 1) · V · Hji

+ λj(t) · W · Hji), ∀i ∈ I,
(2)

where V , W and E is the unit energy consumption of VM migra-
tion, task transmission, and task processing, respectively. It can be
observed that (2) is nonlinear because of the products of integer
variables as xi(t) · xi(t − 1). To linearize this equation, we define
new binary variables zi(t) as follows:

zi(t) = xi(t) · xj(t − 1), ∀(i, j) ∈ I, (3)

which can be equivalently replaced by the following linear con-
straints:

0 ≤ zi(t) ≤ xi(t), ∀(i, j) ∈ I. (4)

xi(t) + xj(t − 1) − 1 ≤ zi(t) ≤ xj(t − 1), ∀(i, j) ∈ I (5)

Now, (2) can be equivalently written into a linear form as:

si(t) =

∑
j∈I

(xi(t) · λj(t) · E + xi(t) · λj(t) · W · Hji

+ zi(t) · V · Hji), ∀i ∈ I,
(6)

with constraints (4) and (5).

3.2. Green energy scheduling

The amount of newly generated green energy in each node at
each time slot is different. For example, some nodes have sufficient
green energy and some nodes are scarce. If the green energy
amount on the selected node i is not sufficient to process all tasks,
certain energy may need to be transferred from the other nodes
with residual green energy. Certain energy loss will be incurred
due to the attenuation. It is necessary to determine the amount of
energy transferring between different node pairs at the beginning
of each time slot t , i.e., µji(t), ∀j, i ∈ I . With the consideration of
energy transferring, the total green energy amount can obtained
by node ican be calculated as:

gi(t) =

∑
j∈I

(1 − Aji) · µji(t), ∀i ∈ I. (7)

Since aggressively transferring green energy to node i with VM
might cause more green energy loss. Therefore, we constraint the
green energy transmission by si(t) as follows:

0 ≤ gi(t) ≤ si(t), ∀i ∈ I. (8)

That is, the maximum green energy obtained by the processing
node cannot exceed its energy requirement for task processing as
si(t).

Based on the VM migration and energy transferring decisions,
the green energy in each edge node might not be used up or fully
transferred to the other nodes by the end of each time slot. In this
case, the surplus green energy is stored and can be used together
with the newly generated green energy in the next time slot. Let
rj(t) be the surplus green energy in node j at time slot t . We have

rj(t) = rj(t − 1) + Gj(t) −

∑
i∈I

µji(t), ∀j ∈ I. (9)

Note that the green energy transferred from each node cannot
exceed its total amount. Moreover, for energy efficiency concern,
no green energy can be transferred to an edge node without the

VM, i.e., µji(t) = 0 when xi(t) = 0. Therefore µji(t) is constrained
by

0 ≤ µji(t) ≤ xi(t)(rj(t − 1) + Gj(t)), ∀(i, j) ∈ I. (10)

3.3. A joint MILP formulation

To achieve energy efficiency, we always use green energy to
process tasks with a higher priority. When the green energy of all
nodes run out, the brown energy consumption incurs. In this case,
the brown energy consumption can be calculated as si(t) − gi(t).
By summing up all above, the objective of the VM migration and
energy scheduling problem is as follows:

min : (α
∑
i∈I

(si(t) − gi(t)) + β
∑
i∈I

∑
j∈I

µji(t)), (11)

where the coefficients α and β are defined by users to balance the
brown energy and green energy consumption. In this paper, our
goal is to use green energy asmuch as possible tominimize the use
of brown energy, hence α is set much larger than β . When there is
sufficient green energy in the network, this problem is transformed
into minimizing green energy consumption.

We consider a time period T = {1, 2, 3, . . . , |T |} divided into
multiple discrete time slots and then make the time-slot decisions
for VM migration and energy scheduling of each time slot t ∈ T .
The VM location and energy amount at different time slots should
be considered together and decisions at each time slot should be
made based on the knowledge of previous and next time slots. For
example, more green energy might be stored in current time slot
and to be used later to avoid high green energy attenuation loss. By
rewriting (11), the joint scheduling problem can be formulated as:

Cost-Min:

min :

∑
t∈T

(α
∑
i∈I

(si(t) − gi(t)) + β
∑
i∈I

∑
j∈I

µji(t)),

s.t. : (1), (4), (5), (6), (7), (8), (9) and (10).

3.4. Hardness proof

In this part, we prove the hardness of our problemby reducing it
to the well-known general quadratic assignment problem (GQAP),
which has been proved strongly NP-hard [17]. Given K facilities
and M locations. A facility k can only be assigned to one location
m, but multiple facilities can be assigned to the same location. For
each pair of locations (m, n), a weight Hm,n is specified as their
distance.While for eachpair of facilities (k, p), a priceVk,p is defined
to denote the cost of workloads transported between them. The
goal of GQAP is to assign all facilities to the locations with the
minimum sum of the distances multiplied by the corresponding
prices.

Theorem1. The brown energy costminimization problem is NP-hard.

Proof. In our study, we are interested to find the location to host
the VM for task processing during the |T | time slots, i.e., xi(1), xi(2),
. . . , xi(t), . . . , xi(|T |). As mentioned above, each pair of selected
locations i, j ∈ I is with a weight as Hij. Moreover, once xi(t − 1) ̸=

xi(t), the VM image need to be transported to the next time slot
location at a price of V and corresponding task processing price
of λj(t) · (W + E). Assume the energy can be transferred over
links without attenuation, the original Cost-Min problem can be
transformed tominimize the total required energy as the following
Energy-Min problem:

Energy-Min:

min :

∑
t∈T

∑
i∈I

si(t),

s.t. : (1), (4), (5) and (6).
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That is, we need to assign all |T | VMs to I edge nodes (VMs in
different time slots can be located in the same nodes without
migration), with the goal of minimizing the products of distance
Hij multiplied by VM migration price V and task processing price
λj(t) · (W + E). This is a typical generalized quadratic assignment
problem, which is NP-hard.

4. Algorithm design

In this section, we design a low-complexity heuristic algorithm
for our problem.When the network topology becomes complex or
the number of time slots |T | increases, the computational complex-
ity of solving Cost-Min problem directly will significantly increase
because of the binary variables. Therefore, we relax the binary
variables xi(t) into continuous ones in the range of [0, 1]. Then,
the original Cost-Min problem is transformed into a linear pro-
gramming (LP) problem which can be solved in polynomial-time
by most commercial solver, such as Gurobi.

Once the solutions of the LP problem is obtained as the re-
laxed xi(t), we then sort them increasingly in line 3. The maximal
xi(t), ∀i ∈ I is set to 1 while the others are set to 0, for all time
slots t ∈ T in lines 2 to 12. Next, we bring this values of xi(t)
to the original Cost-Min problem and determine the values of
µij(t), ∀i, j ∈ I by any LP solver to find a feasible solution using
the minimum brown energy. The details of our relaxation-based
algorithm is shown in Algorithm 1.

Algorithm 1 Relaxation-based Algorithm

Require:
Network Graph Gn = (I, E), Green Energy Graph Ge = (I, E)

Ensure:
VMmigration and green energy transferring between the edge
nodes

1: Relax the integer variable xi(t), solve the Cost-Min-LP problem

min :

∑
t∈T

(α
∑
i∈I

(si(t) − gi(t)) + β
∑
i∈I

∑
j∈I

µji(t)),

s.t. : (1), (2), (7), (8), (9) and (10)
0 ≤ xi(t) ≤ 1.

2: for all time t ∈ T do
3: Sort xi(t), ∀i ∈ I decreasingly
4: counter = 0
5: for all i ∈ I do
6: if counter < 1 then
7: counter + +, xi(t) = 1
8: else
9: xi(t) = 0

10: end if
11: end for
12: end for
13: Take xi(t) into the Cost-Min, and obtain the energy transmis-

sion µij(t)

It can be observed that Algorithm 1 can get the solution of Cost-
Min with a low computational complexity. We first sort all xti after
relaxation and assign the value 0 and 1 to the sorted xti in each time
slot as shown in lines 3 to 12 with the complexity of Ø(logN + N).
Then we repeat the sort and assignment of xti at all time slots t ∈ T
with the complexity of O(T ). Hence, the complexity of Algorithm 1
is O(TN).

4.1. Approximation ratio

Suppose in time T , there are totallyM tasks and G green energy.
Tasks and VM need to be migrated to the selected node in every

time slot. Hmax and Hmin are the maximum and minimum network
hops between 2 nodes. In the optimal case, the network hops of
VMmigration or tasksmigration is larger than or equal toHmin. We
denote C∗ as the optimal total energy cost and we have,

C∗
≥ M · E + V · Hmin + T · Hmin · M. (12)

In our solution, the total energy cost C can be calculated as:

C ≤ M · E + V · Hmax + T · Hmax · M. (13)

Combining (12) and (13), we have total energy cost approxima-
tion ratio as following:

C
C∗

≤
M · E + V · Hmax + T · Hmax · M
M · E + V · Hmin + T · Hmin · M

≤
M · E
M · E

+
(V + T · M) · Hmax

(V + T · M) · Hmin

= 1 +
Hmax

Hmin

(14)

That is,

C ≤ (1 +
Hmax

Hmin
) · C∗ (15)

Proof. We set a, b, c, d as 4 non-zero positive numbers, and
obviously we have

c + d
a + b

=
c

a + b
+

d
a + b

≤
c
a

+
d
b
.

Assume that the optimal solution need to transfer Go, Go ≤

G green energy and our solution need to transfer Gr , Gr ≤ G
green energy during the entire period time T . Amax and Amin are
the maximum and minimum attenuation ratios between the edge
nodes. In the optimal case, the attenuation ratio of green energy
transmission is larger than or equal toAmin.G∗ andGunits of energy
is obtained for task processing for the optimal and our solution,
respectively Then, we have:

G∗
≤ (1 − Amin)Go, (16)

and

G ≥ (1 − Amax)Gr . (17)

The approximate ratio of our solution then can be calculated in
two different occasions: with and without sufficient green energy.
When green energy can support the total energy demand and
therefore no brown energy will be consumed. In this case, we
usually have Go ̸= Gr , and the amount of green energy obtained
on the selected node equals to the total energy amount to VM
migration, task transmission and processing. According to (16) and
(17), the approximation ratio in this case is

Gr

Go
≤

1 − Amin

1 − Amax
·
G
G∗

≤
1 − Amin

1 − Amax
·
C
C∗

=
1 − Amin

1 − Amax
· (1 +

Hmax

Hmin
).

(18)

On the other hand, we need to consume brown energy when
green energy runs out, i.e., Go = Gr . Considering (16) and (17), we
have
G
G∗

≥
(1 − Amax)Gr

(1 − Amin)Go
,

=
1 − Amax

1 − Amin
.

(19)
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That is,

G ≥
1 − Amax

1 − Amin
· G∗ (20)

From (15) and (20), we can calculate the approximation ratio with
brown energy consumption as

C − G
C∗ − G∗

≤

(1 +
Hmax
Hmin

) · C∗
−

1−Amax
1−Amin

· G∗

C∗ − G∗

= 1 +
Hmax

Hmin
+

(1 +
Hmax
Hmin

−
1−Amax
1−Amin

) · G∗

C∗ − G∗

(21)

Let α =
1−Amin
1−Amax

, β =
Hmax
Hmin

and K =
C∗

G∗ , and the approximation

ratio Γ can be represented as

Γ =

⎧⎨⎩
K · (1 + β) − α

K − 1
,without sufficient green energy,

α · (1 + β),with sufficient green energy.

5. Performance evaluation

5.1. Simulation results

In this section, we compare our relaxation-based algorithm
(‘‘MTS’’) with four competitors, as ‘‘OPT’’, ‘‘OWN’’, ‘‘OTS’’ and ‘‘ATS’’.
The OWN algorithm uses only local green energy without any
energy transferring fromother nodes. TheOTS algorithmoptimizes
the energy consumption of each time slot t separately and the
ATS algorithm schedules the energy based on the average network
states over period T .

In our experiments, we consider a network based on the topol-
ogy of Abilene US Continental Network with 11 nodes connected
by 14 links tomimic an edge computing environment. The number
of hops between two nodes is randomly set within range [1, 8]
and the corresponding attenuation ratio between any node pair is
set within range [0.01, 0.5]. We divide the time period T into 10
time slots, and the task arrival rate and green energy generate rate
on each edge node at each time slot are randomly set within the
ranges of [0, 20] and [0, 500], respectively. The energy consump-
tion of task processing, transmission and VM migration are 10, 3
and 10, respectively.

First of all, we investigate the performance under different
settings of task processing energy consumption E. As the value of E
increases from3 to 30,we can see fromFig. 3 that the brownenergy
consumption of all five algorithms grows with E. It is because that
with the same task arrival, the total energy consumption shall grow
with the task processing energy consumption E. It can be observed
that OWN algorithm always gives the worst energy efficiency be-
cause it only uses the local green energy. It is also worthy noticing
that the energy consumption of both OTS and ATS increases much
faster than our MTS algorithm. The reason is that MTS takes into
account of multiple t and therefore is able to make more fine-
grained green energy scheduling more effectively. Fig. 4 shows the
detailed energy consumption of our MTS algorithm by classifying
it into green energy consumption, transferring loss due to at-
tenuation, task transmission energy consumption (i.e., offloading)
and VM migration energy consumption. It can be observed that
when E is larger than 15, the green energy is insufficient and
more brown energy is needed. In this situation, the green energy
consumption as well as the VM migration consumption will not
change, as shown in Fig. 4. Similarly, by increasing the value of
task transmission energy consumptionW from 2 to 20, we can see
that the total energy consumption in Fig. 5 and task transmission
energy in Fig. 6 also increase. This is simply because higher unit
task transmission energy consumption definitely requires more

Fig. 3. The effect of E.

Fig. 4. Energy consumption of MTS under different E.

Fig. 5. The effect ofW .

task transmission energy, and hence the total brown energy con-
sumption. Nevertheless,with careful scheduling of the VM location
and green energy transferring, our MTS algorithm can still reserve
the best energy efficiency.

Then, we study the energy consumption of all five algorithms
with different values of λ with upper bound of λi(t) increasing
from 12 to 48 to check how these algorithms adapt to different
task workloads. The experiment results are reported in Fig. 7.
We can see that the total brown energy consumption shows as
an increasing function of the task arrival rate, for any algorithm.
Higher task workloads imply more energy consumption. When
the green energy is sufficient to support all the task processing,
no brown energy is needed and the green energy consumption
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Fig. 6. Energy consumption of MTS under differentW .

increases, as shown in Fig. 8. However, when λi(t) reaches 20,
brownenergy becomes needed, and the green energy consumption
remains constant. This is because all the green energy is completely
used and we still need to resort to brown energy such that all
the tasks can be completely processed. Similar observation can be
obtained from Fig. 9 when the upper bound of transmission dis-
tance H increases from 3 to 25. One interesting phenomena is that,
with the increase of H , the energy loss decreases in Fig. 10. That
is because with the potential higher energy transferring cost, our
MTS solution tries to reduce the energy transferring by carefully
selecting the VM location.

Next, we vary the amount of available green energy generation
rate Gi(t) from 0 to 50 to check how our algorithm adapts to
different green energy generation conditions. As shown in Fig. 11,
we can see that the brown energy consumption decreases with
the increase of green energy generation rates. This is attributed
to the fact that, for either algorithm, we always use the green
energy with higher priority in order to reduce the brown energy
consumption. Thanks to the well scheduling of VM placement and
task allocation, our algorithm always achieves the best energy
efficiency. Meanwhile, from Fig. 12, we can see that the energy
loss also increases with the green energy generation rates. This is
because our algorithm always tries to transfer more green energy
with residual energy to the server where the VM is placed. By such
means, our algorithm canmaximize the usage of green energy and
minimize the brown energy consumption.

Finally, let us check how these algorithms adapt to different
values of energy attenuation ratio by varying the upper bound
of Aij, ∀i, j ∈ I from 0.1 to 1 (see Fig. 13). First, we can see
that the brown energy always keeps the same value for ‘‘OWN’’
algorithm since it only use the local generated green energy. No
energy transferring is required for ‘‘OWN’’ algorithm. However,
for the other algorithms, we can see that the brown energy con-
sumption increases with the value of green energy generation.
Without doubt more brown energy shall be consumed if less green
energy can be efficiently obtained by the server where the VM
is placed. Once again, we can see that our MTS algorithm always
achieves the best energy efficiency thanks to the maximal usage
of green energy. Meanwhile, we can also see from Fig. 14 that the
energy loss due to energy transferring attenuation also increases
the attenuation ratio.

5.2. Discussion

In our MTS algorithm above, we averagely divide the time pe-
riod T into multiple time slots t . Here, we consider two interesting
issues: (1) Howmany time slots should T be divided? (2) How long
should each time slot be?

Fig. 7. The effect of λ.

Fig. 8. Energy consumption of MTS under different λ.

Fig. 9. The effect of H .

We first divide T into 3 time slots, 6 time slots and 9 time slots,
respectively, and vary the value of unit task processing energy
consumption from 5 to 25. The results are reported in Fig. 15, from
which we notice that the results of 3 time slots are always worse
than the others. When the total time is divided into 9 time slots,
it performs the best. From such phenomenon, it seems that we
shall try tominimize the frequency of scheduling at runtime. How-
ever, frequent scheduling incurs lots of overhead. This reminds us
another solution that, other than normally invoking the schedul-
ing algorithm in a constant interval, we can adaptive invoke the
scheduling algorithm according to realtime condition, e.g., task
arrival rate. To this end, we implement another algorithm that
adaptively invoke our MTS algorithm by checking the task arrival
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Fig. 10. Energy consumption of MTS under different H .

Fig. 11. The effect of Gi(t).

Fig. 12. The energy consumption of MTS under different Gi(t).

difference. We call it as ‘‘Adaptive’’ in this section. In ‘‘Adaptive’’
algorithm, we set a threshold γ and the MTS algorithm is invoked
whenever the task arrival rate ratio, either increase or decrease,
between two time slots is higher than γ . Therefore, different values
of γ shall exhibit different performance. We investigate its perfor-
mance by varying its value from 0.1 to 0.5 and show the results in
Fig. 16.

We observe that the value of γ indeed have deep influence
on the energy efficiency. When γ is small, MTS algorithm will

Fig. 13. The effect of A.

Fig. 14. Energy consumption of MTS under different A.

Fig. 15. The effect of the number of t .

be invoked frequently. The interesting thing is that, the brown
energy consumption first shows as a decreasing function of γ and
then increases with γ . We obtain the best energy efficiency when
γ = 0.3. When γ is small, e.g., γ = 0.1, the MTS algorithm
will be invoked frequently, inevitably resulting in VM migration
and hence the energy consumption. While, if γ is large, it fails
to track the dynamics of both the task arrival and green energy
generation. Hence, the brown energy begins to increase. As both
VM migration and task offloading are energy consuming, we are
also interested to know their impact on the energy efficiency.
We vary the value of V/W and set γ as 0.2. The performance of
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Fig. 16. The effect of γ .

Fig. 17. The effect of the radio of V andW .

‘‘Adaptive’’ in comparison of the casewhen the total time is divided
into 18 time slots is shown in Fig. 17. We notice that when V/W
is small, both algorithm performs similarly. However, when V/W
becomes large, ‘‘Adaptive’’ begins to outperform ‘‘18 TimeSlots’’.
This is because when the VM migration cost is high, frequently
migrating the VMmay incurs unnecessary energy consumption. It
would be better adaptively invoke the MTS algorithm according to
the runtime condition.

6. Related work

6.1. Edge computing

As the demand of computing growing, the heavy workload and
high energy consumption become an imperative problem [18].
The promising potentials of edge computing have attracted lots
of interests from both academia and industry. In this section, we
summarize some representative related work. Bonomi et al. [11]
show the advantages of edge as the appropriate platform for the
latency-sensitive services and applications, owing to its charac-
teristics of energy efficiency, low latency, location awareness and
geographical distribution. Jalali et al. [19] compare the energy con-
sumption of edge node and data center under different conditions
and show the advantages of edge computing in energy saving
and latency reduction. To further study the workload offloading
problem, Deng et al. [20] decompose the total energy consumption
into edge, cloud and communication parts, and investigate how to

allocate the workload for balanced delay and energy consumption.
Moreover, edge nodes are geo-distributed and canmake full use of
local harvested green energy. For example, He et al. [21] investigate
the possibility of introducing green energy to edge devices like
access points to support user task computation with the goal of
minimizing the grid power consumption. To provide an efficient
energy management, Li et al. [22] propose a unified framework
for sustainable edge computing with distributed green energy
resources. Chen et al. [23] further study the multi-user and multi-
task computation offloading problem for green energy supported
edge computing, and adopt Lyapunov optimization tomake energy
harvesting decisions.

Present energy scheduling work in cloud or edge computing
only focuses on local energymanagement, i.e., using its ownenergy
in each node. These solutions neglect the large amount of available
energy in neighbor nodes and result in a comparatively low global
energy utility.

6.2. Energy internet

To address the energy efficiency issue, energy internet (EI) is
proposed to solve energy crises by scheduling and transferring en-
ergy in a global and centralized way [12,24]. Wang et al. [12] intro-
duce the advantages of EI and propose an efficient EI architecture
for energy transfer in the power grid. The key device to compro-
mise EI is an energy router (ER)with different scheduling strategies
for energy scheduling and transfer. To improve the stability of en-
ergy scheduling, Gao et al. [25] propose a Markov decision process
model based on an ER subsystem and the energy scheduling.Wang
et al. [26] further propose a system-level stability evaluationmodel
based on the energy function to explore small disturbance stability
region. To maintain the reliability of the smart grid, Xie et al. [27]
propose a contribution-based fairness energy scheduling, that is
the high contributions which discharging during the load peak
hours have high priorities to obtain charge energy. Zhong et al. [28]
propose two auction mechanisms which are designed under the
day-ahead and real-time markets for energy trading in a smart
multi-energy district to maximize benefits of green energy. Kang
et al. [29] propose a localized peer-to-peer (P2P) electricity trading
model for locally buying and selling electricity in smart grids and
use the blockchain technology to improve transaction security.

The great significance of EI has been validated by existing work
above. To efficiently introduce EI into edge computing, we in-
vestigate the global energy scheduling problem in green energy
supported edge computing.

7. Conclusion

In this paper, we investigate the VM migration, task allocation
and the energy scheduling problem with the goal of brown energy
consumption minimization. With the consideration of both green
energy supply and user demand diversity, a discrete time-slotted
scheduling optimization model is proposed. We prove the NP
hardness of the problem and invent a relaxation-based heuristic
algorithm to tackle the unpredictable green energy and user de-
mand dynamics. Theoretical analysis shows that our proposal can
achieve close-to-optimum solution and significantly reduce the
brown energy consumption. Extensive simulation-based experi-
ments are conducted to validate the correctness and energy effi-
ciency of our algorithm. We also discuss the effect of the time slot
duration to the energy efficiency. The results show that adaptively
invoking the our scheduling algorithm according to the fluctua-
tions of tasks and green energy shall have better performance in
most cases.
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