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A B S T R A C T

When evaluating the probabilistic seismic performance of a structure in the context of Performance-Based
Earthquake Engineering (PBEE) applications, only estimates of the true response are obtained due to the finite
size of the group of records selected to represent the seismic scenario. The proposed study examines the
variability of these estimates, in terms of fragility parameters and failure rates, by implementing a procedure that
creates seismic scenario-consistent groups of records based on regrouping criteria applied to a larger set of
records. The results are then compared to those obtained from a statistical approach based on the bootstrap
resampling procedure, whose validity is disputed due to its incompatibility with common applications involving
probabilistic seismic performance assessment. Given that bootstrap resampling assumes that each bootstrap
sample is random, this condition is incompatible with requirements involving the need to match specific spectral
statistics of the group of records with a target spectrum. Due to the increased computational cost of the pro-
cedure based on regrouping criteria, the effect of this incompatibility is analysed by examining the agreement
between the two procedures for several case studies and the conditions under which bootstrap resampling leads
to a reduced level of error. Further insights about the variability of the estimates are obtained by analysing
scenarios with deterministic and probabilistic thresholds of the limit state capacity. Among other aspects, the
results show that, for both capacity thresholds, bootstrap resampling can provide acceptable results as long as a
sufficient number of ground motions and number of stripes are used.

1. Introduction

Practical guidelines provided by the Performance-Based Earthquake
Engineering framework for the probabilistic assessment of the seismic
performance of a building [1] draw attention to various sources of
uncertainty. Common sources are those associated with the seismic
input, usually expressed by the seismic hazard uncertainty [2] and the
record-to-record variability [3], the structural modelling, such as the
variability of geometric properties and material constitutive laws [1],
and limit state definitions, like the capacity modelling errors [4]. These
uncertainties can be accounted for during the structural analysis of the
numerical model or in a subsequent post-processing stage of the ana-
lysis results. Depending on the stage of the analysis in which the dif-
ferent uncertainties are accounted for, their combination can be per-
formed using Monte Carlo simulation-based techniques or alternative
simplified methods, such as first-order second-moment techniques (e.g.
see [5–9]). Nevertheless, it is commonly agreed that accounting for

uncertainties changes the seismic demand, the fragility function para-
meters [10], the associated seismic risk [11,12], as well as the expected
losses [13].

The present research analyses the variability of the fragility function
parameter estimates and of the associated seismic risk estimates due to
uncertainty of the input seismic action when nonlinear dynamic ana-
lysis is performed. In nonlinear dynamic analysis, the size of the con-
sidered group of ground motion records is selected in order to capture
record-to-record variability and, at the same time, to accommodate
availability and computational time-related restrictions. However, due
to the finite size of the group of records, only an estimate of the seismic
demand is obtained and it can be argued that a different group of re-
cords, representative of the same seismic scenario, would lead to a
different estimate of the same demand [14]. Existing procedures com-
monly used to account for the uncertainty associated to the use of a
finite size group of records, termed group-to-group1 variability hereon,
rely on analytical procedures, such as the Delta method, or on
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numerical simulations, such as the bootstrap resampling, [12,14,15]. The
applicability of each procedure depends on the methodology applied to
derive the fragility functions, the desired precision as well as time- and
computation-related restrictions. Given its widespread use (e.g. see
[16–19]), as well as the possibility to combine multiple sources of
epistemic uncertainty [15], the bootstrap resampling is found to be the
most commonly used procedure to assess group-to-group variability.

One of the main conditions of bootstrap resampling is that bootstrap
samples are random samples [20]. However, this condition is not al-
ways compatible with a situation involving the resampling of groups of
records (each group of records being a sample) where the properties of
each group need to match those of a certain seismic scenario. Enforcing
a match between statistics representative of the sample (i.e. the group
of records) and parameters of the selected seismic scenario conditions
the sample, since it is by combining those specific records that the
sample is valid (where valid means that it matches the parameters of
the seismic scenario). Therefore, by conditioning the way it is defined, a
sample cannot be considered to be random. To take this issue into ac-
count, an alternative procedure is proposed that involves creating new
groups of records based on a process that regroups selected earthquake
records and maintains the compatibility with the seismic scenario for
all new groups.

The variability of the estimates of the fragility function parameters
and of the associated seismic risk is determined according to the pro-
posed procedure, i.e. the regrouping procedure, and is then compared to
the variability obtained using the bootstrap resampling procedure. Even
though bootstrap resampling is inconsistent (see Section 3.1 for a more
detailed discussion), since the regrouping procedure is more computa-
tionally demanding, the ability of bootstrap resampling to provide
variability estimates that are adequate is analysed by comparing them
to those obtained by the regrouping procedure. The comparisons are
performed using structural response data obtained from the nonlinear
dynamic analysis of three structures for increasing levels of earthquake
loading. Furthermore, fragility parameter estimates and risk estimates
are analysed for two scenarios of the limit state capacity: one that
considers deterministic capacity and one that considers probabilistic
capacity, the latter leading to counterintuitive observations regarding
the variability of the estimates.

2. Modelling the fragility function and the rate of failure

The probability of failure fP( ) of the structure given the seismic
intensity measure (IM), also termed the fragility function, is often
conveniently represented by a lognormal cumulative distribution
function (CDF):
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P[ | ] Φ
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(1)

where Φ is the standard normal CDF with parameters log(θ) and β.
Fragility functions are usually derived based on numerical analysis re-
sults obtained from an inelastic structural model subjected to a group of
hazard-consistent records applied with various intensities. Currently
available methodologies for deriving numerical simulation-based fra-
gility functions can be grouped into IM-based and EDP-based meth-
odologies, according to [21]. A compilation of fragility curve genera-
tion procedures based on nonlinear analysis can also be found in [22],
including additional information about other features such as the con-
sideration of non-deterministic capacity limit states. For the purpose of
the present study, an EDP-based approach [21] will be applied, using
analytically compatible numerical analysis results from multiple-stripe
analyses (MSA) [23]. Briefly, MSA involves groups of records, each
selected to be hazard-compatible at a specific IM level (i.e. each stripe
level), applied to the structure whose response, conditional to the
predefined intensity, is defined by Engineering Demand Parameters
(EDPs). The generated group of EDPs is also termed a stripe of EDPs and

multiple intensity levels are considered to generate multiple stripes of
EDPs. The EDPs of each stripe are compared to their corresponding
capacities and, for each comparison, a failure/no failure state of the
structure is assigned. The term failure is considered herein as reflecting
the inability of the structure to comply with predetermined criteria and
can be associated to any predefined limit state or performance measure.
Furthermore, for the purpose of the current study, each limit state is
conditioned by one EDP. To derive the function of Eq. (1) according to
the EDP-based approach, the total number of analyses at each IM level
zIM is partitioned into the number of analyses that led to failure of the
structure cIM and the complementary number of analyses that didn’t
cause failure. Subsequently, the ratios:

=p c
zIM

IM

IM (2)

are determined for each IM level, indicating the probability of failure of
the structure at a given IM level. By considering all failure and no
failure observations to be independent, the binomial distribution can be
used to express the probability of having cIM failures in zIM records at
each IM level and the fragility function parameters of Eq. (1) can then
be determined using the maximum likelihood estimation procedure
suggested in [21].

The fragility function can then be numerically integrated with the
derivative of the seismic hazard curve dHIM to yield the mean failure
rate of the structure (simply termed failure rate hereon):

∫=
∞

λ f IM dHP[ | ] | |f IM0 (3)

Finally, assuming that both hazard and fragility are memoryless,
failure can be considered to be a Poisson process and the probability of
failure, i.e. the risk of failure, can be derived by:

= − −P e1f
λf (4)

which, in case of small failure rates, can be considered equal to the
failure rate without significant error.

3. Methodology to analyse the performance of the procedures
assessing the variability of fragility and failure rate estimates

The following sections describe the different type of scenarios and
methodological approaches considered in the case studies of Section 4
to compare the performance of the regrouping and bootstrap resampling
procedures in assessing the variability of fragility parameter estimates
and failure rate estimates.

3.1. Analysing the variability of fragility parameter estimates due to group-
to-group variability

The fragility function parameters determined using a particular
group of records are estimates { ̂ ̂θ β, } of the true unknown parameters
{θ β, } due to the relatively small (finite) number of records used to
represent the seismic input [12,14]. It is therefore expected that a dif-
ferent group of records will lead to a different set of { ̂ ̂θ β, }. The
variability of the fragility parameters obtained from the EDP-based
approach due to group-to-group variability can thus be determined
using a large number of groups of records obtained using the same
selection criteria. A procedure simulating this rationale is applied
herein, according to which a number N of records is initially selected
and used to perform MSA of the structural model. Next, multiple groups
of records with a smaller size n (with n < N) are created by regrouping
n records of the initial N and enforcing the same selection criteria. This
procedure, termed the regrouping procedure hereafter, aims to create m
new groups of n records consistent with the original seismic scenario.
The EDPs corresponding to each new group are then post-processed
according to Section 2 and m fragility functions are created, allowing
for the statistical analysis of their variability.
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As an alternative to using a large number of groups, i.e. the re-
grouping procedure described before, bootstrap resampling is often ap-
plied to examine the effect of the group-to-group variability on the
fragility parameters, as described in [12]. This procedure, referred to as
the bootstrap procedure hereon, considers a group of records of size n
(i.e. the parent group) associated to a certain IM level and resamples it
by selecting n records with replacement from this group (some of the
records will appear more than once and others will not be present in the
resampled group). The n failure/no-failure observations that corre-
spond to the demand associated to this resampled group of records
represents a demand pseudo-sample of size n for the selected IM level.
Repeating this resampling procedure for all the IM levels (using the
same parent group) generates the demand pseudo-samples needed to
obtain the ratios defined by Eq. (2) for all IM levels and determine a
new fragility function following the procedure described in Section 2.
This procedure is then repeated m times (using the same parent group)
to obtain m new fragility functions.

The bootstrap procedure generates consistent results as long as the
two following assumptions are met: the data sample that is resampled
(i.e. the parent sample) is representative of the population and is a
random sample of the population. Under these conditions, the bootstrap
procedure assumes that randomly resampling from the parent sample is
equivalent to sampling from the population and that each bootstrap
sample is a possible sample of the population [20]. In the context of the
present study, where the parent sample is a group of ground motion
records that need to fulfil a set of earthquake scenario compatibility
criteria (see the spectral matching criteria defined in Section 4.2), the
parent sample cannot be considered to have been randomly sampled
from the population. By enforcing the referred earthquake scenario
compatibility criteria, the parent sample is a conditioned sample, where
conditioned means that certain criteria need to be met for the sample to
be accepted as valid (see [24] for details on the optimization procedure
that leads to the conditioned sample of records). Therefore, each re-
sampled group of records randomly generated by bootstrapping the
parent group of records are unlikely to fulfil the earthquake scenario
compatibility criteria that led to the selection of the parent group. A
simple example of this situation is the case where a group of n records is
selected in order to have average spectral values over a certain period
range that are within a±10% bound with respect to a certain target
response spectrum. In this case, it can be understood that many random
bootstrap combinations of those n records may not comply with the
referred±10% bound. As other selection criteria are added to tighten
the compatibility between the group of records and the target earth-
quake scenario (see Section 4.2 and the discussion in [24]), it is ex-
pected that most, if not all, of the bootstrap samples will not comply
with the earthquake scenario compatibility criteria that are enforced.

In light of this, the value of the group-to-group variability obtained
from the pseudo-samples generated by the bootstrap procedure is ex-
pected to be inconsistent with the value that would be obtained using a
large number of groups, all selected to match the same earthquake
scenario compatibility criteria, or using the regrouping procedure, that
also enforces the same selection criteria. In order to analyse the sig-
nificance of this inconsistency, the regrouping and the bootstrap proce-
dures are applied to three case studies that also involve different
numbers of group sizes and IM levels. Furthermore, since the regrouping
procedure is more computationally demanding, the ability to still ob-
tain adequate variability estimates with bootstrap is also analysed.
Therefore, the performance of the procedures in determining the
variability of fragility function parameter estimates and failure rate
estimates is compared and the variability is quantified using statistics of
the estimates (i.e. mean, standard deviation and coefficient of varia-
tion).

3.2. Analysing the variability of fragility parameter estimates due to group-
to-group variability and uncertainty of the limit state capacity

The sets of fragility parameter estimates and associated statistics
obtained according to Section 3.1 are determined by considering that
the EDPs selected to establish the failure conditions have deterministic
capacities (Capdet). Additional sets of fragility parameter estimates and
of the corresponding statistics were also determined by considering
uncertainty in the capacity model of the EDPs. Existing research has
shown the non-negligible influence of that source of uncertainty on
both parameters of the lognormal fragility function, i.e. the shape and
scale, [11,25]. The considered probabilistic capacity model (Capprob) is
defined according to the following format:

=Cap m ε·Cap Capprob (5)

where mCap is the median value of the capacity model given as a
function of deterministic geometry and material properties and εCap is
the error term accounting for scatter and bias of the capacity model. In
the following, εCap is assumed to be a lognormal random variable [26]
with unit median, i.e. no bias, and dispersion βε. Variability in capacity
is combined first with record-to-record variability and then with group-
to-group variability as follows: for each record/analysis of a given
group, the obtained EDPs are compared with a sample of kcap equi-
probable capacity values determined by Eq. (5) to define a series of
failure/no-failure observations of size kcap. The EDP-based procedure
described in Section 2 is then applied, leading to one fragility function
for each group of records (the algorithm that is used can be found in
[22]). These new fragility parameter estimates involve uncertainty due
to both the record-to-record variability and the uncertain capacity
threshold. Finally, group-to-group variability is determined by applying
both the regrouping and the bootstrap procedures as defined in Section
3.1 (i.e. by repeating this process for the n groups in the former, and by
bootstrapping the sample of failure/no-failure observations of size
n× kcap in the latter). The performance of the two procedures is then
compared as defined in Section 3.1, and the variability statistics are
further compared with those obtained when considering a deterministic
limit state capacity.

3.3. Analysing the variability of failure rate estimates

When a fragility function with parameter estimates { ̂ ̂θ β, } is in-
tegrated with the seismic hazard according to Eq. (3), an estimate ̂λf of
the true unknown failure rate λf is obtained [12]. The variability as-
sociated to ̂λf stems from the variability of the fragility function de-
scribed in Sections 3.1 and 3.2, which is related to group-to-group
variability and to how limit state capacity is defined (i.e. if it is de-
terministic or probabilistic), but it is also influenced by the seismic
hazard curve, namely by the part of the curve contributing the most to
the failure rate. By considering the multiple sets of fragility functions
created in Sections 3.1 and 3.2, the corresponding sets of ̂λf estimates
are then obtained using Eq. (3). The variability of ̂λf is then quantified
for the several cases analysing statistics similar to those considered for
the results of Sections 3.1 and 3.2.

4. Description of the selected case studies

4.1. Structural modelling

The selected case studies are three reinforced concrete buildings
with infilled frame systems and with three, four and five storeys. All
buildings have the plan view and the reinforcement detailing presented
in Fig. 1. The structures are regular in-plan and in-elevation with a
storey height equal to 3.0 m. The concrete strength and the yield
strength of the reinforcement are equal to 25MPa and 500MPa, re-
spectively. The buildings are located in Lisbon, Portugal and were

D. Skoulidou and X. Romão Engineering Structures 195 (2019) 425–437

427



designed for gravity loads only. Specifically, a permanent load of 4 kN/
m2 is considered to be uniformly distributed on all floors, additional to
the slab self-weight (all slabs have a 0.12m thickness). Additionally,
the quasi-permanent component of a uniform live load of 3 kN/m2 is
also assigned to all floors, except to the top floor where this load is
1 kN/m2. Staircases are modelled only as permanent and quasi-per-
manent loads, which are transferred to the supporting beams and are
applied uniformly. The corresponding loads are 7.75 kN/m and
8.60 kN/m for the permanent and the quasi-permanent loads, respec-
tively. Masonry infills are present in all peripheral frames and represent
a permanent uniform load of 7 kN/m.

Three-dimensional models of the buildings are simulated in the
OpenSees (OS) computer software [27] considering mean values of all
material and geometrical properties. A lumped plasticity approach is
adopted to simulate the inelastic behaviour of all structural elements.
Phenomenological hysteresis laws are assigned in rotational springs
located on both ends of all columns and beams to simulate inelastic
flexural behaviour. Two independent springs are assigned to each end
of the columns, one for each orthogonal direction, while one spring is
assigned to each end of the beams modelling the in-plane flexural be-
haviour. Due to the nature of the selected modelling approach, biaxial
moment interaction or axial force moment interaction are not con-
sidered when modelling the behaviour of columns. The hysteretic
flexural behaviour is defined by a moment-rotation law that is simu-
lated using the hysteretic material provided by OS. The properties of the
backbone curve of all columns are determined considering the axial
force due to vertical loads of the seismic combination (G+0.3Q), where
G and Q stand for all permanent and quasi-permanent loads, respec-
tively. The yielding moment (My) and the yielding rotation capacity
(θy) are determined according to [28]. The capping (θc) and the ulti-
mate (θu) rotation capacities are computed according to [29] along
with the corresponding capping (Mc) and residual (Mr) moments, where
the latter is considered to be 20% of Mc (see the backbone curve in
Fig. 2(a)). Stiffness, strength and unloading stiffness degradation are
considered in the hysteresis curves as shown in Fig. 2. The unloading
stiffness degradation is implemented in OS via the beta factor of the
hysteretic material. A beta factor of 0.75 is used for the columns and of
0.85 for the beams in order to introduce higher degradation for the
latter [30]. The hysteretic material parameters related to pinching and
to damage due to ductility and dissipated energy are all set equal to

zero. The springs are connected in-series with a linear elastic interior
element. A stiffness modification factor equal to 10 is applied according
to [31] to account for the effect of the series connection on the total
stiffness of the element. Beam-column node failure is not considered
and rigid nodes are modelled in all element cross-sections. Even though
the possibility of shear failure due to the weak detailing of the columns
in flexure can be accounted for when post-processing the results of the
analyses, the cases that are examined herein only deal with ductile
demand which is defined by the maximum interstorey drift ratio of the
two directions (ISDmax).

Masonry infills are considered in all peripheral frames and are
modelled with a single strut active only in compression. Two diagonal
struts (strut 1 and strut 2 as shown in Fig. 2 (b)) are used to simulate
one infill and are connected to the beam-column joints. The equivalent
area of each strut is established based on the maximum lateral force of
the infill [32], transformed to the direction of the diagonal, and on the
masonry compressive stress fm. Maximum strength is assumed to be
reached at an interstorey drift of 0.2% [33]. The lateral displacement of
each infill is transformed into the diagonal displacement for the sub-
sequent definition of the strain of the strut. The parameters obtained,
i.e. the maximum stress and strain, are used to define the masonry
material with zero tensile strength simulated by the Concrete01 con-
stitutive model (Fig. 2(b)), [34]. The stress fm is equal to 3.10MPa and
all infills have a thickness of 0.15m. Additionally, a residual stress
equal to 10% of the maximum stress is considered for numerical sta-
bility, which is reached at an interstorey drift five times the interstorey
drift at maximum strength.

Geometric nonlinearities are incorporated in the form of P-Δ effects.
Furthermore, soil structure interaction phenomena are not modelled
and the building is considered fixed at the ground level. The first and
the second fundamental periods of vibration of the buildings, with and
without the masonry infills, are presented in Table 1. Finally, the
average of the first two periods of the infilled structures and the first
two periods of the bare structures T* is determined (also shown in
Table 1) to be used for the ground motion record selection. It is noted
that involving the period of vibration of the bare structure when de-
fining T* is conceptually similar to accounting for the period elongation
of the structure after yielding and failure of the infills, after which the
behaviour of the structure will tend to that of the bare structure.

Fig. 1. Plan view of a typical storey of the three buildings and design details of the end sections of the elements (all dimensions are in m).

D. Skoulidou and X. Romão Engineering Structures 195 (2019) 425–437

428



4.2. Ground motion selection and analysis

The ground motion record selection is performed using the recently
developed SelEQ software [24] using a Conditional Spectrum (CS) in
terms of the 5% damped spectral acceleration (Sa) [35] as the target
spectrum. After identifying the sources contributing to the hazard at the
site (Lisbon), the probabilistic seismic hazard analysis of the site was
performed within the SelEQ software using the open source software
OpenQuake [36] and the seismic hazard model developed by the
SHARE project [37]. The annual seismic hazard curve HIM was de-
termined at T* for each building at the benchmark site and is shown in
Fig. 3(a). For each source and four probabilities of exceedance, i.e.
30%, 10%, 5% and 2% in 50 years, the disaggregation of the hazard was
performed at T* and the contribution of each magnitude-distance (M-R)
bins for the hazard was then computed. For each probability of ex-
ceedance, the results were aggregated and the contribution of each M-R
pair and ground motion prediction equation to the exceedance of the
spectral acceleration of interest was computed to determine a CS that
considers the contributions of all individual M-R pairs using the
methodology proposed in [38,39]. A preliminary record selection was
performed using the NGA-WEST2 database [40] based on seismological
and strong motion criteria. These criteria are: magnitude larger than

5.5, closest distance from source to site larger than 10 km, soil shear
wave velocity, in upper 30m of soil, greater than 200m/s, a limit of
five records from a single seismic event, a lowest useable frequency
lower than 0.5 Hz, faulting scenarios compatible with the site (Lisbon),
only free-field and far-field records. Subsequently, the final selection
and scaling of a group of 40 bi-directional records (for each probability
of exceedance) was carried out by ensuring compatibility between the
target spectrum, i.e. the CS, and the average of the spectral accelera-
tions of the 40 records, where the spectral acceleration of each record is
defined by the geometric mean of the spectral accelerations of the two
horizontal components of the record. SelEq ensures this compatibility
by minimizing the difference between statistics of the target spectrum
(i.e. the mean and standard deviation of the logarithms of the spectral
accelerations) and the same statistics of the group, within a period
range of 0.2 T* and 1.5 T*, as described in [24]. An additional criterion
was included in the process which involves minimizing also the skew-
ness of the logarithms of the spectral accelerations to a value close to
zero for the same period range. This criterion is based on the fact that
the spectral accelerations are expected to follow a multivariate log-
normal distribution [41] and, therefore, the logarithms of the spectral
accelerations are expected to follow a multivariate normal distribution.
The scale factors (SF) of individual records that were involved during
this record selection process range from 0.263 to 3.995. To illustrate the
results of the ground motion selection process, Fig. 3(b) shows the
geometric means of the selected 40 records along with the CS for the
30% in 50 years probability of exceedance for the 3-storey building. All
the 40 records of a group defined for a certain probability of exceedance
were then scaled using the SF shown in Table 2 to define IM levels
whose spectral accelerations Sa(T*) are also shown. Each group of re-
cords is only scaled to match a few IM levels in order to have the four

(a) (b) 
Fig. 2. Moment-rotation backbone curve and hysteresis loop simulation for a column (a) and stress – strain relationship of the diagonal struts (in compression),
measured in the diagonal direction (b).

Table 1
First and second mode periods of vibration of the buildings.

Period\Building 3-storey 4-storey 5-storey

[T1, T2]infilled [0.31 s, 0.25 s] [0.41 s, 0.31 s] [0.52 s, 0.39 s]
[T1, T2]bare [0.73 s, 0.72 s] [0.96 s, 0.93 s] [1.18 s, 1.15 s]
T* 0.5 s 0.66 s 0.82 s

(a) (b) 
Fig. 3. The seismic hazard curves for the three buildings (a) and the CS with the geometric mean spectra of the 40 records for the 30% in 50 years probability of
exceedance for the 3-storey building (b).
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groups of records spanning a total of 20 IM levels. Values of SF equal to
1 correspond to the initial selection of a given group of 40 records that
match the corresponding CS. The overall maximum and minimum SFs
that are applied to any individual record, combining the scaling needed
during the record selection process and the scaling to match the se-
lected IM levels, are 7.8445 and 0.1078.

MSA was then performed following a procedure similar to the one
proposed in [42] using the four sets of 40 records scaled according to
Table 2 spanning the 20 IM levels. For the regrouping procedure, each
group of 40 records is then regrouped into groups of 10, 20 and 30
records implementing selection criteria consistent with the criteria used
for the initial selection to ensure compatibility between the new groups
of 10, 20 and 30 records and the original group of 40 records. The
regrouping procedure starts by defining the total number of combina-
tions of m items (in this case 40) taken k (in this case, 10, 20 or 30) at a
time, which is given by the binomial coefficient:

=
−( )m

k
m

m k k
!

( ) ! ! (6)

For example, for the group of 20 records, the binomial coefficient is
equal to 1.3×1011. However, not all combinations are valid since
admissible groups of records need to represent a seismic scenario con-
sistent with that of the reference group of size 40. Consistency is as-
sumed to be verified when a ground motion group of size k meets three
conditions consistent with the criteria that were used for the initial
selection as described previously. These conditions are applied between
statistics of the spectral values of each new group and the target
spectrum, where the target spectrum now corresponds to the spectrum
of the 40 records. As for the selection of the initial group of 40 records,
the selected statistics are the mean, the standard deviation and the
skewness of the logarithms of the spectral accelerations. Regarding the
first two statistics, a variation of 10% is allowed between the statistics
of the reference group of size 40 and the statistics of the new group with
a lower size. With respect to the skewness, admissibility is checked by
ensuring the skewness of the new group with a lower size cannot be
rejected according to the standard error test for skewness [43], con-
sidering a significance level of 5% and the reference skewness of the
group of size 40. Following this procedure, a total of 100 groups were
created for each of the new group sizes (10, 20 and 30). These 100
groups can then be used to analyse the uncertainty associated with
group-to-group variability.

5. Comparing the performance of the procedures for assessing the
variability of fragility and failure rate estimates

5.1. Variability of the estimates of the fragility parameters

5.1.1. Deterministic limit state scenario
The MSA yielded 20 stripes of ISDmax and, to determine the ratios

defined by Eq. (2), failure is considered to occur when ISDmax is higher
than a limit value ISDcap or when there is numerical failure of the model
due to nonconvergence. For the deterministic limit state scenario, ISDcap

is set to 2.5%. One hundred fragility curves are constructed according
to the regrouping procedure for the three buildings using all 20 stripes of
demand. Fig. 4 shows the 100 fragility functions of the 3-storey
building determined for the 100 groups of 20 records obtained by the
regrouping procedure when all 20 stripes of demands are considered.
One group of 20 records, termed parent group i, with parameters ̂ ̂θ β{ , }
shown in Table 3, is randomly selected from the 100 groups to carry out
the bootstrap procedure. Two bootstrap sample sizes of 100 and 500 are
considered to analyse the sensitivity of the bootstrap estimates and the
corresponding results are identified by the number in parentheses in
Table 3. The fragility functions corresponding to the bootstrap i (100)
case are shown in Fig. 4(a) along with the fragility function of the
parent group i, which is represented by the thick black line. To em-
phasize some key points of the two procedures, Fig. 4(b) shows results
similar to those of Fig. 4(a) but considering a different parent group j.
As can be seen, the domain covered by the bootstrap fragility functions
is not always the same and depends on the parent group. Statistics of
the parameters of the fragility functions, i.e. their mean μ and varia-
bility values, the latter in terms of the standard deviation σ and of the
coefficient of variation CV, are presented in Table 3 for all three
buildings studied and for both procedures. Even though the discussion
about the variability of the parameters is mostly focused on the values
of σ , values of CV are also provided for all the results presented in this
Section and in the following ones in order to better understand the
magnitude of that variability.

By comparing the statistics obtained from bootstrap (100) and
bootstrap (500) presented in Table 3, it appears that using a bootstrap
sample size of 100 is adequate to estimate the selected statistics for all
the considered case studies. The mean values, ̂μθ and ̂μβ , are nearly
identical and the differences in the σ are small (less than 15%).
Therefore, subsequent results are only based on the bootstrap (100)

Table 2
Scale factors and corresponding spectral accelerations used in the MSA procedure.

Probability of exceedance (IM) Scale factor Sa(T*=0.50 s) (g) Scale factor Sa(T*=0.66 s) (g) Scale factor Sa(T*=0.82 s) (g)

(1) 0.38 0.05 0.41 0.04 0.40 0.03
(2) 0.77 0.10 0.72 0.07 0.67 0.05

30% in 50 years (3) 1.00 0.13 1.00 0.10 1.00 0.07
(4) 1.54 0.20 1.45 0.14 1.48 0.11

(5) 0.86 0.25 0.82 0.18 0.82 0.14
10% in 50 years (6) 1.00 0.29 1.00 0.22 1.00 0.17

(7) 1.21 0.35 1.19 0.26 1.23 0.21

(8) 0.91 0.40 0.89 0.30 0.90 0.24
5% in 50 years (9) 1.00 0.44 1.00 0.34 1.00 0.27

(10) 1.20 0.53 1.22 0.41 1.21 0.32
(11) 1.36 0.60 1.39 0.47 1.39 0.37

(12) 0.92 0.67 0.91 0.52 0.91 0.42
2% in 50 years (13) 1.00 0.73 1.00 0.57 1.00 0.46

(14) 1.08 0.79 1.10 0.63 1.09 0.50
(15) 1.16 0.85 1.20 0.69 1.17 0.54
(16) 1.30 0.95 1.39 0.80 1.37 0.63
(17) 1.44 1.05 1.57 0.90 1.54 0.71
(18) 1.58 1.15 1.71 0.98 1.70 0.78
(19) 1.71 1.25 1.83 1.05 1.83 0.84
(20) 1.85 1.35 1.97 1.13 1.96 0.90
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case. Furthermore, when comparing the performance of the regrouping
and bootstrap procedures based on the visual analysis of Fig. 4 and on
the statistics of Table 3, an overall good match can be observed between
the corresponding statistics of the variability of the fragility function
parameters, ̂σθ and ̂σ β . It is noted, however, that the parent group that
is selected for the bootstrap affects the fragility functions that are sub-
sequently generated. With respect to the mean values of the parameters,
which differ for the different parent groups, they can be either higher or
lower than the corresponding parameters obtained with the regrouping
procedure. Although this biased mean cannot be corrected since it only
depends on the original data being bootstrapped, i.e. the parent group,
it is not a relevant aspect of the procedure since bootstrapping is nor-
mally used to estimate the variability of the estimates and not their
mean values. The variability values obtained by the bootstrap proce-
dure, on the other hand, do not seem to vary substantially for the al-
ternative parent groups, for both parameters examined. Furthermore,
they are in good agreement with those obtained by the regrouping
procedure for both parameters and for all case studies. Nevertheless,
bootstrap seems to lead to marginally lower variability for most of the
cases, in particular for parameter β.

To complement the previously presented results with cases invol-
ving different numbers of records, similar analyses were performed
using groups of 30 and 10 records. Groups of 30 and 10 records are
selected for being representative of larger and of smaller group sizes,
respectively. Fragility function parameter statistics similar to those of
Table 3 are presented in Tables 4 and 5, for the groups of size 30 and
10, respectively. As expected (e.g. see [19]), the results obtained for
smaller groups of records using the regrouping and the bootstrap proce-
dures exhibit a larger variability of both fragility estimates, while

results obtained for the larger groups are the opposite. Despite the re-
duction in the variability of the estimates that is observed when using
30 records (Table 4), the trend of the results is similar to the one ob-
served when using 20 records. As such, when using groups of 30 re-
cords, the variabilities obtained from the regrouping and from the
bootstrap procedures are also very similar for both fragility parameters.
On the other hand, using a small number of records, such as 10
(Table 5), can lead to large differences between the results of the two
procedures. As can be seen from Table 5, these differences are present
for both fragility parameters and their relative variations depend on the
structure. It can thus be said that using an adequate number of records
is crucial to ensure that bootstrap variability estimates can still be
considered valid, despite the previously discussed inconsistency be-
tween the regrouping and the bootstrap procedures.

A further assessment of the performance of the two procedures is
carried out by replicating this fragility curve analysis using a lower
number of IM levels (i.e. fewer stripes). Although using a higher
number of IM levels is generally suggested to reduce the fitting error, it
is not uncommon to find situations where a much lower number of IM
levels is used. Five IM levels covering uniformly the range of response of
the structures are selected for the purpose of the present research. In
particular, the lowest IM corresponds to the lowest IM value that con-
tributes to the lower tail of the fragility curve of a given building, the
highest IM corresponds to the maximum IM value considered for each
building and contributes to the upper tail of the fragility curve. The
remaining three IM levels are selected in order to cover the range of the
fragility curves. Hence, referring to Table 2, stripes [7,11,15,18,20] are
selected for the 3-storey building, stripes [8,11,15,18,20] are selected
for the 4-storey building and stripes [8,14,16,18,20] are selected for the

(a) (b) 
Fig. 4. Comparison of the 100 fragility functions of the 3-storey building obtained from the regrouping and the bootstrap (100) procedures using 20 stripes. Parent
groups i and j are used for the bootstrap resampling in (a) and (b), respectively.

Table 3
Statistics of the fragility function parameters due to group-to-group variability for the three buildings using 20 records and 20 stripes.

Building Procedure ̂θ ̂μθ ̂σθ ̂CV θ (%) ̂β ̂μβ ̂σ β ̂CV β (%)

3-Storey Regrouping – 0.72 0.026 3.58 – 0.28 0.040 14.38
Bootstrap i (100) 0.77 0.77 0.023 2.99 0.29 0.29 0.031 10.86
Bootstrap i (500) 0.77 0.77 0.022 2.82 0.29 0.28 0.028 9.88
Bootstrap j (100) 0.66 0.66 0.019 2.93 0.29 0.28 0.029 10.23
Bootstrap j (500) 0.66 0.66 0.020 3.00 0.29 0.28 0.027 9.57

4-Storey Regrouping – 0.59 0.020 3.39 – 0.26 0.034 13.04
Bootstrap i (100) 0.58 0.58 0.015 2.58 0.26 0.25 0.028 11.01
Bootstrap i (500) 0.58 0.58 0.017 2.84 0.26 0.25 0.030 11.81
Bootstrap j (100) 0.61 0.62 0.018 2.95 0.28 0.27 0.026 9.49
Bootstrap j (500) 0.61 0.62 0.018 2.99 0.28 0.27 0.027 9.76

5-storey Regrouping – 0.47 0.015 3.12 – 0.22 0.020 9.31
Bootstrap i (100) 0.47 0.47 0.014 2.89 0.24 0.23 0.027 11.77
Bootstrap i (500) 0.47 0.47 0.012 2.55 0.24 0.23 0.026 11.14
Bootstrap j (100) 0.49 0.49 0.012 2.50 0.22 0.22 0.026 11.87
Bootstrap j (500) 0.49 0.49 0.012 2.54 0.22 0.22 0.023 10.66
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5-storey building and new fragility curves are constructed using both
the regrouping and the bootstrap procedures. The fragility curves de-
veloped for the three buildings using 20 records are presented in Fig. 5,
while the respective statistics of the fragility parameter estimates are
shown in Table 6. Given the good agreement of the results obtained
using 100 and 500 bootstrap samples for this case as well, only the re-
sults obtained for the bootstrap sample size of 100 are presented and
discussed.

The reduction of the number of stripes appears to have little effect
on the mean estimates of the parameters for both the regrouping and the
bootstrap procedures, as shown by the good agreement of the mean
values of Table 3 and Table 6. Nevertheless, such as for the observations
derived for 20 stripes, the mean values of ̂θ and ̂β obtained for the
bootstrap procedure depend on the selection of the parent group. With
respect to the variability of the parameter estimates, Unlike the pre-
vious case, using only 5 stripes leads to a much higher variability of the
parameter estimates. This effect can be initially attributed to the higher
epistemic error that is unavoidably introduced by having a lower
number of points to fit the fragility function (i.e. fewer stripes). How-
ever, this increase of the variability doesn’t affect equally the two
procedures, i.e. the regrouping and the bootstrap. While the standard
deviation σ of both ̂θ and ̂β is marginally higher for the regrouping
procedure (they increase by 20%, on average), almost all values of σ
increase to more than twice their initial value for the bootstrap proce-
dure. These results show that the inconsistency between the regrouping
samples and the bootstrap pseudo-samples (see Section 3.1) has a larger
impact in the variability of the fragility parameter estimates when a
lower number of stripes is considered. As such, when focusing on the
comparative assessment of the regrouping and the bootstrap procedure
for the case where only 5 stripes are used, the regrouping procedure is
seen to lead systematically to a lower variation of the parameters. This
effect is graphically illustrated in Fig. 5 and can be quantitatively ob-
served in Table 6. It can be seen that the standard deviation of both ̂θ
and ̂β is larger for the bootstrap procedure, leading to an overestimation
of ̂σ β up to 50% and of ̂σθ up to 35%.

Conclusions similar to those obtained for the groups of 20 records
can also be seen for the case involving groups of 30 records, as shown in
Table 7. Although the variability of the parameter estimates is in-
herently lower when compared to that of the 20 records and 5 stripes,
using 30 records and 5 stripes with the regrouping procedure yields
insignificant differences in the CV of both parameters when compared
to the case involving 30 records and 20 stripes. On the contrary, a

similar comparison for the results obtained for the bootstrap procedure
shows that the CV of both parameters more than doubles when using
only 5 stripes. When using groups of 10 records and 5 stripes (results
shown in Table 8), on the other hand, larger differences are found in the
variability of the parameters with respect to the case involving 20
stripes. For the regrouping procedure variations can be up to 80%, but
much larger values are found for the results obtained from the bootstrap
procedure where variations can go up to 300%. In the overall, it can be
concluded that the bootstrap procedure can provide adequate estimates
of the variability of parameters, i.e. comparable with those obtained
from the regrouping procedure, as long as an adequate number of re-
cords and number of stripes are employed. If these conditions are not
met, the variability estimates obtained from bootstrap can either under-
or overestimate the true variability of the parameters.

5.1.2. Probabilistic limit state scenario
The evolution of the fragility function parameter estimates is ex-

amined next when the effect of the uncertainty of the capacity model is
also taken into account according to Eq. (5), where mCap is equal to the
deterministic capacity of 2.5% and εCap is a lognormal random variable
with unit median and βε equal to 0.5. Although only the lognormal
model is adopted in the present research to express the uncertainty
related to the capacity model error [26], similar results are expected for
different statistical models. Monte Carlo (MC) analysis is performed
using a sample of 10 capacity values [22] that are generated using
stratified sampling [44] and the fragility functions are determined using
the regrouping and the bootstrap (parent group i considering 100 boot-
strap samples) procedures. The fragility functions obtained for the 3-
storey building are presented in Fig. 6, along with the corresponding
fragility functions that do not account for uncertainty in capacity for
comparison purposes. The parameter estimate statistics for all buildings
are presented in Tables 9 and 10, corresponding to the results obtained
from groups of 20 records when 20 and 5 stripes are considered, re-
spectively.

As expected, introducing variability in the limit state capacity re-
sults in larger ̂β values for all fragility curves, representing the record-
to-record variability and the uncertain capacity. This effect can be ob-
served in Fig. 6 by the lower steepness of all the new fragility functions
and in Tables 9 and 10 by the larger ̂μβ values, when compared to those
of Tables 3 and 6, respectively. Depending on the building, the increase
of ̂μβ can be from 50% to more than 100% and occurs in a similar way
in the results of both the regrouping and the bootstrap procedures. The

Table 4
Statistics of the fragility function parameters due to group-to-group variability for the three buildings using 30 records and 20 stripes.

Building Procedure ̂θ ̂μθ ̂σθ ̂CV θ (%) ̂β ̂μβ ̂σ β ̂CV β (%)

3-Storey Regrouping – 0.71 0.016 2.22 – 0.28 0.022 7.95
Bootstrap i (100) 0.71 0.71 0.016 2.18 0.28 0.28 0.023 8.07

4-Storey Regrouping – 0.59 0.012 2.04 – 0.27 0.020 7.28
Bootstrap i (100) 0.57 0.57 0.014 2.42 0.24 0.24 0.025 10.34

5-storey Regrouping – 0.47 0.008 1.78 – 0.22 0.018 7.91
Bootstrap i (100) 0.47 0.47 0.009 1.88 0.22 0.21 0.018 8.37

Table 5
Statistics of the fragility function parameters due to group-to-group variability for the three buildings using 10 records and 20 stripes.

Building Procedure ̂θ ̂μθ ̂σθ ̂CV θ (%) ̂β ̂μβ ̂σ β ̂CV β (%)

3-Storey Regrouping – 0.70 0.048 6.78 – 0.27 0.070 25.59
Bootstrap i (100) 0.74 0.74 0.031 4.23 0.27 0.27 0.032 11.72

4-Storey Regrouping – 0.59 0.036 6.13 – 0.25 0.063 24.72
Bootstrap i (100) 0.55 0.55 0.018 3.31 0.17 0.16 0.030 18.83

5-storey Regrouping – 0.46 0.024 5.25 – 0.22 0.031 13.97
Bootstrap i (100) 0.53 0.53 0.019 3.66 0.24 0.24 0.038 16.07
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variability in capacity, on the other hand, has a much smaller effect on
̂μθ , which remains almost unchanged for both procedures and for all

three buildings analysed.
Regarding the comparison of the statistics of the parameter esti-

mates when 20 or 5 stripes of intensities are used, the observations are
similar to those of Section 5.1.1, i.e. to the case involving a determi-
nistic limit state. As such, when a larger number of stripes is used
(Table 9), the regrouping and bootstrap procedures provide similar re-
sults both in terms of mean values and in terms of variability, although
the regrouping procedure generally yields a larger variability. When a
smaller number of stripes is used (Table 10), the mean values of the
estimates predicted by both procedures are similar, but the variability
estimates obtained by bootstrap can be as large as twice the values
obtained when using 20 stripes. Regarding the variability of the para-
meters obtained with the regrouping procedure, the increase that is
observed is much smaller. As seen in the results presented in the pre-
vious Section, the inconsistency issue between the regrouping samples
and the bootstrap pseudo-samples has a much larger effect when a lower
number of stripes is used.

Fig. 6 highlights an additional feature of the results obtained by
introducing the uncertainty in capacity: a reduction of the variability of
both ̂θ and ̂β with respect to the case where this uncertainty is not
considered. This effect can be seen for both procedures by the thinner
range of variation of the new fragility functions in Fig. 6 and,

quantitatively, by the smaller standard deviation values of ̂θ and ̂β in
Tables 9 and 10 when compared to those of Tables 3 and 6, respec-
tively. Even though this result appears to be counterintuitive, it is a
direct outcome of the selected procedure to develop the fragility func-
tions according to the EDP-based approach when uncertainty in capa-
city is involved using the MC approach.

Results obtained for the group sizes of 30 and 10 are presented in
Tables 11–14 for both cases in terms of number of stripes. The trends
regarding the reduced variability observed for the groups of size 20
when the uncertain capacity limit state is used instead of the determi-
nistic capacity limit state, are also found for these two other group sizes.
As such, variability estimates of Tables 11 and 13 are lower when
compared to those of Tables 4 and 5, respectively, and variability es-
timates of Tables 12 and 14 are also lower when compared to those of
Tables 7 and 8, respectively. Furthermore, differences between the re-
sults obtained for a given group size using 20 and 5 IMs are smaller
when capacity uncertainty is involved. As such, when the regrouping
procedure is employed, groups of 10 records using 5 stripes can also be
seen to lead to low variability estimates when compared to the case
involving 20 stripes (Tables 13 and 14). The bootstrap procedure, on the
other hand, leads to a larger variability of the fragility parameters when
fewer stripes are used, rendering it incompatible with regrouping re-
gardless of the number of records that is used. Ultimately, the conclu-
sions found for the analyses involving a deterministic capacity limit

)b()a( (c)
Fig. 5. Comparison of the 100 fragility functions of the 3-storey (a), 4-storey (b) and 5-storey (c) buildings obtained from the bootstrap and the regrouping procedures
using 20 records and 5 stripes.

Table 6
Statistics of the fragility function parameters due to group-to-group variability for the three buildings using 20 records 5 stripes.

Building Procedure ̂θ ̂μθ ̂σθ ̂CV θ (%) ̂β ̂μβ ̂σ β ̂CV β (%)

3-Storey Regrouping – 0.71 0.029 4.02 – 0.29 0.047 16.06
Bootstrap i (100) 0.76 0.74 0.039 5.18 0.34 0.31 0.060 19.37

4-Storey Regrouping – 0.56 0.022 4.01 – 0.28 0.038 13.58
Bootstrap i (100) 0.54 0.55 0.030 5.53 0.27 0.25 0.057 23.11

5-storey Regrouping – 0.49 0.018 3.72 – 0.20 0.031 15.12
Bootstrap i (100) 0.49 0.49 0.020 4.07 0.22 0.21 0.043 20.41

Table 7
Statistics of the fragility function parameters due to group-to-group variability for the three buildings using 30 records and 5 stripes.

Building Procedure ̂θ ̂μθ ̂σθ ̂CV θ (%) ̂β ̂μβ ̂σ β ̂CV β (%)

3-Storey Regrouping – 0.71 0.019 2.69 – 0.29 0.027 9.34
Bootstrap i (100) 0.70 0.70 0.031 4.36 0.30 0.29 0.048 16.51

4-Storey Regrouping – 0.56 0.013 2.36 – 0.29 0.021 7.39
Bootstrap i (100) 0.54 0.54 0.024 4.46 0.27 0.26 0.043 16.42

5-storey Regrouping – 0.49 0.012 2.51 – 0.21 0.018 8.87
Bootstrap i (100) 0.48 0.48 0.018 3.81 0.22 0.21 0.042 19.78
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state can be seen to be applicable to analyses that consider uncertainty
in the capacity limit state. Nonetheless, differences between the results
obtained with the regrouping and the bootstrap procedures are much
smaller in the former analyses. In the following Section, additional
findings are presented to further analyse the effects of propagating
these results when computing the failure rate.

5.2. Variability of the estimate of the failure rate

5.2.1. Deterministic limit state scenario
Failure rates are determined from Eq. (3) using the fragility func-

tions obtained in Section 5.1.1 and the seismic hazard curves that were
presented in Section 4.2. The statistics of the ̂λf values obtained for the
sets of fragility functions determined in Section 5.1.1 are presented in
Tables 15 and 16 for the cases involving groups of 20 records and 20
and 5 stripes, respectively. It is noted that the first column of values in
Tables 15 and 16 corresponds to the values of ̂λf obtained with the
fragility function of the parent group i.

Results indicate that computing ̂λf for the fragility functions derived
from the regrouping or the bootstrap procedure yields similar mean va-
lues of ̂λf , irrespective of the number of stripes. The variability of ̂λf
expressed by ̂σ λf , however, can be marginally larger when using the
regrouping-based fragility functions and 20 stripes. On the contrary,
when only 5 stripes are used, the value of ̂σ λf for the bootstrap procedure
can be up to 50% larger than the value obtained for the regrouping
procedure. Therefore, although the relationship between the fragility
curves and the failure rates is inherently nonlinear (accounting also for
the shape of the seismic hazard curve), the variability of the fragility
function parameters propagates to the variability of the failure rate. It is
also noted that variability values obtained from fragility curves invol-
ving 5 stripes and the bootstrap procedure are systematically larger than
the corresponding values derived from fragility curves involving 20
stripes and, in some cases, they exhibit an increase of more than 100%.
Therefore, the issues related with the inconsistency between the re-
grouping samples and the bootstrap pseudo-samples that are highlighted
in the results of the previous sections propagate in a similar way to the

failure rate estimates. Results obtained considering different sizes of
group records follow similar trends and are omitted herein for the sake
of brevity.

5.2.2. Probabilistic limit state scenario
The failure rates presented in this Section are determined from Eq.

(3) using the seismic hazard curve presented in Section 4.2 and the
fragility functions obtained in Section 5.1.2, which involve record-to-
record variability and uncertainty of the limit state capacity. The sta-
tistics of ̂λf are shown in Tables 17 and 18 for the cases involving
groups of 20 records and for 20 and 5 stripes, respectively. The results
indicate that including the variability of the capacity leads to higher
mean values of ̂λf but to a lower variability of ̂λf . The reduction in the
variability of ̂λf reflects the reduction in the variability of the fragility
function parameters discussed in Section 5.1.2. This observation is valid
for the results obtained by the bootstrap or the regrouping procedures
and is consistent for all buildings considered. Finally, as for the results
in the previous Section, when using a lower number stripes, the
variability of ̂λf obtained from the regrouping procedure is seen to in-
crease between 10% and 30%, while that obtained by the bootstrap
procedure is much larger, increasing between 60% and 100%. The ef-
fects of the inconsistency between the regrouping samples and the
bootstrap pseudo-samples are therefore similar to those found in the
results of the previous Section, further supporting the proposed con-
ditions for using the bootstrap procedure.

6. Conclusions

The uncertainty in estimating the probabilistic seismic performance
of structures associated to the use of a certain finite-size group of
ground motion records, i.e. the group-to-group variability, was ex-
amined for several situations. The regrouping and the bootstrap proce-
dures were applied to quantify this variability, even though the validity
of the latter was disputed due to its incompatibility with cases where
the probabilistic seismic performance assessment enforces specific cri-
teria for the ground motion selection. Although bootstrap is widely

Table 8
Statistics of the fragility function parameters due to group-to-group variability for the three buildings using 10 records and 5 stripes.

Building Procedure ̂θ ̂μθ ̂σθ ̂CV θ (%) ̂β ̂μβ ̂σ β ̂CV β (%)

3-Storey Regrouping – 0.70 0.058 8.32 – 0.27 0.093 34.09
Bootstrap i (100) 0.76 0.77 0.051 6.65 0.29 0.28 0.070 25.07

4-Storey Regrouping – 0.56 0.049 8.74 – 0.26 0.089 34.55
Bootstrap i (100) 0.51 0.53 0.062 11.79 0.17 0.11 0.078 72.30

5-storey Regrouping – 0.48 0.032 6.70 – 0.19 0.046 24.04
Bootstrap i (100) 0.57 0.56 0.026 4.71 0.17 0.16 0.063 40.56

(a) (b) 
Fig. 6. Fragility functions of the 3-storey building obtained by the regrouping (a) and by the bootstrap (b) procedure with deterministic and probabilistic capacity
using 20 stripes.
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applied for determining uncertainty estimates, the randomness condi-
tion of the bootstrap pseudo-samples is not compatible with the situa-
tion of selecting several group of records compatible with a certain
seismic scenario. The regrouping procedure proposed in this study, on
the other hand, does not have this incompatibility since it considers
additional constrains accounting for the required spectral matching

conditions for each new ground motion group sample. Due to the higher
computational cost of the latter though, the performance of the two
procedures in determining the variability of fragility function para-
meter estimates and seismic risk estimates was analysed in order to
establish the conditions under which the bootstrap procedure is ex-
pected to lead to small errors.

Table 9
Statistics of the fragility function parameters due to group-to-group variability for the three buildings and probabilistic capacity using 20 records and 20 stripes.

Building Procedure ̂θ ̂μθ ̂σθ ̂CV θ (%) ̂β ̂μβ ̂σ β ̂CV β (%)

3-Storey Regrouping – 0.71 0.020 2.86 – 0.47 0.025 5.40
Bootstrap i (100) 0.75 0.75 0.015 2.05 0.48 0.48 0.019 3.99

4-Storey Regrouping – 0.58 0.016 2.77 – 0.46 0.025 5.37
Bootstrap i (100) 0.55 0.56 0.008 1.46 0.41 0.41 0.017 4.21

5-storey Regrouping – 0.47 0.013 2.87 – 0.52 0.021 4.07
Bootstrap i (100) 0.46 0.46 0.008 1.78 0.52 0.52 0.017 3.21

Table 10
Statistics of the fragility function parameters due to group-to-group variability for the three buildings and probabilistic capacity using 20 records and 5 stripes.

Building Procedure ̂θ ̂μθ ̂σθ ̂CV θ (%) ̂β ̂μβ ̂σ β ̂CV β (%)

3-Storey Regrouping – 0.71 0.021 2.90 – 0.47 0.030 6.36
Bootstrap i (100) 0.74 0.75 0.028 3.69 0.49 0.49 0.039 8.06

4-Storey Regrouping – 0.57 0.017 2.98 – 0.47 0.029 6.21
Bootstrap i (100) 0.55 0.55 0.015 2.68 0.41 0.41 0.031 7.49

5-storey Regrouping – 0.47 0.015 3.28 – 0.54 0.023 4.27
Bootstrap i (100) 0.45 0.45 0.012 2.68 0.54 0.55 0.035 6.47

Table 11
Statistics of the fragility function parameters due to group-to-group variability for the three buildings and probabilistic capacity using 30 records and 20 stripes.

Building Procedure ̂θ ̂μθ ̂σθ ̂CV θ (%) ̂β ̂μβ ̂σ β ̂CV β (%)

3-Storey Regrouping – 0.70 0.012 1.69 – 0.46 0.016 3.46
Bootstrap i (100) 0.69 0.69 0.010 1.51 0.45 0.45 0.015 3.28

4-Storey Regrouping – 0.58 0.010 1.65 – 0.47 0.016 3.47
Bootstrap i (100) 0.56 0.56 0.008 1.47 0.45 0.45 0.014 3.03

5-storey Regrouping – 0.47 0.008 1.63 – 0.52 0.014 2.78
Bootstrap i (100) 0.47 0.47 0.006 1.21 0.50 0.50 0.014 2.89

Table 12
Statistics of the fragility function parameters due to group-to-group variability for the three buildings and probabilistic capacity using 30 records and 5 stripes.

Building Procedure ̂θ ̂μθ ̂σθ ̂CV θ (%) ̂β ̂μβ ̂σ β ̂CV β (%)

3-Storey Regrouping – 0.70 0.013 1.79 – 0.46 0.018 3.98
Bootstrap i (100) 0.69 0.69 0.019 2.81 0.46 0.46 0.030 6.49

4-Storey Regrouping – 0.58 0.010 1.76 – 0.48 0.019 3.92
Bootstrap i (100) 0.56 0.56 0.014 2.47 0.47 0.47 0.029 6.23

5-storey Regrouping – 0.46 0.009 2.02 – 0.54 0.016 2.96
Bootstrap i (100) 0.46 0.46 0.009 1.93 0.53 0.53 0.027 5.06

Table 13
Statistics of the fragility function parameters due to group-to-group variability for the three buildings and probabilistic capacity using 10 records and 20 stripes.

Building Procedure ̂θ ̂μθ ̂σθ ̂CV θ (%) ̂β ̂μβ ̂σ β ̂CV β (%)

3-Storey Regrouping – 0.69 0.036 5.20 – 0.46 0.051 11.01
Bootstrap i (100) 0.71 0.70 0.020 2.88 0.47 0.47 0.023 4.94

4-Storey Regrouping – 0.58 0.028 4.82 – 0.47 0.045 9.68
Bootstrap i (100) 0.56 0.56 0.013 2.32 0.46 0.46 0.021 4.57

5-storey Regrouping – 0.47 0.026 5.50 – 0.52 0.044 8.50
Bootstrap i (100) 0.53 0.53 0.013 2.41 0.60 0.60 0.029 4.92
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The findings show that the regrouping and the bootstrap procedures
provide comparable results for both variables examined (i.e. the

fragility function parameters and the failure rates) when a relatively
high number of stripes was used to define the probabilistic demand
model (i.e. 20 IMs) combined with an adequate number of records (i.e.
more than 10). When using a lower number of stripes, i.e. 5, the
variability of the parameter estimates determined from the regrouping
procedure did not change substantially from the case involving 20 IMs,
thus showing the robustness of the procedure. On the other hand, the
variability quantified using the bootstrap procedure was systematically
much larger than in the case involving 20 IMs. In some cases, the
variability estimates of the examined parameters more than doubled.

The variability of the fragility function parameters was further ex-
amined when additional uncertainty was involved by introducing a
probabilistic capacity model. In this case, the results showed a reduc-
tion of the variability of all parameters, contradicting the potential
expectation that an increase in the variability of the input would result
in an increase in the variability of the output. This reduction in varia-
bility was consistently observed in the results obtained from the re-
grouping and the bootstrap procedures, for all group sizes, and also for
the two scenarios involving a different number of stripes. Still, when
using a low number of stripes, the bootstrap procedure led to a sig-
nificant increase of the variability estimates, while those obtained from
the regrouping procedure showed much smaller differences with respect
to the case involving 20 stripes. This variability further propagated to
the failure rate estimates, leading to results with similar trends.

In the overall, although the regrouping procedure requires additional
computational effort, it provides robust variability estimates for the
fragility function parameters and the failure rates, independently of the
number of stripes that is used, as long as an adequate number of records
is used. On the contrary, the variability estimates obtained from the
bootstrap procedure are highly dependent on the number of selected
stripes. Bootstrap results were considered to be adequate when obtained
using 20 stripes as well as a group of at least 20 records. In addition, the
relative performance of both procedures was not seen to be affected by
the selected capacity modelling approach. Nevertheless, more analyses
are required in order to validate these findings for cases including ad-
ditional sources uncertainties, such as modelling uncertainties. Finally,
all conclusions obtained are site-specific, and their validity for different
sites characterized by different seismic hazard therefore requires fur-
ther verification.
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