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A B S T R A C T

This work is motivated to determinate the optimal design for various types of Dynamic Vibration Absorbers
(DVAs) under the effect of random loads. These devices are the following: DVAs connected in parallel or series;
two degree-of-freedom traditional dynamic vibration absorber (2dof-TVA) with translational and rotational
motion; and inerter-based DVAs (IDVA-C6, C4, and C3). These types of DVAs were selected by their high ef-
fectiveness for suppressing vibration however a comparative study on their dynamic performance has not yet
been performed. Two different excitation sources of random loads are studied in this paper which are random
ground motion and force excitation. An optimum design for majority of these devices has not yet been computed
when subjected to random ground motion excitation, and therefore in this paper are computed. For random force
excitation, some numerical solutions for the optimal design of these devices have not yet reported which in this
paper are computed in order to compare the dynamic performance for each device with respect to that of the
classic DVA. For both random excitation cases, the H2 optimization criteria is used to analytically compute the
variance of squared modulus of frequency response of the undamped primary structure, and then nonlinear
unconstrained optimization problems are formulated in order to obtain the optimal design. Numerical solutions
revealed that the IDVA-C6, C3, and DVAs connected in series presents more than 13% and 10% improvement
with respect to the classic DVA for random ground motion and force excitation cases, respectively. These devices
can widen the suppression band (SB) from 30% to 40% for mass ratios values from 1% to 10%. It means that
devices are more effective and robust for mitigating vibration than the classic DVA. In addition, the rotational
inertial double tuned mass damper (IDVA-C6) has the same relative dynamic performance (RDP) and suppres-
sion band index (SB) than the double-mass dynamic vibration absorber arranged in series. For practical appli-
cation where the mounting space of the DVA is extremely reduced, the DVAs connected in series could be more
convenient to use than IDVA-C6. The concept of equivalent mass ratio is introduced in order to explain the
superiority of these devices with respect to the classic DVA. Finally, in H optimization criteria, the IDVA-C6
presents the same vibration amplitudes at all excitation frequency range and suppression band than DVAs
connected in series.

1. Introduction

During the last decades, various types of mechanical devices have
been proposed for the passive vibration control in civil engineering.
These devices are known as the dynamic vibration absorbers (DVAs) or
tuned mass dampers (TMDs) [1]. The main target of a DVA is to miti-
gate the dynamic response of mechanical structures under the effect of
earthquakes, wind, maritime waves excitation, unbalanced rotating

machinery, and dynamic vibration caused from vehicle traffic. In recent
studies, the performance of the classic DVA has been enhanced by
means of different connections of energy dissipation (dashpot) and
absorption (spring) elements of the absorber, which the classic DVA is
re-named as the non-traditional DVA, and Three-Element DVA [2–5]. In
addition, different researches have been performed on the dynamic
behavior of classic DVAs to improve the frequency response of the main
structure when subjected to various types of excitation sources [6–10].
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Additionally, Krenk and Høgsberg introduced a classic DVA on a flex-
ible structure to provide damping on a specific vibration mode, and
thus reduce the dynamic magnification factor (DMF) of main structure
[11]. They noted that the background flexibility of the main structure
leads to higher design values for the absorber frequency and damping
parameter. However, these improved DVAs only minimize the dynamic
amplification factor of frequency response, but they do not improve the
effective operating bandwidth or suppression band. In practice, various
types of excitation sources of low and high frequency are presented, and
the effective operating bandwidth or suppression band of the classic
and improved DVAs is fixed which is the main disadvantage of these
mechanical devices. For over this disadvantage, semi-active and active
devices need to be implemented to the classic DVAs. In fact, Cheung
et al. re-optimized the dynamic response for hybrid vibration absorber
(HVA) which consists in an active damper for suppressing wide fre-
quency band vibration [12]. Alujević et al. proposed inertial actuators
(IAs) to yield active damping on a primary structure, and they noted
that dynamic performance produced by IAs outperforms an optimally
tuned classic TMD [13]. Gao et al. proposed adaptive DVAs to improve
the dynamic performance for a vehicle power train system [14]. Re-
cently, Shen et al. enhanced the operating bandwidth of the classic DVA
by adding effects of negative dynamic stiffness in the system [15]. In
addition, Xiuchang et al. provided optimal parameters for three kinds of
isolation system with negative stiffness using the Routh–Hurwitz cri-
terion and the stability boundary, and they noted that three-parameter
isolator system outperforms dynamic performance of traditional DVA in
controlling force transmission and mass response under harmonic and
random vibration [16]. However, active energy dissipation elements
need to be added for enhancing the performance of classic DVA which
can be very expensive. Therefore, passive control by DVAs is yet ef-
fective in the vibration control, easy implementation, and low manu-
facturing cost.
Besides, dynamic characteristics for multiples DVAs arranged in

parallel have been investigated in order to minimize the Dynamic
Magnification Factor (DMF) and maximize the effective operating
bandwidth of dynamic response of the primary structure [17–20]. In
addition, different optimization algorithms have been proposed such as
decentralized H2 and H optimization, gradient method to improve the
dynamic performance for multiples DVAs with uniformly distributed
masses [21,22]. Those investigations revealed that there exist a specific
number of DVAs for each mass ratio which yield the maximum per-
formance in the system. In addition, Nan Li and Lei Ni demonstrated
that the performance of multiples DVAs with non-uniformly distributed
masses can be improved by adding some restrictions on the frequency
spacing and damping of each DVA [23]. However, the applications for
multiples DVAs arranged in parallel is limited to the mounting space
yet. Some applications for these devices are the following; in machine
tool structures for increasing the chatter resistance in machining pro-
cess [24], periodic vibration suppressors in civil engineering [25]. In-
deed, the DVAs arranged in parallel are more effective than classic
DVAs for suppressing vibration, and the operating bandwidth is broa-
dened.
Furthermore, the multiples DVA arranged in series are more effec-

tive and robustness than the multiples DVAs arranged in parallel and
the Two degree-of-freedom Tuned Vibration Absorber (2dof TVA)
[26–28]. The 2dof TVA exhibits two planar degrees of freedom, i.e.
translational and rotational motion. In addition, the 2dof TVA has been
applied to damp the dominant mode from the workpiece fixture, and
the enhancement of machining stability [29]. In those investigations, it
was noted that frequency response curves (FRFs) of the main structure
both the DVAs arranged in parallel or series and the 2dof TVA are quite
similar when optimized. In fact, by adding these mechanical devices the
DMF of primary structure is drastically reduced, and the effective op-
erating bandwidth is widened. Therefore, we can say that these devices
present more effectiveness in suppressing vibration than traditional and
improved DVAs.

Additionally, the inerter has shown to be another mechanical device
of high-performance for the passive vibration control. This device was
first proposed by Smith in order to enhance the dynamic behavior for a
vehicle suspension system of Formula one cars [30–34]. Different al-
ternatives of inerter designs have been proposed which are the fol-
lowing: the rack-and-pinion type inerter [35], ball-screw type inerter
[36], continuously variable transmission (CVT) type inerter [37–39],
and the hydraulic type inerter [40,41]. Further, the effectiveness of a
classic DVA can be enhanced by adding an inerter in the system. In fact,
Ikago et al. proposed the tuned viscous mass damper (TVMD) which
consists in a spring connected in series with parallel arrangement of a
dashpot and an inerter [42]. Chen et al. demonstrated that the inerter
can modify the resonant frequencies in the system by means of the
inertance constant, and thus tuns the external excitation frequencies
[43]. Recently, Basili et al. proposed a novel structural configuration
which consists in a mechanical network composed by one spring, one
damper, and one inerter arranged in parallel, and they demonstrated
that for nonconservative systems it is possible to obtain the connection
parameters of spring-dashpot-inerter elements in order to minimize the
most rapid decay of the time-domain structural response [44,45].
Marian and Giaralis proposed the tuned mass-damper–inerter (TMDI),
and they noted that the TMDI is more effective than the classical TMD
for a fixed value of the TMD mass in suppressing the displacement
variance of white noise excited undamped SDOF primary structures
[46]. Recently, Javidialesaadi and Wierschem proposed the Three-
Element Vibration Absorber–Inerter (TEVAI), and they demonstrated
that this device is able to provide a 3–10% and 3–14% reduction in the
peak dynamic magnification factor, in comparison to the H and H2
optimal TMDI, respectively [47]. Nevertheless, the TVMD, TMDI, and
TEVAI can only reduce the vibration amplitudes, but they do not en-
large the effective operating bandwidth of the frequency response of the
system. To address this issue different connections with spring, damper,
and inerter have been proposed. These configurations are known as
mechanical impedances or mechanical networks and have shown an
improvement more than 10% with respect to that of the classic DVA. In
fact, mechanical impedances C3, C4, and C6 showed to be the best for
the passive vibration control. The proposed mechanical impedances
were denominated as follows: the configuration C3 is a series connec-
tion of a spring, an inerter, and a damper; C6 is a spring in series to a
parallel connection of an inerter and a damper; finally, an inerter in
series to a parallel connection of a spring and a damper labeled as C4
[48,49]. Some of these impedances based on inerter have been applied
for passive vibration control of beams [50], cables [51–53], seismic
mitigation of storage tanks [54], vibration responses minimization for
the wind turbine structures induced by wind and maritime waves
[55,56], mitigation of the heave motion of offshore platforms [57], and
structures interacting with the soil [58,59]. In addition, some re-
searchers proposed the rotational inertial double tuned mass damper
which results by replacing the damper of classic DVA by the mechanical
impedance C6 [60–62]. According to these investigations, the dynamic
behavior of inerter-based dynamic vibration absorbers (IDVAs) is quite
like the DVAs arranged in parallel or series and the 2dof-TVA with
translational and rotational motion. It was noted that, these mechanical
devices can broaden the effective operating bandwidth of a classic DVA.
In fact, the IDVAs, DVAs arranged in parallel or series, and 2dof TVA
with translational and rotational motion use two vibration modes to
damp the dominant mode of the primary structure. However, a com-
parative analysis on the dynamic performance of these devices have not
yet been presented.
For the practice application of these devices in civil engineering, the

installation in structures could be addressed as in previous investiga-
tions. For example, an experimental set-up for DVA arranged in series
was conducted by Yasuda and Pan, and thus they presented experi-
mental results for the case of harmonic force excitation [63,64]. On the
other hand, the installation process for 2dof-TVA with translational and
rotational motion can be seen in [29,65]. Experimental configurations
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for IDVAs have not been yet reported however some mechanical rea-
lizations were reported in [31,34]. These mechanical realizations must
be connected between the physical mass of the absorber and the pri-
mary structure. Although the excitation sources for the structures
analyzed in those investigations are different to those of earthquakes or
random ground excitation, the build and installation process of these
devices can be performed as in previous researches. It is very important
to mention that some nonlinearity (backlash, friction and elastic effects)
of these devices can be deleted in the manufacturing process because
they can deteriorate the dynamic performance.
According to the literature review, three types of high-performance

passive dynamic vibration absorbers were noted which are the fol-
lowing; DVAs arranged in parallel or series, 2dof TVA with translational
and rotational motion, and inerter-based dynamic vibration absorbers
(IDVAs). These devices were selected by their high effectiveness in
controlling vibration in fact they outperform the dynamic performance
of improved and classic DVA. The underlying idea of this paper is to
perform a comparative study on the dynamic performance of these
devices under the effect of random and harmonic vibration in order to
draw the advantages between them. For random vibration, two ex-
citation cases are considered which are the following; random ground
motion and force excitation on the primary structure of mass Ms. We
select these excitation sources for the following concerns: first, op-
timum parameter values for design of DVAs arranged in parallel or
series have not yet been provided considering the excitation sources
proposed in this work [66,67]; second, for the 2dof-TVA with transla-
tional and rotational motion, random ground motion has not yet been
considered for the dynamic behavior study of this device [26,29,68],
and therefore the optimal parameters for this devices are computed
here; third, for the IDVAs, random force excitation and harmonic force
excitation were considered in previous studies [49,60,61,69], and for
the random ground motion case, Javidialesaadi and Wierschem pro-
vided optimal solution for IDVA-C6 before. In this paper, the optimal
numerical solutions for IDVA-C6 were taken with copyrights permission
from [62] in order to compare the dynamic performance of these high-
performance passive DVAs. For two random excitation cases, the H2
optimization method is applied to minimize the variance of frequency
responses of the main structure for each device. For harmonic vibration,
the H optimization is considered in order to minimize the maximum
vibration amplitudes at resonant frequencies of the system. Ad-
ditionally, numerical simulations are performed for different values of
mass ratio in order to calculate the improvement percentages for each
device with respect to that of the classic DVA. In addition, the sup-
pression band index is defined in order to compute the enlargement of
effective operating range for each device. Finally, conclusions of this
work are drawn.

2. Frequency response for high-performance DVAs

In this section, the calculations of frequency responses for the DVAs
arranged in parallel or series, 2dof TVA with translational and rota-
tional motion, and inerter-based dynamic vibration absorbers (IDVAs)
are presented when subjected to random and harmonic vibration. Note
that, some transfer functions for IDVAs have been derived before, which
in this work were adapted with copyrights permission from [49,62,69].
In Fig. 2.1 three configurations of DVAs are depicted. The Fig. 2.1(a)
represents a 2dof TVA with two degree-of-freedom (translation and
rotation motion) which is composed by a solid bar of mass and rota-
tional inertia m1 and J1, respectively. It may translate in the vertical
direction and rotate around the mass center, as the primary structure,
which is subjected to random ground motion and force excitation, is
constrained to vibrate in the vertical direction only. The distances from
the mass center to the set of springs and dampers of the 2dof TVA are
given by d1 and d2. Zuo and Nayfeh showed that asymmetric connection
(d d1 2) of the locations of the connections between the 2dof TVA and
primary structure provide more dynamic performance than symmetric
connection ( = =d d d1 2 ) [26]. However, in practice, asymmetric con-
nection is more difficult to implement than the another one. In fact,
Yang et al. used a 2dof TVA configured in symmetric form for the
milling vibration mitigation. They re-claimed that by setting radius
ratio = =a d/ , where is the absorber’s radius of gyration, the
2dof TVA design is equivalent to a classic DVA. If =a 1, the 2dof TVA
design is equivalent to the DVA arranged in parallel showed in
Fig. 2.1(c), which means that the mass m1 of the 2dof TVA is equally
distributed on two spring and damper location points [29]. Ad-
ditionally, note that this device has two dampers (c1 and c2) and two
springs (k1 and k2). The best performance of the 2dof TVA is also ob-
tained when the damping coefficient c2 takes negative values, which
means an active damper need to be added to the absorber. Nevertheless,
for the passive vibration control, negative damping cannot be achieved.
Such a design could readily be implemented in an active absorber,
though there would be potential for instabilities in the presence of
modeling uncertainties [26]. Indeed, the presence of the second damper
c2 only influences the frequency response at high frequencies, well
above the tuned frequencies of the 2dof TVA [68]. Therefore, for
practice applications in passive structural vibration control, the 2fod
TVA design must be done by properly choosing the radius ratio value a
and setting the value of damper c2 equal to zero.
On the other hand, in Fig. 2.1(b) and (c), the double-mass dynamic

vibration absorbers arranged in parallel or series are depicted. Simi-
larly, the best performance of double-mass DVAs arranged in series is
obtained when damping constant c1 takes negative values [70]. How-
ever, passive elements cannot yield negative damping. Therefore, the
damping constant c1 must be configured to be zero. For double-mass
DVAs arranged in parallel, the damping coefficients c1 and c2 are

(a)
(b) (c)

A

B

A B

Fig. 2.1. Dynamic vibration absorbers (DVAs): (a) two degree-of-freedom dynamic vibration absorber with translational and rotational motion (2dof TVA); (b) DVAs
arranged in series; (c) DVAs arranged in parallel.
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positive [66,67].
Additionally, in this paper, the dynamic behavior of inerter-based

dynamic vibration absorbers is analyzed under random ground motion,
random force excitation, and harmonic vibration. The inerter is a me-
chanical device absorbs kinetic energy via a flywheel, then is released
to yield a dynamic equilibrium among displacements of main structure
mass Ms and the mass m1. In addition, m2 is the apparent mass o in-
ertance constant of the inerter showed in Fig. 2.2. The IDVA can be
obtained by replacing the damper of the classic DVA by some me-
chanical impedances C3, C4, and C6 showed in Fig. 2.2. Note that, Hu
and Chen only derived optimal parameters for IDVAs under random
force excitation [49], and optimal solutions of the IDVA-C6 have been
provided for random ground motion excitation only [62]. It is im-
portant to mention that the main contribution of this article is the
analysis and optimization for the mechanical devices showed in
Fig. 2.1(a), (b), (c) and Fig. 2.2 under the effect of random ground
motion, random force excitation, and harmonic force vibration.
Note that the devices depicted in Fig. 2.1(a), (b), (c) and Fig. 2.2 are

three degree-of-freedom mechanical systems, except the IDVA-C3. The
IDVA-C3 results by replacing the damper of classic DVA by the me-
chanical impedance C3 showed in Fig. 2.2, and therefore IDVA-C3 be-
comes a four degree-of-freedom system. The mathematical model for
these devices can be written in general way by the following mathe-
matical expression

+ + = +x x x t xt t t tM C K M I F¨ ( ) ( ) ( ) ¨ ( ) ( )gg (2.1)

where M, C, K represent mass, damping, and stiffness matrices of the
system, respectively. Mg denotes a mass diagonal matrix that contains
the mass values, Ms,m1 andm2 for DVAs showed in Fig. 2.1(a), (b), (c),
and I is an ones vector related to the external excitation x t¨ ( )g . However,
for the IDVAs showed in Fig. 2.2, the apparent massm2 is not present in
the mass diagonal matrix Mg, the values for the mass Ms and m1 only.
Indeed, the dynamic modelling for these devices under ground motion
excitation is similar to that reported in [46]. Then, x t¨ ( )g and tF( ) re-
present the base acceleration (e.g., seismic load) and external dynamic

force excitation (e.g., wind load or unbalanced rotating machinery) in
the system, and g is the acceleration due to gravity [59]. Considering
that the system is subjected to harmonic ground acceleration and har-
monic force excitation at frequency , represented as =x t a e¨ ( )g g

j t and
=t f eF( ) o

j t . Then, the solution for the steady-state displacement vector
x ( ) in the frequency domain considering the base acceleration ex-
citation x t¨ ( )g can be written as follows

=x H M IA( ) ( )( )g g (2.2)

Then, the response in steady-state x ( ) when the system is sub-
jected to the force excitation tF( ) is as follows

=x H F( ) ( )( ) (2.3)

where Ag and F are matrices that contain the magnitudes ag and fo for
excitation sources x t¨ ( )g and tF( ), respectively. H( ) is the frequency
response function matrix and is given by following mathematical ex-
pression

= + +jH M C K( ) ( )2 1 (2.4)

It is convenient to select the following dimensionless variables to
write in a dimensionless form the frequency responses H| ( )|Ms for each
device depicted in Fig. 2.1(a), (b), (c) and Fig. 2.2, which are the fol-
lowing
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The definition for proposed dimensionless variables is as follows:
first, for IDVAs, is absorber-to-primary mass ratio, µ is apparent mass

mechanical impedance mechanical impedance 

mechanical impedance 

Fig. 2.2. Inerter-based dynamic vibration absorbers.
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(inerter)-to-absorber mass ratio, q is natural frequency ratio, is corner
frequency ratio, 1 is damping ratio for absorber of massm1, s

2 is square
natural frequency of the primary system, 1

2 is square natural frequency
of the DVA, 2

2 is square corner frequency of the DVA; second, for the
2dof-TVA with translational and rotational motion, the name for is
conserved, 1/ is radius ratio, the name for q is conserved, is re-
named as the undamped natural frequency ratio of absorber with
stiffness k2 to the absorber with stiffness k1 (see Fig. 2.1(a)), the name 1
is conserved, then, for the name for 2 is not available because the
damper c2 is configured to be equal zero, the name for s

2 and 1
2 are

similar as those of the IDVAs while 2
2 is natural frequency of absorber

mass m1 connected to stiffness k2; and third, for DVAs arranged in
parallel or series, 1 is DVAs-to-primary mass ratio, µ is re-named as the
DVA B to DVA A mass ratio, q and are undamped natural frequencies
ratio for DVA A and B, respectively. Then, 1

2 and 2
2 take the name of

square natural frequency for DVA A and DVA B, respectively. Finally,
is the forced frequency ratio. Note that, the comparison of performance
index between the IDVAs and DVAs arranged in series and parallel is
possible because the physical mass of this device is small compared
with the mass m1 of the absorber. Really, this physical mass is the fly-
wheel mass of the inerter and therefore the contribution to the trans-
lational kinetic energy into the system is small compared with that of
physical massm1. On this fact, the dimensionless variables 1 and can
be considered approximately equal or 1 . Indeed, when the per-
formance index of the IDVAs is compared with respect to that of clas-
sical DVA, the above assumption is applied [60].
According to the Eqs. (2.2) and (2.4), the frequency response

functions H| ( )|Ms of main structure for each device subject to base
acceleration excitation x t¨ ( )g , can be written as follow

= =

= =

= =

= =

= =
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(2.5)

In a similar way, the frequency responses H| ( )|Ms of the main
structure for each device under the effect of harmonic force excitation

tF( ) can be obtained using the equations (2.3) and (2.4), which are the
following
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(2.6)

The functions Ai, Bi, Ci, and Di for =i 1, , 6 are described in
Appendix A. In the next section, the optimization process is presented in
order to compute the optimal design parameters for each device showed
in Fig. 2.1(a), (b), (c) and Fig. 2.2 when subjected to random ground
motion and force excitation. Subsequently, the performance for all

devices is evaluated.

3. H2 Optimization

3.1. Random ground motion and force excitation cases

For both excitation cases, we assume a stationary stochastic process
represented in the frequency domain by a double-sided power spectral
density (PSD) function =S S( ) 0 and with zero mean [71], as the ex-
citation source on the base and mass Ms of primary structure. Note that,
the response of a dynamic system subjected to a stationary random
process is also a stationary random process [72]. Then, that dynamic
response can be minimized by means of the H2 optimization method.
The performance measure in H2 optimization can be written as [49]

=I E x
S
[ ]

2 n

2

0 (3.1)

where S0 is the uniform power spectrum density function of the sta-
tionary process S ( ). The mean square value E x[ ]2 of displacement of
the main structure can be expressed as follows

= =
+ +

E x S H j d S H j d[ ] | ( )| | ( )|n
2

0
2

0
2

(3.2)

where H j( ) is the frequency response of the main structure mass Ms
for each device showed in Fig. 2.1(a), (b), (c) and Fig. 2.2. Substituting
the Eq. (3.2) into (3.1), it yields

=
+

I H j d1
2

| ( )|2 (3.3)

Note that the Eq. (3.3) is the variance i
2 of frequency response

H j| ( )|2 of the main structure [71]. Therefore, the variances for each
device under the effect for both random ground motion and force ex-
citation can be calculated in a general form as follow

=

=

=

=

=

=

+

+

+

+

+

+

µ q H µ q d
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2 (3.4)

Note that the integrals given by the Eq. (3.4) are improper integrals
and can be solved by residue integration method [73]. In addition, note
that the expression mathematical + H j d| ( )|1

2
2 is the standard

= =H s C sI A B CLC( ) ( ) Trace( )2
2 1

2
2 T norm and can be computed

from a minimal state-space realization H s( ), which consist in to ana-
lytically solve the Lyapunov equation [32]. During the calculation for
these integrals, we observed that the denominator of the primary
structure frequency response for each device showed in Fig. 2.1(a), (b),
(c) and Fig. 2.2 has six simple poles in the upper half of the complex
plane. Indeed, Asami found that the denominator of frequency response
of the DVAs arranged in parallel or series also has six simple poles, and
therefore the improper integrals can be calculated by means of the sum
of the six residues yielded at each simple pole or by means of following
mathematical expression =+

=f i f i( )d 2 Res[ ; ]n k n k1
6 [70]. By

using the Asami’s approach, an analytical solution can be found for
each integral given by Eq. (3.4). First, for the random ground motion
excitation case, the set of equations (2.5) must be substituted into (3.4),
then an analytical solution for the variance of the frequency response of
the primary structure for each device can be obtained as follows
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Then, for random force excitation case, the set equations
given by Eq. (2.6) must be used to calculate the variance for
each device, is that, the magnitudes H µ q| ( , , , , , , )|DVAs parallel 1 1 2 ,
H µ q| ( , , , , , )DVAs series 1 2 |, H q| ( , , , , , )|dof TVA2 1 , H| IDVA C6

µ q( , , , , , )1 |, H µ q| ( , , , , , )|IDVA C4 1 , and H| IDVA C3
µ q( , , , , , )|1 must be substituted into Eq. (3.4). Then, the for-

mulation for the analytical solution of resulting improper integrals is
quite similar to the random ground motion excitation case. Therefore, it
results in
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where Fi and Gj for =i 1, , 24 and =j 1, , 9 and fi and gj for
=i 1, , 25 and =j 1, , 9 are functions in terms of dimensionless
variables µ q, , , , , ,1 1 2. These dimensionless functions are de-
picted in Appendix C.
For both random vibration excitation cases, in a general way, op-

timal solution for the H2 norm can be obtained by forcing each equation
(analytical variance) from set of Eqs. (3.5) and (3.6) to the following
conditions =µ/ 0DVAs types

2 , =/ 0DVAs types
2 , =q/ 0DVAs types

2 ,
=/ 0DVAs types

2 , =/ 0DVAs types
2

1 , and =/ 0DVAs types
2

2 . The
subscript DVAs-types denotes to the DVAs types, is that, the DVAs ar-
ranged in parallel or series, 2dof TVA with translational and rotational
motion, and inerter-based DVAs. These conditions yield simultaneous
equations which can be numerically solved by Newton–Raphson
method [70]. Then, for a constant mass ratio or 1, the optimal so-
lutions for µopt , opt , qopt , opt , opt1, , and opt2, can be computed by solving
those conditions. An alternative approach to calculate optimal para-
meters that minimize the variances of squared modulus of the FRF
H j| ( )|2 of the primary structure is to use Global Optimization Toolbox
provided by the software Maplesoft [74]. Therefore, in this paper,
Maplesoft optimization toolbox is used for the minimization of each
variance given by the set of Eqs. (3.5) and (3.6), and the optimality of

these solutions is confirmed by computing the eigenvalues of the Hes-
sian matrix. First, for random ground motion case, the set of equations
given by Eq. (3.5) must be used as the objective functions in order to
formulate the optimization problems that minimize the variances of the
frequency response H| ( )|M

2
s for each device. These optimization pro-

blems can be written as follow
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(3.7)

In order to validate the optimality of optimal solutions µopt, opt , qopt ,
opt , opt1, , and opt2, provided by Maplesoft, the eigenvalues of the
Hessian matrix can be used to determine the global and local minimum
conditions at these solutions. In a general way, the Hessian matrix
evaluated at these solutions can be written as follows
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2 (3.8)

In Eq. (3.8) i
2 corresponds to each variance given by the Eqs. (3.5)

and (3.6). The eigenvalues can be computed by solving the following
equation

=I| ( )| 0i i
2 2 (3.9)

where i are the eigenvalues of the Hessian matrix H ( )i
2 . For both

excitation cases, the optimality of these optimal solutions was verified
by Eq. (3.9), and eigenvalues are all positive at µopt , opt , qopt , opt , opt1, ,
and opt2, , see figures in Appendix B. It means that the variances i

2 reach
a global minimal at these points.
Then, for random force excitation case, the Eq. (3.6) are objective

functions to be minimized, and the formulation of the optimization
problems is similar to the random ground motion case. For both ex-
citation cases, the optimization problems given by the Eq. (3.7) do not
have inequality and equality constraints which became in un-
constrained nonlinear optimization problems. Then, the optimal para-
meters for the optimal design for each device can be obtained by sol-
ving these optimization problems by means of command NLPSolve
provided by MapleSoft. The NLPSolve command solves a nonlinear
program (NLP), which involves computing the minimum (or maximum)
of a real-valued objective function, possibly subject to constraints.
Generally, a local minimum is returned unless the problem is convex.
The methods used by the NLPSolve command are Modified Newton,
Preconditioned Conjugate Gradient (PCG), and Sequential Quadratic
Programming (SQP) [74]. Although this command has powerful sol-
vers, it will always be a blackbox for optimization. In order to de-
monstrate the convexity for the optimization problems defined before,
the Hessian matrix and the eigenvalues were computed. By using this
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approach, the mass ratios 1 for 1%, 3%, 5%, 7%, and 10% are con-
sidered to determine the optimal design for the parallel-type DVAs.
These mass ratios were selected because in practice applications the size
of DVAs must be small for space-installation issues. Therefore, the op-
timal frequency response curves for the DVAs arranged in parallel
under the effect of random ground motion and force excitation are
depicted in Fig. 3.1(a) and (b), respectively.
In Fig. 3.1(a) and (b) can be seen frequency response curves present

three resonant peaks. This extra peak is presented because the parallel-

type DVAs is a three degree-of-freedom mechanical system and has the
effect of widening the effective operating bandwidth of this device. It
means that the DVAs arranged in parallel can attenuate other lower and
higher external excitation frequencies due to use two resonant vibration
modes, unlike the classic DVA only use one resonant mode. Ad-
ditionally, some optimal parameters for these numerical simulations are
shown in Table 3.1.
Additionally, for both excitation cases, the optimal parameter

curves for µopt, qopt , opt , opt1, , and opt2, that minimize the variances of
squared modulus of the FRF H j| ( )|2 for this device are shown in
Appendix B, see Figs. 8.1 and 8.2(a–d). Similarly, for the optimal design
of DVA arranged in series, the variances µ q( , , , , )DVAs series

2
1 2 of

each equation (3.5) and (3.6) must be minimized. Then, by using the
proposed mass ratios 1, the values for the optimal design of this device
are shown in Table 3.2. Hence, the optimal frequency response curves
for the DVAs arranged in series subjected to random ground motion and
force excitation are depicted in Fig. 3.2(a) and (b), respectively.
For both excitation cases, both frequency response curves and vi-

bration amplitudes of DVAs arranged in series are flatter and minimal

than those of DVAs arranged in parallel, and minimum variance values
min
2 of DVAs arranged in series showed in Table 3.2 are smaller than
those depicted in Table 3.1 of the parallel-type DVAs. In fact, a minimal
variance also indicates that the standard deviation of the displacement
in frequency domain of primary structure is minimal [10]. It means that
frequency response of the system is also minimal. For the measurement
of relative improvement between the dynamic performance of the DVAs
connected in series and DVAs arranged in parallel is necessary to define
the following relative dynamic performance (RDP)

In Eq. (3.10), the minimal variance values min DVAs series,
2 and

min DVAs parallel,
2 are shown in Table 3.2 and Table 3.1, respectively.
Therefore, for the mass ratio range 0.01 0.1, DVAs arranged in
series presents more than 7.53% improvement with respect to the DVA
arranged in parallel for the random ground motion excitation case. In
addition, for random force excitation case, the DVAs arranged in series
provides a 7.36–6.93% improvement with respect to the DVAs con-
nected in parallel, which means that RDP of DVAs in series decreases.
Additionally, the optimal parameter curves µopt, qopt , opt , and opt2, for
design of the series-type DVAs are depicted in Appendix B.
Additionally, for the optimization of 2dof TVA with translational

and rotational motion, the variances q( , , , , )dof TVA2
2

1 given by
Eqs. (3.5) and (3.6) need to be minimized which can be performed
through the formulation (3.7). From proposed mass ratio 1%, 3%, 5%,
7%, and 10%, the optimal parameters that minimize the variance for
FRF H j| ( )|2 of primary structure are opt , qopt , opt , and opt1, . By solving
for these mass ratios, the optimal frequency response curves for the
2dof TVA with translational and rotational motion subjected to random

(a) (b) 

Fig. 3.1. Optimal frequency response curves for DVAs arranged in parallel: (a) random ground motion excitation; (b) random force excitation.

Table 3.1
Optimal parameters for the optimum design of parallel-type DVAs.

1 µopt qopt opt opt1, opt2, min
2

(a) random ground motion excitation
0.01 0.8724 0.9576 1.0690 0.0313 0.0308 9.4826
0.03 0.7913 0.9162 1.1232 0.0544 0.0527 5.6233
0.05 0.7415 0.8834 1.1625 0.0702 0.0673 4.4714
0.07 0.7044 0.8545 1.1960 0.0830 0.0790 3.8772
0.10 0.6618 0.8157 1.2402 0.0989 0.0933 3.3678

(b) random force excitation
0.01 0.9375 0.9628 1.0686 0.0308 0.0313 9.3490
0.03 0.8948 0.9314 1.1210 0.0529 0.0542 5.3918
0.05 0.8669 0.9083 1.1578 0.0678 0.0698 4.1721
0.07 0.8453 0.8888 1.1879 0.0796 0.0824 3.5225
0.10 0.8193 0.8636 1.2261 0.0941 0.0981 2.9428

Table 3.2
Optimal parameters for optimum design of the DVAs arranged in series con-
sidering. = 01 .

1 µopt qopt opt opt2, min
2

(a) random ground motion excitation
0.01 0.0201 1.0025 0.9802 0.0861 8.7685
0.03 0.0613 1.0076 0.9419 0.1478 5.1877
0.05 0.1037 1.0127 0.9053 0.1889 4.1155
0.07 0.1473 1.0179 0.8702 0.2215 3.5605
0.10 0.2148 1.0258 0.8205 0.2612 3.0823

(b) random force excitation
0.01 0.0199 1.0099 0.9803 0.0857 8.6602
0.03 0.0600 1.0295 0.9433 0.1456 4.9999
0.05 0.0999 1.0488 0.9090 0.1846 3.8729
0.07 0.1400 1.0677 0.8771 0.2145 3.2732
0.10 0.1999 1.0954 0.8333 0.2499 2.7386

= =
H j H j

H j

µ q µ q
µ q

%RDP
|| ( )|| norm || ( )|| norm

|| ( )|| norm
100%

( , , , , , ) ( , , , , )
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min DVAs parallel opt opt opt opt opt min DVAs series opt opt opt opt
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2
2

2
2

2
2

,
2

1 1, 2, ,
2

1 2,

,
2

1 1, 2, (3.10)
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ground motion and force excitation are described in Fig. 3.3(a) and (b),
respectively.
The optimal parameters opt , qopt , opt , and opt1, of the 2dof TVA are

shown in Table 3.3, and optimal curves for these parameters are de-
picted in Appendix B. For both excitation cases, note that the optimal
FRFs of this device are quite similar to those of the DVAs arranged in
parallel or series, see Fig. 3.1, Fig. 3.2, and Fig. 3.3. Indeed, translation
and rotation motions of the 2dof TVA yield two resonant vibration
modes that have effect of broadening the FRFs curves of this device. On
the other hand, note that the variances of the DVAs arranged in series
are minor than those of the 2dof TVA, see Table 3.2 and Table 3.3. By
substituting the minimal variances computed from the mass ratios
0.01 0.1, relative RDPs between DVAs in series and 2dof TVA are
5.51–3.85% and 5.84–4.32% for random ground motion and random
force excitation, respectively. It means that the DVA arranged in series
is more effective for mitigating of vibration than 2dof TVA for both
random excitation cases. Additionally, the 2dof TVA yields a RDP of
2.13–4.80% and 1.61–2.73% with respect to the DVAs arranged in

parallel for random ground motion and random force excitation, re-
spectively, which the 2dof TDVA presents major effectiveness than the
another one. Besides, for small mass ratio values for <0.01 , the op-
timal radius ratio = d1/ /opt is approximated to be the unit, and the
behavior of the 2dof TVA is like the DVAs arranged in parallel. How-
ever, for mass ratio values 0.05, the 2dof TVA presents more dy-
namic performance than parallel-type DVAs.
Finally, for this optimization part, the dynamic performance for

inerter-based DVAs is analyzed when subjected to the random ground
motion and force excitation. In a recent research, numerical solutions
for the optimal design of these devices have been derived under the
effect of random force excitation [49]; However, when the excitation
source in mechanical structures are earthquakes, the random ground
motion excitation is more convenient to analyze than the other ones
[71]. In this paper, optimal curves for µopt , qopt , opt , and opt1, are nu-
merically computed for design of IDVAs subjected to the random
ground motion excitation, and they are depicted in Appendix B. First,
for both random excitation sources, the variances µ q( , , , , )IDVA C6

2
1

for IDVA-C6 provided by Eqs. (3.5) and (3.6) are considered to the
formulation of optimization problems. Considering the mass ratio 1%,
3%, 5%, 7%, and 10%, the optimal parameters µopt, qopt , opt ,and opt1,
that yield a minimal variance are computed by Maplesoft and shown in
Table 3.4. Therefore, the optimal FRF curves for the inerter-based dy-
namic vibration absorber (IDVA-C6) subject to the two random ex-
citation cases are depicted in Fig. 3.4(a) and (b), respectively.
Note that the minimal values for variances µ q( , , , , )IDVA C6

2
1

are exactly equal to those of the DVAs arranged in series, which means
that these devices have the same dynamic performance index, see
Table 3.2 and Table 3.4. On the other hand, for small values of µ, the
dynamic behavior of the IDVA-C6 is similar to that of the Three-Ele-
ment DVA [4]. It is obvious because by setting the inertance value of

=b 0 in the mechanical impedance C6 showed in Fig. 2.2, the result is a
series connection of a spring and a damper which is the definition for
Three-Element DVA. When the minimal variance values of IDVA-C6 are
compared with respect to those of the 2dof TVA with translational and

(a) (b) 

Fig. 3.2. Optimal frequency response curves for DVAs arranged in series: (a) random ground motion excitation; (b) random force excitation.

(a) (b) 

Fig. 3.3. Optimal frequency response curves for 2dof TVA with translational and rotational motion: (a) random ground motion excitation; (b) random force ex-
citation.

Table 3.3
Optimal parameters for the optimum design TVA with translational and rota-
tional motion considering. = 02 .

= d1/ /opt qopt opt opt1, min
2

(a) random ground motion excitation
0.01 0.8992 0.6664 1.0619 0.0468 9.2806
0.03 0.8253 0.6259 1.1152 0.0805 5.4549
0.05 0.7751 0.5938 1.1567 0.1032 4.3098
0.07 0.7349 0.5657 1.1939 0.1213 3.7169
0.10 0.6854 0.5285 1.2460 0.1437 3.2059

(b) random force excitation
0.01 0.9000 0.6707 1.0630 0.0460 9.1980
0.03 0.8281 0.6386 1.1177 0.0779 5.2821
0.05 0.7801 0.6148 1.1598 0.0986 4.0760
0.07 0.7423 0.5948 1.1967 0.1146 3.4342
0.10 0.6965 0.5692 1.2466 0.1336 2.8623
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rotational, the RDPs are 5.51–3.85% and 5.84–4.32% for random
ground motion and random force excitation, respectively. Note that the
previously obtained RDPs are quite similar to those obtained through
comparison of the relative dynamic performance between the DVAs
arranged in series and 2dof TVA. In addition, the relative dynamic
performance of the IDVA-C6 outperforms to that of the DVA arranged in
parallel by approximately 7%, which is easy to note.
For the optimization of the DVAs C4 and C3, the variances

µ q( , , , , )IDVA C4
2

1 and µ q( , , , , )IDVA C3
2

1 need to be minimized.
From the set of Eqs. (3.5) and (3.6), unconstrained nonlinear optimi-
zation problems can be formulated using (3.7), which are then solved
by means of Maplesoft global optimization toolbox. Therefore, for the
proposed mass ratios, optimal parameters µopt , qopt , opt , and opt1, that
yield minimal variances µ q( , , , , )min IDVA C, 4

2
1 and

µ q( , , , , )min IDVA C, 3
2

1 are shown in Table 3.5 and Table 3.6. For
both random excitation cases, optimal FRFs curves for the IDVAs C4
and C3 are depicted in Fig. 3.5 and Fig. 3.6(a) and (b), respectively.
Note that, for mass ratio values of 0.01 0.1, the IDVA-C3

presents 0.34–2.76% of RDP (relative dynamic performance) with re-
spect to the IDVA-C4 considering the minimal variances of random
ground motion excitation case showed in Table 3.5 and Table 3.6. For
random force excitation case, the IDVA-C3 yields 0.25–1.81% of im-
provement with respect to the IDVA-C4. In addition, by comparing the
minimal variances of the IDVA-C3 with those of the IDVA-C6 showed in
Table 3.4, the IDVA-C6 presents a relative improvement from 0.061 to
0.57% when is compared with the IDVA-C3 for random ground ex-
citation case. For random force excitation case, the IDVA-C3 yields
0.02–0.18% of RDP with respect to the IDVA-C6. This means that IDVA-
C3 presents major effectiveness for suppressing vibration than IDVA-C6
for random force excitation case, however the IDVA-C6 is better for
random ground motion excitation case. This affirmation will be claimed
in Section 3.2 by means of comparison of the relative dynamic per-
formance (RDP) between the types of high-performance passive DVAs

studied is this research and the classic DVA. Therefore, the IDVA-C6,
DVAs arranged in series, and IDVA-C3 are better effective for attenu-
ating vibration than the IDVA-C4, and consequently the IDVA-C4 pre-
sents major relative dynamic performance than the 2dof TVA and DVAs
arranged in parallel.
In the next subsection, a numerical simulation is performed con-

sidering the mass ratio = 10% in order to compare the optimal FRFs
curves of all devices studied in this work. Since the IDVA-C6 has the
same dynamic performance than DVAs arranged in series, the optimal
FRFs curves of these devices will demonstrate equal dynamic behavior.
Then, the relative dynamic performance (RDP) is computed through Eq.
(3.10) to compare the effectiveness of these types of high-performance
passive DVAs with respect to the classic DVA. Additionally, the
widening percentages of the effective operating bandwidth of these
devices is also compared with respect to the classic DVA.

Table 3.4
Optimal parameters for the optimum design of the IDVA-C6.

µopt qopt opt opt1, min
2

(a) random ground motion excitation
0.01 0.0193 0.9827 1.0201 0.0017 8.7685
0.03 0.0545 0.9493 1.0610 0.0085 5.1877
0.05 0.0853 0.9175 1.1030 0.0178 4.1155
0.07 0.1125 0.8870 1.1460 0.0285 3.5605
0.10 0.1470 0.8439 1.2124 0.0465 3.0823

(b) random force excitation
0.01 0.0192 0.9901 1.0199 0.0016 8.6602
0.03 0.0533 0.9712 1.0600 0.0082 4.9999
0.05 0.0826 0.9534 1.1000 0.0167 3.8729
0.07 0.1077 0.9365 1.1400 0.0263 3.2732
0.10 0.1388 0.9128 1.2000 0.0416 2.7386

(a) (b) 

Fig. 3.4. Optimal frequency response curves for IDVA-C6: (a) random ground motion excitation; (b) random force excitation.

Table 3.5
Optimal parameters for the optimum design of the IDVA-C4.

µopt qopt opt opt1, min
2

(a) random ground motion excitation
0.01 0.0194 0.9899 0.9906 0.0016 8.8041
0.03 0.0555 0.9698 0.9748 0.0074 5.2481
0.05 0.0888 0.9498 0.9618 0.0145 4.1923
0.07 0.1200 0.9302 0.9508 0.0221 3.6503
0.10 0.1635 0.9014 0.9368 0.0337 3.1884

(b) random force excitation
0.01 0.0193 0.9973 0.9905 0.0016 8.6808
0.03 0.0551 0.9913 0.9742 0.0074 5.0325
0.05 0.0877 0.9848 0.9605 0.0145 3.9115
0.07 0.1177 0.9779 0.9485 0.0220 3.3155
0.10 0.1590 0.9672 0.9330 0.0335 2.7840

Table 3.6
Optimal parameters for the optimum design of the IDVA-C3.

µopt qopt opt opt1, min
2

(a) random ground motion excitation
0.01 0.0199 0.9863 1.0049 0.0576 8.7739
0.03 0.0592 0.9598 1.0149 0.0996 5.1972
0.05 0.0979 0.9343 1.0248 0.1284 4.1279
0.07 0.1362 0.9097 1.0347 0.1517 3.5753
0.10 0.1926 0.8743 1.0495 0.1809 3.1002
(b) random force excitation
0.01 0.0198 0.9938 1.0049 0.0574 8.6584
0.03 0.0583 0.9817 1.0148 0.0984 4.9969
0.05 0.0955 0.9701 1.0246 0.1257 3.8691
0.07 0.1313 0.9588 1.0343 0.1472 3.2688
0.10 0.1828 0.9426 1.0487 0.1734 2.7334

E. Barredo, et al. Engineering Structures 195 (2019) 469–489

477



3.2. Comparison of performances for all devices

In this subsection, the optimal FRF curves of all devices depicted in
Fig. 2.1(a), (b), (c) and Fig. 2.2 are obtained considering the mass ratio

= 10% in order to compare the dynamic performance of these devices
with respect to that of the classic DVA. These optimal FRFs are shown in
Fig. 3.7(a) and (b) for both excitation cases.
In Fig. 3.7(a) and (b) can be seen that both DVAs arranged in series

and IDVA-C6 have the same optimal FRF curve, that is, these devices
present the same vibration amplitudes at all excitation frequencies. It
means that IDVA-C6 can be replaced by the DVAs arranged in series
because the IDVA-C6 has the same dynamic performance than the
DVAs-series. In some investigations, the IDVA-C6 is called as the rota-
tional inertial double tuned mass damper [60,62]. Note that the DVAs
arranged in series is less expensive than the IDVA-C6 in terms of
manufacturing and implementation for the passive vibration control. In
addition, the DVAs connected in series could be more feasible for mi-
tigating vibration into machining process than IDVA-C6 because the
mounting space into that process is extremely reduced, and the in-
stallation either IDVA-C6 or an inerter is not possible. Indeed, the au-
thors of [29] used a 2dof TVA for milling vibration mitigation, and the
mounting space of the 2dof TVA is very small. Additionally, the
minimal variance values min

2 for each device are depicted in Fig. 3.8.
According to the Table 3.2, Table 3.4, and Fig. 3.8(a) and (b) can be

noted both IDVA-C6 and DVAs arranged in series have the same var-
iance values or performance index min

2 . Although the IDVA-C6 has the
advantage for yielding high apparent mass or inertance without mod-
ifying the physical size of inerter, the DVAs connected in series and 2dof
TVA could be more appropriate for attenuating vibration in systems
with very reduced installation space; However, the IDVA-C6 is feasible
to use in mounting space bigger than that used into milling process.
Additionally, the relative dynamic performance (RDP) percentages for
each device are computed from Eq. (3.10) and compared with respect to
that of the classic DVA, see Table 3.7.
According to the Table 3.7, it was found that both DVAs arrange in

series and IDVA-C6 have the same relative dynamic performance
( =%RDP %RDPDVAs series IDVA C6), which is major to the 13.50% and
minor to the 13.29% for random ground motion and force excitation
case, respectively. Moreover, for random ground motion excitation
case, the performance of the IDVA-C4 decrease by increasing the value
of , while the performance of the 2dof TVA with translational and
rotational motion increases. In excitation case (a), the devices that yield
more dynamic performance than classic DVA are the following: the
DVAs arranged in series, IDVA-C6, IDVA-C3 or

= >%RDP %RDP %RDPDVAs series IDVA C IDVA C6 3. Besides, for the random
force excitation, the IDVA-C3 yields major performance while the DVAs
arranged in series and IDVA-C6 have the same dynamic performance or

> =%RDP %RDP %RDPIDVA C DVAs series IDVA C3 6. In addition, for this ex-
citation case, it can be noted that the performance of the IDVA-C4
decrease by increasing the value of while the performance of the 2dof
TVA increases.
In Fig. 3.9(a) can be noted that DVAs connected in series, IDVA-C6,

and IDVA-C3 can provide more than 13% improvement with respect to
the classic DVA. On the other hand, in Fig. 3.9(b) can be seen that these
devices yield more than 10% improvement when are compared with
the classic DVA.
In addition, the effective operating range or suppression band index

(SBi) can be defined as the range of excitation frequencies in which the
primary structure controlled either the high-performance DVAs studied
is this paper or a classic DVA outperforms an uncontrolled structure. By
using the magnitudes SBclassic DVA, SBDVAs parallel, SBDVAs series, SB dof TVA2 ,
SBIDVA C6, SBIDVA C4, and SBIDVA C3 depicted in Fig. 3.7(a) and (b), the
suppression band index can be computed as

= ( )%SB 100%i
SB SB

SB
types DVAs classic DVA

classic DVA
. From this definition, the %SBi for

these devices are shown in Fig. 3.10(a) and (b) for both excitation cases.
Note that in Fig. 3.10(a) and (b) the 2dof-TVA, IDVA-C6, C4, C3,

and DVAs connected in series present more than 30% of widening of
effective operating range with respect to the classic DVA. It means that
these devices are more effective and robust for mitigating vibration

(a) (b) 

Fig. 3.5. Optimal frequency response curves for IDVA-C4: (a) random ground motion excitation; (b) random force excitation.

(a) (b) 

Fig. 3.6. Optimal frequency response curves for IDVA-C3: (a) random ground motion excitation; (b) random force excitation.
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around resonance than classic DVA. Indeed, that affirmation can be
noted in Fig. 3.10(a) and (b) in which the vibration amplitudes around
resonance are smaller than that of the classic DVA. However, for forced
frequency ratios below 0.85 and over 1.15, the classic DVA and un-
controlled structure outperform to the high-performance DVAs. This
inconvenient can be avoided by correctly tuning these devices.
In the next section, the H optimization is performed in order to

corroborate that the DVAs arranged in series, IDVA-C6, and the IDVA-
C3 present a dynamic behavior quite similar.

4. H Optimization

The target of H optimization method is to minimize the maximum
vibration amplitude of frequency response H| ( )|DVAs parallel ,
H| ( )|DVAs series , H| ( )|dof TVA2 , and the H| ( )|IDVAs (IDVAs C6, C4, and
C3) at resonance frequencies, which is well known as the norm
H j|| ( )|| [49,75]. Recently, quasi-optimal solutions were obtained for
the IDVAs C6, C4, and C3 from the invariant frequencies of frequency
response of the main structure [69]. This optimization process is called
as the extended fixed-points technique which is analogous to the H

optimization method. Note that, both the DVAs arranged in series and
2dof TVA with translational and rotational motion have four invariant
frequencies look like to those of the IDVA-C6, C4, and C3. Nevertheless,
the DVAs arranged in parallel does not has invariant frequencies, and
the extended fixed-points technique cannot be applied for the optimi-
zation of this device [66]. Hence, numerical solutions for the optimal
design for devices showed in Fig. 2.1(a), (b), (c), and Fig. 2.2 can be
obtained by formulating the H optimization problem, which can be
written as.

=

=

=

=

=

=

H µ q H

H µ q H

H q H

H µ q H

H µ q H

H µ q H

max(| ( , , , , , )|) min( max (| ( )|))

max(| ( , , , , )|) min( max (| ( )|))

max(| ( , , , , )|) min( max (| ( )|))

max(| ( , , , , )|) min( max (| ( )|))

max(| ( , , , , )|) min( max (| ( )|))

max(| ( , , , , )|) min( max (| ( )|))

DVAs parallel opt opt opt opt opt
µ q

DVAs parallel

DVAs series opt opt opt opt
µ q

DVAs series

dof TVA opt opt opt opt
q

dof TVA

DVA C opt opt opt opt
µ q

IDVA C

DVA C opt opt opt opt
µ q

IDVA C

DVA C opt opt opt opt
µ q

IDVA C

1, 2,
, , , 1, 2

2,
, , , 2

2 1,
, , , 1

2

6 1,
, , , 1

6

4 1,
, , , 1

4

3 1,
, , , 1

3

(4.1)

(a) 

(b) 

Fig. 3.7. Comparison of optimal frequency response curves for absorbers studied in this paper with respect to that of the classic DVA considering the ratio = 10%:
(a) random ground motion excitation case; (b) random force excitation case.

(a) (b) 

Fig. 3.8. Performance indexes for all devices: (a) random ground motion excitation; (b) random force excitation.
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where the FRFs |H ( )DVAs parallel |, |H ( )DVAs series |, |H ( )dof TVA2 |, and
the H| ( )|IDVAs are depicted in the Eq. (2.6), respectively. Solving the set
of optimization problems given by the Eq. (4.1) for the mass ration

= 10% by means of the optimization method described in [4,67]. This
optimization approach is mainly based on the observation of a trade-off
relation among vibration amplitudes at resonant frequencies denoted
by H j| ( )|A , H j| ( )|B , and H j| ( )|C , and then H performance index is
defined as =H j H j H j H j|| ( )|| max[| ( )|, | ( )|, | ( )|]A B C . In order to
compute the optimum performance measurement, Nishihara in-
troduced a novel mathematical artifice in which the performance index
can be expressed by = =h r H j1/ 1 || ( )||2 [4]. The optimality
approach of this methodology is strictly satisfied when the unknown r is
minimized. On this assumption, the frequency response for each device
can be expressed in terms of variable r . In fact, the optimum resonant
frequencies can be also expressed by unknown variable r and therefore
can be computed by solving a six-order polynomial. In order to achieve
the same vibration amplitudes at resonance frequencies, the Vieta’s
theorem must be used which leads to an overdetermined nonlinear
system of three high-order nonlinear equations. These nonlinear
equations can be expressed as =f µ q r( , , , , , , , )i 1 2

=for i0 1, ,3. To solve this system of simultaneous equations,
constraint equations need to be added. These constraints provide a
condition necessary to yield an optimal solution to the H criteria.
Therefore, the remaining equations can be obtained by using the Ja-
cobian matrix =J µ q( , , , , , )f

f µ q
µ q1 2
( , , , , , )

( , , , , , )
i 1 2

1 2
of the infinitesimal

variation of r with respect to the design parameters which are in im-
plicit form f µ q r( , , , , , , , )i 1 2 . Then, the optimality criteria ap-
proach is satisfied when any 3x3 minor determinant of the Jacobian
matrix is equalized zero. Thus, this optimization methodology is sum-
marized to numerically solve a set of high-order nonlinear equations
which are the following

=
=
=

= =

= =

= =

+

f µ q r
f µ q r
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1 (4.2)

In addition, the optimality of the optimal solutions provided by
solving the high-order nonlinear equations (4.2) can be also determined
by computing the eigenvalues of Hessian matrix of the variation of DMF
from frequency response evaluated at optimum resonant frequencies
[69]. For the optimal design of the DVAs connected in parallel, the six
equations given by equation (4.2) must be numerically solved using the
Newton–Raphson method and thus the optimal parameters
µ q, , , , ,opt opt opt opt opt1, 2, and =r 0.9697min are obtained. In addition, to
achieve the rapid convergence of the solution method, the optimal
parameters obtained from H2 optimization criteria can be used as
starting points. By solving the first five equations of Eq. (4.2), the

Table 3.7
Improvement percentages for high-performance DVAs compared with the classical DVA.

% DVAs parallel
2 % DVAs series

2 % dof TVA2
2 % IDVA C6

2 % IDVA C4
2 % IDVA C3

2

(a) RDP percentages for random ground motion excitation case
0.01 6.4614 13.5052 8.4540 13.5052 13.1540 13.4516
0.03 6.4742 13.7180 9.2735 13.7180 12.7140 13.5599
0.05 6.4849 13.9273 9.8654 13.9273 12.3222 13.6681
0.07 6.4955 14.1331 10.3618 14.1331 11.9678 13.7763
0.10 6.5113 14.4356 11.0052 14.4356 11.4911 13.9387

(b) RDP percentages for random force excitation case
0.01 6.3939 13.2901 7.9059 13.2901 13.0840 13.3080
0.03 6.2686 13.0804 8.1752 13.0804 12.5154 13.1330
0.05 6.1476 12.8773 8.3095 12.8773 12.0090 12.9634
0.07 6.0311 12.6805 8.3858 12.6805 11.5521 12.7988
0.10 5.8638 12.3963 8.4388 12.3963 10.9413 12.5609

(a) 

(b) 

Fig. 3.9. Performance indexes for all devices: (a) random ground motion excitation case; (b) random force excitation case.
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optimum variables µ q, , , ,opt opt opt opt2, and =r 0.9610min are provided
for the optimum design of the DVA arranged in series. Then, for the
optimum design for the 2dof-TVA, the variable µ must be replaced by
of the fifth equation of Eq. (4.2) in order to compute the optimal
parameters q, , ,opt opt opt opt1, and =r 0.9649min . These optimum para-
meters are given in Table 4.1. Finally, for optimum design of IDVAs, the
first five equations of Eq. (4.2) can be solved however the optimal so-
lutions have been provided in [49]. Therefore, it yields.
In Fig. 4.1(a) and (b) can be noted that both the DVAs arranged in

series and IDVA-C6 have the same frequency response, which was ob-
served in the H2 optimization. However, the performances for these
devices are different, which are =H ( ) 3.6175DVAs series and

=H ( ) 3.6208IDVA C6 . In addition, the optimal parameters obtained
via the H optimization are depicted in Table 4.1.

By introducing the concept of equivalent mass ratio provided in [4],
interesting results are obtained. According to this concept is possible to
compute an equivalent mass ratio of the traditional DVA that yields the
same performance index than high-performance DVAs. For this pur-
pose, closed-form performance index of traditional DVA is needed
which can be written by following mathematical expression [75]

=

= + +
+ + + + +

h H|| ( )||
27 80 64

((384 512) 4 3 (9 16)(9 8) )

max classic DVA classic DVA, ,
2

2

(4.3)

For example, by taking a mass ratio = 0.11 for DVAs connected in
series, the performance index is =H ( ) 3.6175. The equivalent
mass ratio eq for traditional DVA can be computed by substituting this
performance index value into Eq. (4.3), and therefore = 0.1662eq . It
means that the traditional DVA needs 66.2% additional mass to yield
the same dynamic effect than DVAs arranged in series. When the per-
formance indexes of 2dof-TVA and IDVA-C6 are considered, the
equivalent mass ratios eq are 0.1485 and 0.1659; Therefore, the ad-
ditional virtual masses are 48.5% and 65.9%, respectively. In fact,
passive high-performance DVAs are better than traditional DVA.
Both DVAs arranged in series and IDVA-C3 have the same norm or

performance =H H|| ( )|| || ( )||DVAs series IDVA C3 , see Table 4.1. Note
that, for H|| ( )|| criteria the DVAs arranged in series, IDVA-C6, and
IDVA-C3 are better than other one. Besides, the optimal FRFs both
DVAs arranged in series and IDVA-C6 obtained through the H and H2
optimization are quite similar, see Fig. 3.7 and Fig. 4.1. It is very in-
teresting that the IDVA-C6 known as the rotational inertial double
tuned mass damper can be replaced by the DVAs arranged in series.

5. Conclusion

In this paper, the optimal design for high-performance Dynamic
Vibration Absorbers was computed when subjected to random and
harmonic vibration. These mechanical devices are the following; the
DVAs arranged in parallel or series, 2dof-TVA with translational and

(a)
(b)

Fig. 3.10. Operating effective bandwidth index = ( )%SB 100%i
SBtypes DVAs SBclassic DVA

SBclassic DVA
for all devices: (a) random ground motion excitation case; (b) random force

excitation case.

Table 4.1
Optimal parameters for all devices obtained by H optimization criteria.

(a) DVAs-parallel: solution in this paper

1 µopt qopt opt opt1, opt2, H ( )
0.10 0.7517 0.8473 1.2017 0.1227 0.1273 4.0963

(b) DVAs-series: solution in this paper

1 µopt qopt opt opt1, opt2, H ( )
0.10 0.2428 1.0723 0.8051 – 0.3132 3.6175

(c) TDVA with translational and rotational motion: solution in this paper

opt
1 qopt opt opt1, opt2, H ( )

0.10 0.6606 0.5328 1.2272 0.1777 – 3.8108

(d) IDVA-C6 [49]
µopt qopt opt opt1, opt2, H ( )

0.10 0.1538 0.8642 1.2454 0.0593 – 3.6208

(e) IDVA-C4 [49]
µopt qopt opt opt1, opt2, H ( )

0.10 0.1930 0.9499 0.9013 0.0505 – 3.7448

(f) IDVA-C3 [49]
µopt qopt opt opt1, opt2, H ( )

0.10 0.2208 0.9083 1.0485 0.1657 – 3.6175

(a) (b) 

Fig. 4.1. H optimization for all devices: (a) Optimal FRFs curves for all devices considering the ratio = 10%; (b) comparison of optimal FRFs curves for the devices
that provide more performance than other one.
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rotational motion, and inerter-based dynamic vibrations absorbers
(IDVAs). These types of DVAs use two resonant modes for suppressing
the vibration of the dominant mode of the primary structure and have
the effect of widening the effective operating bandwidth, unlike the
classic DVA use one vibration mode only. It means that they can at-
tenuate vibrations at lower and higher excitation frequencies around
resonance. This work presents a comparative study on the dynamic
behavior for these types of passive high-performance DVAs. To study
the dynamic behavior for the types of proposed DVAs, two different
excitation sources were proposed which are the following; the first one
is the random ground motion excitation; and the second is random force
excitation. Indeed, for the random ground motion excitation case, the
optimal parameters for majority of these device have not been reported
before, and therefore in this work were computed. For random force
excitation, some numerical solutions for the optimal design of these
devices were only determined in this paper because the other one were
provided in previous researches. For both random excitation cases,
closed-form solutions for dimensionless variances of frequency response
of the undamped primary structure for each device were obtained. Then
for the minimization for variances, nonlinear unconstrained optimiza-
tion problems were formulated in order to compute the optimum
parameters for each device. The optimality of these solutions was
confirmed by the eigenvalues computed from the Hessian matrix. For
random ground motion excitation case, the numerical simulations re-
vealed that the DVAs arranged in series, IDVA-C6, and the IDVA-C3
present major effectiveness for suppressing vibration than the other
devices (DVAs connected in parallel, 2dof-TVA, and IDVA-C4) and yield
more than 13% improvement with respect to the classic DVA, see
Fig. 3.9(a). In fact, the relative dynamic performance (RPD) between
the high-performance devices (DVAs connected in series, IDVA-C6, and
IDVA-C3) and DVAs arranged in parallel, 2dof-TVA, and IDVA-C4 is
approximately 2–7% improvement for mass ratio range 0.01 0.1.
This range was selected because in practical application the maximum
value of mass ration is 10%. Additionally, for random force excitation
case, these passive high-performance devices can achieve more than
10% improvement with respect to the traditional DVA, see Fig. 3.9(b).
In addition, it was found that the dynamic performance both the DVAs
arranged in series and IDVA-C6 are exactly equal, see Fig. 3.7(a) and
(b). It means that in some practical applications such as the machining
process, the DVAs connected in series could be more feasible to

implement than IDVA-C6 because the mounting space of the DVA is
quite reduced. Although the IDVA-C6 has the advantage for yielding
high apparent mass or inertance without modifying the physical size of
inerter, the DVAs connected in series and 2dof TVA could be more
appropriate for mitigating vibration in applications such as milling
process in which mounting space is quite small.
Additionally, the suppression band index (SB) was computed for all

devices. It was noted that DVAs connected in series, IDVA-C6, IDVA-C3,
and 2dof-TVA can provide more than 30% of widening of SB with re-
spect to the classic DVA. It means that these devices are more effective
and robust for mitigating vibration around resonance than the classic
DVA.
The numerical solutions for a mass ration = 10% obtained from

H optimization showed that the performance both the DVAs arranged
in series and IDVA-C3 are equal, see Table 4.1. In addition, the fre-
quency response both the DVAs arranged in series and IDVA-C6 are
quite similar, see Fig. 4.1. Indeed, it was noted from H2 optimization
that the vibration amplitudes are the same at whole excitation range. In
the literature, the IDVA-C6 is well known as the rotational inertial
double tuned mass damper. It is very interesting that the rotational
inertial double tuned mass damper can be replaced by DVAs arranged
in series since these devices have the same dynamic performance.
The concept of equivalent mass ratio was introduced in order to

demonstrate that these devices are better than the classic DVA. Indeed,
for a mass ratio = 0.1, the physical mass of classic DVA need to be
increased by approximately 66.2% to yield the same performance than
the IDVA-C6 or DVAs arranged in series.
Although the random excitation sources studied in this paper are

not sufficient to demonstrate that these devices are better under the
effect of transient and earthquakes loads than other reported in the
literature, this paper provide guidelines for optimal design under
random acceleration excitation for three types of Dynamic Vibration
Absorbers. Future works will be focused for the analysis of transient
loads in order to evaluate the robustness under uncertainty, especially
for the IDVA-C6, DVAs arranged in series and 2dof-TVA.
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Appendix A. Dimensionless functions Ai, Bi, Ci, and Di
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Appendix B. Optimal curves of µopt, = d
1
opt

, qopt, opt, opt1, , and opt2, for both random excitation cases

(a) Optimal parameters for the random ground motion excitation case (Fig. 8.1)
(b) Optimal parameters for the random force excitation case (Fig. 8.2)
(c) Eigenvalues for both random excitation cases (Figs. 8.3–8.5)
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 (2

do
f-

TV
A

) 

(a)
(b)

(d)(c)

Fig. 8.1. Optimal parameter curves for all devices.

 , 
 (2

do
f-

TV
A

) 

(a) (b)

(c) (d)

Fig. 8.2. Optimal parameter curves for all devices.

(a) (b) 

Fig. 8.3. Eigenvalues evaluated at optimal parameters µopt , qopt , opt , opt1, , and opt2, : (a) DVAs arranged in parallel; (b) DVAs arranged in series.
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Appendix C. Dimensionless functions Fi, Gj, fi, and gj
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Fig. 8.4. Eigenvalues evaluated at optimal parameters µopt , qopt , opt , opt1, : (a) IDVA-C6; (b) IDVA-C3.

(a) (b) 

Fig. 8.5. Eigenvalues evaluated at optimal parameters µopt , qopt , opt , opt1, : (a) IDVA-C4; (b) 2dof TVA with translational and rotational motion.
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