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Abstract

Breast cancer is the most common cancer type diagnosed in women world-

wide. While breast cancer can occur in both men and women, it is by far more

prevalent in women. Researchers have developed computer-aided systems for

efficient diagnosis of breast cancer from histopathological microscopic images.

These systems have contributed to increased diagnosis efficiency of biopsy tissue

using hematoxylin and eosin stained images. However, most computer-aided di-

agnosis systems have traditionally used handcrafted feature extraction methods

that are both ineffective and time-consuming. In this study, we propose an ap-

proach that utilizes deep learning models with convolutional layers to extract

the most useful visual features for breast cancer classification. It is shown that

these deep learning models can extract better features than handcrafted feature

extraction approaches. We also propose a novel boosting strategy to achieve

the main goal, whereby the system is efficiently enriched by progressively com-

bining deep learning models (weak classifiers) into a stronger classifier. Our
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system is used to classify hematoxylin and eosin stained breast biopsy images

into two major groups (carcinomas and non-carcinomas) and four classes (nor-

mal tissues, benign lesions, in situ carcinomas and invasive carcinomas). We

demonstrate applications to breast cancer histopathology images that have been

considered challenging to diagnose based on conventional methodologies. Our

results demonstrate that our breast cancer classifier with a boosting deep learn-

ing model significantly outperforms state-of-the-art methods.

Keywords: Inception network, gradient boosting trees, breast cancer,

histopathological microscopic images.

1. Introduction

Breast cancer is still one of the top leading causes of death in women world-

wide [27]. To diagnose a wide variety of breast cancer types properly, it is

necessary to apply a medical test (commonly performed by a surgeon), followed

by a microscopic analysis of breast tissue. In the first stage of this process, the

doctor has to cut section biopsy materials and then stain them using hema-

toxylin and eosin staining. The hematoxylin solution binds deoxyribonucleic

acid (DNA) and highlights nuclei, while eosin binds proteins and highlights

other structures [43]. In the second stage of this analysis, pathologists evaluate

tissue biopsies by visualizing highlighted regions in digitized images using micro-

scopes. The evaluation of tissue biopsies allows the identification of early clues

of tissue biopsies. However, professional pathologists must expend considerable

time and effort to accomplish this task. The process of breast cancer diagnosis is

not only time-consuming and expensive but also strongly depends on the prior
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knowledge of the pathologist and the consistency of pathologic reports. The

average diagnostic accuracy of pathologists is approximately 75% [11].

Fortunately, the development of computer vision and machine learning po-

tentially offers more reliable classification methods for the histological assess-

ment of hematoxylin and eosin stained sections. These methods can automati-

cally classify breast tissues into different categories with high classification rates.

Thus, many researchers have developed fast and precise image analysis algo-

rithms for breast cancer detection tasks. However, their results are still far

from meeting accepted clinical requirements. For this reason, researchers have

been expending most of their efforts into the development of new algorithms

for histopathological image analyses [18], [41], [26]. These algorithms aim to

achieve the precise classification of breast tissues as normal tissues, nonmalig-

nant (benign) tissues, in situ carcinomas, or invasive carcinomas. In the cate-

gory of benign lesions, images show changes in the normal structures of breast

parenchyma that do not progress to malignancy. In situ carcinoma indicates

cells that are restrained inside the mammary ductal–lobular system. Unlike in

situ carcinomas, invasive carcinomas present a profile where cells spread beyond

the structure of the mammary ductal–lobular system.

One of the challenges in analyzing breast cancer histopathology is to deal

with a wide variety of hematoxylin and eosin stained sections, which is at-

tributed to differences among people, different protocols used in labs, skills of

pathologists in scanning images, and different staining procedures [30]. Figure 1

shows some breast cancer histopathology images that are considered challenging

for classification. Each of them belongs to one of four tissue classification cate-

gories, including normal tissues, nonmalignant tumors, in-situ carcinomas, and

invasive carcinomas. To overcome this challenging problem, we developed an

automated breast cancer detection method to classify breast tissues precisely

into the four listed categories above. In particular, our proposed method is

synthesized from several novel concepts.

In this research, we present an ensemble of deep convolutional neural net-

works (DCNNs) trained to extract the most useful visual features from multi-
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scale training images. The use of DCNNs increases the accuracy of classifying

multi-label breast cancers by aggregating multi-scale contextual information. In

addition, this network can extract both global and local information from orig-

inal images. Conversely, by using lower-resolution input images, the receptive

field of the network in the original image can be expanded to cover global fea-

tures more adequately. Furthermore, higher resolution input images are used in

our network to extract multi-scale features in local regions. These advantages

can be applied effectively in breast cancer detection tasks because breast cancer

tumors and cells have a wide variety of shapes, sizes, margins, and densities.

First, our network can detect differently sized breast cancer tumors by extract-

ing multi-scale local features that are very important for doctors to determine

the stage of breast cancer. In most cases, if the doctor only detects small tu-

mors, the patient has better chances for long-term survival. Otherwise, a larger

cancer can be more aggressive and doctors may recommend a mastectomy or

chemotherapy before surgery. Second, our network can recognize characteristic

abnormalities in breast cancer tissues, such as shapes and margins, based on the

detailed information obtained in local regions. The shapes of breast cancer tu-

mors are usually round, oval, lobular, or irregular. Poorly defined or spiculated

margins are often worrying signs of breast cancer cells. Most breast lesions and

tumors have ill-defined borders and certainly need more investigations. Finally,

this ensemble of deep convolutional neural networks is able to extract global in-

formation that is used to estimate the tumor densities and the number of breast

tissues. This is an important advantage because a high-tumor density in terms

of the amounts of fatty elements usually constitutes a highly suspicious sign for

breast cancer.

The other challenging problems of breast cancer histopathology image anal-

yses are related to the limited number of available training samples and the

imbalanced data problem. First, DCNNs are only effective when the number of

available training samples is large enough during a training stage. Conversely,

these networks often suffer from overfitting if the training samples are limited.

Unlike the case of natural image classification tasks, there are far fewer medical
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images available for use for the effective training of a deep learning network for

medical applications, such as breast cancer detection. This is because of data

privacy issues and the increased cost of data collection. Second, like in many

other medical image applications, breast cancer detection methods are also as-

sociated with the problem of unbalanced training images, because collecting

data from patients is not an easy task. To address these problems, we propose a

novel boosting method for improving classification performance and for prevent-

ing overfitting. This boosting method is based on the combination of a DCNN

model and a boosting trees classifier. In this combination, the DCNN model can

be used to map high-dimensional inputs to a low-dimensional space of discrim-

inative feature vectors. In fact, the classification performance of each DCNN

degrades after a certain number of training iterations owing to the overfitting

problem. In this situation, we can stop training the DCNN model early on, and

use it to extract low-dimensional discriminated features. In particular, the last

convolutional layer of the DCNN model is converted into a one-dimensional fea-

ture vector with a length of 1056. Finally, this one-dimensional feature vector is

used as the input to the gradient boosting trees classifier. Unlike DCNNs, the

boosting trees classifier is able to tackle the challenging problems of the limited

number of available training samples and the imbalanced data problem. The

boosting trees classifier can further improve the DCNN performance provided

that the training data belongs to a low dimensional subspace. This is because

the boosting trees classifier is able to convert weak classifiers to strong clas-

sifiers by adding more weight to training examples that were misclassified by

weaker classifiers in earlier rounds. Furthermore, a data augmentation method

is used to tackle imbalanced data, and to increase the available data samples

for training the DCNNs and for boosting trees classifiers. For these reasons, the

combination of DCNN and a boosting trees classifier leads to a better classifica-

tion performance even though the number of breast cancer samples is not large,

owing to privacy policy constraints and other conditions.

In general, the training process for this method consists of two stages. In

the first stage, we aimed at building a set of deep convolutional neural networks
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trained to extract the most useful visual features from multi-scale training im-

ages. Recent research demonstrated that an ensemble of DCNNs can perform

better than a single DCNN [34] [33]. Hence, we trained independently multiple

DCNNs with different input scales and combined their final feature vectors by

using a new boosting strategy. In fact, these advance feature vectors were used

as inputs to gradient boosting trees classifiers [14]. In the second training stage,

each gradient boosting trees classifier was trained based on the new dataset of

deep feature vectors extracted from the corresponding DCNN in the first stage.

After the training processes, each boosting trees classifier can achieve a bet-

ter accuracy rate than its corresponding DCNN classifier. Finally, we applied

the majority voting strategy for combining the boosting trees classifiers. This

combination resulted in a final boosting classifier that achieved the best clas-

sification performance thanks to the improved extraction of multi-scale deep

features of breast cancer tumors.

In this study, we tested our proposed algorithms and its competitors to

evaluate the accuracy of breast detection in a challenging dataset. Based on

extensive experiments, our algorithms are shown to significantly outperform

state-of-the-art algorithms. In particular, our proposed method provides several

contributions:

• First, we present an ensemble of DCNNs trained to extract the most useful

visual features from multi-scale training-images. By building the ensemble

of DCNNs, both global and local features of breast cancer tumors can be

extracted properly, and the accuracy of multi-label breast cancer detection

is thus significantly improved.

• Second, we propose to use the gradient boosting trees algorithm to boost

the classification performance of the DCNN classifiers. We proved that

the combination of DCNN and a boosting trees classifier leads to a bet-

ter classification performance despite the limited number of breast cancer

samples and imbalanced training data.

• Finally, we use the majority voting strategy to combine the boosting trees
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classifiers. This combination leads to the best classification performance

among competitive boosting trees classifiers.

The remainder of this study is organized as follows. In Section II, we briefly

present some related state-of-the-art algorithms for breast cancer detection that

motivated our research. In Sections III and IV, we review the methods of In-

ception networks and gradient boosting trees and show their recent applications

to classification tasks. In Section V, we describe our proposed method of incre-

mental boosting convolution networks. In Section VI, the experimental results

obtained from challenging datasets of H&E stained histology images are pre-

sented. We conclude this paper, mentioning our intentions for our future work,

in Section VII.

2. Related Work

In this section, we briefly review and discuss the state-of-the-art algorithms

of breast cancer detection and related fields, namely feature extraction us-

ing computer-aided diagnosis systems, sparse representation, deep learning for

breast cancer detection, and boosting algorithms for classification tasks.

Computer-aided diagnosis (CAD) has rapidly developed in recent years to

assist doctors in diagnosing patients quicker and with a higher accuracy in many

hospitals. In general, CAD is used to provide objective results and has assisted

medical image diagnosis. One of the major CAD applications is to distinguish

normal, benign, in situ carcinoma, and invasive carcinoma. A CAD system can

also be incorporated into the diagnostic process of breast cancer detection to

decrease inter observer variation, effectively providing biopsy recommendations

and reducing unnecessary false-positive biopsies. A conventional CAD system

consists of three main steps: feature extraction, feature selection, and image

classification. Among these steps, effective feature extraction is the most im-

portant step because it can improve the performances of the feature selection

and classification steps. In general, breast cancer features can be categorized

into morphological and textural features. Veta et al. [43] extracted the features
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of nuclei morphology to distinguish benign and malignant tissues. Kowal et al.

[26] aimed to segment nuclei using clustering algorithms for nuclei segmentation

from biopsy microscopic images. This algorithm achieved high classification ac-

curacy owing to a good feature extraction strategy in which morphological and

texture features were employed. Filipczuk et al. [12] and George et al. [17]

extracted circular Hough features for training a nuclei classifier. Particularly,

George et al. [17] used the watershed method to extract shape and texture

features of nuclei. Both types of features are useful for training an accurate

nuclei classifier. For more complex breast histology H&E datasets, Belsare et

al. [3] used color-texture graphs for exploring tissue organization followed by

the use of texture features for training a breast histology image classifier. Brook

et al. [5] built a three-class support vector machine (SVM) classifier to distin-

guish breast cancer images into three categories: normal, in situ carcinoma and

invasive carcinoma. By using multiple threshold values, binary images were

generated for the feature extraction and training tasks. Zhang et al. [48] used

a set of parallel SVM classifiers and a set of artificial neural networks (ANN)

to create a strong cascade classifier. In their research, the SVM and ANN clas-

sifiers were considered as weak classifiers that could be combined together to

create a final, strong classifier. A breast cancer image was only rejected if it

was rejected by the majority of SVM and ANN classifiers. In this algorithm,

training features extracted by the Curvelet transform and local binary pattern

(LBP) methods were used to train the set of SVM classifiers. Similarly, Zhang

et al. [49] presented an ensemble of a single-class kernel principal component

analyses models trained using different characteristic features from each breast

cancer class. This ensemble method achieved high-classification accuracy for

classifying benign and malignant lesions from breast cancer histopathological

images. Interestingly, Dimitropoulos et al. [10] used the Grassmannian vector

of local aggregated descriptor (VLAD) method to extract local features of breast

cancer tumors and present them as a set of multidimensional spatially-evolving

signals that can be efficiently modeled through a higher-order linear dynamical

systems analysis. Although they did not use deep learning models, their method
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is one of the state-of-the-art methods for detecting breast cancers.

Sparse representation [51] [52] [47] [45], developed from the theory of sparse

coding, has attracted much attention from researchers in the fields of face recog-

nition, object detection, and cancer detection. Helal et al. [23] used a sparse

representation-based classifier to classify benign and malignant breast lesions.

In this type of representation, a breast cancer sample can be sufficiently rep-

resented by training samples from the same subject. Then, this breast cancer

sample is classified based on the least representation residual computed by the

sparse representation coefficients and training samples. Thus, this method can

considerably improve the effectiveness of breast cancer detection. Similarly,

Nayak et al. [31] used a method of sparse feature learning and classification to

decompose whole slide images of histology sections into distinct patches. These

patches were then classified into tumor types. Kong et al. [25] also proposed

a method of jointly sparse discriminant analysis to discriminate the category

of the breast cancer types. This method was used to extract the key factors

in breast cancer, which are helpful for improving the accuracy in diagnosis and

prediction.

Recently, deep learning networks have been developed to extract the most

discriminative features and to improve the effectiveness of medical image anal-

ysis. There are two advantages regarding the use of deep learning networks for

feature extraction. First, we can automatically extract more complex feature

sets by using deep feature learning models than those that we may have using

other machine learning tools. Second, joint and hierarchal learning features can

be extracted from different layers of a deep learning network. As a result, deep

learning networks are also efficiently used in the feature selection step. However,

deep learning networks are still a drawback for H&E breast tissue biopsy classi-

fication. Training a deep learning network for recognizing an entire H&E breast

tissue biopsy image is extremely time-consuming because of the huge number

of training parameters. To deal with this drawback, Spanhol et al. [37] trained

his deep learning network on the dataset of 32×32 and 64×64 pixels patches

collected from original H&E breast tissue biopsy images. The resulting H&E
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breast tissue biopsy image was classified based on the sum of patch probabilities

or the highest patch probability. Spanhol et al. [31] also proved that the feature

extraction task was more difficult if the deep learning network was trained on

breast tissue images at higher magnifications. This is because only nuclei edges

were extracted from images at high magnifications and the most useful features

were not found by the deep learning network. Similarly, Ciresan et al. [8] used

convolutional neural networks (CNN) to detect mitosis in each of the patches

extracted from H&E stained breast biopsy slides. The advantage of this deep

learning model is to detect nuclei in different sizes. Cruz-Roa et al. [9] also di-

vided the breast histology slide into 100×100 patches in which his deep learning

network could detect invasive carcinoma regions. Han et al. [20] used a deep

learning model to identify eight classes of breast cancer. With the application

of deep learning models, Euclidean distances among samples in the same class

were minimized whereas the Euclidean distance between two arbitrary samples

that belonged to two different classes was maximized. Similarly, Song et al. [36]

combined a convolution neural network with a Fisher feature layer to encode

the local features of breast cancer tumors in a higher discriminative space where

breast cancer types were distinguished effectively. Interestingly, Chen et al. [7]

proposed an architecture of deep cascaded networks to quickly retrieve the mi-

tosis candidates while preserving a high sensitivity. The retrieved candidates

were then classified by the second deep convolutional neural network which can

discriminate mitoses from hard mimics more precisely. Therefore, this approach

achieved high performance of classifying breast cancer images.

By using boosting algorithms, some researchers [13], [35], [21] can theo-

retically design a strong learning model by combining multiple weak learners.

These boosting algorithms collect and optimize decision trees, which are consid-

ered weak learners. Among the available boosting algorithms, AdaBoost could

advantageously use recurrent neural networks as weak learners, which are ap-

plied for analyzing text or time series, as demonstrated by Assaad et al. [2] and

Buabin et al. [6]). In addition, Karianakis et al. [24] tried to use the AdaBoost

decision trees method to combine CNNs for classifying images. Friedman et al.
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[14] introduced gradient boosting machines (GBM) which can be applied for

training neural networks and can be used as an effective gradient descent opti-

mization algorithm. In turn, Gao et al. [16] developed a boosting algorithm that

selected weak CNN learners among a set of CNNs to build a stronger learner

for video recognition. Wang et al. [50] and Han et al. [19] built a boosting

algorithm to regularize the CNN loss function.

3. Gradient Boosting Trees

The algorithm for boosting trees was developed to solve regression and clas-

sification problems and to produce a strong prediction model by ensembling

weak prediction models. This algorithm can be considered as an optimization

algorithm that computes a sequence of successive trees. Every single tree is used

to predict the residuals of the preceding tree. In general, the gradient boosting

trees algorithm aims to combine weak classifiers into a single strong classifier.

3.1. Regularized Learning Objective

Like any supervised learning algorithm, the objective of the gradient boost-

ing algorithm is to classify objects by minimizing a loss function. To identify

the solution for this optimization problem, boosting trees are trained by using

gradient descent algorithms, and predictions of new boosting trees are updated

and improved based on a learning rate.

First, we denote the set of n1 examples and n2 features by X = {(ui, vi)}
(|X| = n1, ui ∈ Rn2 , vi ∈ R). We aim to build a tree ensemble model that

combines M single functions to classify the examples in this dataset.

v̂i = φ(ui) =

M∑

k=1

fk(ui), fk ∈ F (1)

where F =
{
f(u) = δh(u))

}
(h : Rn2 → D, δ ∈ RD), vi is the ith target value,

and v̂i is the ith prediction. Herein, h(u) represents a single tree that can classify

training data u into the corresponding group. Each single tree h(u) consists of

D leaves. Thus, each fk is a function of a regression tree h and corresponding
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leaf weights w. We denote the score on the ith leaf of the regression tree h by δi.

Each example is classified in accordance with the leaves of the regression tree h

based on a set of decision rules. As a result, we can compute the last prediction

for this example by summing up the scores in the corresponding leaves. The set

of functions can be found by solving the following minimization problem

G(φ) =
∑

i=1

g(v̂i, vi) +
∑

k

δ(fk) (2)

where δ(f) = γD+ 1
2λ ‖δ‖

2
. In this formula, the difference between the predic-

tion v̂i and the target vi is computed by the differentiable convex loss function

g and the complexity of the model is measured by the additional regularization

term δ. The additional regularization term is added to this equation to avoid

the overfitting problem and to smooth the learning weights. This is because the

model of boosting trees tends to select simple functions for the prediction task.

Accordingly, the training parameters are minimized. Ideally, if the loss func-

tion G(φ) can be minimized, the sum of its residuals should be approximately

zero. In fact, each training data point has one residual equal to the difference

between the observed value vi and the predicted value v̂i. The idea of the gra-

dient boosting algorithm is the repetitive updating of the new boosting trees to

reduce residuals and strengthen the model. The training process can stop if the

sum of these residuals is less than a predefined threshold.

3.2. Gradient Tree Boosting

The optimal solution for Eq. (2) cannot be directly found by conventional

optimization methods. Instead, we apply an effective approximation method to

optimize parameters and functions in this equation. We denote the prediction

of the ith example at the tth iteration by v̂
(t)
i . The solution for Eq. (2) can be

found by solving the following minimization problem:

G(t) =

n1∑

i=1

g(vi, v̂
(t−1)
i + ft(ui)) + δ(ft) (3)
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By adding ft to Eq. (3), we can apply a second-order approximation to optimize

the objective in this equation quickly, as follows:

G(t) '
n1∑

i=1

[g(vi, v̂
(t−1)
i + lift(ui) +

1

2
kif

2
t (ui)] + δ(ft) (4)

where li = ∂v̂(t−1))g(vi, v̂
(t−1)
i ) is the first order gradient statistic on the loss

function, and ki = ∂2
v̂(t−1)) l(vi, v̂

(t−1)
i ) is second order gradient statistic value.

We can simplify Eq. (4) by the following equation:

G̃(t) '
n1∑

i=1

[lift(ui) +
1

2
kif

2
t (ui)] + δ(ft) (5)

We denote the instance set of leaf j by Tj = {j|h(ui) = j}. Eq (3) can be

rewritten by expanding δ as follows:

G̃(t) '
n1∑

i=1

[lift(ui) +
1

2
kif

2
t (ui)] + γD +

1

2
λ

D∑

j=1

δ2j

=
D∑

j=1

[(
∑

i∈Tj

gj)δj +
1

2
(
∑

i∈Tj

hi + λ)δ2j ] + γD

(6)

We can fix the structure h(u) and optimize the weight δ∗j of leaf j by:

δ∗j = −
∑
i∈Tj

lj∑
i∈Tj

ki + λ
(7)

The corresponding optimal value can be computed by:

G̃(t)(h) = −1

2

D∑

j=1

(
∑
i∈Tj

lj)
2

∑
i∈Tj

ki + λ
+ γD (8)

By computing the scores in Eq (8), we can evaluate the quality of a tree

structure h. To enumerate all the possible tree structures h, we applied a greedy

algorithm to search every single leaf, and branches were iteratively added to the

tree. After the split, the instance sets of the nodes on the left and right sides

become available and are denoted by TL and TR, respectively. The loss reduction

13



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

is then computed based on the instance sets TL and TR as follows:

Gsplit = −1

2

[
(
∑
i∈TL

li)
2

∑
i∈TL

ki + λ
+

(
∑
i∈TR

li)
2

∑
i∈TR

ki + λ
+

(
∑
i∈T li)

2

∑
i∈T ki + λ

]
(9)

Eq. (9) is used to evaluate the split candidates. These split candidates

are added to minimize the residuals in the predictions. Thus, choosing the

best split points is required to minimize the loss function. To prevent the

overfitting problem, we applied two different techniques: shrinkage and column

subsampling. The shrinkage technique [15] aimed to improve the model quality

by reducing the influence among individual trees. New weights were rescaled by

a factor η after each boosting step. The shrinkage factor η is referred to as the

learning rate. If the learning rate is reduced, more trees are added to the model,

and the training process is more effective. The column subsampling technique

[4] is used to prevent the overfitting problem and speed up computations of the

boosting trees algorithm. Moreover, this technique is used to reduce correlations

between every successive part of boosting trees in the model.

As indicated by Eq. (9), finding the best split is also very important for

improving the classification performance. For this purpose, we use the exact

greedy algorithm as shown in Alg. 1. The basic idea of this algorithm is to

enumerate all the possible splits and then sort the data based on feature values.

In this sorted order, gradient statistics are accumulated and the structure score

is computed based on Eq. (9). Finally, the best split corresponds to the highest

structural score.

4. Inception Networks

Inception modules [39] aim to improve the improvement of the training per-

formance by using many tiny convolution kernels to simultaneously map cross-

channel and spatial correlations. The key advantage of these tiny kernels is

that they are not only used to design a CNN with considerably fewer parame-

ters than larger kernels but can also be used to extract effectively the detailed
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Algorithm 1: Exact Greedy Algorithm

1: procedure Procedure(T, d)

2: Input: T, set of the current node

3: Input: d, feature dimension

4: gain← 0

5: P ←∑
i∈T li, Q←

∑
i∈T ki

6: for x=1 to m do

7: PL ← 0, QL ← 0

8: for y in sorted(T, by uxy) do

9: PL ← PL + ly, QL ← QL + ky

10: PR ← P − PL, QR ← Q−QL
11: score← max(score,

P 2
L

QL+λ +
P 2

R

QR+λ − P 2

Q+λ )

12: end

13: Output: Split with highest scores

information in images. Thus, the network training procedure can be more ef-

fective and efficient and the overfitting problem can be avoided. In particular,

Inception networks use convolutions of different sizes to extract effectively the

detailed information at different scales, as shown in Figure 2. In this figure, we

can see that each Inception layer employs 1×1, 3×3 and 5×5 convolutions to

represent larger convolutions. Therefore, the computational cost of the network

can be reduced significantly when the network goes deeper with the use of more

convolution layers. In addition, in the network, the fully-connected layers are re-

placed by a global average-pooling layer that averages the channel values. This

change drastically reduces the overall number of network parameters without

affecting the accuracy. Both key changes are also helpful in avoiding the overfit-

ting problem when the number of training images is limited, which is a common

problem in medical image analysis research. Moreover, combining the Incep-

tion architecture with residual connections can lead to dramatically improved

training speeds, and can significantly improve the recognition performance, as
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Figure 2: Example of an Inception module.

explained in [39].

Among the Inception networks, the Inception-ResNet-v2 network [39] out-

performs similarly expensive networks without residual connections. This is

because the residual learning framework plays a key role in the improvement

of training speed for the Inception architecture. Furthermore, an Inception

network using residual connections has deeper convolution layers for effectively

extracting high-level features from images.

In this study, we used Inception networks at different input scales to capture

multi-level features of breast tissues. By using these networks, we can capture

detailed information pertaining to breast cell types that indicates the similarity

of breast cancer cells to normal breast tissues. In addition, the Inception network

can extract high-level features in the breast cancer images to evaluate the growth

rate of breast cancer cells by estimating the density of breast cells in the image.

Moreover, since breast cancers can grow, spread, and invade the surrounding

breast tissues, we employed Inception networks with different input scales to

extract multi-scale features of different breast cancer types.

5. Proposed Approach

In this section, we describe our approach of breast cancer detection in detail.

The entire training process of our proposed algorithm is illustrated as a flow
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Figure 3: The whole training process of our proposed algorithm.

chart in Figure 3. Our approach include five basic steps: First, we apply a

preprocessing method of stain normalization on H&E stained histology images to

transform them into a common space and reduce their variances. This essential

step is useful in improving the detection performance. In the second step, we

present novel augmentation methods that are able to increase effectively the

amount of training images based on our original limited training dataset. In the

third step, we employ this augmented training dataset to train a set of Inception

networks with multi-scale input images. After these training processes, the

most discriminative deep features of breast tissues can be extracted from these

Inception models. Similar to the third step, in the fourth step, the discriminative

deep features extracted from the training dataset can be used again to train a set

of gradient boosting trees classifiers to improve the classification performance.

In the last step, we employ a novel strategy for combining the gradient boosting

trees into a stronger boosting classifier that is able to detect breast cancer clues

precisely on histology images.
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Figure 4: Preprocessing steps of our proposed algorithm.

5.1. Preprocessing

For an automated breast cancer classifier using deep learning networks, stain

normalization is an essential step in improving the detection performance. Be-

cause the procedures of tissue staining, fixation and cutting are not consistent,

the appearance of H&E stained histology images significantly changes across

different laboratories. The preprocessing step of stain normalization transforms

the histology images into a common space and reduce their variances. In this

study, we used the method of stain normalization proposed in [28]. This method

uses a logarithmic transformation to compute the optical density of each his-

tology image. The singular value decomposition method was applied to this

optical density image to estimate the relevant degrees of freedom and construct

a 2D projection matrix with a higher variance. We then calculated the inten-

sity histograms for all pixels, whereby the dynamic range of elicited intensities

covered the lower 90% of the data.

Since access to data is limited owing to privacy concerns, breast cancer de-

tectors were often trained with insufficient training datasets. Consequently, the

cancer classification performance is hindered by this lack of training data. Re-

cent work has demonstrated the effectiveness of data augmentation in increasing

the amount of training data based on our original training dataset that consisted

of limited data. By augmenting training data, we can also reduce the overfitting

problem on the training models. In this study, we mainly performed geometric

augmentations including reflecting, randomly cropping, rotating and translating
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the image. Since the color of H&E stained histology images significantly varies

across laboratories due to various technical skills, we applied an effective color

constancy method, namely gray world that assumes the scene in an image, on

average, is a neutral gray and the average reflected color is from the color of

the light. For this reason, the illuminant color cast can be well estimated by

computing the average color and comparing it to gray values. In this algorithm,

the illuminant colors are computed by the mean of each channel of the image.

Figure 4 shows all the basic preprocessing steps of our proposed algorithms.

5.2. Feature Extraction

We aim at building an ensemble of DCNNs to train the most discriminative

features for the breast cancer detection task. A DCNN ensemble is a learning

paradigm that many DCNNs are jointly employed to solve a specific problem.

Our previous work [44] has demonstrated that an ensemble of multiple deep

convolutional networks significantly outperforms single deep convolutional net-

works. This is because the DCNN ensemble has some competitive advantages

that are useful for increasing the prediction accuracy rate. First, we can apply

multi-scale input images to our network ensemble in which each scale is passed

through at least one CNN. This ensemble not only expands the receptive field in

the original image to cover better global features but also extracts better multi-

scale local features. Second, our ensemble of DCNNs is a reliable technique

to increase the classification performance. Because each training deep model

presents several local minima, multiple training processes of different DCNNs

can improve the distribution of errors in each class. Thus, combining their

outputs leads to the improved performance on the overall task. Third, we use

the inception network architecture that has been shown to achieve very good

performance at relatively low computational costs. In this study, we employed

the state-of-the-art Inception network model namely the Inception-ResNet-v2

model. Szegedy et al. [39] demonstrated that the Inception-ResNet-v2 model

yields state-of-the-art performance in the ImageNet large-scale visual recogni-

tion challenge (ILSVRC) [34] because it gets advantage from residual connec-
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Figure 5: The entire architecture of our feature extraction model.

tions. Unlike our previous research [46] that used pre-trained deep learning

models to extract discriminated features, we can train every single DCNN using

its pre-trained model and our augmented training dataset. This is because in

this study we can successfully generate enough augmented images for training

these networks and avoiding the overfitting problem. After these training pro-

cesses, our Inception models can extract far much better features than their

pre-trained models. The training steps are explained in detail in the next sec-

tion.

5.3. Training Inception Models

In the data augmentation step, randomly cropping, rotating and translat-

ing, each original training image generates hundreds of new augmented training

images. This new dataset is used for training each Inception network with differ-

ently scaled input images. Each Inception-ResNet-v2 model is trained with one

of three kinds of scaled input images that are 600×600, 450×450 and 300×300

images. The fully connected layers from each model are disconnected so that

each network can accept input images with an arbitrary size. Each input image

is a rescaled image from the augmented dataset. The entire architecture of our

20



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

feature extraction model is illustrated in Figure 5. We train each network with

the stochastic gradient running on a GeForce GTX 1080 Ti, utilizing the Ten-

sorFlow [29] distributed machine learning system. We fine-tune the networks by

using the corresponding Inception-ResNet-v2 models using RMSProp [42] with

a decay of 0.9. We use a learning rate of 0.007, decayed every two epochs using

an exponential rate of 0.94. The training process for each Inception network

takes 50 epochs. We convert the last convolutional layer of each model into

a one-dimensional feature vector with a length of 1056. Finally, all the one-

dimensional feature vectors are used as the inputs to gradient boosting trees

classifiers.

5.4. Training Gradient Boosting Trees Classifiers

For each Inception-ResNet-v2 model, we build a training dataset of deep

feature vectors, extracted from training images in our augmented dataset. Each

dataset of deep feature vectors is used to train a gradient boosting classifier to

improve further the classification accuracy rate. We use a learning rate of 0.05

in every training model. The number of leaves and the tree depth, which are

the main parameters to control the complexity of the tree model, are set to 191

and 6, respectively. In the training processes, each training data is split into

classes based on the highest score.

After the training processes, all the gradient boosting trees classifiers are

combined using the majority voting strategy to create a stronger classifier. In

our previous paper [44], we proved that although DCNN is one of state-of-the-

art object detection methods, it is not able to capture fully multi-scale context

information of different objects. In this study, an Inception network can achieve

the highest accuracies in detecting one or two breast cancer types but other

Inception networks can be better at recognizing the remaining types. Thus, this

combination is a better solution for utilizing the advantages of multi-resolution

images and multi-scale feature descriptors and extracting both global and local

information of different breast cancer tumors.
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6. Experimental Results and Analysis

6.1. Dataset

In this section, we demonstrate the effectiveness of our proposed methods

of breast cancer detection by evaluating them on two datasets: the Bioimaging

2015 breast histology classification challenge [32] and the BreaKHis dataset [38].

We used the challenging database (Bioimaging-2015) from the Bioimaging

2015 breast histology classification challenge to evaluate the accuracy and sen-

sitivity of our methods and compared our results with those obtained from

state-of-the-art algorithms. This dataset consisted of H&E stained histology

images that were digitized with the same acquisition conditions, with the same

acquisition matrix of 2040×1536 pixels, and with an in-plane pixel size of

0.42µm×0.42µm. Each image was labeled by two pathologists who provided a

diagnostic from the image contents. They classified each image into four classes:

normal tissues, benign lesions, in situ carcinomas and invasive carcinomas.

There were 249 microscopy training images and 36 microscopy testing images

in total. Each image was also classified into two groups, non-carcinomas, and

carcinomas, by grouping the normal and benign classes into the non-carcinoma

class and grouping the in situ and invasive classes into the carcinoma class.

We trained our Inception models using differently scaled challenging input

images from this challenging dataset. Images had matrix sizes of 300×300,

450×450 and 600×600. We also used features extracted from these models to

train three corresponding gradient boosting models. These models were then

compared with the state-of-the-art models [1] [9] [37]. Each proposed model was

denoted by the pre-trained model name, the image input size, and the classifier

name. For example, Inception-450x450+GBT denotes the method that uses

the pre-trained Inception-ResNet-v2 model with a 450×450 image input and

a gradient boosting trees classifier. Inception-600x600 represents the method

that uses the pre-trained Inception-ResNet-v2 model with a 600×600 image

input and a Softmax classifier.

The proposed method was also tested on the BreaKHis dataset that included
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Table 1: Recognition rate on the challenging database of H&E stained histological breast

cancer images.

Method Four Classes Two Classes

CNN+SVM 77.8 % 83.3 %

CNN 77.8 % 80.6 %

Inception-300x300 82.0 % 90.9 %

Inception-300x300+GBT 90.8 % 97.2 %

Inception-450x450 88.1 % 92.2 %

Inception-450x450+GBT 91.9 % 95.0 %

Inception-600x600 88.9 % 95.3 %

Inception-600x600+GBT 92.2 % 98.6 %

Model Fusion 96.4 % 99.5 %

7909 images collected from 82 anonymous patients. These images were digitized

with the same resolution of 700×460 pixels. The BreaKHis dataset was divided

into benign and malignant tumors, each of which included four magnification

factors, namely, 40X, 100X, 200X, and 400X. Particularly, pathologists classified

benign tumors into four subclasses that included adenosis (A), tubular adenoma

(TA), phyllodes tumor (PT), and fibroadenoma (F). They also divided malig-

nant tumors into four other subclasses, which were ductal carcinoma (DC),

mucinous carcinoma (MC), lobular carcinoma (LC), and papillary carcinoma

(PC). To ensure a higher level of reliability, 70% of available data were ran-

domly chosen to train deep learning models and gradient boosting classifiers.

We used the remaining 30% of the data for performance evaluation. We also

trained our Inception models and gradient boosting classifiers on this challeng-

ing dataset, using differently scaled input images with the sizes of 300×300,

450×450 and 600×600. These models were then compared with the state-of-

the-art algorithms [1] [9] [37].
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Table 2: Sensitivity for four-class classification on the challenging database of H&E stained

histological breast cancer images.

Method Normal Benign In situ Invasive

CNN 77.8 % 55.6 % 88.9 % 88.9 %

CNN+SVM 77.8 % 66.7 % 77.8 % 88.9 %

Inception-300x300 80.0 % 87.8 % 86.7 % 73.3 %

Inception-300x300+GBT 100 % 90.0 % 88.9 % 84.4 %

Inception-450x450 77.8 % 96.7 % 82.2 % 95.6 %

Inception-450x450+GBT 83.3 % 100 % 85,5 % 98.9 %

Inception-600x600 82.2 % 95.6 % 86.7 % 91.1 %

Inception-600x600+GBT 95.6 % 96.7 % 88.9 % 87.7 %

Model Fusion 97.8 % 100 % 88.9 % 98.9 %

6.2. Results on the Bioimaging-2015 dataset

Table 1 shows that the classification accuracy of our Inception networks is

much better than that of the competing classifiers (CNN) [1] for the four classes,

with a better accuracy of at least 4.2%. These results prove that our Inception

models effectively improved the performance of the breast cancer classifier. This

is because these models can extract more key breast cell features compared to

CNN. CNN consisted of four narrow convolution layers that were not enough

to extract unique characteristics of breast cancer cells, which was not an easy

task because of a wide variety of H&E stained sections. On the contrary, our

Inception models can extract detailed information from breast cell types that

indicate the similarities of breast cancer cells to normal breast cells. Each model

was trained by a very deep network that was crucial for capturing the natural

hierarchy of objects. Low-level features were captured in the first layer, and

object parts were extracted at higher layers. Furthermore, the residual learning

framework eased the training of these networks and enabled them to extract

higher feature levels, leading to improved performance in recognition tasks.

We also evaluated the performance of the gradient boosting trees classifiers
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Table 3: Sensitivity for two-class classification on the challenging database of H&E stained

histological breast cancer images.

Method Non-carcinoma Carcinoma

CNN 74.5 % 80.6 %

CNN+SVM 79.2 % 74.5 %

Inception-300x300 83.9 % 97.8 %

Inception-300x300+GBT 94.4 % 100 %

Inception-450x450 87.7 % 96.7 %

Inception-450x450+GBT 91.7 % 98.3 %

Inception-600x600 90.5 % 100 %

Inception-600x600+GBT 97.2 % 100 %

Model Fusion 98.9 % 100 %

using deep features from the Inception models, as shown in Table 1. Inception-

300x300+GBT, Inception-450x450+GBT and Inception-600x600+GBT are more

accurate than Inception-300x300, Inception-450x450 and Inception-600x600, re-

spectively. This is because the gradient boosting trees classifier considerably im-

proves the accuracy improvement of the classification of breast cancer features

in the deep learning models.

Table 2 indicates that each Inception network has its own advantages and

disadvantages in detecting breast cell types. We can observe that Inception-

300x300+GBT is the best classifier for verifying normal breast cells with a

sensitivity of 100% while Inception-450x450+GBT achieves the highest accu-

racies in detecting benign tumors and invasive carcinomas, with sensitivities

of 100% and 98.9%, respectively. For the non-carcinoma/carcinoma tissue

classification task, Inception-600x600+GBT achieved a higher accuracy rate

than Inception-300x300+GBT and Inception-450x450+GBT. The sensitivity of

Inception-600x600+GBT in detecting carcinomas was 100% and its specificity

was 97.2%. This can be explained by the fact that, although the Inception-

ResNet-v2 network is the state-of-the-art object detection method, it is not
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Figure 6: Qualitative results of our proposed method on the database from the Bioimaging

2015 breast histology classification challenge [32].

able to capture fully multi-scale context information of different breast cancer

types. Table 1 demonstrates that the fused model can achieve a 96.4% accuracy

in the cases of four class problems, which is the best among the competitive

approaches using deep learning models. The fused model accuracy was at least

4.2% higher than any of the single models. This proves once again that this

model can exploit the deep network architecture of multi-resolution input im-

ages to aggregate multi-scale contextual information, and can also utilize the

advantages of its single models, as mentioned in our previous research [44].

Regarding binary classification, the accuracies of our classifiers considerably

increased compared to the four-class problem. This is because the normal and

benign classes are not much different, and the in situ class also shares similar

features with those of the invasive class. The results prove that the fused model

was the best in reference to the algorithms included in the experiment of binary

classification, and achieved a total accuracy of 99.5%. Table 3 also demonstrates

that the sensitivity of the fused model used to detect carcinomas is 100% and

its specificity is 97.2%.

We also compared our proposed deep learning networks with one of the state-
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of-the-art algorithms using CNN (Cruz-Roa-CNN), presented by Cruz-Roa et al.

[9]. This algorithm aimed at the detection of invasive carcinomas in each high-

resolution image patch. Table 3 shows that the overall sensitivity of our fused

model for patch-wise classification of invasive carcinomas is better than that of

this competing classifier. Our model achieved a sensitivity of 100 % for patch-

wise classification of invasive carcinomas, which is 20.4% better than Cruz-Roa-

CNN. Our method significantly outperformed Cruz-Roa-CNN despite the fact

that our method was not a dedicated invasive carcinoma detection method. This

is because our method can capture multi-level and multi-scale features and can

recognize not only individual nuclei features but also the structural organization.

Spanhol et al. [37] used approximately 2000 images for training CNNs that

were used for classifying benign and malign tumors. They achieved a classifica-

tion accuracy rate of 84%. For the non-carcinoma/carcinoma tissue classifica-

tion task, our fused model achieved 99.5 % accuracy, which was the best among

the competitive approaches using deep learning models. Although we used less

training images, our performance was still better because our method could gen-

erate more training images by using the proposed data augmentation technique.

Moreover, our network model could learn features at different scales through its

convolutional layers. Thus, our network can recognize better individual nuclei

as well as nuclei structures. Qualitative results of our proposed method on the

database from the Bioimaging 2015 breast histology classification challenge are

shown in Figure 6.

6.3. Results on the BreaKHis dataset

Table 4 shows that our fused model achieved the highest accuracy among

all the Inception models. The experimental results show again that the fused

method, owing to its ability to aggregate multi-scale contextual information,

outperforms all other approaches, and achieves improvements of at least 3.3%,

4.2%, 5.5% and 3.6% for images at the respective magnification factors of of 40X,

100X, 200X and 400X. In fact, our fused model can produce considerably higher

accuracies compared to the state-of-the-art classifier, VLAD classifier [10], be-
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Figure 7: Variations in accuracy and loss with number of training steps.

cause it is able to aggregate multi-level local descriptors into a compact object

representation. Although the VLAD method can effectively extract local feature

descriptors of breast cancer tumors, our boosting framework of deep learning

models still considerably outperformed their approach, which only models his-

tological images through a higher-order linear dynamical systems analysis using

a set of multidimensional spatially-evolving signals.

Table 4 also shows that features that are extracted from multi-scale image

inputs and are then fused into a boosting framework can perform better than

conventional deep learning networks in problems of object classification. This

also proves that our boosting algorithm is more effective than deep learning net-

works when dealing with the problem of a limited number of available training

samples. Figure 7 shows the training accuracies and losses of our deep convolu-

tional neural networks, which were Inception-300x300, Inception-450x450, and

Inception-600x600. The training images used in this experiment are the images

at the magnification factors of 400X in the BreaKHis dataset. These training

accuracies are considerably higher than the corresponding testing accuracies.
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Table 4: Comparison of our proposed methods with other state-of-the-art methods on the

BreaKHis database.

Method 40X 100X 200X 400X

PFTAS [10] 83.80 % 82.10 % 85.10 % 82.30 %

ORB [10] 74.40 % 69.40 % 69.60 % 67.60 %

LPQ [10] 73.80 % 72.80 % 74.30 % 73.70 %

LBP [10] 75.60 % 73.20 % 72.90 % 73.10 %

GLCM [10] 74.70 % 78.60 % 83.40 % 81.70 %

CLBP [10] 77.40 % 76.40 % 70.20 % 81.80 %

Inception-300x300 90.2 % 91.9 % 93.7 % 88.9 %

Inception-300x300+GBT 93.5 % 95.3 % 96.1 % 91.1 %

Inception-450x450 90.1 % 91.5 % 93.9 % 90.5 %

Inception-450x450+GBT 93.8% 94.9 % 96.5 % 92.7 %

Inception-600x600 91.5 % 92.5 % 94.1 % 91.9 %

Inception-600x600+GBT 94.2 % 95.9 % 96.7 % 92.5 %

CNN [37] 90.40 % 87.40 % 85.00 % 83.80 %

VLAD [10] 91.80 % 92.10 % 91.40 % 90.20 %

Model Fusion 95.1 % 96.3 % 96.9 % 93.8 %

These results imply that DCNNs suffer from overfitting. In this experiment,

our gradient boosting method is able to improve the performance by preventing

overfitting.

We also evaluated the classification performances of each different deep learn-

ing framework, including ResNet-V1-152 [22], Inception-V3 [40], Inception-V4

[39], and Inception-300x300, as shown in Table 5. All the image inputs of

these networks were images acquired with 300×300 matrices. They are the

state-of-the-art convolutional neural network image classification models. Ta-

ble 5 shows that the models using the residual learning framework, including

Inception-300x300+GBT and ResNet-V1-152+GBT, achieve considerably in-

creased accuracies for object classification. The residual learning framework
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Table 5: Comparison of our proposed methods with other state-of-the-art fine-tuning deep

learning models on the BreaKHis database.

Method 40X 100X 200X 400X

ResNet-V1-152+GBT 92.5 % 94.8 % 95.8 % 90.5 %

Inception-V3+GBT 88.9 % 90.1 % 89.1 % 87.5 %

Inception-V4+GBT 90.4 % 92.3 % 93.7 % 90.1 %

Inception-300x300+GBT 93.5 % 95.3 % 96.1 % 91.1 %

played an important role in training very deep networks. It eased the train-

ing of these networks and led to an improved accuracy in classification tasks.

Table 5 also indicates that Inception-300x300+GBT is the best among the com-

petitive approaches using deep learning models. This is because it benefits by

combining the Inception architecture with residual connections. First, resid-

ual connections lead to dramatically improved training speeds for the Inception

architecture. Second, this Inception network that used residual connections,

could employ deeper convolution layers for the effective extraction of high-level

features from images.

7. Conclusion

In this paper, we proposed a novel approach that used an incremental boost-

ing convolution network for breast cancer detection. This network could clas-

sify each H&E stained histological breast cancer image into one of the four

balanced classes: normal, benign, in situ carcinoma, and invasive carcinoma.

Alternatively, each H&E stained histological breast cancer image could also be

classified into one of two basic groups: carcinomas or non-carcinomas. The key

advantages of the proposed method over existing methods are that it employs an

ensemble of DCNNs trained to extract visual features from multi-scale images

and then uses a boosting framework to achieve a better classification perfor-

mance despite the limited number of breast cancer samples and imbalanced

training data, which are the challenging problems.

30



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Our proposed classifier consisted of two training stages. In the first training

stage, strong data augmentation methods were used to improve the classifi-

cation performance of deep learning networks. We presented an ensemble of

DCNNs trained to extract multi-context information from multi-scale training

images. This ensemble of DCNNs was able to extract both global and local

features of breast cancer tumors properly, and it could thus greatly improve the

classification performance of different breast cancer types.

In the subsequent stage of execution of this method, these multi-scale breast

cell features were adopted again to train the corresponding gradient boosting

trees classifiers. The combination of DCNN and the boosting trees classifier was

proved to elicit a better classification performance than the DCNN trained in

the previous stage, despite the challenging problems of the limited number of

breast cancer samples and imbalanced training data. A better training model

was built by combining three gradient boosting trees, using the majority vot-

ing strategy. This fused model achieved a higher classification accuracy and

higher sensitivity for carcinoma cases. The experimental results on challenging

datasets demonstrated that this algorithm empirically outperformed state-of-

the-art methods.

Experimental results demonstrated the superiority of the proposed method

against state-of-the-art breast cancer classification approaches. In the future de-

velopment of our methods, we intend to improve the performance of incremental

boosting convolution networks by adopting several novel following methods:

First, to effectively overcome the problems of the limited number of available

training samples and the imbalanced data, each static breast cancer histological

image can be divided into a set of image patches. In addition, we can use a

Euclidean distance to measure the similarity between two image patches.

Second, we aim to present a novel class-aware loss function that can be

used in our proposed DCNNs to minimize the intra-class distances of image

patches. This loss function is to train a center for deep features of each breast

cancer class and penalize the Euclidean distances between deep features and

their corresponding class centers. As a result, the inter-class features differences
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can be enlarged as much as possible while the intra-class features variations are

minimized. Thus, this loss function can lead to higher classification performance

for our DCNNs.

Third, by using a patch-based voting aggregation algorithm, we will be able

to classify different types of breast cancer tumors precisely in whole images.

Finally, boosting trees classifiers can be used to improve classification per-

formance. To improve classification performance of boosting trees classifiers,

we plan to extract training features from the most important convolution layers

of our DCNNs. This strategy is beneficial to build a strong classifier because

more low-level and high-level features are collected for training boosting trees

models.
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Ganesan, Automatic detection of invasive ductal carcinoma in whole slide

images with convolutional neural networks, in: Proc. SPIE. vol. 9041. San

Diego, California, 2014.

[10] K. Dimitropoulos, P. Barmpoutis, C. Zioga, A. Kamas, K. Patsiaoura, N.

Grammalidis, Grading of invasive breast carcinoma through Grassmannian

VLAD encoding, in: PLoS ONE, vol. 12, no. 9, Article ID e0185110, 2017.

33



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[11] J.G. Elmore, G.M. Longton, P.A. Carney, B.M Geller, T. Onega, A.N.A

Tosteson, Diagnostic concordance among pathologists interpreting breast

biopsy specimens, in: JAMA 2015.

[12] P. Filipczuk, T. Fevens, A. Krzyżak, R. Monczak, Computer-aided breast
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