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A B S T R A C T

With this work, we present a novel derivative-free global optimisation approach for finite element model up-
dating. The aim is to localise structural damage in a wind turbine rotor blade. For this purpose, we create a
reference finite element model of the blade as well as a model with a fictitious damage. To validate the approach,
we use a model updating scheme to locate the artificially induced damage. This scheme employs numerical
optimisation using the parameterised finite element model and an objective function based on modal para-
meters.

Metaheuristic algorithms are the predominant class of optimisers for global optimisation problems. With this
work, we show that deterministic approaches are competitive for engineering problems such as model updating.
The proposed optimisation algorithm is deterministic and a generalisation of the pattern search algorithm. It
picks up features known from local deterministic algorithms and transfers them to a global algorithm. We de-
monstrate the convergence, discuss the numerical performance of the proposed optimiser with respect to several
analytical test problems and propose a possible trade-off between parallelisation and convergence rate.
Additionally, we compare the numerical performance of the proposed deterministic algorithm concerning the
model updating problem to the performance of well-established metaheuristic and local optimisation algorithms.

The introduced algorithm converges quickly on test functions as well as on the model updating problem. In
some cases, the deterministic algorithm outperforms metaheuristic algorithms. We conclude that deterministic
optimisation algorithms should receive more attention in the field of engineering optimisation.

1. Introduction

For optimisation tasks considering non-linear problems, derivative-
free global algorithms are particularly suited. Objective functions of
such problems often involve transient numerical simulations or discrete
and non-linear evaluations. This is why it is usually not possible to find
a direct solution for the derivative of such objective functions.

We concentrate on derivative-free algorithms, since obtaining de-
rivatives in a numerically complex design variable space is challenging.
Indeed, derivatives can easily be obtained numerically by using single-
sided or symmetric sampling around a base point. The Hessian matrix
needed for sequential quadratic programming [1] is commonly ob-
tained by this method. However, numerical noise and the difficulty to
receive an appropriate value for the step size necessitate some numer-
ical experiments to yield a stable optimisation. Derivative-free methods
are thus desirable due to the numerical robustness they provide.

Most commonly used derivative-free algorithms are metaheuristic.
This means that they rely on pseudo-random numbers in order to

stochastically explore the design variable space of the underlying pro-
blem. Examples of this class of algorithms are genetic algorithms [2],
particle swarm optimisation [3] or harmony search [4]. More recent
contributions also include algorithms inspired by biological phenomena
and swarm intelligence like whale optimisation [5], bacterial foraging
optimisation [6], anarchic society optimisation [7] or social-spider
optimisation [8]. The random sampling employed in these algorithms
ensures an evenly distributed evaluation of the objective function. On
the contrary, a derivative-free deterministic optimisation algorithm
needs a way to generate a sufficient distribution of sampling points by
means of a non-stochastic expression.

Studies with a large variety of benchmark problems and optimisa-
tion algorithms have shown that deterministic algorithms can achieve a
performance similar to metaheuristic approaches, in some cases even
exceeding them [9]. On these benchmark problems, the deterministic
DIRECT algorithm [10] has proven to be versatile and efficient. Well-
known approaches like the pattern search algorithm were mathemati-
cally proven to converge [11]. A cooperative approach of a
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metaheuristic and a deterministic optimisation algorithm was in-
troduced in [12] and further developed in [13], which resulted in an
improvement of the convergence rate. We introduce global pattern
search as a novel approach in the class of deterministic, derivative-free,
global algorithms. Based upon the well-known pattern search algo-
rithm, this global extension features a simple parameterisation by only
one parameter as well as high convergence rates. We present results for
established test functions and consider aspects of the numerical per-
formance and parallelisation.

Engineering problems such as finite element model updating or
design optimisation often constitute an objective value space with
multiple local minima. Local optimisers thus converge locally and fail
to retrieve the globally optimal solution. This can be alleviated by
running a local optimiser several times from randomly chosen start
vectors. However, this impairs numerical performance, as global con-
vergence can only be warranted for a high number of restarts.

A typical engineering application for derivative-free global algo-
rithms is the updating of finite element (FE) models. The main idea of
model updating in structural engineering is to correct invalid assump-
tions that are inevitably made when creating a numerical model of a
parameterised structure [14,15]. Another application is the identifica-
tion of changes in the structural behaviour in order to locate and also
quantify damage in terms of stiffness and mass deviations [16]. The
model updating process is based on objective functions, which capture
deviations, e.g., in dynamic properties. Therefore, the FE model is
parameterised and the design variables are mapped onto structural
properties. The objective function compares the dynamic behaviour of
the model to a target state, whereby the optimisation algorithm finds a
model to match this target state. In this work, we update the mechan-
ical stiffness of a wind turbine rotor blade in order to localise a struc-
tural defect. Commonly, metaheuristic optimisation algorithms are
used for model updating [17–19]. Other approaches make use of local
optimisation algorithms [20] or a combination of a global and a local
optimiser [21,22]. In this contribution, for the first time, we introduce
the proposed global pattern search approach to an FE model updating
problem.

2. Global pattern search algorithm

One of the oldest and simplest derivative-free deterministic opti-
misation algorithms is the coordinate descent algorithm, for which a
recent review can be found in [23]. Another well-known approach is
the direct search algorithm [24]. Both of these algorithms employ a
round-robin variation of each variable around a base point in the design
variable space. The aforementioned algorithms are local optimisation
algorithms and thus not well-suited for problems with multiple local
minima. The basic idea of the round-robin variation using a defined
step width is expanded in this work. On the one hand, the search
strategy is globalised by adding a ‘hall of fame’, which contains the best
samples so far. On the other hand, a caching strategy significantly re-
duces the number of objective function evaluations by eliminating re-
dundant sampling locations.

We solve the scalar, bounded, unconstrained, non-linear and deri-
vative-free optimisation problem

x xfminimise ( ) for ,n (1)

where f is the scalar objective function and the vector x comprises n
design variables. The space of the design variables is bounded to the
volume of a hypercube

x x x ,lb ub (2)

where xlb and xub are the lower and upper bounding vectors. In this
work, we do not consider any constraints to the optimisation problem.

The pattern search algorithm [25], which is another well-estab-
lished local derivative-free optimisation algorithm, employs iterative

subdivisions of the search interval. If the step width is exactly halved
each time, the resulting search pattern is located on a grid with a re-
solution of 2N , where N denotes the number of subdivisions made by the
algorithm. Thus, the proposed algorithm expresses the continuous de-
sign variable space by integer coordinates, given the parameter N. The
repetitive use of a subdivision scheme results in self-similar patterns in
the design variable space.

The integer coordinates are mapped onto the continuous design
variable space by a linear transformation

= +x x s x x( ) 2 ,i i i i i
N

lb, ub, lb, (3)

where s denotes the design variable vector represented on the integer
grid and i denotes the design variable index. Due to this integer-based
approach, algorithms based on grids can handle integer design vari-
ables without modifications. In engineering tasks, the precision re-
quirements on the location of the optimum are often quite low. It is
rather more important to actually find the global optimum and not to
converge to an undesirable local optimum. For example, if the range of
a design variable is 1m and it is discretised using =N 10, the resolution
is already less than 1mm. Usually, N 10 is thus sufficient to yield an
effective solution in practical applications. Furthermore, in design op-
timisation of structures, the choice of measurements is often stipulated
by design standards. A prominent example are tube diameter and wall
thickness, where only discrete dimensions are available. Integer design
variables such as these are readily handled by the proposed algorithm,
because it is grid-based.

To achieve a global optimisation, the proposed algorithm tracks a
number of T globally best coordinates. This can be interpreted much
like the population size in a metaheuristic algorithm: Small populations
tend to local convergence with few objective function evaluations,
whereas large populations tend to explore the design variable space
more globally, but also lead to more objective function evaluations. In
each iteration, the list of globally best coordinates - the so-called ‘hall of
fame’ H - is updated and sampling is continued using the current set of
best coordinates. The first sampling coordinate in this scheme is always
located at the centre of the design variable space. Subsequent sampling
points are used to fill up the ‘hall of fame’, until it reaches the size T.
Thereafter, only the T globally best coordinates are kept in the ‘hall of
fame’.

This extension of the pattern search algorithm leads to a general-
isation: For =T 1, a local search algorithm very similar to pattern
search [25] is recovered, for T , the global grid search approach is
recovered, which simply samples a uniform grid in the design variable
space. The algorithm is thus dubbed ‘global pattern search’.

When the objective function is evaluated for a coordinate x , the
result = xy f ( ) is stored in a cache which prevents redundant evalua-
tions of the objective function. The use of integer coordinates for the
‘hall of fame’ avoids floating-point precision issues and makes caching
based on coordinates easy. If the algorithm advances twice into one
direction, it will sample grid points visited previously. The already
visited sample points will then be removed by the caching mechanism.
A hash-based dictionary data structure is used for caching to achieve
optimal performance.

Using the step width vector w, a positive and a negative variation
along each design space dimension is calculated for the coordinates in
the ‘hall of fame’. These resulting vectors are stored in a matrix con-
taining T samples for the negative and positive variations, respectively.

= + =+s b w s b w, ,j i i ij i nT j i i ij i, , (4)

where b is a base vector, w denotes the step width vector and the in-
dices i and j denote the design variable and sample number, respec-
tively. The Kronecker function ij is used to perform the one-at-a-time
variation. In total, these expressions generate T2 sampling locations for
each iteration of the algorithm, which leads to a cross pattern in the
design variable space.
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The solution is refined one more time, if a new optimum is found.
Using the updated ‘hall of fame’, the cross pattern variation is per-
formed again. Due to the caching scheme, redundant sampling of pre-
viously visited points is suppressed and does not affect the algorithm’s
performance. If the solution cannot be improved further, the step width
wi is halved and the algorithm progresses. The one-at-a-time variation is
sufficient and no performance improvements were observed, when
combinations of coordinates were taken into account.

The proposed global pattern search scheme is shown in Algorithm 1.
The caching as well as the ‘hall of fame’ work with integer coordinates,
while the evaluation of the objective function takes place in n.

Algorithm 1. Global pattern search

w 2i N 1 {initialise step width vector}
H 2i N1, 1 {initialise hall of fame with centre of design variable space}
loop

b Hk k {take T base coordinates from hall of fame}
for =k 1 → T do

generate n2 sampling coordinates sj for each bk

clamp sampling coordinates sj to design variable space [0: 2 ]N

deduplicate sj using cache
calculate xj from sj

xy f ( )j j {sampling}
end for
update hall of fame H using y
if new global optimum found, then

continue loop
end if
if every wi is 1, then

break loop
end if
w w \2max max {reduce largest step width}

end loop

During run-time, the algorithm needs to store the coordinates of
every sampled point to enable the caching. Objective values and co-
ordinates for samples that are in the ‘hall of fame’ need to be stored as
well. Objective values for coordinates not listed in the ‘hall of fame’ do
not need to be stored. The update is facilitated by replacing the highest
objective value entry by a sampling point with a lower objective value.

For arbitrarily sized design variable spaces, the step width still has
to be a power of two, so that the caching strategy can efficiently reduce
the number of samples. Sampling on the upper boundary of the design
variable space needs to be treated specially in order that the generated
sampling points can snap back into the regular grid. The lower
boundary is always located at the origin of the coordinate system, thus
being always situated on the regular grid. This feature can be achieved
by integer arithmetic, where \ denotes truncating division. The co-
ordinates Hk taken from the ‘hall of fame’ are transformed before being
used as base coordinates bk in the variation

=b w H w( \ ).k i i k i i, , (5)

2.1. Parallelism and depth-first search

In most engineering optimisation problems, the evaluation of the
objective function is computationally very expensive, in some cases
taking several hours. In order to speed up the optimisation procedure,
multiple samples are usually evaluated in parallel. In the proposed al-
gorithm, the sampling can readily be carried out in parallel, since the
samples xj are generated directly in vector format. Algorithm 1 can be
interpreted as a breadth-first search. With the proposed global pattern
search approach, it is possible to boost the convergence rate by trading
off the aforementioned parallelism properties, which will speed up the
search for the global optimum.

Algorithm 2. Depth-first search

initialise sample cache
for =T 1 to Tmax do

run Algorithm 1
end for

In the scheme shown in Algorithm 2, the parameter T denoting the
number of tracked globally best coordinates is incremented starting
from one and the algorithm is restarted repetitively. In this mode, the
sample cache also needs to retain objective function values throughout
the process. In the first iteration with =T 1, a local search algorithm is
recovered. With n being the number of design variables, there are at
most n2 samples generated at once, so that the performance gain by
parallel objective function evaluations is low. As T is increased, the
search pattern emphasises global exploration, until the last iteration
using Tmax recovers the same result as Algorithm 1.

Fig. 2 shows that initially, the convergence of the depth-first search
is rapid compared to the breadth-first approach depicted in Fig. 1. With
the parameter T starting at 1, a local optimisation is performed at first.
One of the four minima of the Himmelblau function [24] is discovered
with good numerical precision within less than 100 function evalua-
tions. With increasing parameter T, small improvements of the objec-
tive function value are achieved and the other global minima are dis-
covered. Thereby, the proposed depth-first scheme is only effective, if
the resolution parameter N is chosen reasonably small. If this is the
case, Algorithm 1 terminates sufficiently early for the parameter T to
increment. Thus, global convergence can be achieved with a low
number of objective function evaluations. With Tmax and T in-
crementing gradually, the design space is explored with sampling points

Fig. 1. Objective value history for Himmelblau function using Algorithm 1,
= =N T20, 10.

Fig. 2. Objective value history for Himmelblau function using Algorithm 2,
=N 20, =T 10max .
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even further away from the optima, until finally grid search is re-
covered.

In iterations with a low parameter T, the depth-first approach will
converge on other local minima than in subsequent iterations, when T
assumes higher values. As more samples are generated around these
local minima, this generally results in more objective function evalua-
tions to reach the same optimum, when compared to Algorithm 1. This
can be interpreted as a trade-off between quick initial convergence and
total number of function evaluations.

2.2. Benchmark tests

Figs. 3–8 show sampling patterns obtained by applying Algorithm 1
to various two-dimensional benchmark problems. The corresponding
objective value space is visualised using contour lines. Generally, a self-
similar search pattern appears in the design variable space near the
optima as the optimisation converges. The parameter T was adjusted to
the respective problem for robust convergence while maintaining a low
number of objective function evaluations to illustrate best case per-
formance. We use =N 20 for all of these problems to demonstrate the
convergence rate of the algorithm. For practical optimisation problems,
a lower resolution would suffice. For each test function, we record the
number of objective function evaluations needed until the algorithm
terminates.

The non-uniform scaling of the step width improves the perfor-
mance of the algorithm on smooth problems. As can be seen in the
sampling of the benchmark functions, refinement on only one axis is
often sufficient to improve the corresponding objective function value.
Due to the unbiased tracking of local optima, the proposed determi-
nistic approach does not converge on a single global optimum. Instead,
if there are several optima with the same objective value, the sampling
density in these regions is roughly the same. This becomes evident
looking at the performance of the algorithm on the test functions
Camel6 [26] and Himmelblau [24]. Beyond that, the distribution of

Fig. 3. Camel6 function [26], = =N T20, 5, 415 evaluations.

Fig. 4. Himmelblau function [24], = =N T20, 10, 765 evaluations.

Fig. 5. Cross-in-tray function [27], = =N T20, 8, 681 evaluations.

Fig. 6. Rosenbrock function [28], = =N T20, 15, 1171 evaluations.

Fig. 7. Schwefel function 128 [29], = =N T20, 20, 1059 evaluations.

Fig. 8. Eggholder function [27], = =N T20, 20, 955 evaluations.
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sampling points in the objective value space of the Cross-in-tray [27]
test function displays the symmetry properties of the unbiased tracking:
The sampling pattern reflects the symmetry of this test function about
both axes. We intentionally chose the parameter T to be a multiple of
four in this case. As a consequence, the numbers of ‘hall of fame’ entries
in each global optimum are the same, leading to the evident symmetric
sampling pattern.

The described unbiased tracking property is conducive to cluster
analysis, e.g., by using an agglomerate hierarchical approach. This way,
up to T distant near-optimal points in the design variable space can be
identified with only one optimisation run. In an engineering optimisa-
tion task, the near-optimal design solutions obtained this way may even
contain a better solution than the actual global optimum. Such cases
arise when there are other objectives or design aspects that are not
considered by the objective function. Classical metaheuristic algorithms
converge on only one minimum, restarts are thus required to identify all
global minima. This issue is addressed by multi-modal variants of meta-
heuristic algorithms [30]. In this regard, the convergence characteristic
of the proposed algorithm provides a valuable tool.

3. Finite element model updating

For the application of the proposed optimisation algorithm on a
typical engineering problem, we choose the model updating of an off-
shore wind turbine rotor blade. This particular application addresses
the identification of a structural defect due to changes in the structural
behaviour.

We create a parameterised FE model of a typical offshore wind
turbine blade. The model of the healthy structure represents the initial
model of the updating process and is called the reference model
throughout this work. Since we have no access to measurement data of
damaged blades, we create an additional model with a fictitious da-
mage, subsequently called the target state. The fictitious damage is si-
mulated by reducing the stiffness of certain blade sections. To locate
this artificially induced change in the structural behaviour, the stiffness
parameters of the reference model are adapted to match the target state
by comparing modal properties. In this case, the objective function
comprises mode shapes. Sections with reduced stiffness then indicate
the area where damage has occurred.

Since the presented work includes the comparison of the applic-
ability as well as the efficiency of the proposed global pattern search
algorithm with other well-established optimisers, the computational
costs of multiply evaluating the numerical model become an issue.
Therefore, we choose a very simple numerical model of the blade
consisting of beam elements, because it is computationally inexpensive.
A detailed description of the FE model as well as the specification of the
design variables and the objective function are given in the following
subsections.

3.1. Model description

The NREL offshore 5-MW baseline wind turbine [31] is a widely
used model of a typical multi-megawatt wind energy converter. Its
detailed publicly accessible specifications are used to create an FE
model of one of its blades. The simulations are conducted using the FE
analysis software ABAQUS. In order to reduce the computational costs
for calculating the objective function value, the 63-metre long blade is
modelled as a beam model consisting of 49 elements. The sectional
blade properties listed in [31] are assigned to the elements using a
general section definition.

To create a realistic experimental test setup of a wind turbine blade,
standard blade tests are considered. Blade tests consist of periodic load
applications in order to trigger failure by fatigue as well as applications
of non-periodic loads such as impact, static or dynamic loads [32]. In
these tests, the blades are fixed at the hub end and the loads are applied
by clamps which are attached to a specific section. In the numerical

model of the NREL blade, all degrees of freedom are fixed at the hub
end and two clamps are simulated at 21m and 42m from the hub. The
weight of the clamps is set to 1500 and 500 kilogrammes, respectively.
This beam model represents the reference model of the healthy wind
turbine blade. We additionally create the target state, assuming that
fatigue damage has occurred. To mimic the fatigue state, the edgewise
bending stiffness EIedge of certain elements along a predefined length of
the blade is reduced. For the purpose of locating this imitated damage,
the mode shapes of the target state are calculated, representing the
feature normally extracted from the measured response. Since a rea-
listic measurement can only be carried out with a limited number of
sensors, the mode shapes are calculated at a restricted number of pre-
defined locations, representing the sensor positions.

3.2. Design variables

The choice of design variables is significant, because they have a
great impact on the quality of the optimisation procedure and its result.
Thereby, the determination of the design variables strongly depends on
the purpose of model updating [14].

A common approach to locate damage is to determine certain re-
gions, where the probability of an emerging defect is known to be high,
based on experience, prior knowledge or error localisation methods
[21,33]. Thereby, the design variables typically represent scaling fac-
tors for the stiffness of certain FEs in these regions. If there exist many
regions where stiffness is assumed to be subject to change, the amount
of design variables and thus, the dimension of the optimisation problem
increases. This usually results in an objective value space with many
local minima which can make numerical optimisation unfeasible [34].
Additionally, oscillatory stiffness values might produce nearly the same
response as the targeted one, despite being physically unrealistic.
Therefore, the amount of design variables should be kept low.

Several approaches address this problem, most commonly used is
the assignment of one design variable to a group of FEs supposedly
having similar mechanical properties [17,33]. These groups are called
substructures or super-elements. In this application, we are pursuing an
alternative approach. Instead of directly using design variables that
represent stiffness scaling factors for certain, predefined FEs or sub-
structures, we introduce a damage distribution function that can be
described by a few parameters only. A similar approach, which is mo-
tivated by smoothly distributed structural properties, is analysed and
successfully used in [35], whereby a quadratic function is used to de-
scribe a damage function. Fig. 9 illustrates a damage distribution
function designed for beam structures that is described by the design
variable vector

=
µ
Dx .

(6)

In this vector, D represents the intensity of the damage, the mean value
µ represents the geometrical position of the damage distribution’s
centre point along the blade and the standard deviation represents the
width of the distribution. The points along the leading edge of the blade

Fig. 9. Parameterisation of damage distribution and sensor positions along the
blade length.
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depict the sensor positions, which are placed every 4m along the blade
length. By employing this damage distribution function, the proposed
parameterisation is independent of the FE discretisation as well as of
prior assumptions about the defect location. This is an important ad-
vantage.

The damage intensity can be described as

=D s ds1 ( ) ,
L (7)

where L is the total blade length, s is the control variable along the
blade length and s( ) is the stiffness scaling factor at position s. Since
the beam model of the wind turbine blade is designed with a discrete
amount of elements, there also exists a discrete number of stiffness
scaling factors i that are calculated at the geometrical centre si of each
element. Thus, the integral can be expressed as the sum over the total
number of Nel blade elements

=
=

D 1 .
i

N

i
1

el

(8)

In this work, we assume a damage that is normally distributed along the
longitudinal axis of the blade. This can be expressed using a cumulative
distribution function F s µ( , , ), resulting in the following equation for
calculating the stiffness scaling factors for each element

=
=

D F s µ1 · ( , , ) 1 ,i i
j

i

j
1

1

(9)

where, again, si describes the geometrical centre of each element along
the blade length, starting from the hub. This means that the initial
stiffness EI 0 of each element is reduced by the corresponding scaling
factor i, which is calculated at the geometrical centres of the elements
as described by

=EI EI· .i i i
0 (10)

The target state is also simulated by applying the described cumulative
damage distribution function using a fictitious damage position, a fic-
titious intensity as well as a fictitious width.

3.3. Objective function

Besides the choice of the design variables, the formulation of the
objective function is another important factor in the process of model
updating. The objective function numerically compares the experi-
mental results with the results of the FE analysis. For this reason, it has
to be sensitive even to small changes in the structural behaviour
[33,18].

The features compared by the objective function can be defined in
modal, frequency or time domain. In this paper, the model updating
method is based on mode shapes, since these dynamic features can be
obtained experimentally in high quality [36]. Only the first four mode
shapes with a significant amplitude in edge direction are considered. To
evaluate the correlation between the relevant mode shapes, the modal
assurance criterion [37] is calculated. This criterion determines the
degree of similarity between the two mode shape vectors t and s

=MAC ( )
( ( ))

( )( ( ) ( ))
,

T 2

T Ti
t i s i

t i t i s i s i

, ,

, , , , (11)

where i denotes the mode number and the indices t and s denote target
and simulated quantities, respectively. The modal assurance criterion
returns a value of one, if the compared mode shapes are linearly de-
pendent and a value of zero, if they are linearly independent.

A common method to compute the error between numerical and
experimental data is the least squares approach [38]. Considering Nf
eigenfrequencies, we formulate the objective function

=
=

( ) (1 MAC ( )) .
i

N

i
1

2
f

(12)

Since we use the same method for calculating the fictitious stiffness
reduction as for calculating the stiffness scaling factors in our model
updating scheme, the objective function value becomes zero when the
correct design variables are evaluated.

4. Results

For the application of the proposed algorithm, a two-dimensional
model updating problem is considered. We choose the mean value and
the damage intensity of the previously described damage distribution as
the design variables

= ( )µ
Dx . (13)

The standard deviation is set to the constant value = 2 m, which is
similar in size to experimentally observed blade damage patterns [39].
Table 1 lists the variables describing the cumulative damage distribu-
tion function used for creating the fictitious defect. Additionally, the
permissible ranges, determining the upper and lower bounds, are given.

Fig. 10 illustrates the cumulative damage distribution function used
for the simulation of the target state. Additionally, Fig. 10 shows the
corresponding stiffness scaling factors calculated for each element by
plugging the values listed in Table 1 in Eq. 9. The objective value space
of this two-dimensional optimisation problem is given in Fig. 11.
Thereby, a positive damage factor is equatable to the loss of stiffness,
whereas a negative damage factor means stiffening. The global
minimum emerges as a prominent peak in the design variable space,
whereby its location is defined by the design variables given in Table 1.
At this location, the objective function value is equal to zero. However,
regarding Fig. 11, it is apparent that the objective function additionally
possesses multiple local minima as well as a waviness which are caused
by the mode shapes it is based upon.

The optimisation result of the proposed global pattern search al-
gorithm is obtained using Algorithm 1. An illustration of its perfor-
mance is shown in Fig. 12, whereby the objective value space is vi-
sualised using contour lines. The distribution of the sampling points
demonstrates a good balance between global sampling and strong
convergence at the optimum. Also, the sampling pattern clearly reflects
the self-similar search pattern of the proposed algorithm. In this case,
we solved the model updating problem using the parameter =T 10. For

Table 1
Design variables chosen for the simulation of the target state and their per-
missible range.

Design variables Fictitious damage Bounds

xlb xub

µ in m 15 0 63
D 0.02 −0.05 0.05
in m 2 – –

Fig. 10. Cumulative damage distribution function of the fictitious damage and
corresponding stiffness scaling factors.
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engineering problems with even more local minima in the objective
value space, a higher value should be chosen to improve global cov-
erage.

4.1. Comparison of different optimisation algorithms

To validate the efficiency of the proposed global pattern search al-
gorithm, its performance is compared to the performance of two me-
taheuristic and one local optimisation algorithm. Therefore, the fol-
lowing well-known and established algorithms are chosen: Particle
swarm optimisation [3,40], genetic algorithm [2] as well as sequential
quadratic programming [1] with randomised start vectors.

Hybrid optimisation schemes, consisting of a global and a sub-
sequent local optimisation algorithm, can provide a good performance
on model updating problems [22]. The complexity arising when para-
meterising a hybrid approach have been pointed out by Goldberg et al.
[41]. Choices in parameterisation can introduce a bias, which increases
the performance on certain optimisation problems, while deteriorating
performance on others [42]. To illustrate distinctive numerical features
of different algorithms, we thus focus on basic optimisation schemes of
global and local optimisers in our comparison.

The algorithms are applied in their original state as described in the
corresponding literature and the parameters are set to values re-
commended by their respective original authors. For the sake of com-
parability, the maximum number of objective function evaluations is set
to 500 for all algorithms. We obtain statistical parameters for the
minimum objective value by running the optimisation 100 times with
each optimiser. As this particular model updating problem is based on
an FE code with limited numerical precision, the objective function is
discrete at small scales. This poses numerical restrictions to the

minimum finite difference step size and can lead to premature trig-
gering of the termination condition in derivative-based optimisers.
Thus, the number of objective function evaluations of the sequential
quadratic programming algorithm matches not always the allowed
maximum of 500 evaluations. The design variable space is normalised
by

=x x x
x x

,scaled
min

max min (14)

which is necessary for the application of the described algorithms to
avoid convergence issues due to anisotropy. Because metaheuristic al-
gorithms explore the design variable space stochastically, every run
yields a different result. The same applies to the application of local
optimisation algorithms when started from randomly chosen start
vectors. On the contrary, the proposed algorithm always converges to
the same result because of its deterministic nature. This means that the
standard deviation is always zero regardless of the number of runs,
provided that the parameters are constant. In Table 2, the mean ob-
jective function value, its standard deviation and the minimal objective
function value reached in the 100 runs are compared. Additionally, the
optima of the two metaheuristic and the local optimisation algorithm
determined in 100 runs are visualised in Figs. 13–15.

A comparison of the three contour plots clearly reflects that the
metaheuristic algorithms reach the area around the global optimum
almost every time. In contrast, the local optimiser converges onto
several local minima in addition to the global minimum. The results
listed in Table 2 support this observation: The mean objective function
value and the standard deviation of the sequential quadratic pro-
gramming algorithm are orders of magnitude worse than the values
obtained using the global optimisers.

With respect to the minimum objective function value reached in
100 runs, the genetic algorithm performs better than the particle swarm
optimisation algorithm. The minimum value obtained using sequential
quadratic programming is even lower than the ones obtained by the two
metaheuristic algorithms, although its overall performance is worse.
The objective function value reached by the proposed global pattern

Fig. 11. Objective value space of the two-dimensional optimisation problem.

Fig. 12. Objective value space of the two-dimensional model updating problem
and samples of the global pattern search algorithm, =T 10.

Table 2
Comparison of the results of 100 applications of each optimisation algorithm.

Optimisation algorithm Objective function value

Mean Standard
deviation

Minimum

Particle swarm optimisation 2.07× 10−17 1.17× 10−16 1.18× 10−25

Genetic algorithm 3.50× 10−18 2.88× 10−17 4.13× 10−26

Global pattern search
algorithm

1.11× 10−31 0 1.11× 10−31

Sequential quadratic
programming

1.59× 10−15 1.75× 10−15 7.27× 10−27

Fig. 13. Particle swarm optimisation.
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search algorithm is lower than all minimum values reached by the other
algorithms. For the considered model updating problem, this implies
that the proposed algorithm reaches the location closest to the global
optimum. As the result is also constant and independent of the number
of runs, the proposed algorithm outperforms the others.

4.2. Discussion of the results

Due to the strong local convergence of sequential quadratic pro-
gramming, the minimum objective function value obtained using this
algorithm is lower than the ones obtained by the metaheuristic opti-
misers. But since the trajectory of the local optimiser is dependent on
the positioning of the randomly chosen start vector, it often converges
to local minima which do not match the global optimum. This explains
the low performance of the sequential programming algorithm re-
garding the mean value and the standard deviation of the residuum. To
alleviate this problem, [21] proposed a two-step approach, in which a
local optimiser is started from the point of convergence of a meta-
heuristic algorithm.

Due to the previously described numerical restrictions to the finite
difference step size and the resulting premature termination of the local
optimiser, the implementation of the sequential quadratic program-
ming algorithm referred to as “fmincon’ [43] was not able to obtain an
objective function value as low as the one obtained by the proposed
global pattern search approach. Thus, we conclude that the proposed
optimisation algorithm performs better on the two-dimensional model
updating problem than the well-established optimisation algorithms
chosen for comparison. It is especially suited for computationally ex-
pensive optimisation problems, since no restarts are required to obtain
global convergence. This reduces the computational costs extremely
while also providing quick and robust convergence.

A potential drawback of the proposed method is the determination

of the parameter T, which controls the number of tracked sampling
points. The convergence as well as the numerical performance of the
global pattern search algorithm largely depend on this numerical value.
If it is chosen too low, the algorithm will converge locally and thus fail
to yield a globally optimal result.If it is chosen too high, the resulting
performance in terms of convergence rate will be low. The value for T
cannot be determined analytically. This means that numerical studies
are needed to find a value, which is suitable for the optimisation pro-
blem at hand.

5. Summary and outlook

In this work, we demonstrated that the proposed global pattern
search approach can efficiently solve test problems as well as the model
updating problem. A comparison of the performance of the proposed
method to established metaheuristic and local approaches was con-
ducted for a number of 100 objective function evaluations. We found
that the proposed method converges quicker and also finds the global
optimum more robustly. Since metaheuristic optimisers need a high
amount of objective function evaluations due to their probabilistic
search pattern and derivative-based local optimisers require restarts
with randomised start vectors, both approaches are computationally
expensive. On the contrary, the proposed method extremely reduces the
computational costs due to its quick and unique convergence regardless
of the number of runs. This is why the introduced global pattern search
approach shows great potential for engineering applications like FE
model updating. Furthermore, the proposed algorithm can identify
multiple global optima in one run as shown with the test functions
Himmelblau, Camel6 and Cross-in-tray.

Throughout this work, we considered single-objective optimisation
problems only. However, the caching approach proposed in this paper
also features interesting properties for multi-objective optimisation
problems. Furthermore, an extension of the introduced damage dis-
tribution function to a three-dimensional structure provides a more
accurate damage localisation. Due to the promising performance of the
proposed algorithm on the model updating problem, we conclude that
deterministic optimisation methods should receive more attention in
the field of engineering optimisation.
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