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FUTURE GENERATION COMPUTER SYSTEMS

Application of Reinforcement Learning in UAV
Cluster Task Scheduling

Jun Yang, Xinghui You, Gaoxiang Wu, Mohammad Mehedi Hassan, Ahmad ’.Imc :;ren, Joze Guna

Abstract—Recently, unmanned aerial vehicle (UAV) clusters
have been widely used in various applications due to its high
flexibility, large coverage and reliable transmission efficiency. In
order to achieve the collaboration of multiple UAV tasks within
a UAV cluster, we propose a task-scheduling algorithm based
on reinforcement learning in this paper, which enables the
UAV to adjust its task strategy automatically and dynamically
using its calculation of task performance efficiency. As the
UAV needs to perform real-time tasks while working in a
dynamic environment without centralized control, it needs to
learn tasks according to real-time data. Reinforcement learning
has the ability to carry out real-time learning and decision
making based on the environment, which is an appropriate and
feasible method for the task scheduling of UAV clusters. From
this perspective, we discuss reinforcement learning that solves
the channel allocation problem existing in UAV cluster task
scheduling. Finally, this paper also discusses several research
problems that may be faced by the further application of UAV
cluster task scheduling.

Index Terms—Reinforcement Learning, UAV Cluster, Tasn
Scheduling

I. INTRODUCTION

With the growing role of UAVSs in the militarv pubu. and
civilian fields, it can be widely used for “boring, Hirty or ¢ n-
gerous” tasks, which are often inconvenient or un, ‘19" ible
to human beings [1], [2], [3]. In the proce s of performing
tasks, the UAV has the advantage of flexib.. 1 ploy .ent on
demand, large coverage, and stationary t overing . * any time,
which usually produces special effe s +hen performing
tasks [4], [5], [6]. UAVs have been prima.ly used for
military applications before, but ar. nc 7 rapidly expanding
into business, science, entertainn. "t, griculture, and other
fields, as shown in Figure 1 In ac 'ition to traditional
usage of military applications mor recent examples include
support of first responders, ~. = zillar ce, express delivery,
aerial photography, agricr’__ce, an. UAV competition [7],
(81, [9].

Since UAVs require . reliab’: uplink transmission to
transmit acquired dat* . .0 the cure network, the cluster net-
work must support 1 :liable ¢ ta transmission. However, with
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the popularization oi "TA' deployment, the cooperation of
multiple UAVs in the clus. = becomes a prominent problem,
which makes it iecessa. 7 to investigate the collaboration
protocol and con. ‘ol algor thms [10], [11], [12]. At present,
most UAV clr-ters . "1y work in a centralized way. For
example, th . cer’ .. control unit of the base station (BS)
controls the -~ _eratica of the UAV. With increasing task
complexity nd n...c complex and changeable environments,
a centralized ¢ ntrol mode will be unable to satisfy the
demana. ~f rea’ time and efficient control [13], [14], [15].
In aau “on, o is also difficult to make centralized control
on all TTa "5 due to the limited spectrum of resources.
Tne ~fore, it is critical to study decentralized cooperation
methoas ‘0 solve the design and optimization problems of
UA' c.aster networks in the sensor network composed of
n. ltiple UAVs [16], [17], [18].

1. this paper, we propose a decentralized networking
protocol to coordinate the movement of UAVs and achieve
_:al-time networking of UAV clusters. As the UAV is
in a dynamic environment and performs real-time tasks
without centralized control, the UAV needs to learn to
collate data and perform transmission online at the same
time. Reinforcement learning is an excellent candidate to
satisfy these requirements for UAV cluster task scheduling.
In this regard, we adopt reinforcement learning to solve
the problems existing in real-time sensing of UAVs. Unlike
supervised learning which requires offline data sets to learn
the correct actions in each state, the agent (that is, the
UAV) of reinforcement learning learns from real-time data
from various sources. This method is more suitable for
application scenarios under real-time UAV scheduling. Fur-
thermore, reinforcement learning does not rely on complete
and accurate environmental models, which is particularly
useful for intelligent hardware with limited computing power
like UAVs [19], [20].

In this paper, we will discuss possible solutions of apply-
ing reinforcement learning to UAV cluster task scheduling.

1) We apply the expansion strategy to solve the problem
of UAV networking in the initial state.

2) We apply deep reinforcement learning to solve the
dynamic allocation problem of wireless channel, so as to
optimize the time delay of UAV data transmission.

3) Finally, we provide an example to introduce how to
apply the above methods to solve the problem of UAV cluster
task scheduling.

The rest of the paper is arranged as follows. Section II
gives an overview of the UAV cluster and the tasks it faces.
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Fig. 2. Schematic Diagram of Performing Real-Time Task Sct *
under the UAV Cluster

In section III, we will discuss the reinforcem at lear. ing
method, including its theoretical basis and . = poss dle
applications in UAV scheduling. In section I" , we e.. ™ rate
on an example application of the reinfo cem at learning
method in the UAV cluster scheduling task, +.* .ch i’ used to
solve the UAV data transmission task cheduling problem.
In section V, we conclude this pa’er « 1 discuss open
challenges for future work.

II. OVERVIEW OF UA. ¢ LUSTERS

In this section, we first in’.odu e UVA clusters briefly,
then describe the task scena. ~s f.ced sy UAV clusters and
discuss corresponding qualificau. ~ .onditions to the task
scenarios.

A. Real-Time Task S ..cduling of UAVs in the Cluster Net-
work

As shown in Figu. 2. r altiple UAVs perform different
real-time tasks ~Mtaneously in a cluster network using
multiple orthogou. 'l cequency division multiplexing (OFD-
M), performing the sensing tasks by continuously moni-
toring their induction areas, and collect or generate real-
time sensing data during this period [21], [22], [23]. The
purpose of UAVs is to collect effective sensor data and
transmit the data to the core network through relay UAVs

and BSs. Here, effective sensor data refers to the sensor
data containing accurate informati~n of the task situation,
that is, the sensor data generated ' v the successful detection
of the target object by each U/ V. L. ~eneral, the effective
probability of sensor data colle~"~1 by the UAV is negatively
correlated with the distanc. be veen the UAV and the
target area. For transmitting *. sensor data to the core
network, the UAV selects .. > ass. ciates a BS, which then
allocates a communice’”  cha. ~el to the UAV in order
to upload data. Accc ding « the deployment strategy of
BSs, the frequency b.. 1 used by adjacent an BS can be
the same or differ- ", ana '* must consider the method of
time division nv (tiplexi. v if the frequency bands are the
same. To ensure \ e succr ss rate of data transmission while
optimizing it c.ergy cunsumption, each UAV dynamically
determines i s ov . . nsmission power while performing the
data transmis..on ta' & while considering the blocking and
interference ¥ signals due to obstacles. Furthermore, each
UAV =~lso deten \ines its motion trajectory, data perception
behavior ~d rata transmission strategy, so as to better
collect U ~ta and transmit it back to BS.

B. Tas. Definition of the UAV Cluster

V ¢ uow define and explain the relevant terms and objects
tc oe used in this paper, which are shown in Table I.

1.« UAV cluster usually must perform monitoring tasks in
specific areas. It must finish the deployment and networking
_i the UAV cluster in the initial scenario, and then consider
the situation of terminating tasks when some UAV nodes
fail or have low battery power. In those cases, the cluster is
required to re-network. After networking, the UAV cluster
must consider the data transmission efficiency of each UAV
over the target monitoring area, which is defined as the
delay efficiency. For improving the standby time of the
UAV, the data transmission power must be considered. Each
UAV should dynamically adjust the transmission power of
the UAV cluster by analyzing the collective networking
status. Oftentimes, multiple UAVs will compete for the same
communication channel when performing time-division mul-
tiplexing. It is also necessary to optimize scheduling to
reduce the collision probability of data transmission.

Therefore, in order to allow each UAV to perform its tasks
while satisfying the requirements of the data transmission
process, a virtual repulsive algorithm is proposed here to
evenly distribute the UAVs in a specific region. Our algo-
rithm optimizes the distance to the base station to reduce the
delay time and transmission power. Given that there are N
UAVs and M base stations in a specific region and it has a
repulsive force between every pair, we model the system as
an (M + N) * (M + N) force matrix A[M + N|[M + NJ,
where A[i][i] = 0, Ali][j] = —A[j][¢]. Taking the center of
a specific region to be the origin, we construct the x-axis
from west to east and construct the y-axis from south to
north, to establish a two-dimensional rectangular coordinate
system. As shown in Figure 3, the UAVs are randomly
scattered in the initial conditions with coordinates (x;,y;),
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TABLE 1
TABLE OF OBJECT AND TERM DEFINITIONS.

Symbolic Representation | Explanation
N Total number of UAV T
M Total number of base station T
Bi(zB,,yB;) Base station -
CHp, the idle channels of Base station ¢ 4
T-UAV UAVs performing monitoring tasks o
R-UAV The relay UAYV, providing relay communications to T-UAV
T;(xT,, y1,) Monitored target
min The minimum distance between any UAV-A and UAV-B is e s fe distance
dmazx The maximum distance between UAV and UAV or U2, and 8S . limited by the
maximum transmission power of the UAV
tm Time needed to complete the monitoring by the UAV
Vs Cruising Speed of the UAV

Fig. 3. Propagation Planning of the UAV Cluster

and base stations are located with(zp,,yp ;. Eve.” "JAV
receives M + N forces, and the force f ary UAV on
itself is zero. We calculate the magnitude . ~< dire .tion of
the resultant force, which indicates the directio. m which
the UAV should move. For computat’ sna. ~onvenience, the
repulsive force is decomposed into x and y co..iponents. As
shown in Equation 1 and Equatior 2, t e repulsive force of
the ¢ UAV on the x-axis is z}* an. he epulsive force on the
y-axis is 4. The quantities ‘:% an ' §:§i| refer to the
direction of the repulsive forc .. C+ and 5 are constant, and
represent different weight coe.. > :nts - orresponding to UAV
and base station respective’,. Furthe. .10re, the UAV searches

for the closest base stati n with . 1 available channel.

L i Cy X —a ,-_+i Cy T — X,
o @)t el o (@i - w)? [ri - wpy
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Fig. 4. Human Intervention of the UAV Cluster

dbase = \/(AT‘TG,yX[’L} - ka)Q + (ArrayY[z] - yBk)2
3)

According to Equation 1 and Equation 2, the coordinate
of the UAV propagates to (z;+z!", y; +y.") unless the UAV
is close to the boundary area. After several iterations, if the
displacement of each UAV d,, . is larger than a d,,;,, and
the distance between each UAV and the base station dpqge
(Equation 3) is smaller than d,,,,, and the base station has
available channels, the cluster is in a stable configuration
and does not propagate further. The algorithm of the UAV
cluster networking is shown as Algorithm 1.

In addition, we deploy many intensive UAV clusters in
key areas, where human intervention is needed. As shown
in Figure 4, we mark the key area manually and indicate its
radius. After we mark these area, the algorithm will plan the
nearest m UAVs to move into the region automatically, and
then perform the UAV cluster scheduling algorithm untill
the UAVs in the region reach a balanced state.

III. REINFORCEMENT LEARNING IN UAV CLUSTER
SCHEDULING

A. Introduction to Reinforcement Learning

In reinforcement learning, each agent learns to take ap-
propriate action by interacting with the environment and
learning from its experience [24], [25]. Through the perfor-
mance of each action, the reward is given as a quantitative
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Algorithm 1 Cluster Scheduling of UAV
Input: UAV clusters in a random state
Output: UAV clusters in a stable state

1: function SCHEDULEUAV (Array X, ArrayY)

2: fori=0— N—1do

3 Tabli] + 0

4 end for

5: count < 0

6 while (count < N) do

7 fori=0— N—1do

8 if (T'ab[i] == 0) then

9: xl" < Equation(1)

10: y" < Equation(2)

11: T —xt +x;

12: Yi < Yty

13: find the nearest UAV (z;,y;) to UAV 4
14: dmfe — \/(T, — J?j)2 + (Tl — yj)2
15: if (dsafe > dmin and dpgse < dma, and

CHp, > 0) then

16: Tabli] + 1

17: count < count + 1

18: CHp, + CHp, —1

19: end if
20: if ((x;,y;) is at edge) then
21: Tabli] + 1
22: count < count + 1
23: end if
24: end if
25: end for

26: end while
27: return (ArrayX, ArrayY)
28: end function

feedback of the learning process. As reinfo. ~ .ient earning
does not require a pre-existing data set .or train. 2 and the
agent can learn from online data, it b s « ~trong appeal for
real-time applications. Furthermore, <ince the oehaviors of
other agents can be viewed as the ,tate of the environment,
it can solve the optimization pi.*™le’ . of multiple agents
using a decentralization metb ,d by ~tending reinforce-
ment learning. The followir . is an introduction to deep
reinforcement learning, whic.. 7, ba'zd on deep strategy
gradient descent method- ..ith ac sr-critic constraints to
optimize value functions which \ ill be used to perform the
scheduling task of the U, V.

1) Deep Reinforc ment ] earning Based on Value Func-
tion: In ordinary ( -learniny Q-table is used to store the
Q@ value of each statc ~ctior pair when the state and action
spaces are disc .. ~nd the dimension is not high. How-
ever, Q-tables ai. ¢ fficult to solve for high-dimensional
continuous state or « ‘tion spaces. Deep reinforcement learn-
ing is a combination of deep learning and reinforcement
learning, which can directly learn control strategies from
high-dimensional data. The deep neural network can extract
complex features automatically, and represent the input high-

(sars’ )

Environment

argmax,, O(s,a;0")

The gradient of Copy pai.meters every N
Loss function ' time step

4——-—tl'ar atNet
0(s,a;0)
y | <e,. ,memory D

L

DRL Loss
Function

Fig. 5. DQN Traini. ~ Process

dimensional *“ .e-act on pair as low dimension approxima-
tion, and u.> outy . 1s the corresponding @ value computed
for each action. Sigure 5 shows the training process of deep
Q-learn.. ~ netw yrk (DQN). The comparison value function
has tu. following three characteristics:

1) An ex -rience replay mechanism is applied in the train-
ing ~rocess to store the transferred samples obtained by the
interacu. 1 between the intelligent body and the environment
in 7. .eplay memory unit. A small batch of transferred
s. aples is selected randomly in the training process. The
nety ork parameter 6 is updated according to an optimal
gradient descent. This random sampling method greatly

:duces the correlation between samples and improves the
stability of the algorithm.

2) In addition to using the deep neural network to repre-
sent the current value function, it uses a separate network
to generate the target ) value. Specifically,Q(s, a|6;) is the
output of the current network and is the value function for
computing the current state-action pair. Q(s, a|6, ) is defined
as the output of the target network, and it generally adopts
Y = r+ymaz,Q(s'a’'|0;) to approximately represent the
optimization target of the value function, which is the target
@ value. The parameter, 6 of the current value network, is
updated in real time. After N iterations, the parameter of the
current value network is copied to the target value network.
The network parameter is updated by minimizing the mean-
squared error between the current and target () values. The
introduction of the target network reduces the correlation
between the current and target () values to some extent, and
improves the stability of the algorithm.

3) The reward values and error terms are reduced to a
limited time, which ensures that the @) value and the gradient
value are kept within a reasonable range, which improves the
stability of the algorithm.

2) The Deep Strategy Gradient Method Based on an
Actor-Critic Framework: The method of the continuation
property of the action in the UAV’s control task under
the real scenario allowing for the online extraction of bulk
trajectories cannot always reach a satisfactory coverage and
may converge to a local minimum. Therefore, it is proposed
to extend the actor-critic (AC) framework in the traditional
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Fig. 6. Actor-Critic Framework.

reinforcement learning (RL) to the deep strategy gradient
method. As shown in Figure 6, this uses the learning
structure of the deep strategy gradient method based on an
AC framework.

The deep deterministic policy gradient (DDPG) algo-
rithm based on an AC framework can be used to solve
deep reinforcement learning (DRL) problems of continu-
ous motion space. DDPG uses deep neural networks with
the parameters #* and A% to represent the deterministic
strategy a = m(s|Q*) and the value function Q(s,a|0%),
respectively. The strategy network is used to update the
strategy, corresponding to the actor in the AC framework.
The value network is used to approximate the value functic ~
of the state action pair and provide gradient information,
corresponding to the critic in the AC framework. In L. =,
the target function is defined as a discounted reward sun..
J(0") = Elr1 +yr2 +9°r3 + ...]

According to the deterministic strategy a = 7 s|Q", the
gradient is:

0I0) _ p 0QUs a0 ox( 1)
oor ° Oa o
The critic network is updated using * e value . :twork in
DQN, with gradient:

OL(69 00Q(s, al6?
P TR 1 ) Kicdex: LA TE)

Then, a random gradient de ,cen’ is applied to make end-
to-end optimization on the . -oe’ funr.ion. DDPG uses an
experience replay mechaniem to ' cain training samples
from D and transmit tt 2 grad: at information of the @
value function on the ac ‘on to t} = actor network from the
critic network. The p>=~me.. = uf the strategy network are
updated along the d’ ection f increasing () value, according
to Equation 5.

B. Description ¢," U/ v 1usk Scheduling

We now introdu. > the strategy to transmit UAV data
under time division multiplexing. As shown in Figure 7,
the UAV performs the sensing task in a synchronous and
iterative manner. In the data transmission protocol, time is
divided into discrete time periods and it takes data perception

Phase2:Data Transmitting |

B Phase1 |

T

UAV-A

UAV-B

N

UAV-C!

’Data Transmitting Failc
Commu-channel Or ‘oied

() Data Transmitting Successful

! No Data Transmitting Task

Fig. 7. Frame Sequence xamr e of rata Transmission Protocol

and data transm ssion as a cyclic unit, which consists of
several frames. A. *he * _ginning of the cycle, each UAV
determines i s mat~hing BS, relay UAV, data transmission
power, and  nli" « da a transmission channel, then transmits
the inforr. ~tion to *.e BS in the beacon frame through the
control chann.” The rest of the cycle is divided into a data
percep. ~n phas¢ and a data transmission phase.

1) "TAV .= 4 Perception Phase: Here, each UAV senses
several f1.. ~es and collects sensor data during this period. It
i> orth mentioning that, since the data processing capability
is limi.. 1 the UAV may not be able to determine whether the
‘- effective. However, it can evaluate its performance

v ed on the successful calculation of the sensor probability
alo. ». To confirm whether the collected sensor data is
ew. ctive, the UAV needs to transmit its sensor data to the
S in the subsequent transmission phase.

2) UAV Data Transmission Phase: The transmission phase
consists of a certain number of frames where UAVs transmit
the collected sensor data to BSs. If two UAVs use different
sub-channels to collect their sensor data, there will be
no interference between them, since the two channels are
orthogonal. However, when two UAVs from the same (or
different) unit attempt to transmit data in the same channel,
they will suffer data transmission interference. In each frame
of the transmission phase, a UAV may be in one of the
following situations:

SCu

+ Communication-channel Occupied: Under this situa-
tion, the BS cannot allocate the channel for the UAYV, so
it cannot transmit its collected sensor data to the BS.
The UAV must wait for the frame that allocates the
channel in order to transmit its collected sensor data.

o Data Transmission Failed: Under this situation, the
BS allocates the channel for the UAV to transmit its
sensor data. However, as the BS is at a low signal
to noise ratio (SNR) and the transmitted data is not
received successfully, the UAV must transmit the sensor
data to the BS in the next available frame.

o Data Transmission Successful: Under this situation,
the UAV is allocated the channel and successfully
transmits its collected sensor data to the BS.

e No Task: Under this situation, the UAV remains idle
without attempting to transmit uplink data and it has
transmitted the collected sensor data successfully in the
previous frames during the cycle.
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As the uplink channel resources are normally scarce, there
may be insufficient uplink channels to support transmitting
their sensor data in each frame of the transmission phase. To
solve this problem, the BS applies the centralized channel
allocation mechanism to allocate the uplink channels to
the UAVs. Alternatively, the UAVs can determine their
uplink channels in a decentralized manner. In the case of
centralized allocation mechanisms, in each frame the BS
can allocate the uplink channels, which maximizes the total
data transmission success rate. Under normal conditions, the
number of UAVs competing for the same channel decreases
over time in a cycle, since some UAVs may have completed
data transmission in previous frames and remain idle for the
rest frames of the transmission phase.

C. Task Channel Allocation Based on Deep Reinforcement
Learning

As shown in Figure 7, in a UAV cluster, UAVs may inter-
fere with by each other in the same unit if they are allocated
to transmit sensor data in the same channel. Therefore, we
optimize the channel allocation to improve the probability of
success of the UAV uplink transmission. The optimization of
channel] allocation can finally be reflected in the optimization
of data transmission delays, which are defined as Equation 6.

T = mznz (dT'L‘ImxTiQm + dTiPleipl 4o m
v v v
(6)
Including,
Zq TT;q = 1
dTinTiq dTip.rT“,
e == 4y, < T

dpq > dmin

am+ 2P <N

The corresponding mathematical symbc - ar . def ied as:

xT,q: If the g, th UAV conducts the re onnai. 2r _e on the
target 1'%, the reconnaissance is equal . !. otherwise 0.

dr,q,.: Refers to the distance between the | th UAV and
the target 71'i.

TTip; = {

Here,dr, p; refers to the di. mce oetween T; and B;.
When the distance betwe’ .1 1; and aay base station is more
than twice the maximur. transmi sion distance of a single
UAV, d,,azx, it sends onc more JAV as a relay to ensure
that the base station .an receive the monitoring information
from T;.

Furthermore, it c.~ ar .y the reinforcement learning
method to allor .. “h~ channels in a decentralized way to
achieve lower co: s ‘aan centralized scheduling. Due to the
huge size of the cha mel ( 100), there is a large state space.
Therefore, we apply deep reinforcement learning to learn the
schedule for channel allocation. In the deep reinforcement
learning model, each UAV corresponds to an agent, whose
action is to select a set of channels to transmit sensor data.

0
1

mindr, g, = 2dmaz

els:

o ln,

As UAVs can only observe the situation of the channels
when using them for transmission. we can define the state
as the combination of the observat ons from several previous
cycles. In each cycle, the input t the ~ep neural network is
a combination of previous acti~ "~ and staes, and the output
is the corresponding () valu’. Th- UAV can select the best
channel to transmit sensor a. ~ .n the new cycle based on
the obtained @ value. We ~ow . cuss the representation
of UAV cluster schedu!® - cons. cted according to an AC
algorithm.

The quantity Q(s,w, "9, = E(rs +yrip1 +72re0..| st =
s,a; = a,m)repres i the -eward obtained after the UAV
propagates, wher . the pa. ‘meter is the deep neural network
of %, representil. ~ the va 1e function. The strategy function
is a = 7(s|60*, _epreseaung the cluster planning of the UAV.
The evaluat on  ucoon is V(s,a) = max ) Nehaneli X
min Y ! dygse;» Whe e max |V (s) — V/(s)] < a at step
t=T+41, «_ -, rcpresents the distance between each UAV
and the base st fion, and n.panner represents whether the
correspou. “ng I'AV has an available channel (with yes being
1 and u. heing 0). The loss function is arg minge 4 (T — T”)
, ~= === ating the change of the time delay after carrying
out . = new planning. The improvement function is 7' (s)
~romax,eca Q7 (s,a). After entering the initial state, the
'tre egy function first plans the locations according to the
U. V cluster planning algorithm. The evaluation function
Mbsequently applies a gradient descent to update the weights
of the deep neural network, the loss function calculates the
ume delay, and the value function calculates the reward
value. Finally, the optimization parameter < of the value
function is updated continuously in the deep neural network
and the improvement function corrects the weights. In this
way, after several iterations, the distribution of minimum
time delays of the UAV clusters is obtained, thus reaching
a stable state.

IV. UVA CLUSTER TASK SCHEDULING

We will now demonstrate how to use reinforcement learn-
ing to schedule UAV cluster tasks. As shown in Figure 8, we
consider that a cluster network consists of 2 BSs, 5 UAVs,
and 3 target monitoring areas. Given that the two BSs have 2
channels to support uplink transmission of the UAVs and the
2 BSs, there is no band conflict. The accessible monitoring
space of the UAV is defined as the cylindrical volume with
the position of the UAV being the center of the circle and its
maximum communication distance, dmazx, being the radius.
To effectively plan UAV tasks, we divide the feasible flight
space into a group of discrete space points that represent a
square area. When each UAV selects a neighboring space
point in a single decision-making step to maximize the
cumulative reward, it can correct the network structure to
further maximize data transmission volume or optimize the
transmission delay [26], [27], [28]. As shown in Figure 9,
we compare the performance of data transmission with one
UAV under different concurrent load, and the result show
that the communication performance of one connection was
better than that of 2 concurrent connections.
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Performance Comparison of Different Concurrent on One UAV
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Reinforcement learning shows its applicatio.. ~otentia in
the UAV cluster, but there are still many oy .n prou. *.s to
be solved, which may further promote thr app (cation and
research of the UAV cluster. Some potentia, © cure esearch
problems are listed below.

UAV Decision-Making Coopera’ on: "Vhen the UAV
cluster needs to perceive real-time ~onditions of multiple
tasks in the shortest time, each "JAV may need to coop-
erate to perform those tasks. The ¢ itralized method has
a high computational compler.ty, so 1. must distribute its
scheduling to achieve task cr oper don Task cooperation is
very challenging, because each " «V r ast consider tasks and
possible decisions of otk .. JAVs \/hen choosing its own
task and decisions. One >romisin - approach is to use rein-
forcement learning algori."ms tr solve for the cooperating
decisions.

UAV Cognitive Sensing: The large amount of sensor
data generated by U~ "< in "JAV data sensing (for example:
video streaming . = he a huge burden on traditional UAV
cluster networks. To :nsure the data transmission efficiency
of the UAV, one co.'d use cognitive video to enable UAVs
to access the availabte channels of the UAV cluster in a
timely manner. Using this approach, the priority mechanism
of communication could be established for UAVs or applica-
tions, and the dynamic channel could be selected according

300 400 500

Time(S)

to the determined , “orit-. The channel selection could then
be modeled arouc™ a reinforcement learning algorithm.

V. CONCLUSION

In this paper. we have described the UAV cluster and
then orop ~ed » networking scheme based on the expansion
strategy. The UAV task schedules can be improved through
av*~=~~ _ learning, which can then make corresponding
behe “oral decisions and achieve autonomous behavioral
~antrol. e have used the method of reinforcement learning
n .he design of a UAV autonomous behavior decision-
m. king strategy, and conducted experiments on UAV cluster
~sk scheduling optimization in specific cases. We also
discussed possible future research directions of the UAV
luster.
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