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a b s t r a c t 

The ubiquity of handheld devices provides straightforward access to the Internet and Social networking. 

The quick and easy updates from social networks help users in many situations like natural disasters, 

man-made disasters, etc. In such situations, individuals share information with the people in their 

network without checking the veracity of posts, which leads to the issue of rumor diffusion in a social 

network. Detection of rumor and source identification plays a vital role to control the diffusion of 

misinformation in a social network and also a good research domain in social network analysis. Source 

detection of such misinformation is often interesting and challenging task due to the fast diffusion of in- 

formation and dynamic evolution of the social network. Accurate and quick detection of the rumor source 

is a very important and useful task in many application domains like source of disease in an epidemic 

model, start of virus spread, source of information or rumor in a social network. Most of the existing re- 

views which focused on source detection relate to various application domains and network perspective. 

But as per the need of current social networking usage and its influence on the society, it is a crucial and 

important topic to review the source detection approaches in the social network. The objective of this 

paper is to study and analyze the source detection approaches of rumor or misinformation in a social net- 

work. As an outcome of the literature study, we present the pictorial taxonomy of factors to be considered 

for the source detection approach and the classification of current source detection approaches in the 

social network. The focus has been given to various state-of-the-art source detection approaches of rumor 

or misinformation and comparison between approaches in social networks. This paper also focused on 

research challenges in current source detection approaches, public datasets and future research directions. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

Nowadays people are living in the society where everyone is

connected to various networks like Social network, Internet, Bio-

logical network, Technological network, etc. [1] from which they

acquire, process and share the information in a network which

rabidly leads to an increasing amount of information propaga-

tion and diffusion [2] . Emergence and growth trend of social net-

working sites like Twitter, Facebook, and Reddit are proven as

very helpful in disaster situations such as natural disasters (Flood,

Storm, Earthquake), man-made disaster (Shootouts, Terrorist at-

tacks) and emergencies [3 , 4] . The news and information diffusion

across social sites got more research attention. This is because so-

cial media is a common means for disseminating trending discus-

sions and breaking-news which may contain unproven information

regarding events or incidents happened in the world. As per the
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tatistical survey of social network, by the year 2021 there will

e 3.02 billion monthly active users worldwide, approximately one

hird of the Earth’s total population [5] . To deal with the analysis

f such a huge data is very vital and demanding task. 

The rise in interconnections of the network discloses a large

ange of hazards like viruses, misinformation, rumors with a fre-

uently severe end result [6–8] . The latest example of rumor re-

ated to “600 Murders Take Place in Chicago during the second

eekend of August 2018” presents a fear and an anxiety about

uch a large number of violence in the city [9] . The statistical state-

ent was given in the Television show to just target the politicians

nd their promises during the election campaign. The actual truth

fter verification said that during the second week of August 2018

nly a single murder was found and 600 was totally a misinforma-

ion because the city had not seen 600 murders in the entire 2018

p to the date. These types of rumor can spread widely in a social

etwork and introduce many questions about the security of the

eople living in the city. The extensive spread of misinformation

an lead to unacceptable, destructive [10] and negative impacts on

ndividuals and society. 

https://doi.org/10.1016/j.osnem.2018.12.001
http://www.ScienceDirect.com
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Fig. 1. Roadmap of the paper. 
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The information diffusion in social sites opened many re-

earch trends like detection of misinformation or rumor, checking

ecognition of social bots, monitoring the spread of fake news,

rediction of future diffusion and source detection of rumors, etc.

n unverified information which diffused very rapidly in the social

etwork is referred to as rumor. Rumors may disseminate misinfor-

ation (wrong information) or disinformation (intentionally wrong

nformation) [11] before, throughout and after the disasters or inci-

ents [12] . After investigation of true and fake news diffusion in a

ocial network [13] , it has been observed that the diffusion of false

ews is faster and deeper than true news and news related to pol-

tics, disaster and critical situations are widely spread compared to

onventional news. Many researchers have focused on information

pread during or before an election for identifying the diffusion

f astroturf [14] or detection of social bots [15] , identification of

umors [16] , misinformation [17] , etc. Similarly, analysis of posts

fter disaster situations like Earthquake [18] , Flood [19] , Blasts

20] , Shootouts [21] is one of the most popular research topics in

ocial networks. In many cases the original text of a message is

odified by different users by mistake or with intention, which

eads to the diffusion of rumor in the network [22] . To ensure

he wide spread of information during campaign [23] , the social

ots are induced into the social network for manoeuvring the

ata, such as information in stock market [24] , where social bot

s a program which behaves like a user and automatically creates

ontents and interacts with others in a social network. In rumor

etection, many features like diffusion patterns and network

tructures, contents and sentiments features, temporal features are

sed for early identification of raising advertisement campaigns

25] . Also, the features of cognitive psychology (consistency, com-

on acceptability and coherency of contents and credibility of

ource) are used for misinformation detection in a social network

26] . The experience of the contestants of DARPA-Twitter bot

hallenge [27] concludes that the various factors like behavioural

nd inconsistency modelling, network and text analysis along with

emi-supervised machine learning techniques are useful for en-

ancing the accuracy of bot detection. The dissemination of rumor

n network generates many risks like fear of epidemic virus among

eople, erroneous decisions in disaster situations and harming

he reputation of individuals or an organizations. The prevention

nd control of large diffusion of rumors in social networks is very

mportant. The rumor diffusion in a network can be controlled by

arly detection of rumors [28] , checking the truthfulness of rumors

29] or misinformation, and identification of rumor source [30] . 

Non-credible information spreads rapidly in online social net-

orks. Detecting fast and accurate source of rumors in a social

etwork is a very challenging task due to complex diffusion

rocess, real-time data, and dynamic changes in the network. In

ecent times, many web-based systems have been developed to

etect and evaluate the rumors which include (i)TwitterTrails.com

31] , a system which permits users to determine the features of

ropagated rumors and its falsification, (ii) TweedCred [32] , a

nstantaneous system to judge trustworthiness of posts on Twit-

er, (iii) Hoaxy [33] , a platform for tracking the misinformation

n a social network, (iv) Emergent.info [34] , a real-time rumor

ollower that focused on rising tales on the internet and observe

heir faithfulness, and (v) Snopes.com [35] , factcheck.org [36] , an

dmired websites archiving memes and urban myths. The reality

hecking abilities of these rumor detection systems validates the

uthentication of rumors on web and vary from entirely automatic

o semi-automatic. But, these systems do not track or observe the

iffusion progress and do not detect all possible source(s). 

Source detection is very significant in various application do-

ains such as Medical (to find the source of epidemic), Secu-

ity (to detect the source of virus), Large interconnected network

to detect the flaws in power grid network, gas or water pipeline
etwork), Social network (to identify the culprits who spread

rong information), Financial network (for checking the reasons of

ascade failures), etc. Due to its wide scope in different applica-

ions, past two decades observed large improvements in source de-

ection techniques. Major research has been done for source iden-

ification in different application areas like finding the first patient

o control an epidemic of disease [37] , source of virus [38] , gas

eakage source in wireless sensor network [39] , source in email

etwork [40] , propagation sources in complex networks [41] and

ource of rumor or misinformation in a social network [42 , 43]

hich are directly or indirectly related to rumor source detection.

rom the existing work, it can be observed that very less review

ork has been done on source detection approaches for rumor or

isinformation in the social network. Therefore, the aim of this

urvey paper is to understand and analyze the growth made by

ource detection approaches for rumors in the social networks. 

This paper provides a systematic study as follows: 

• The pictorial taxonomy of factors to be considered for source

detection has been proposed. 

• Comprehensive survey of state-of-the-art source detection ap-

proaches of misinformation and rumor in a social network is

presented. 

• Publicly available datasets and experimental setup used for

source detection approaches in a social network, the needs and

challenges of source detection are explored. 

• The current issues and potential future directions for source de-

tection techniques of rumor in social networks are thoroughly

presented. 

Fig. 1 outlines the roadmap of this paper. Section 2 presents the

axonomy of factors required for source detection in the network.

ection 3 deals with the techniques related to source detection of

umor in the social network and their comparison. Datasets and

xperimental setups are shortly overviewed in Section 4 . Research

ssues and future directions in source detection of rumor are stated

n Section 5 . Section 6 concludes the paper. 
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Fig. 2. Taxonomy of factors to be considered for source detection in network. 
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2. Taxonomy of source detection in network 

Source detection is to find the person or location from where

the entities like a viral disease, a virus in the network or a misin-

formation in the social network started initially. Different domains

are represented by a network like the Network of computers, Net-

work of peoples, Social Network, etc. where the source identifica-

tion has been performed to find the root or origin. The taxonomy

of source detection in the network is depicted in Fig. 2 . The tax-

onomy is represented based on various aspects to be considered

for identification of source in the network, which includes Net-

work Structure, Diffusion Models, Centrality Measures and Evalu-

ation Metrics. 

2.1. Network structure 

The Network structure is classified into network topology and

observation of the network. Network topology is referred as the

structure of a network in terms of tree or generic graph. The

source detection is more complicated in the generic graph topol-

ogy than the tree, as in the tree topology the source can be identi-

fied by traversing the parent nodes of nodes of the tree up to the

root. According to the survey [41] networks are observed mainly

in three categories as complete, snapshot and monitor based ap-

proach which gives knowledge about states of nodes during rumor

propagation. 

2.1.1. Network topology 

In each domain like medical, security, etc. networks are nor-

mally represented by graphs which includes Network of comput-

ers, Social Network, Interconnected network of water, gas pipeline

or power grid and network of people. These graphs are used to

reconstruct two topologies as Tree and Generic network. In the

beginning, the problem of source detection has been solved by

considering the network as a random d-regular tree where ev-

ery node has the similar degree as d in [44] and random tree in

[45 , 46] for source detection. Generic network is the random graph

in which Breadth First Search technique is used to construct the

generic network into the tree referred as BFS tree. In generic net-

work, the rumor source has been identified with the assumption

that the source node S has been selected randomly and consider as

the starting node for the BFS tree which spreads the rumor across

BFS tree [30] . Tree topology does not consider cycles; therefore the

generic network is mostly used in the research. The experiment

of generic network is performed on a common synthetic dataset
s small world network [47] and a scale free network [48] . Fig. 3

hows an illustration of network topologies. Tree topology is ma-

orly used for synthetic dataset. However, in the real world, the

raph is most suitable structure to represent the network. 

.1.2. Network observation 

The results of source detection methods vary according to the

election of network observations. Network observation provides

nowledge about the different states of the nodes in the network,

uch as Infected node, i.e., the node which receives and propagates

naccurate information or Susceptible node, i.e., the one whose

eighboring nodes have received the information and therefore has

igher chance to be infected or Recovered, i.e., the node that either

gnores the information or prevents its spread. 

A. Complete observation. Complete observation of network provides

broad knowledge of the momentary states of a node in the net-

work [41] . It provides the sufficient knowledge of network re-

quired for source detection at a particular time. However, ow-

ing to the large scale of the network, the complete observation

is hardly possible. 

B. Snapshot observation. Snapshot based observation provides a

limited information about the network at a stated time, which

includes details about infected nodes observed at the time of

the snapshot, the infection probability of the nodes that have

been contaminated with the information [49] . The snapshot ob-

servation provides the details of only infected nodes, but cannot

discriminate between susceptible or recovered node. To over-

come the problem of partial knowledge through single snap-

shot, researchers take multiple snapshots [50,51] at varying

time slots to get sufficient knowledge of the network. 

C. Monitor observation. In a monitor observation, initially monitor

or sensor nodes are inserted into the network, which will work

as an observer for evolutionary propagation in network [52 , 53] .

These monitor nodes are controlled by an administrator where

the information about states of the node, information received

by monitor node and their infection time are gathered. Some

misinformation might get ignored if it did not pass through the

monitor nodes and also accuracy depends on number of moni-

tor nodes placed in the network. Accuracy can be improved by

adding more monitor nodes in the network, however, it may

decrease the performance of the system. 

Overall from the network observation studied, it is understand-

ble that the snapshot and monitor based observation gives lim-

ted data about the network. Multiple numbers of snapshot and
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Fig. 3. Illustration of network topologies. (a) random d-regular tree; (b) random tree; (c) small world network as generic network. 
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Fig. 4. Comparison of basic epidemic models. 
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onitor nodes can overcome the problem of less information up

o some extent. 

.2. Diffusion models 

Diffusion models are used to mine the data about where

nd when a part of information generated in the network and

ow rapidly the dissemination occurs [53] . Diffusion models

re utilized to explain and reproduce the spread of informa-

ion in the network. Epidemic models, the Independent cas-

ade models are major examples of diffusion models used in

ource detection techniques. Epidemic models are the way in-

ectious diseases are spread among the population. Epidemic

odels are mainly used in disease epidemic and are divided

nto four basic types as Susceptible-Infected (SI), Susceptible-

nfected-Susceptible (SIS), Susceptible-Infected-Recovered (SIR) and 

usceptible-Infected-Recovered-Susceptible (SIRS). The Indepen- 

ent cascade model is one of the information diffusion models,

here the dissemination of an information moves from one per-

on to another through their social relations and “infected” folks

an, in turn, pass on the information to others. 

.2.1. Basic epidemic models 

The epidemic models are basically used for finding the origin

f viral disease and utilized for finding the sources of rumors be-

ause epidemic disease in the population is similar to rumor dif-

usion in a social network. Initially nodes are susceptible (S) and

an be infected (I) with propagated rumors in the SI model. Sus-

eptible nodes are uninfected nodes having infected neighbors and

resenting therefore a higher probability of becoming infected due

o contagion from neighbors and a contaminated node remains in-

ected forever. In terms of rumor diffusion in social networks, in-

ected node is the one who has received the rumor and susceptible

ode is the node which has not received any rumor, but due to its

eighboring infected nodes, can become infected after receiving a

umor. SI model is not viable as it does not take into account that

ontaminated users can be cured after having been contaminated.

n the SIS model, the probable states are yet again susceptible (S)

nd infected (I), but in this model, when susceptible nodes become

ontaminated they can cure back to susceptible after some period.

n SIR model, the potential states are susceptible (S), infected (I),

nd recovered (R). The only variation between SIS and SIR model

s that in the SIS model an infected node can become susceptible

hereas in SIR model an infected node may recover by ignoring

he message or not passing to neighbors. Recovered nodes remain

n the recovered state further. In a social network, the recovered

ode is the one who is aware of a rumor, therefore, either it will

elete the post or will not forward that post to a neighboring node.

n SIRS model, a recovered node can again become a susceptible

ode with some probability. All these basic epidemic models are

ell explained in [54] . Fig. 4 shows a comparison of basic epidemic
odels for information flow in social network and change in status

f the node. 

Epidemic models are utilized to determine the infection and re-

overy of rumor propagation in the networks and therefore are

idely used in source detection. These models are also used for

ifferent motives such as SI for detection of infection source [55] ,

IS for identification of rumor source [56] and influential node

57] , SIR for information source [58] and dissemination of topic in

eb forums [59] and SIRS model for analyzing botnet interactions

n the network [60] . 

.2.2. Independent cascade model (IC) 

The information diffusion models are used to study the flow of

nformation in the network, where the independent Cascade (IC)

nd the Linear Threshold (LT) models are two commonly used dif-

usion models. In both the models, the possible states are active

r inactive. In IC model, the information passes in the network

hrough cascades, where the active nodes are the one who received

he rumor and become infected, other nodes are inactive [61] . 

In IC model, at one given instance the node has a only one

hance to activate one of its inactive neighboring nodes. The

llustration of IC model is shown in Fig. 5 where green nodes

re active nodes, and yellow nodes are newly activated nodes

y neighbors and white nodes are inactive nodes. As shown in

he figure, at step 0 or at one instance, node 1 and 2 are active

odes, which spread the rumor cascade to their respective inactive

eighbors as node 4 and 5 in step 1, thus becomes active at step

 and spread the cascade to inactive nodes 3 and 4. In the final

tep 3, node 1 to 6 are active node, meaning those nodes are

nfected by the rumor, node 7 is newly infected node and node 8

emains inactive. The IC model describes the flow of information

rom source to other nodes in terms of a directed graph, which is

elpful for finding highly influential users and identifying a source
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Fig. 5. Independent cascade model. 
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of misinformation by analyzing the diffusion network in reverse

direction [42] . IC model is also used for finding the maximum

influence [62] , predicting the development of cascades [63] and

understanding the structure of diffusion in social network [64] . 

In LT model, each node in the network selects a random thresh-

old value, then at each time step inactive node gets influenced by

all its active neighbors. The inactive node turns into active once

the total weight of all its incoming neighbors reaches a threshold

value. Similar to IC model, LT model is majorly utilized to maxi-

mize the influence of spread in network [65,66] . 

In diffusion models, the probabilities of infection and recovery

of nodes are considered to understand the evolution of rumor

propagation. The infection probability of a node is the rate at

which node who has received the rumor may forward it to (infect)

other nodes. The node who has been infected with the rumor and

also finds that the post is rumor and then discards it (recovers)

with a defined probability, referred to as recovered probability

[67] . These infections and recovery rates are considered as uni-

formly constant or computed and are classified as homogeneous

if all the neighboring nodes get infected with the same infection

probability and heterogeneous if the infection probability assumed

to be different among the neighboring nodes. In source detection

of rumor, the infection-recovery probabilities with homogeneous

[42 , 44] and heterogeneous probabilities [49 , 51] used with different

diffusion models. 

2.3. Centrality measures 

Centrality measures are used to assign count to each node in

the graph which put across the influence of nodes in the diffusion

process [68 , 69] . The research in the domain of source detection has

utilized the following six majorly used centrality measures. Fig. 6

illustrates the different centrality measures [39] . 

A. Degree centrality . It is referred as the number of edges linked

to the node in the graph. In the real world, famous people are

having a high degree of connectivity with other people in the

network [70] . Fig. 6 (A) shows the example of degree centrality,

where the central node has a degree of 6. 

B. Closeness centrality . It is the mean shortest distance between

a node and all the other accessible nodes in the graph [71] .

Fig. 6 (B) shows that node C has a higher closeness centrality

as it is close to all the remaining nodes in the graph. 
C. Betweenness centrality . It describes the number of times the ver-

tex appears in the shortest paths between any other nodes in

the network and acts as a bridge. Researchers observed that

the nodes with higher betweenness centrality which might not

have maximum degree also play an essential role in the infor-

mation propagation [72–74] . Fig. 6 (C) clarifies that node D is

having maximum betweenness centrality since it is present in

maximum number of shortest paths. 

D. Jordan centrality . It is characterized as a node having the small-

est maximum distance to other contaminated and recovered

nodes [75] . Similarly, the number of Jordan centers is equiva-

lent to the radius of the graph [76] . Fig. 6 (D) gives the example

of Jordan centrality, where nodes A, D and C are having Jordan

centrality 3. 

E. Eigenvector centrality . It measures the centrality of a node as a

sum of degree centrality of all its connected nodes or neigh-

bors. It is the eigenvector of the adjacency matrix coupled with

largest eigenvalue [77,78] . A node with higher eigenvector cen-

trality has leading influence in the surrounding nodes in the

network. In Fig. 6 (E) nodes V 1 and V 3 have the maximum

eigenvector centrality. 

.4. Evaluation metrics 

Different evaluation metrics are used for source detection in the

etwork such as Execution time (Time taken to identify the es-

imated source/s), F-measure and Precision (Metrics to check the

ccuracy of estimated or identified sources), Distance Error (The

ount of nodes between actual source and estimated source by al-

orithm) and Rank. Some evaluation metrics are defined in the fol-

owing sections. 

A. Accuracy . The accuracy of source detection is measured in terms

of two metrics, F-Measure and Precision. The F-Measure metric

calculates the overall accuracy as the ratio of correctly identi-

fied sources to the sum of all testing sources [79] . It can be

defined as below: 

F Measure = 

2 × precision × recall 

precision + recall 
(1)

Where, precision is the ratio of the number of correctly iden-

tified sources over the number of all retrieved sources which

is defined in Eq. (2) and recall is the ratio of the number of

correctly identified sources over the ground truth sources, de-

scribed in Eq. (3) . 

prec ision = 

| { retr ived sour ces } ∩ { true sour ces } | 
| { retr ived sour ces } | (2)

r ecall = 

| { r etri v ed sources } ∩ { true sources } | 
| { true sources } | (3)

B. Rank . The rank is the location of the actual source in the list of

nodes sorted in decreasing order by the score. If the real source

has accurately the same score as any other node (or nodes),

the true source is always below that node (these nodes) in the

score list sorted in descending order [80] . The ranking mea-

sure is well suited for identifying a small group of nodes among

which the source node is present. 

C. Distance error . The distance error is referred as the shortest

distance of hops between the accurate source and estimated

source found by an algorithm [51] . 

. Source detection in social network 

Identifying the origin or source where the propagation started

s a generic problem in any network. However, identifying the ac-

urate rumor sources at the earliest [81] in a social media network
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Fig. 6. Illustration of centrality measures (a) degree centrality; (b) closeness centrality; (c) betweenness centrality; (d) jordan centrality; (e) eigenvector centrality. 

Fig. 7. Process for source detection of rumor in social network. 
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s very important to prevent and control the diffusion and destruc-

ive effects caused by rumors. The normal process for source de-

ection of misinformation or rumor when considering the Twitter

ocial network is shown in Fig. 7 and can be described in terms of

he following steps. 

1. Identify the rumors and collect the data for rumors in the so-

cial network with respect to sender, receiver and the post or

message send by the user. 

2. Preprocess the collected data, e.g. removal of urls, hashtags,

stopwords etc. in twitter and carry out data annotation. 

3. Construct the propagation graph for rumor or misinformation. 

4. Select the suitable diffusion model like Epidemic models, IC

model, etc. and metrics for source detection like centrality mea-

sures and metrics for evaluation like accuracy in terms of pre-

cision, F-measure, distance error etc. 

5. Classify the sources based on source detection metrics. 

6. Evaluate the result with actual and estimated sources. 

The classification of source detection approaches in social net-

orks is depicted in Fig. 8 . This paper classifies the source de-

ection into two major categories as a single source and multiple

ource detection and major focus of the paper is for source detec-

ion in a social network. 
.1. Single source detection 

The majority of research work has contributed to finding a sin-

le source in social networks, which can be further classified based

n network observation, query and anti-rumor based approach. 

.1.1. Network observation based approach 

Based on three types of network observations studied in

ection 2.1.2 , source detection approaches in social networks are

lassified as follows. 

Complete observation . Shah and Zaman [44] first proposed the

ork of rumor source identification in a tree like network, where

hey assume that every node in the network receives information

rom one of its neighbor nodes. Rumor centrality metric is used

or source estimation and considers SIR model for information dif-

usion. The rumor centrality of a node is described as a number of

efinite propagation paths starting from the origin node. The node

aving higher rumor centrality is the source of information propa-

ation. The efficacy of the rumor centrality measure is further an-

lyzed in [82] . They perform experiments on the synthetic dataset

or random d-regular tree, random tree and general network. For

eneral network, the original network graph is converted into a

ree referred as a BFS tree using Breadth First Search (BFS) tech-

ique, in which any node in the graph assumed as source node is

onsidered as starting node for BFS. BFS tree is used with infection

robability p to find the origin. The same methods and results are
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Fig. 8. Classification of source detection approaches in social networks. 
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utilized for source identification using local rumor center metric

by Dong et al. [83] . By considering the susceptible nodes as finite

and end vertices (the node which receives the rumor, but does not

forward further) as a boundary node for source detection using ru-

mor centrality metric is proposed by Yu et al. [84] . They consider

a finite graph for source detection and use the message passing

approach to reduce the search of vertices for maximum likelihood

estimation. 

The node with the maximum rumor centrality compared to the

other suspicious infected node is referred as local rumor center

and is further considered as origin node. The local rumor center

is beneficial as it reduces the searching scale to a set of suspected

nodes only. They required some information about the main net-

work in advance, such as a rumor contaminated subgraph and a

set of nodes as the ‘‘suspect’’ nodes. In the situation, where the

time taken to detect the accurate source goes outside a limit, it

would miss out the significant harm caused by the misinformation

in the network. By understanding the need of fast detection of ru-

mor source, Jain et al. [85] proposed a method using hitting time

information about substitute random walk process with complete

network and discrete time SI model. They randomly select the in-

fection probability from [0, 1] and also require the infected graph

and observation time for computation. 

Snapshot observation . The rumor centrality metric has been ap-

plied for single source detection by Wang et al. [50] in a tree like

network. Although, the snapshot provides a partial information

about the network, the author proves that multiple independent

snapshot of network improves the performance. The same measure

is used when the node gives the infection probability μ [86] inde-

pendently of each other and also proves that the rumor centrality

method assures a good accuracy for large value of μ. Zhu and

Ying [58] derived a sample path based method with homogeneous

infection probability on the network to identify the propagation

source. The source along with the best possible sample path,

i.e. the one which most probably leads to the observed network

snapshot was proven as the Jordan center of the contagion graph

and is measured as a source. They also examine the performance

of a reverse infection process for regular tree and conclude that,

irrespective of the number of contaminated nodes and time of net-

work observation, the distance between true source and identified

source remains constant. With the same sample path estimator

and the Jordan centrality measure, the work was extended to

the heterogeneous SIR model in [49] for single source and tree

network. The heterogeneous SIR model considers that the infection

and recovery probabilities among some of the two neighboring

nodes vary from each other, in which they demonstrate that, the

source node coupled with the optimum sample path is the Jordan

center of infinite tree. They required a small set of infected nodes
n prior and identify the source in sparse observations of infected

etworks. The same approach is used by Luo et al. [55] in SI and

IS [87] diffusion model. Cai et al. [51] proposed the source detec-

ion with heterogeneous infection probability using the continuing

n time SI model for single source with a dependent snapshot of

he network. The cost of taking many sequential snapshots may

ffect the computation time required for source detection. 

The problem of source identification along with rumors detec-

ion was proposed by Sahana et al. [88] using twitter network

here they focused only on time of the posted tweet and rumor

ext. They majorly aim for detection of rumors and proposed a

ethod which provides account information of users who prop-

gated identified rumors in twitter. Krol and Wisniewska [89] per-

orm the source detection in the Twitter network for varying sizes

f tweets and conclude that in the small network it is difficult

o be discriminating the early rumor users from most influential

preaders, contrary to the case for the large network. 

Monitor observation . Xu and Chen [43] proposed a source

etection approach by introducing monitor or sensor nodes in the

etwork and without using textual information of a rumor. In this

pproach, the monitor nodes are induced into the network to find

he ranking of actual source using rumor quantifier metric. They

nalyzed the different cascades for rumor and non-rumor posts

nd use a dynamic IC model to identify the source of a rumor.

hey reveal that the IC model is represented by directed graph

nd cascades in IC model are automatically depicted as directed

ree. In this, the accuracy of rumor source detection depends on

umber of sensor nodes. Jiang et al. [52] proposed a rumor source

etection in time varying or temporal network using SIR model.

hey designed a novel Maximum Likelihood (ML) based estimator

o check the dynamic evolution in the network. The Time varying

etwork is converted into a set of static networks with discrete

ime windows. The SIR diffusion model with heterogeneous infec-

ion probability is considered for source detection. They perform

xperiments on the snapshot and monitor based network observa-

ion where it is inferred that sensor based observation gives good

ccuracy for source detection. This paper gives the future direction

or source detection in continuous time varying social network.

into et al. [90] proposed the PTVA (Pinto, Thiran and Vetterli

lgorithm derived for the initials of the authors), a method with

umber of monitor nodes and receiving time of posts at observer

odes and also, they assume that the rumor spreads along the BFS

ree. In this, they observe the data from all the monitor nodes,

hich is time consuming. By ignoring the monitor nodes with

oor quality information and selecting only important sources

ith maximum likelihood Paluch et al. [80] improvise a method of

ource detection for scale free network in terms of accuracy and

ime as compared to [90] using the SI model. 
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.1.2. Query based approach 

The query based approach is proposed by Choi et al. [91] for

ource detection. They generate a network based on queries and

nswers. Firstly, they used a simple batch query where prior

nformation related to the amount of questions, the candidate

et, estimators for a given propagation snapshot and the models

f answers is required. Secondly, they used the interactive query

here directions are based on the answers of query “Who spreads

he rumor to you?” and the nodes are directed at the network.

t considers the rumor centrality measure with the SI diffusion

odel. They guarantee the detection performance when there is

 regular tree-like structure and perform experiments on the real

orld Facebook network. 

.1.3. Anti-rumor based approach 

The monitor based network observation is used to spread anti-

umor information in the network for source identification by Choi

t al. [92] . They examine the detection performance by inject-

ng hidden agents or monitors called as protectors to send the

anti-rumor” messages. The job of this guard node is to broadcast 

he true information in opposition to the rumor, like doctors pro-

ect people against contagious disease using vaccine. Maximum-A-

osterior-Estimator (MAPE) is used to understand the distribution

arameters in source and protector node to detect the source. They

se regular tree structure and a variation of the SI model, namely

IP where P stands for protected status. 

.2. Multiple source detection 

Most of the researchers assume that there is a single source of

isinformation or rumor in the network, but the information may

ropagate from single or multiple sources to increase the diffusion

apidly. Few researchers have focused on identifying multiple

ources and generic approaches for detecting single or multiple

ources. Wang et al. [30] has extended their work of single source

sing rumor centrality on the synthetic dataset for multiple

ources. In this, they follow breadth-first-search (BFS) approach

o get the final tree from several observations. The guaranty of

ource detection probability depends on the number of network

bservations. Multiple source identification has been classified into

ollowing four approaches: (i) network partitioning, (ii) ranking

ased, (iii) community based and (iv) approximation based. 

.2.1. Network partitioning 

The first time rumor centrality metric is evaluated for a set of

odes to find multiple sources by Luo et al. [81] in two phases.

n the first phase, they consider a number of infected nodes as

ources. Voronoi partition method [93] is used to divide all the in-

ected nodes into various partitions on these sources. The source

n each partition is identified using the rumor center method.

n the second phase, identified sources are adjusted by the two-

ource estimator among any two adjacent partitions. These two

hases are repeated awaiting the determined sources become sta-

le. New metric of effective distance [94] for the complex diffu-

ion process is used by Jiang et al. [95] to find multiple rumor

ources. They used Capacity Constrained Network-Voronoi Diagram

CCNVD) [96] approach to partition the network. The SI model

hat does not consider the recovery of nodes is used and also the

nowledge of infected node is required in prior. 

.2.2. Ranking based 

The way of finding multiple sources of misinformation is pro-

osed by finding the top k suspects in the network using rank

ased and optimization based approach by Nguyen et al. [42] .

hey use a greedy approximation approach and the reverse dif-

usion process in the IC model to identify the suspects from the
et of already infected nodes. They evaluated the approach for at-

acks or misinformation from multiple sources and for incomplete

ata. Kumar and Geethakumari [97] proposed a method to iden-

ify the multiple sources using cognitive psychology principle and

he Gini coefficient metric (a measure to check the distribution of

essages among peoples in the network). Also, they identify the

ources those are colluding with each other for rapid diffusion of

isinformation in the network. The process of cognitive psychol-

gy validates the factors as consistency, coherency and general ac-

eptability of the message and credibility of source to identify the

cceptance level of the messages. The PageRank algorithm is used

o determine the normal acceptance level of the user, and mes-

ages send by users and classify the sources as credible or non-

redible based on acceptance level and propagation pattern. The

ollusion between sources for misinformation diffusion in the net-

ork by retweeting each other’s posts could be determined using

ore-periphery and community detection algorithm. 

.2.3. Community based 

Zang et al. [98] proposed a community partitioning method to

ecognize multiple sources in each community. They follow SIR

ropagation model and experiment on the synthetic network gen-

rated by NetworkX, python based software package further ex-

lained in Section 4 . The reverse diffusion approach is employed to

dentify the unseen and recovered infected nodes, then community

etection method is applied to group the infected nodes into vari-

us partitions. The problem of multiple source locating problem is

olved by applying the single source locating problem into differ-

nt communities. Zang et al. [67] extended their work of multiple

ource detection in a real world dataset using divide and conquer

trategy for reducing the computation complexity. They follow the

IR model with eigenvector based metric. 

.2.4. Approximation based 

Nguyen et al. [99] proposed an approximation algorithm for

ource detection using the IC model and heterogeneous infection

robability which is suitable only for progressive models, that

eans once a node turn into infected node, it stays infected for-

ver. The prior knowledge of infected nodes is not required for this

odel. They identify the seed set which minimizes the difference

etween seed set and set of infected nodes. They consider the SI

iffusion model and work on general graphs. It will not directly

pply to non-progressive models. The novel approach for multiple

ource detection using set resolving set (SRS) is proposed by Zhang

t al. [100] . The SRS is a subset of nodes with least cardinality. On

he network graph G, V is a set of all nodes, then node set K ⊆ V is

alled as SRS, if any detectable node sets A, B ∈ V are distinguish-

ble by K. The set A and B are differentiated by K if x, y ∈ K such

hat 

 A ( x ) − r A ( y ) � = r B ( x ) − r B ( y ) 

herein, r A ( x ) is the receiving time of rumor at node x from set A.

They devise a polynomial time greedy algorithm for discovering

east SRS, so that the sources can be uniquely identified by the

nfected times of nodes in SRS set. 

.3. Comparison 

Table 1 shows the comparative study of source detection of ru-

or in a social network. The legends used in Table 1 as SI, SIR,

C, etc. are information diffusion models explained in Section 2.2 .

rom Table 1 , it can be observed that the source detection ap-

roaches present variations based on the detection of the number

f sources. This table suggests that a research for multiple source

dentification with heterogeneous infection probability and the SIR
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Table 1 

Comparative study of source detection of rumor in social network. 

Ref. No. of sources Network topology Infection probability Diffusion models 

Single Multiple Tree Generic HM HT Epidemic IC 

Nguyen et al. [42] 
√ √ √ √ 

Wang et al. [50] 
√ √ √ 

SI 

Zhu and Ying [49] 
√ √ √ 

SIR 

Zang et al. [98] 
√ √ √ 

SIR 

Xu and Chen [43] 
√ √ √ √ 

Wang et al. [30] 
√ √ √ 

SI 

Jiang et al. [95] 
√ √ √ 

SI 

Zhu and Ying [58] 
√ √ √ 

SIR 

Jain et al. [85] 
√ √ √ 

SI 

Nguyen et al. [99] 
√ √ √ √ 

Jiang et al. [52] 
√ √ √ 

SIR 

Cai et al. [51] 
√ √ √ 

SI 

Table 2 

Comparative study of evaluation metrics (distance error and time complexity) (results taken from respective papers). 

Ref. 

no. 

Network 

observation 

Source detection 

measures 

Evaluation metric Assumption Real world dataset Distance error Time complexity 

0–1 1–2 2–3 3–4 

[43] Monitor Rumor Quantifier ADE ADE decreases as the monitor 

nodes increases 

Twitter – –
√ 

– –

[95] Complete Effective Distance ADE For Number of Real Sources = 2 Facebook [110] – – –
√ 

–

[67] Snapshot Eigenvector ADE For Number of Real Sources = 2 Ego-Facebook [106] – –
√ 

– –

[52] Monitor ML DE Data Sampling ≥ 20% Facebook [110] –
√ √ 

– –

[85] Complete Random Walk FZE, MEE, 

execution time 

Complexity is based on Infection 

probability and the structure of 

the graph 

Ego-Facebook [106] – – – – O(| V I | (| V | + | E |)) 

[99] Snapshot Symmetric 

Difference 

F Measure, 

execution time 

Complexity is based on Number of 

links from infected set to the 

external world 

NetHEPT [111] – – – – O ( m ��/| E s | + 

�2 ) 

[80] Monitor ML Accuracy, rank, DE Focused on the small number of 

Monitors 

Gnutella [106] – – – – O ( N 2 log( N )) 
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g  
diffusion model has not yet been explored. In a dynamic social net-

work this combination of (Multiple Source – Heterogeneous Infec-

tion Probability – SIR diffusion model) may improve the accuracy

of detection, as these terms look more realistic in the social net-

work. 

The comparative study of evaluation metrics with respect to

time complexity and distance error, i.e. number of hops between

actual and estimated source is shown in Table 2 . The values stated

in Table 2 are taken from results mentioned in the related re-

search papers for the respective datasets and methodology. The

legends used in distance error are ADE for Average Distance Er-

ror and DE for Distance Error which are compared based on the

dataset, detection metrics like rumor quantifier, Maximum Likeli-

hood (ML), effective distance, etc. are already described in respec-

tive citations and are compared to show the overall distance er-

ror in source detection approaches in social networks. The legends

used in time complexity, V and E, stand for the number of ver-

tices and edges in a graph or network. The other legends used in

comparison of time complexity are MEE for Mean Error in Estima-

tion i.e. average number of hops between the identified and actual

source and FZE for Frequency of Zero Error i.e. the frequency of

estimated source is identical to actual source. This table considers

only respected metrics and real world dataset for the purpose of

comparison. 

Datasets are briefly described in Section 4 . “
√ 

” indicates the

presence of the corresponding feature in the corresponding paper.

From the comparison shown in Table 2 , it can be observed that

the overall computation time is large and accuracy calculated in

terms of distance error should be as minimum as possible, where

it shows between 0 and 3 hops distance between actual and esti-
mated source. i  
. Datasets and experimental setup 

Datasets used for source detection in social networks are classi-

ed as a synthetic dataset which includes tree and graph network

nd the real-world dataset from a social network. 

.1. Synthetic datasets 

The Synthetic datasets are mainly structured in terms of tree

nd graph. The Tree networks are represented by Random d-

egular tree. S mall-world (SW) networks and scale free networks

re basically used for graph network. The SW [47] networks are a

ind of graphs in which majority of nodes can be traversed from

ne another in a few hops. The Scale free network (SF) [48] fol-

ows a power law distribution and is also referred as Barabasi

lbert (BA) model which is used to create a random scale-free

etworks. The network starts with an underlying associated net-

ork of nodes. New nodes are added to the network one node

t a time. Erdos–Renyi (ER) model [101] produces random graphs

ith subjective degree distributions. In this model, a network is

onstructed by associating nodes randomly. Each edge is incorpo-

ated in the graph with probability p which is independent of any

ther edge in the network. A python language software package

or creation, manipulation, investigation of the formation, dynam-

cs and functions of complex networks are called as NetworkX

102] and the same is used for synthetic data generation. R-Mat

103] is a recursive matrix based synthetic graph generator which

s useful for identifying community structure in a graph. 

Recently, researchers have designed a few synthetic graph

enerators such as Darwini [104] and Datasynth [105] . Darwini

s an extensible synthetic graph generator which can utilize the
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Table 3 

Real world datasets used by source detection approaches in social networks. 

Dataset used 

by papers 

Dataset Description | V | | E | Diameter Average clustering 

coefficient 

[112] Sina weibo [108] Chinese micro blogging website 570 6574 – –

[67 , 85 , 91] Ego-Facebook [106] This includes a circles or companions records from Facebook also 

referred as an ego-Facebook network. The information was 

gathered from members review utilizing Facebook application. 

4039 88,234 8 0.6055 

[80] Gnutella [106] Peer to Peer file sharing network 6301 20,777 9 0.0109 

[60 , 67] Wiki-vote [106] This includes the data of who-votes-to-whom from the Wikipedia 

network. 

7115 103,689 7 0.1409 

[52] Enron Email [113] This includes the data of email discussions between 143 users in 

2001. 

36,692 183,831 11 0.497 

[52 , 79 , 95] Facebook [110] This involves the communications between 45,813 users collected 

from 29th Dec 2008 to 3rd Jan 2009 from Facebook. 

45,813 370,532 – –

[42 , 67 ] Epinion [105] A who-trust-whom online interpersonal, organization of a common 

customer audit website Epinions.com. Individuals from the 

website can choose whether to “believe” each other and the 

edges speak about the interconnection between individuals. 

75,879 508,837 14 0.1378 

[51] Higgs-Twitter [106] A popular social network where individual can share information, 

pictures, audio, and video. 

456,626 14,855,875 9 0.1887 

Table 4 

Experimental setups used by source detection approaches in social networks. 

Ref. Number of sources Datasets Platform Implementation 

[80] Single Gnutella AMD FX-8350 4 GHz processor Java 7 

[92] Single Facebook Ego Network – MATLAB 

[89] Single Twitter Microsoft Windows with a 3.2 GHz quad-core Intel Core i7 and 

16GB memory 

–

[79] Single Facebook Microsoft Windows Server 2008 with 8 CPUs, 32GB memory C ++ 2010 and MATLAB 2012 

[52] Single Enron Email, Facebook Microsoft Windows 7 with 2 CPUs, 4GB memory C ++ , MATLAB 2012 

[112] Multiple Sina Weibo Ubuntu Server with 4 × 2.4 GHz CPU, 32GB memory C ++ 

[67] Multiple Facebook, Epinion, Wiki-Vote Ubuntu 11.10 Server with 1400 M Hz six-core CPU, 32 GB memory Python 
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etrics of real world social networks like degree, clustering coef-

cient. DataSynth is a framework for a synthetic graph generation

ith customized features like user features, graph features and

orrelations between structure and properties of graphs. 

.2. Real datasets 

Most of the real datasets like Facebook, Twitter, Wiki-vote are

reely accessible on Stanford Large Network Dataset Collection

106] . Power grid dataset (PG) [107] representing a power grid net-

ork of the Western States of the USA is also available. Similar to

witter, there is a popular Chinese micro blogging network as Sina

eibo [108] used for rumor detection and source identification. 

Table 3 shows the study of real world datasets which are pub-

icly available and used by source detection approaches in the

ocial network. The datasets in Table 3 are arranged in ascend-

ng order of number of nodes or users in the respective datasets.

able 3 summarizes information about the dataset, its description

nd details of network, which include number of vertices | V |, num-

er of edges | E |, diameter of the graph (largest distance between

ny two pairs of node) and average clustering coefficient (a mea-

ure of the degree to which nodes in a graph can be clustered to-

ether). The Twitter network provides a search API to access the

ata. The TAGS [109] tool is used for collection of searched results

n Twitter by Kumar and Geethakumari [97] . 

Table 4 gives the details of the experimental setup and pro-

ramming languages used by source detection techniques in the

ocial network and a number of sources (Single or Multiple) de-

ected. 

. Research challenges and future scope 

Identification of misinformation sources in a social network is

ery important to prevent and control the misinformation diffusion
n the network. Research challenges that need to be addressed for

fficient detection of sources in the social networks are identified

s follows. 

1. Complex network structure . Current research, majorly considered

a tree like network for source detection, which does not con-

sider cycles, whereas in the real world the information prop-

agated by sources can be received by the same nodes, i.e.,

sources again from neighboring nodes. Though the source de-

tection is quite easy in a tree like network using BFS strategy,

a graph is best suitable topology to represent the real world

network. In the category of network observation, snapshot and

monitor based approaches provide partial information of the

network. Therefore, utilizing the minimum information of net-

work to give better accuracy can be investigated in the future. 

2. Real-time data collection . Quick and real time detection of

sources is useful to control the spread of rumor and reduce the

harsh impact on society. The data sets considered for source de-

tection must be collected in a real time. There is a scope for au-

tomatic detection of rumors and finding its sources for further

investigation. 

3. Dynamic network evolution . The social networks are dynamic in

nature. Individual behavior can strongly affect the temporal dy-

namics of rumor propagation. Evolution of network must be

taken into consideration while examining the network and se-

lecting the diffusion model. Nowadays, researchers are taking

network evolution into account for event detection [114] and

community detection [115] in a dynamic social network. How-

ever, there is a scope for source detection by considering the

evolutions in the network. 

4. Heterogeneous diffusion of information . Many researchers assume

that neighboring nodes get infected with the same probability,

however, in reality the information sharing probability is differ-

ent among the people and depends on their relationship. There-
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fore, the heterogeneous infection probability should be consid-

ered to improve the accuracy of the source in the future. 

5. Number of propagation sources . Many researchers assume that

the misinformation or rumor originates from a single source.

However, the purpose of source nodes is to spread the infor-

mation as fast as possible, so they might often propagate the

information from multiple sources. Currently the methodology

of source detection depends on a number of sources to be iden-

tified and there is no uniform model for single and multiple

source detection in the network. There is scope for wide re-

search to design a single model to detect source/s irrespective

of their number. 

6. Detection of communities involved in information diffusion . While

identifying multiple sources, few researches follow community

detection methods, which is also a good topic for further study.

The misinformation might spread by multiple sources that form

their own community. Along with the source detection, the

community can be identified. 

7. Source detection across interconnected social network . Users are

having their accounts on various social networking sites like

Facebook, Twitter, etc. Sometimes they spread the rumor across

their different social networks. A single interconnected network

can be constructed by using the relationship of users in the dif-

ferent social networks. Therefore, to generate the linkable or in-

terconnected social network and identify the true sources in a

linkable social network can be a vast and complex area for fur-

ther research. 

6. Conclusion 

The proliferation of data generated by a social network gen-

erates a number of real-world problems to be solved and rumor

source identification is one of them. The source detection tech-

niques are used in many domain specific networks like wireless

sensor network, network of virus spread, epidemic network, etc.

This paper aims to analyze and summarize the approaches for

source detection of rumor and misinformation in social network

and provides an intense research contribution for further explo-

ration of source detection of rumor in a social network. 

Based on the different factors impacting on source detection

like centrality measure, network observation and diffusion models,

it can be understood that the current methods of source detection

in social network presents a large variation in accuracy. This re-

search domain shows potential, hence, it will act as a foundation

in the social aspect and will help to reduce the risk or damage

caused by misinformation in a social network. As rumors play with

the sentiments of the person and their spread introduces negative

impact in the society, it is very vital to control such rumor diffu-

sion using source detection. 

Considering the source detection in a social network, the ma-

jority of the research focuses on a single source, whereas in reality

information spreads from many sources. So there is much scope to

improve source detection of rumor in social networks irrespective

of number of sources. There is also an interesting direction towards

considering the dynamic nature of a social network during source

detection. 
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