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A B S T R A C T

Deviations from nominal design values of mechanical characteristics of seismic isolators are inevitable due to
uncertainties and/or errors in material properties, element dimensions, construction methods, quality control,
and/or installation steps, etc. In addition, due to uncertainties existing in active fault mechanisms affecting the
site and local soil conditions, earthquake ground motions show record-to-record variability. Moreover, en-
vironmental conditions and/or time-dependent factors such as aging, temperature, and travel, etc. may also
cause additional deviations in nominal values of characteristics of seismic isolators and thus in structural re-
sponses over the service life of structures. Therefore, in order to capture the dynamic behavior of base-isolated
buildings realistically and design reliable base-isolated buildings, influence of such uncertainty should be taken
into account. In this study, seismic reliability of realistic fully three-dimensional benchmark multi-story build-
ings equipped with nonlinear isolation systems is investigated under historical near-fault earthquakes. In order
to take into account the uncertainties in the isolation system characteristics, pre-yield stiffness, post-yield
stiffness, and yield displacement parameters are assumed as random variables, while the record-to-record
variability nature of the ground motions is considered by using large sets of historical near-fault ground motions
with or without forward-directivity effects. Two different levels of nominal isolation periods are taken into
account while three different levels of uncertainty are considered for the random isolator characteristics. The
reliability of the buildings is investigated in terms of structural integrity, isolation system safety, and the safety
of the vibration-sensitive contents of the buildings using the peak bearing displacements and the peak floor
accelerations obtained from the nonlinear time history analyses conducted in the framework of the Monte Carlo
simulations. The plots including the average reliabilities for the displacement and the acceleration limit values
provide a comprehensive picture in terms of the reliability level of the structural systems and of the vibration
sensitive contents.

1. Introduction

Seismically isolated structures are generally mission-critical struc-
tures housing vibration-sensitive equipment which must go on serving
even during an earthquake. However, such equipment may fail if floor
accelerations sustained during such motions exceed certain limit values.
In addition, the isolators may fail different failure modes [1] and en-
danger safety of the whole structure. Isolation system displacements
may exceed the design limits for the base displacements and therefore
cause buckling and/or rupture of isolators may occur [2]. Buckling is a
specific concern for stability of elastomeric isolators when the critical
axial load capacities of the isolators are exceeded along with the in-
creases in the horizontal isolator displacements [3,4]. In such a case,
the subject isolator displacements become unconstrained and increase

freely [5]. In another failure mode, cavitation damages occur at a cri-
tical tensile stress value inside a rubber layer and gain importance for
horizontal displacement levels corresponding to shear strains above
100% [6,7]. Finally shear failure could be observed at very high shear
(i.e., on the order of approximately 300–500%) strain levels [4,8,1].
Above all these, in case one of the abovementioned failure modes occur
in a significant number of isolators almost simultaneously, this may
lead to the collapse of the whole isolation system [1]. Therefore, for
obtaining reliable seismically isolated structural systems, it is eco-
nomically and sometimes vitally important to determine the actual
mechanical properties of isolation elements, which are used in the
dynamic analyses of the subject systems, and take into account the
factors that may lead to deviations in those mechanical characteristics.
The effects of aging, temperature, scragging, travel, and/or heat, etc.
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can be listed among the abovementioned factors which may threaten
the safety of both the seismically isolated structure and its vibration-
sensitive contents. Because, particularly the mechanical characteristics
of seismic isolators vary over the service life of structures due to such
effects and deviate from their nominal values, which are determined via
extensive prototype tests [9]. Related research studies, including sta-
tistical data, can be found in Constantinou et al. [10], Kalpakidis et al.
[11], and Cardone and Gesualdi [12]. In brief, as reported by Pan et al.
[13], who reviewed the state-of-the-practice of design and construction
of seismically isolated buildings in Japan where more than half of the
seismically isolated structures around the world is located in [14], the
mechanical characteristics of lead rubber bearings (LRBs) and high
damping rubber bearings (HDRBs) vary from their nominal values, up
to 20% and 25% due to the abovementioned factors respectively, while
the lateral and vertical mechanical characteristics of low damping
rubber bearings (LDRBs) are reported to vary up to 20% and 10% due to
the same factors, respectively. Additionally, there are also inherent
uncertainties in the mechanical characteristics of seismic isolators due
to uncertainties and/or errors in their material properties, element di-
mensions, construction methods, quality control, and/or installation
steps [15,16]. As one can predict, such deviations in the mechanical
characteristics may trigger significant deviations in the structural re-
sponses from their nominal design values. Moreover, due to un-
certainties existing in active fault mechanisms affecting the site and
local soil conditions, earthquake ground motions show record-to-record
variability. Therefore, for accurate analysis and design of seismically
isolated structures, such uncertainties should be taken into account.
Accordingly, stochastic response analyses and reliability analyses,
considering inherent uncertainties, need to be conducted in evaluating
the response of base-isolated structures comprehensively [17]. Con-
sideration of uncertainties, which may lead to vulnerabilities in the
structural systems and their nonstructural contents, is vital and should
be taken into account via reliability analyses [18].

Most of the related previous studies take into account either the
random nature of earthquake characteristics or the uncertainties in the
isolation system, but not both. In such a study, Pradlwarter et al. [19]
investigated the effects of deterministic two dimensional frictional de-
vices on the structural reliability of a three-story building via the sto-
chastic response analyses based on Monte Carlo simulations. Chen et al.
[20] used a physical stochastic ground motion model and evaluated the
reliability of a ten-story frame-shear wall hospital building equipped
with a deterministic isolation system consisting of rubber-based bear-
ings and viscous dampers. Using four sets of deterministic isolation
systems and a set of various ground motion records, Morgan and Mahin
[21] performed probabilistic seismic demand analyses for two multi-
story shear-type buildings isolated by friction pendulum isolators and
then computed the probability of satisfying some selected performance
objectives for those buildings. Taflanidis and Jia [22] assessed the
seismic risk occurrence probabilities for a planar base-isolated shear-
frame using a simulation-based framework, which considers the un-
certainties in the moment magnitude and the epicentral distance of the
earthquake events but modeled the lead rubber bearings deterministi-
cally. Dang et al. [23] made a dynamic reliability evaluation for a
seven-story building, which is mounted on a deterministic isolation
system and subjected to Kanai-Tajimi spectrum, in terms of the inters-
tory drift ratios.

There also exist studies that take into account the uncertainties in
both the earthquake characteristics and the isolation system char-
acteristics. But in these studies, either the seismic isolation systems are
modeled linearly or the equivalent linear counterparts of the nonlinear
isolation system elements are obtained via equivalent linearization
techniques or the nonlinear-force deformation characteristics of the
isolators are facilitated using stochastic linearization methods. In ad-
dition, the seismically isolated buildings are either represented by
single or a few degree-of-freedom models or idealized as two dimen-
sional shear frames. Pinto and Vanzi [24] took into account the

uncertainties in the central frequency of the ground motion and the
effective stiffness of the isolators for investigating the behavior of se-
lected fractiles of peak displacements of a two-degree-of-freedom model
with a linear isolation system. In order to compare the seismic reli-
abilities of a fixed-base and a seismically base-isolated reactor building,
which were modeled as two and three-mass systems, respectively, Ta-
keda et al. [25] demonstrated a probabilistic assessment method as-
suming the spectral acceleration of ground motion, the shear wave
velocity of the site, the compressive strength of concrete, the elastic
stiffness and ultimate deformation of rubber bearings, and the elastic
stiffness of dampers as independent random variables. Alhan and Gavin
[17] proposed a reliability-based method to determine the properties of
high performance linear floor isolation systems taking into account
both the uncertainties in the isolation system parameters and the
ground motion characteristics. De Grandis et al. [26] proposed a nu-
merical procedure to compute fragility functions for the equipment
components of nuclear power plant reactor buildings under random
excitation and validated the procedure via a linear single-degree-of-
freedom base-isolated system. In order to calculate the fragility curves
of bearing failure in isolated structures, Fan and Zhang [27] proposed a
method which takes into account the uncertainties in the structural
parameters including stiffness and damping of the linear rubber-based
bearings and uses a probabilistic ground motion model which is based
on adjusting the spectral accelerations of a group of selected real
earthquake records. In another study, Castaldo et al. [28] presented
reliability curves for a single-degree-of-freedom linear-shear type flex-
ible steel building, which is isolated by frictional pendulum system and
subjected to artificial ground motions. They took into account the
friction coefficient of the isolators as random variable as well as the
fundamental circular frequency and damping factor parameters of the
soil strata included in the power spectral density function of the ground
motion model. Castaldo et al. [29] derived the reliability curves for
structural systems, which they modeled as two-degree-of-freedom sys-
tems consisting of inelastic superstructures mounted on bilinear friction
pendulum isolators. They assumed the friction coefficient of the iso-
lators as a random variable and took into account a set of natural
seismic records in order to consider record-to-record variability of
seismic excitations. And, Moeindarbari and Taghikhany [30] assumed
the radius and the friction coefficient of the friction pendulum bearings
and the artificially developed ground motion parameters as random
variables; then assessed the seismic reliability of a two-dimensional
three story concrete frame using artificial neural networks in compar-
ison with Monte Carlo simulations.

Finally, to be distinct from the studies summarized above, a very
recent comprehensive study presented by Cardone et al. [1] makes use
of three dimensional reinforced concrete superstructures and isolation
systems modeled nonlinearly for constructing fragility functions for
existing reinforced concrete-frames representative of typical residential
buildings built in Italy before 1970s and later retrofitted with base
isolation technique. The record-to-record variability is quantified di-
rectly through incremental dynamic analysis while model variability
was included via first order second moment approach. The effects of
two sources of variability aforementioned above are then combined by
the mean estimates method.

In this study, seismic reliability of buildings with elastomeric base-
isolation systems under historical near-fault earthquakes is investigated
using realistic full three-dimensional multi-story building models iso-
lated with nonlinear isolation systems, and by taking into account both
the uncertainties in the isolation system characteristics and the inherent
record-to-record variabilities in the ground motion records. The un-
certainties in the isolation system characteristics are taken into account
by assuming pre-yield stiffness, post-yield stiffness, and yield dis-
placement parameters as random variables while the inherent record-
to-record variability nature of the ground motions is considered by
using large sets of historical near-fault ground motions with or without
forward-directivity effects. In order to represent the base-isolated
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buildings with short and relatively long periods, two different levels of
nominal isolation periods are used while three different levels of un-
certainty (i.e. coefficient of variation) are considered for the random
isolator characteristics. The reliability of the buildings is investigated in
terms of structural integrity, isolation system safety, and the safety of
the vibration-sensitive contents of the buildings via Simulation Based
Reliability Method consisting of Monte Carlo simulations; and is eval-
uated with respect to the closest fault distances, PGA/PGV ratios, pulse
periods, and pulse amplitudes of the ground motion records.
Bidirectional nonlinear time history analyses are conducted via a ver-
sion of 3D-BASIS [31] modified by Gazi [32] to conduct recursive
analyses in the framework of the Monte Carlo Simulation Method.

2. Mathematical model

Two full three-dimensional base isolated buildings, whose nominal
isolation periods (T0,nom) are 2.0 s and 3.5 s, are considered as bench-
mark buildings in this study. The subject buildings consist of two
identical superstructures which are placed on two different nonlinear
isolation systems. The three-dimensional views and the isolation system
plans are shown in Fig. 1a and b, respectively. Along with the geome-
trical properties of the structural members of the superstructures and
their associated material properties, the subject isolation system layouts
are obtained from Tena-Colunga and Escamilla-Cruz [33]. The fixed-
base periods of the first two modes, which are obtained from the free
vibration analyses of these benchmark buildings carried out via
SAP2000 [34], are both equal to 0.18 s which are the same as those
reported by Tena-Colunga and Escamilla-Cruz [33].

2.1. Superstructure

The superstructure of the benchmark buildings has a square shaped
typical floor plan consisting of three bays in x and y directions (Fig. 1).
The structural system is composed of reinforced concrete (fc ≈ 25 N/
mm2, Ec ≈ 21,708 N/mm2) beams and columns and A36 steel braces
which are located on the four corners of the superstructures. Each floor
including the base floor has three degrees of freedom composed of two
components of translation in the x and y directions and one component
of rotation about the z axis. All floors including the base floor have
equal translational (330 kNs2/m) and rotational (24,280 kNs2 m)
masses lumped at their centers of mass. Superstructure modal damping
ratio for each mode is taken as 3%. The moment resisting frames are
modeled with rigid beam-to-column connections and the superstructure

is assumed to remain elastic throughout the time history analyses.

2.2. Isolation systems

In this study, two main isolation systems whose nominal periods
(T0,nom) are 2.0 s and 3.5 s are considered. The subject isolation systems
consist of 16 rubber-based bearings each of which is placed underneath
each column (Fig. 1b). Nonlinear force-displacement characteristics
and hysteretic energy dissipation behaviors are modeled via smooth
inelastic bi-axial hysteretic model (Fig. 2, [35]), which is characterized
by the pre-yield stiffness (K1), the post-yield stiffness (K2), the char-
acteristic force (Q), the yield force (Fy), and the yield displacement (Dy)
of the isolators. Although the general layouts of the isolation systems
are identical to Tena-Colunga and Escamilla-Cruz [33] as explained
above, the characteristic parameters of the isolators are modeled as
random variables in the context of the Monte Carlo Simulation Method
in this study and thus are different from Tena-Colunga and Escamilla-
Cruz [33] as explained below.

The nominal values of the abovementioned characteristic para-
meters and the stiffness ratios ( =α K /K2 1) considered for the isolation
systems are listed in Table 1. In this table, the nominal values of the
post-yield stiffness (K2) of the isolators are obtained using Eq. (1),
where T0 is the rigid-body mode period, M is the total translational
mass (1320 kNs2/m) of the base-isolated building, and nb is the total
number of bearings in the isolation system. As reported in the research
studies published towards the end of 1990s (e.g. [36]), isolation periods
of most base-isolated buildings were within a range between 2.0 s and
3.0 s. However, in parallel to increase in sizes and capacities of isolation
system elements, fundamental periods of seismically isolated buildings

Fig. 1. (a) Three-dimensional view and (b) Isolation system plan of the benchmark building.
adapted from [33]

Fig. 2. Force-displacement relationship of the isolators.
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have also increased. According to a report by Building Center of Japan
[37]; the equivalent periods of the most (37%) of the base isolated
structures in Japan are between 3.0 s and 3.5 s, while the equivalent
periods of 23% and 21% of those are in the ranges of 2.5–3.0 s and
3.5–4.0 s, respectively. Therefore, in order to cover a wide range to
include isolation periods preferred for most of the base-isolated build-
ings, nominal rigid-body mode periods (T0,nom) of the benchmark-iso-
lated buildings are assumed as 2.0 s and 3.5 s in this study.

=K π M n T(4 )/( )b2
2

0
2 (1)

The pre-yield stiffness (K1) values of LRBs, reported in many tech-
nical documents and research studies [38,9,39], range between 6.5 and
16 times the post-yield stiffness (K2) of the isolators. In addition, pre-
yield stiffness of HDRBs are reported to be as 10 times their post-yield
stiffness [40]. Compatible with the abovementioned values, the nom-
inal stiffness ratios (α) of the benchmark isolation systems are taken as
0.10 as a typical average value and the nominal pre-yield stiffness (K1)
values of the isolators, given in Table 1, are calculated accordingly.

The nominal characteristic strengths (Q) of the isolators are calcu-
lated based on the target ranges determined for the total characteristic
strength ratios (Qtotal/W) of the isolation systems. The total character-
istic strength ratio (Qtotal/W=nb×Q/W) determines the strength of an
isolation system with respect to the total structure weight [41]. Many
research studies in the literature (e.g. [41–43]) consider values for
Qtotal/W in 3% to 10% range. The nominal total characteristic strength
ratios (Qtotal/W) of the benchmark isolation systems, which are assumed
as 5% in this study, fall in the aforementioned range.

Following the calculation of nominal values for Q, nominal yield
displacements (Dy) of the benchmark isolation systems are obtained via
Eq. (2) [44] based on the parameters Q, K1 and K2. As stated by ASCE/
SEI 41-13 [38], Dy can be approximately considered in the range be-
tween 0.05 and 0.10 times the total rubber thickness according to the
experimental data obtained from the tests applied for the bearings.
According to the seismic isolation product catalogues provided by the
manufacturers [45,40], typical range of Dy is 5–30mm. The values
considered in this study for Dy (i.e. 5.5 mm and are 16.9 mm, See
Table 1) are in this range. Subsequently, the nominal yield strengths
(Fy) of the isolators are calculated based on the nominal values of the
yield displacement and the nominal pre-yield stiffness parameters as
given in Eq. (3) [44].

= −D Q K K/( )y 1 2 (2)

= ×F K Dy y1 (3)

2.3. Generation of random variables and probabilistic distributions

In order to obtain the probability of failures and reliability statistics

for the base-isolated buildings taking into account the uncertainties in
the isolation system parameters and record-to-record variabilities in the
earthquake ground motions, Monte Carlo Simulation Method is em-
ployed in this study. Monte Carlo is a simulation method which makes
use of statistical sampling experiments in order to solve complex pro-
blems without conducting any physical testing [46]. There are a large
number of studies using this method in conducting probability, sensi-
tivity, risk, etc. analyses in physics (e.g. [47]), engineering (e.g. [48]),
finance (e.g. [49]), and telecommunication (e.g. [50]) problems. This
method can be used as a very effective tool in solving various compli-
cated structural reliability problems conveniently and with a reasonable
approximation to analytical solutions [17]. In the context of the Monte
Carlo Simulation Method, the problem is defined in terms of all random
variables at first. Subsequently, the values of the random variables are
generated following a specified probabilistic distribution by making use
of their nominal values and coefficients of variation. Then, the problem
is solved for each realization of the values of the random variables
generated. Finally, statistical information is extracted from all simu-
lated cases [51].

In order to take into account the uncertainties in the isolation
system characteristics here, K1, K2, and Dy parameters of the isolators
are modeled as random variables (X) following normal distribution
using Eq. (4) [51]. Normal distribution is among the mostly used sta-
tistical distributions for structural reliability problems in engineering
and the probability density function (pdf, fX) of a normally distributed
random variable, which indicates the random characteristic of that
variable, can be expressed by Eq. (5) [46]. In these equations, μX and
COVX are the mean and the coefficient of variation of the random
variable X , respectively, whose standard deviation (σX) is calculated by
σX = COVX× μX, while xi represents a particular realization of that
variable. In addition, si corresponds to standard normal random num-
bers with zero mean (μ=0) and unit standard deviation (σ=1), which
are obtained via the inverse cumulative distribution function method as
the transformation of the uniform random numbers between 0 and 1.

= + ×x μ COV μ s( )i X X X i (4)

=
×

− − ×f x
COV μ π

e( ) 1
( ) 2X

X X

x μ COV μ( ) /2( )X X X
2 2

(5)

The mean values of the abovementioned normally distributed
random variables are considered to be equal to the nominal values
given in Table 1. COVX values of those variables, which indicate the
level of their uncertainties or randomness [51] are assumed as 5%,
10%, and 15% corresponding to the three levels of uncertainty con-
sidered for the random parameters of each of the benchmark isolation
systems. Thus, a total of six subsets of benchmark isolation systems are
considered: The first three subsets are generated based on the 1st
benchmark isolation system and the second three subsets are generated

Table 1
Nominal values of the isolator characteristic parameters.

Benchmark isolation system (BIS) Isolator characteristic parameter

K1 (kN/m) K2 (kN/m) Q (kN) Dy (mm) Fy (kN) α (–)

1st BIS (T0,nom)= 2.0 s 8150.65 815.06 40.51 5.52 45.01 0.10
2nd BIS (T0,nom)= 3.5 s 2661.44 266.14 40.51 16.91 45.01 0.10

Table 2
Properties of the subsets of the benchmark isolation systems.

Benchmark isolation
system

Isolation system
subsets

Nominal period
T0,nom (s)

Coefficient of
variation (COV) (%)

Benchmark isolation
system

Subset Nominal period
T0,nom (s)

Coefficient of
variation (COV) (%)

1st BIS T20COV05 2.0 5 2nd BIS T35COV05 3.5 5
T20COV10 10 T35COV10 10
T20COV15 15 T35COV15 15
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based on the 2nd benchmark isolation system as shown in Table 2.
The characteristic parameters (α, Fy, and Q) of the isolators of these

subsets are generated to follow the relationships given in Section 2.2.
The probability density function (fX) plots for all isolator characteristic
parameters (K1, K2, Dy, α, Fy, and Q) of a representative isolator (A4) for
all isolation system subsets are given in Fig. 3. It should be noted here
that, 5000 different values are generated for each of the above-
mentioned characteristic parameters of each isolator in each bench-
mark isolation system for conducting Monte Carlo simulations. The
adequacy of the number of Monte Carlo simulations, NMCS=5000, is
verified via an initial simulation study, which is based on the con-
vergence of probabilities of exceeding different limit state values de-
termined for different response parameters of the benchmark buildings
[32].

3. Ground motion records

The ground motions at a site in close proximity to a fault rupture are
generally affected by the rupture mechanism and the slip direction [52]
and often involve long period pulses with high velocities on their
horizontal strike-normal components due to the forward rupture di-
rectivity effects [53]. The pulse-like ground motions resulting from
forward rupture directivity effects may cause more hazardous seismic

demands particularly in base-isolated buildings than those with the
same PGA values and duration of shaking but without directivity pulses
[54]. Therefore, the effects of those type of ground motions on the base-
isolated buildings located in the near-fault zones must be taken into
account while designing such structures [55].

Thus, 108 near-fault ground motion records with and without for-
ward directivity effects from the 1999 Chi-Chi Earthquake (Taiwan),
the 1999 Kocaeli Earthquake (Turkey), the 1999 Düzce Earthquake
(Turkey), the 1989 Loma Prieta Earthquake (USA), the 1994 Northridge
Earthquake (USA), and the 1992 Erzincan Earthquake (Turkey) are
used in this study. The moment magnitudes of these 6 historical
earthquakes vary in the range of 6.70–7.60, and all ground motion
records are taken from 54 stations in close proximity (between 0.24 km
and 24.00 km) to the fault ruptures. The list of the ground motion
components which are applied to the buildings in the x-direction has
been obtained from Sehhati et al. [55] and the properties of those
components, including their closest distances to the faults (r), peak
ground accelerations (PGA), peak ground velocities (PGV), peak ground
displacements (PGD), and pulse periods (Tp) are given in Table 3. In
order to investigate the differences in the probabilistic seismic behavior
of the base-isolated buildings based on the ground motion character-
istics, the loading cases are divided into two groups as seen in this table:
those with forward-directivity effects are listed with FDi (i= 1–27)

Fig. 3. Probability Density Function (PDF) plots of characteristic isolator parameters for the representative case of isolator A4.
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codes, while those with no forward-directivity effects are listed with
NFDi (i= 1–27) codes.

It should be stated here that, it would be preferable to take into
account as many ground motion histories as possible in order to eval-
uate the record-to-record variability nature of the ground motions
better. However, Monte Carlo Simulation Method that was used in this
study is an extremely numerical-intensive method which takes very
long computing time particularly when nonlinear models are con-
sidered. Therefore, we chose to use a feasible number of ground motion
loadings consisting of 27 FD and 27 NFD loadings (i.e. a total of 54
ground motion couples) that is also compatible with the number of

ground motions used in other related studies carried out in similar
study areas in the literature (e.g. [28,29,56,57]).

The 10% damped response spectra including the spectral accelera-
tions and the spectral displacements for the subject components (FD
and NFD) are given in Fig. 4. It should be noted here that, the buildings
are subjected to the bidirectional loadings applied in the x and y di-
rections. However, due to the limited space, the results of the bidirec-
tional analyses in the x direction are presented in this paper. Accord-
ingly, only the list of the ground motion components applied in the x-
direction is given here. All acceleration records used, including the ones
perpendicular to those in Table 3, are obtained from the database of

Table 3
Ground motion components applied in the x-direction.
adapted from [55]

Loading code* Earthquake Station x-Component

Name r (km) Name PGA (g) PGV (cm/s) PGD (cm) Tp (s)

FD1 1999 Chi-Chi TCU052 0.24 TCU052-W 0.348 159.00 184.50 6.12
FD2 1999 Chi-Chi TCU068 1.09 TCU068-N 0.462 263.10 430.20 4.25
FD3 1999 Chi-Chi TCU075 1.49 TCU075-W 0.333 88.30 86.50 2.41
FD4 1999 Chi-Chi TCU101 2.94 TCU101-W 0.202 67.90 75.40 6.86
FD5 1999 Chi-Chi TCU102 1.79 TCU102-W 0.298 112.50 89.20 9.11
FD6 1999 Kocaeli Düzce 12.70 DZC180 0.312 58.90 44.10 1.36
FD7 1999 Kocaeli Arçelik-Kandilli 17.00 ARC090 0.150 39.60 35.60 7.97
FD8 1999 Kocaeli Gebze 17.00 GBZ000 0.244 50.30 42.80 5.97
FD9 1989 Loma Prieta Gilroy-Gavilan Coll. 11.60 GIL067 0.357 28.60 6.40 1.80
FD10 1989 Loma Prieta Gilroy-Historic Bldg. 12.70 GOF090 0.284 42.00 11.10 1.80
FD11 1989 Loma Prieta Gilroy Array#1 11.20 GO1090 0.473 33.90 8.05 4.31
FD12 1989 Loma Prieta Gilroy Array#2 12.70 GO2090 0.322 39.10 12.10 1.72
FD13 1989 Loma Prieta Gilroy Array#3 14.40 GO3090 0.367 44.70 19.30 2.32
FD14 1989 Loma Prieta LGPC 6.10 LGP000 0.563 94.80 41.10 3.92
FD15 1989 Loma Prieta Saratoga-Aloha Ave. 13.00 STG090 0.324 42.60 27.60 4.47
FD16 1989 Loma Prieta Saratoga- W Valley Coll. 13.70 WVC270 0.332 61.50 36.30 1.90
FD17 1994 Northridge Jensen Filter Plant 6.20 JEN022 0.424 106.20 43.20 3.36
FD18 1994 Northridge Newhall-Fire Sta. 7.10 NWH360 0.590 96.90 38.20 1.04
FD19 1994 Northridge Newhall-W. Pico Can. Rd. 7.10 WPI046 0.455 92.80 56.60 2.41
FD20 1994 Northridge Rinaldi Receiving Sta. 7.10 RRS228 0.838 166.10 28.20 1.50
FD21 1994 Northridge Sylmar-Converter Sta. 6.20 SCS052 0.612 117.40 54.30 3.48
FD22 1994 Northridge Sylmar-Converter Sta. E. 6.10 SCE018 0.828 117.50 34.50 3.49
FD23 1994 Northridge Sylmar-Olive View FF 6.40 SYL360 0.843 129.40 31.90 3.11
FD24 1994 Northridge Pacoima Kagel Canyon 8.20 PKC360 0.433 51.20 8.00 0.90
FD25 1994 Northridge Arleta-Nordhoff Fire Sta. 9.20 ARL090 0.344 40.60 15.10 1.23
FD26 1994 Northridge Pacoima Dam (downstr.) 8.00 PAC175 0.415 45.60 5.00 0.59
FD27 1992 Erzincan Erzincan 2.00 ERZ-NS 0.515 83.90 27.66 2.65

NFD1 1999 Chi-Chi CHY028 7.31 CHY028-N 0.821 67.00 23.30 –
NFD2 1999 Chi-Chi CHY029 15.28 CHY029-W 0.277 30.30 14.70 –
NFD3 1999 Chi-Chi CHY035 18.12 CHY035-W 0.252 45.60 12.00 –
NFD4 1999 Chi-Chi CHY080 6.95 CHY080-W 0.968 107.60 18.60 –
NFD5 1999 Chi-Chi CHY006 14.93 CHY006-E 0.364 55.40 25.60 –
NFD6 1999 Chi-Chi TCU055 6.88 TCU055-W 0.237 26.20 10.00 –
NFD7 1999 Chi-Chi TCU070 19.10 TCU070-W 0.255 52.20 48.10 –
NFD8 1999 Chi-Chi TCU071 4.94 TCU071-N 0.655 69.40 49.10 –
NFD9 1999 Chi-Chi TCU072 7.36 TCU072-W 0.489 71.80 38.70 –
NFD10 1999 Chi-Chi TCU074 13.67 TCU074-W 0.597 73.40 20.50 –
NFD11 1999 Chi-Chi TCU079 10.04 TCU079-W 0.743 61.20 11.10 –
NFD12 1999 Chi-Chi TCU089 8.22 TCU089-W 0.333 30.90 18.50 –
NFD13 1999 Düzce Bolu 17.60 BOL-090 0.822 62.10 13.60 –
NFD14 1999 Düzce Düzce 8.20 DZC-270 0.535 83.50 51.60 –
NFD15 1989 Loma Prieta BRAN 10.30 BRN-090 0.501 44.60 4.90 –
NFD16 1989 Loma Prieta Capitola 14.50 CAP-000 0.529 36.50 9.10 –
NFD17 1989 Loma Prieta Corralitos 5.10 CLS-000 0.644 55.10 10.80 –
NFD18 1989 Loma Prieta UCSC Lick Observatory 17.90 LOB-000 0.450 18.70 3.80 –
NFD19 1989 Loma Prieta UCSC 18.10 UC2-090 0.396 13.20 2.30 –
NFD20 1989 Loma Prieta WAHO 16.90 WAH-090 0.638 37.90 5.90 –
NFD21 1994 Northridge N Hollywood-Coldwater Can. 14.60 CWC-180 0.298 25.00 6.30 –
NFD22 1994 Northridge Sunland-Mt Gleason Ave. 17.70 GLE-260 0.157 14.50 4.40 –
NFD23 1994 Northridge Burbank-Howard Rd. 20.00 HOW-330 0.163 8.50 1.80 –
NFD24 1994 Northridge Simi-Valley-Katherine Rd. 14.60 KAT-000 0.877 40.90 5.30 –
NFD25 1994 Northridge Sun Valley-Roscoe Blvd. 12.30 RO3-090 0.443 38.20 10.10 –
NFD26 1994 Northridge Santa Susana Ground 19.30 SSU-090 0.290 19.50 7.70 –
NFD27 1994 Northridge Big Tujunga, Angeles Nat F. 24.00 TUJ-352 0.245 12.70 1.10 –

*FD: Forward Directivity.
* NFD: Non-Forward Directivity.
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Pacific Earthquake Engineering Research Center [58].

4. Time history and reliability analyses

4.1. Nonlinear time history analyses

In the context of the nonlinear time history analyses carried out for
the reliability assessments presented in Section 4.2, base-isolated
buildings described in Section 2.3 are subjected to the 54 bidirectional
ground motion loadings given in Section 3 and 5000 Monte Carlo si-
mulations are carried out for each. Thus, a total of 1.620.000 fully
three-dimensional and bidirectional nonlinear time history analyses are
conducted via 3D-BASIS-MONTE [32], which is a modified version of
3D-BASIS [31]. 3D-BASIS-MONTE is capable of conducting recursive
nonlinear dynamic analyses of base-isolated buildings equipped with
desired number of different isolation systems under the same earth-
quake loading by using the input data compatible with the Monte Carlo
Simulation Method.

In evaluating the reliability of the buildings considering structural
integrity and isolation system safety, the peak bearing displacement is
taken into account as the structural response parameter. Although the
inter-story drifts are better related with the integrity of the super-
structure, peak bearing displacements could also be correlated with the
structural integrity, indirectly, as in case the failure of the isolation
system occurs due to large bearing displacements, the superstructure
will be out of service and cannot be used any more. Thanks to the rigid-
body behavior of the superstructure, inter-story drift ratios in base-
isolated buildings typically have pretty low values [59–61] that are
generally lower than the limit value of 0.01 prescribed in related
seismic codes. It is suggested that this limit be kept under 0.005 for
elastic superstructure behavior and protection of nonstructural ele-
ments. Since the inter-story drift ratios are calculated to be below these
limits even under short period building with the largest coefficient of
variation (T20COV15 case) under FD loadings [32], the reliability with
respect to the maximum inter-story drift ratios is not discussed herein.
Rather, the safety of both the structural integrity and the isolation
system are discussed in terms of the peak bearing displacements. Due to
the independent randomness of the isolator characteristic parameters,
the values of these parameters are different for each isolator in each
Monte Carlo Simulation cycle and thus the displacements of each iso-
lator under the same earthquake loading differ from each other.
Therefore, the highest one of the peak bearing displacements in an
isolation system (bdmax) is used as the response parameter for the
subject evaluation. Besides, in evaluating the safety of the vibration-

sensitive contents of the buildings, the peak floor acceleration is taken
into account as the structural response parameter. Since the highest
accelerations are observed at the top floor, the peak accelerations at the
center of mass of top floor (tfa) is used as the response parameter for
that evaluation.

The cumulative distribution function (CDF, FX) plots provide the
probability of a response parameter having a value less than a specified
limit value. The CDF plots of bdmax and tfa are given in Figs. 5 and 6,
respectively, for T20COV15 and T35COV15 isolation system subsets as
representative cases. It is clearly observed from Figs. 5 and 6 that, both
bdmax and tfa demands obtained for FD loadings are higher than those
obtained for NFD loadings. It is also seen in Fig. 5 that, bdmax demands
increase as T0,nom increases from 2.0 s to 3.5 s as a general trend, par-
ticularly for FD loadings. When it comes to tfa demands, it is observed
from Fig. 6 that, tfa demands obtained for both FD and NFD loadings
decrease as T0,nom increases from 2.0 s to 3.5 s. The subject CDF plots
are also obtained for each of the other four building cases with the
T20COV05, T20COV10, T35COV05, and T35COV10 isolation system
subsets under each of the 54 earthquake loadings [32] separately, but
are not presented here due to the limited space.

In order to portray the effect of the coefficient of variation on the
results obtained, the CDF plots of bdmax and tfa (for T20COV05,
T20COV10, and T20COV15 subsets) are given in detail in Figs. 7 and 8,
respectively for two representative loading cases of FD1 and FD2. As
seen from these figures, COV values may have important effects on the
reliability (R, see Section 4.2 for explanation of R) assessments de-
pending on the specified limit value and the earthquake loading. For
example, as seen in Fig. 7a, the probability of failures (Pf, see Section
4.2 for explanation of Pf) and thus the reliabilities (R=1 − Pf) cor-
responding to the limit value of 0.80m (LV=0.80m) are vastly dif-
ferent for T20COV05 ( ≅ ≅P R15% and 85%f ), T20COV10
( ≅ ≅P R47% and 53%f ), and T20COV15 ( ≅ ≅P R59% and 41%f )
subsets under FD1 earthquake loading, whereas there are no differences
in the probability of failures and the related reliabilities corresponding
to the limit value of 0.60m (LV=0.60m) for these subsets under the
same FD1 loading (i.e., ≅ ≅P R100% and 0%f for all). Likewise, as
seen in Fig. 7b, Pf and R values corresponding to the limit value of
0.60m (LV=0.60m) are considerably different for the T20COV05
( ≅ ≅P R19% and 81%f ), T20COV10 ( ≅ ≅P R46% and 54%f ), and
T20COV15 ( ≅ ≅P R57% and 43%f ) subsets under FD2 earthquake
loading whereas there are no differences in Pf and thus R values cor-
responding to the limit value of 0.80m (LV=0.80m) for the subject
subsets under the same loading ( ≅ ≅P R0% and 100%f for all). Si-
milar situation is observed for the peak top floor accelerations, which

Fig. 4. %10 damped response spectra: (a) Forward Directivity (FD) and (b) Non-Forward Directivity (NFD).
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can be seen in Fig. 8 clearly.

4.2. Reliability analyses

Seismic reliability analyses of structural systems can be conducted
via many different methods using functions of limit states (LSF(x)),

which are determined based on particular structural performance cri-
teria such as serviceability criterion, ultimate stress or strain criterion,
and etc. [18]. In structural engineering terminology, a limit state,
which can be formulated as LSF(x)= 0, corresponds to a boundary
condition between the desired and the undesired structural perfor-
mance of a system [46] with respect to one of those criteria. On the

Fig. 5. CDF plots of the highest peak bearing displacements (bdmax) under (a, b) FD loadings and (c, d) NFD loadings. Each curve corresponds to one earthquake
record given in Table 3.

Fig. 6. CDF plots of the peak top floor total accelerations (tfa) under (a, b) FD loadings and (c, d) NFD loadings. Each curve corresponds to one earthquake record
given in Table 3.
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other hand, the failure state, which is the condition violating a limit
state [18] and so corresponding to the undesired performance of the
system [51], can be formulated as LSF(x)≤ 0. And, the reliability (R) of
a structural system, i.e., the probability of success of that system in
satisfying some performance criteria [51], is calculated by Eq. (6),
where Pf is the probability of failure of the limit states, i.e., the prob-
ability (P) of occurrence of the undesired or unsafe conditions [46]
which can be determined as Pf= P(LSF(x)≤ 0).

In order to calculate the probabilities of failure of a structural
system considering the uncertainties, there are a number of analytical
or numerical ways such as the First Order Second Moment Method, the
Hasofer-Lind Method, the Second Order Reliability Method, the Monte
Carlo Simulation Method, etc. [18]. The accuracy and the convenience
of Monte Carlo Simulation Method (Section 2.3) in reliability analysis
of complex three-dimensional and multi degree of freedom seismically
isolated structural systems is demonstrated in previous studies (e.g.
[19,17]). Therefore, the probabilities of failure for bdmax and tfa are
calculated using Eq. (7) that is developed in the context of Monte Carlo
Method. In this equation, NMCS is the total number of Monte Carlo Si-
mulations realized for each of the isolation system subset (which is
equal to 5000 in this study) while NLSF(x)≤0 is the number of failure
states determined for a specific limit state function (LSF(x)), which is
described in Eq. (8). In this equation, responsei represents the value of
the response parameter (bdmax,i or tfai) obtained from the ith simulation
while Limitresponse represents the limit state value considered for the
related response parameter. In this study, 50 different displacement
limit state values (See Section 4.2.1) and 40 different acceleration limit
state values (See Section 4.2.2) are defined for the bdmax and the tfa
demands, respectively.

= −R P1 f (6)

= ≤P N N/f LSF x MCS( ) 0 (7)

= −LSF x Limit response( ) response i (8)

4.2.1. Reliability levels in terms of bearing displacement capacities
As reported by Pan et al. [39], the maximum design displacement

values for mostly used rubber bearings (∅80 cm) in China that keeps
the second place level in worldwide after Japan in terms of seismic
isolation applications [14] generally vary between 45 cm and 55 cm.
Likewise, the maximum design displacement capacities of HDRBs and
LRBs with the same diameter used in Japan vary in the range of
40–55 cm, while the ultimate displacement capacities of those vary in
the range of 55–80 cm [13]. However, manufacturers also provide
higher or lower displacement capacities for rubber based bearings de-
pending on their diameters and material properties. For example, the
maximum displacement capacities of the LRBs supplied by DIS [45] are
reported to change in the range of 15–91 cm. In order to cover a wide
range of maximum bearing displacement demands and assess the reli-
abilities of the base-isolated buildings corresponding to a variety of
different bearing displacement capacities, in this study 50 different
displacement limit state values (Limitd) are defined in the range of
2.5–125 cm with 2.5 cm increments and corresponding reliabilities are
obtained via Eqs. (6)–(8) for each FD and NFD earthquake loading
listed in Table 3.

The variation of the probabilities of failure (Pf) with respect to the
closest fault distances (r) for each FD and NFD earthquake loading are
presented in Fig. 9a and b, respectively, for a representative case, i.e.
T35COV15. In Fig. 9a and b, each line of r represents the result of the
earthquake loading related with that fault distance value. As seen, the
probabilities of failure obtained for FD loadings are significantly higher
than those calculated for NFD loadings. Furthermore, the probabilities
of failure obtained for FD loadings clearly increase as the closest fault
distance (r) decreases while no such clear dependency is observed for
NFD loadings. When this sensitivity of FD loadings to r values are ex-
amined further, it is visually observed that the probabilities of failure

Fig. 7. CDF plots of the highest peak bearing displacements (bdmax) for different COV values under representative loadings: (a) FD1 and (b) FD2.

Fig. 8. CDF plots of the peak top floor total accelerations (tfa) for different COV values under representative loadings: (a) FD1 and (b) FD2.
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for FD loadings with r < 8 km are considerably higher than those ob-
tained for FD loadings with r≥ 8 km. The probabilities of failure with
respect to the PGA/PGV ratios under FD and NFD earthquake loadings
are shown in Fig. 9c and d, respectively. In Fig. 9c and d, each line of
PGA/PGV represents the earthquake loading related with that PGA/
PGV ratio. The probabilities of failure obtained for FD loadings clearly
increase as PGA/PGV ratio decreases while no such clear dependency is
observed for NFD loadings. When this sensitivity of FD loadings to
PGA/PGV ratio are examined further, it is visually observed that the
probabilities of failure for FD loadings with PGA/PGV < 7 are con-
siderably higher than those obtained for FD loadings with PGA/
PGV > 7. Similar tendencies are observed for all other cases but re-
lated plots are not shown here due to the limited space.

The variation of the probabilities of failure (Pf) for a representative
case T35COV15 are presented with respect to the pulse period (Tp) and

the pulse amplitude (Vp) values of the ground motion components with
forward directivity effects (FD loadings) as seen in Fig. 10a and b, re-
spectively. In these plots, each line of Tp and Vp represent the earth-
quake loading related with that pulse period and the pulse amplitude,
respectively. As a general tendency, the probabilities of failure corre-
sponding to a selected displacement limit value (Limitd) increase as Tp
or Vp values increase. Similar tendencies are observed for all other cases
but related plots are not shown here due to the limited space.

The peak bearing displacement demands in order to achieve 95%
reliability level (95th percentile values) for T20COV10 and T35COV10
cases under each of FD and NFD loadings are presented in Fig. 11a and
b assuming that this reliability level would be acceptable from an en-
gineering point of view. As seen in Fig. 11a, a logarithmic trend-line is
fitted that is compatible with the peak bearing displacement demand
values that increase with an increasing rate as the distance to the fault
decreases under FD loadings whereas no such trend is observed under
NFD loadings as seen in Fig. 11b. The demands of the long-period
T35COV10 case is apparently higher than the short-period T20COV10
case. Furthermore, the differences between the trend-lines for these two
cases steadily increase as the fault distance decreases. In addition, there
is a sudden jump in peak bearing displacement demands under FD
loadings for r < 8 km.

The displacement demands are also evaluated with respect to three
different displacement capacity levels: Limitd1=40 cm,
Limitd2=70 cm, and Limitd3=100 cm. As seen in Fig. 11a, 95% relia-
bility level can be achieved easily for both building cases under FD
loadings with an isolator capacity of 100 cm. Note that 100 cm may be
considered as the physically achievable displacement capacity level for
currently used rubber bearings. This limit is exceeded for long-period
T35COV10 case under one FD loading (at r=0.24 km), only. 95% re-
liability level can also be achieved easily for both building cases in case
of r≥ 8 km with an isolator capacity of 70 cm, which is a typical design
displacement value faced in seismic prone regions (Fig. 11a). However,
for r < 8 km, this limit is exceeded for T35COV10 case under 6 FD
loadings and for T20COV10 case under 1 FD loading. When it comes to
a relatively lower limit of Limitd1=40 cm, although 95% reliability for
both building cases under FD loadings in case of r≥ 8 km is achieved,
both building cases under FD loadings for r < 8 km is challenged by
this limit (Fig. 11a). On the other hand, it is seen that 95% reliability
level is easily achieved by both building cases under NFD loadings even
for Limitd1=40 cm (Fig. 11b).

Average of all probabilities of failure (Pf) and thus all average re-
liabilities (R) for each case (T20COV05, T20COV10, T20COV15,
T35COV05, T35COV10, and T35COV15) corresponding to each limit
state value are calculated for the group of FD and NFD earthquake
loadings and further discussions are made using the plots representing
these average reliabilities (Fig. 12). It is seen from Fig. 12 that the
average reliabilities obtained for NFD loadings are remarkably higher
than those calculated for FD loadings. Secondly, the average reli-
abilities based on the bearing displacement demands decrease as T0,nom
increases from 2.0 s to 3.5 s particularly for FD loadings. As the third
observation, it is seen that the average reliability values show little
sensitivity to COV values for both FD and NFD loadings. When COV
increases from 5% to 15%, the changes in average reliabilities are
calculated to be up to 5.27% and 2.48% for FD and NFD loadings, re-
spectively.

As discussed and exemplified using case T35COV15 earlier (see
Fig. 9), the Pf, thus the reliabilities for FD loadings are sensitive to the
closest fault distance (r) and PGA/PGV ratio. This phenomenon is fur-
ther examined here in terms of average reliabilities. The average reli-
abilities for FD loadings with r < 8 km and r≥ 8 km are given in
Fig. 13a and b, respectively while those with PGA/PGV < 7 and PGA/
PGV > 7 are given in Fig. 14a and b, respectively. It is observed that
the average reliabilities for FD loadings with r < 8 km are considerably
lower than those with r≥ 8 km, and the average reliabilities for FD
loadings with PGA/PGV < 7 are considerably lower than those with

Fig. 9. Probabilities of failure (Pf) in terms of bearing displacement capacities
for (a) FD loadings with respect to closest fault distance (r), (b) NFD loadings
with respect to r, (c) FD loadings with respect to PGA/PGV ratio, (d) NFD
loadings with respect to PGA/PGV ratio.
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PGA/PGV > 7. In addition, the average reliabilities for NFD loadings
(Fig. 12b) are close to the ones for the FD loadings with r≥ 8 km and
PGA/PGV > 7. For example, under FD loadings with r≥ 8 km and/or
PGA/PGV > 7, all buildings with T0,nom=2.0 s and T0,nom=3.5 s are
reliable (R=99.98%) considering Limitd=30 cm (Figs. 13b and 14b)
while under NFD loadings, about 88% of those are reliable with respect
to the same displacement limit value (Fig. 12b). However, under FD
loadings with r < 8 km, only about 13% and 7% of the buildings with
T0,nom=2.0 s and T0,nom=3.5 s, respectively, seem to be reliable with
respect to the same displacement limit value (Fig. 13a). Considering the
same limit value, the average reliabilities are calculated as about 36%

and 32% for T0,nom=2.0 s and 3.5 s buildings, respectively, under FD
loadings with PGA/PGV < 7 (Fig. 14a).

It should also be noted here that, the plots given in Figs. 12–14
provide a comprehensive picture in terms of the reliability level of the
structural system for any selected bearing displacement capacity or can
be used to determine the bearing displacement capacities that should be
selected in order to achieve a specified reliability level. For example, if
the target reliability level is assumed as R=95%, the bearing dis-
placement capacities should selected at least about 80 cm and 115 cm
for buildings with T0,nom=2.0 s and T0,nom=3.5 s in case of FD load-
ings with r < 8 km and PGA/PGV < 7 as seen in Figs. 13a and 14a,

Fig. 10. Probabilities of failure (Pf) in terms of bearing displacement capacities for FD loadings (a) with respect to pulse period (Tp), (b) with respect to pulse
amplitude (Vp).

Fig. 11. Peak bearing displacement demands for 95% reliability level for T20COV10 and T35COV10 under: (a) FD loadings, (b) NFD loadings.
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Fig. 12. Average reliabilities for bdmax demands under (a) FD and (b) NFD loadings.

Fig. 13. Average reliabilities for bdmax demands under FD loadings (a) r < 8km and (b) r≥ 8 km.
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respectively. On the other hand, under FD loadings with r≥ 8 km and
PGA/PGV > 7 (Figs. 13b and 14b, respectively), the bearing dis-
placement capacity value can be selected at least about 25 cm for all
building cases in order to achieve the same reliability level (R=95%).
Likewise, in order to achieve at least 95% reliability, the corresponding
bearing displacement capacity should be selected at least about 37.5 cm
for all the benchmark building cases under NFD loadings as seen in
Fig. 12b.

4.2.2. Reliability levels in terms of floor accelerations
The peak floor acceleration is among the most important structural

response parameters for base-isolated buildings since it controls the
safety and serviceability of the contents of those buildings [2]. There-
fore, in order to avoid from high floor accelerations that may damage
building contents, the subject response parameter is typically taken into
consideration in the design phase of those buildings. But, there is no
explicitly determined limit for the peak floor accelerations in seismic
design codes [13]. On the other hand, based on some experimental
studies carried out by Mizuno et al. [62], horizontal peak floor accel-
erations should be limited to 3.0 m/s2 (≈0.30 g) for medical, electro-
nical and other important facilities. Moreover, in order to avoid from
permanent damage and loss of data for some disc drives in either op-
erating or non-operating conditions, the peak horizontal floor accel-
erations should not exceed the limit values varying in the range of
0.2–1.0 g according to Worksafe Technologies [63]. Additionally, the
statistics conducted for base-isolation design by Architectural Institute
of Japan [64] and a study by Alhan and Şahin [65] showed that the
highest peak floor accelerations generally occur at the top floors of the
base-isolated buildings. In this study, in order to assess the reliabilities
of the base-isolated buildings and their vibration sensitive contents in
terms of floor accelerations, peak top floor acceleration (tfa) demands
are compared to 40 different acceleration limit state values (Limita)
which are defined in the range of 0.025–1.00 g with 0.025 g increments.
And, tfa demands obtained for a building case under an earthquake

loading are compared with those 40 limit state values using Eq. (8) in
order to calculate the probabilities of failure (Pf, Eq. (7)) and thus the
reliabilities (R, Eq. (6)) for the subject building case under the subject
earthquake loading. This process is repeated for all the building cases
under each ground motion loading given in Table 3.

The variation of the probabilities of failure (Pf) corresponding to the
acceleration limit values (Limita) for each FD and NFD earthquake
loading are presented with respect to the closest fault distances (r) in
Fig. 15a and b, respectively, for a representative case, i.e. T20COV15. In
these plots, each line of r represents the result of the earthquake loading
related with that fault distance value. The probabilities of failure cal-
culated for tfa demands obtained under FD loadings are significantly
higher than those calculated for NFD loadings. Furthermore, the
probabilities of failure calculated for tfa demands obtained under FD
loadings also clearly increase as the closest fault distance (r) decreases
while no such clear dependency is observed for NFD loadings. It is vi-
sually observed that the probabilities of failure calculated for tfa de-
mands obtained under FD loadings with r < 8 km are considerably
higher than those obtained for FD loadings with r≥ 8 km (Fig. 15a).
The probabilities of failure with respect to the PGA/PGV ratios under
FD and NFD earthquake loadings are shown in Fig. 15c and d, respec-
tively. Here, each line of PGA/PGV represents the earthquake loading
related with that PGA/PGV ratio. The probabilities of failure calculated
for tfa demands obtained under FD loadings also clearly increase as
PGA/PGV ratio decreases while no such clear dependency is observed
for NFD loadings. It is visually observed that the probabilities of failure
for FD loadings with PGA/PGV < 7 are considerably higher than those
obtained for FD loadings with PGA/PGV > 7 (Fig. 15c). Similar ten-
dencies are observed for all other cases but related plots are not shown
here due to the limited space.

The variation of the probabilities of failure (Pf) for a representative
case T20COV15 are presented with respect to the pulse period (Tp) and
the pulse amplitude (Vp) values of the ground motion components with
forward directivity effects (FD loadings) as seen in Fig. 16a and b,

Fig. 14. Average reliabilities for bdmax demands under FD loadings (a) PGA/PGV < 7 and (b) PGA/PGV > 7.
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respectively. In these plots, each line of Tp and Vp represent the earth-
quake loading related with that pulse period and the pulse amplitude,
respectively. As a general tendency, the probabilities of failure corre-
sponding to a selected acceleration limit value (Limita) increase as Tp or
Vp values increase. Similar tendencies are observed for all other cases
but related plots are not shown here due to the limited space.

The peak top floor accelerations of T20COV10 and T35COV10 cases
under FD and NFD loadings are also evaluated with respect to the 95%
reliability level assuming that this reliability level would be acceptable
from an engineering point of view. The peak top floor acceleration
demands in order to achieve 95% reliability level (95th percentile va-
lues) for T20COV10 and T35COV10 cases under each of FD and NFD
loadings are presented in Fig. 17a and b. Similar to the peak bearing
displacement demands, a logarithmic trend-line is fitted that is com-
patible with the peak top floor acceleration demands that increase with

an increasing rate as the distance to the fault decreases under FD
loadings as seen in Fig. 17a, whereas no such trend is observed under
NFD loadings as seen in Fig. 17b. The peak top floor acceleration de-
mands of the short-period T20COV10 case is apparently higher than the
long-period T35COV10 case contrary to the peak bearing displacement
demands. Furthermore, the differences between the trend-lines for
these two cases steadily increase as the fault distance decreases. In
addition, there is also a sudden jump in peak top floor acceleration
demands under FD loadings for r < 8 km.

The acceleration demands are also evaluated with respect to three
different acceleration limit levels which may be considered as im-
portant limit levels for protection of the building and/or safety of the
vibration sensitive contents of the buildings: Limita1=0.2 g,
Limita2=0.5 g, Limita3=1.0 g. As seen in Fig. 17a, 95% reliability level
can be achieved easily in case of Limita3=1.0 g, which may be con-
sidered as a high limit representing the protection of building itself
from extensive damage. In this case, the peak floor acceleration de-
mands for 95% reliability level do not exceed the limit of 1.0 g for both
buildings under all FD loadings. In addition, 95% reliability level can
also be achieved for protecting the vibration sensitive contents (which
can resist to 0.5 g at maximum – typically in non-operating conditions)
of both building cases under FD loadings for r≥ 8 km. For r < 8 km,
this limit is exceeded for T20COV10 case under many of FD loadings,
while it is not exceeded for T35COV10. When it comes to the lowest
acceleration limit value, i.e., Limita1=0.2 g, although 95% reliability
for protecting the vibration sensitive contents (which may resist to 0.2 g
at maximum – typically in operating conditions) of both building cases
under FD loadings in case of r≥ 8 km is achieved, a challenge is faced
for r < 8 km (Fig. 17a) as this limit can’t be met for most FD loadings
even by long-period T35COV10 isolation system. On the other hand, as
seen in Fig. 17b, 95% reliability is achieved by T35COV10 case under
NFD loadings even for Limita1=0.2 g. However, sensitive contents of
T20COV10 building case under NFD loadings are challenged by
Limita1=0.2 g, while other limits (i.e. 0.5 g and 1.0 g) are met except
for one NFD loading case (r=6.95 km) which exceeds Limita2=0.5 g.

Average of all probabilities of failure (Pf) and thus all average re-
liabilities (R) for each case (T20COV05, T20COV10, T20COV15,
T35COV05, T35COV10, and T35COV15) corresponding to each accel-
eration limit state value are calculated for the group of FD and NFD
earthquake loadings and further discussions are made using the plots
representing these average reliabilities (Fig. 18). It is seen from Fig. 18
that, the average reliabilities calculated for tfa demands obtained under
NFD loadings are higher than those calculated for FD loadings. Sec-
ondly, the average reliabilities based on the peak top floor acceleration
demands increase as T0,nom increases from 2.0 s to 3.5 s particularly for
FD loadings. As the third observation, it is seen that the average re-
liability values calculated for tfa demands show little sensitivity to COV
values. When COV increases from 5% to 15%, the changes in average
reliabilities are calculated to be up to 3.02% and 2.68% for FD and NFD
loadings, respectively.

As discussed and exemplified using case T35COV15 earlier (see
Fig. 15), the probabilities of failure and thus the reliabilities for FD
loadings are sensitive to the closest fault distance (r) and PGA/PGV
ratio. This phenomenon is further examined here in terms of average
reliabilities. It is observed that the average reliabilities for FD loadings
with r < 8 km are considerably lower than those obtained for FD
loadings with r≥ 8 km (Fig. 19) and the average reliabilities for FD
loadings with PGA/PGV < 7 are considerably lower than those ob-
tained for FD loadings with PGA/PGV > 7 (Fig. 20). In addition, the
average reliabilities calculated based on tfa demands under NFD load-
ings (Fig. 18b) are close to the ones for the FD loadings with r≥ 8 km
(Fig. 19b) and with PGA/PGV > 7 (Fig. 20b). For example, under FD
loadings with r≥ 8 km and/or PGA/PGV > 7, all of the buildings
(R=99.98%) with T0,nom=2.0 s and T0,nom=3.5 s are reliable con-
sidering Limita=0.3 g (Figs. 19b and 20b) while under NFD loadings
all of the buildings (R=99.98%) with T0,nom=2.0 s and about 88% of

Fig. 15. Probabilities of failure (Pf) in terms of floor accelerations for (a) FD
loadings with respect to r, (b) NFD loadings with respect to r, (c) FD loadings
with respect to PGA/PGV ratio, (d) NFD loadings with respect to PGA/PGV
ratio.
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the buildings (R ≅ 88%) with T0,nom=3.5 s seem to be reliable with
respect to the same acceleration limit (Fig. 18b). However, under FD
loadings with r < 8 km, only about 7% and 75% of the buildings with
T0,nom=2.0 s and T0,nom=3.5 s, respectively, seem to be reliable with
respect to Limita=0.3 g (Fig. 19a). Considering the same limit value,
the average reliabilities are calculated as about 32% and 82% for
T0,nom=2.0 s and T0,nom=3.5 s buildings, respectively, under FD
loadings with PGA/PGV < 7 (Fig. 20a).

It should also be noted that, the plots given in Figs. 18–20 provide a
comprehensive picture in terms of the reliability level of the building
itself and/or the vibration sensitive contents of the structural system for

any selected floor acceleration value, or can be used to determine the
floor acceleration value that should not be exceeded in order to achieve
a specified reliability level. For example, the target reliability level of
R=95% can be achieved only if Limita≥ 0.800 g for T0,nom=2.0 s
buildings and Limita≥ 0.425 g for T0,nom=3.5 s buildings in case of FD
loadings with r < 8 km and PGA/PGV < 7 (Figs. 19a and 20a, re-
spectively). On the other hand, under FD loadings with r≥ 8 km and
PGA/PGV > 7, the same reliability level (R=95%) can be achieved
for even Limita≥ 0.275 g and Limita≥ 0.125 g for T0,nom=2.0 s and
T0,nom=3.5 s buildings, respectively (Figs. 19b and 20b, respectively).
Likewise, under NFD loadings (Fig. 18b), 95% reliability can be

Fig. 16. Probabilities of failure (Pf) in terms of peak top floor accelerations for FD loadings (a) with respect to pulse period (Tp), (b) with respect to pulse amplitude
(Vp).

Fig. 17. Peak floor acceleration demands for 95% reliability level for T20COV10 and T35COV10 under: (a) FD loadings, (b) NFD loadings.
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Fig. 18. Average reliabilities for tfa demands under (a) FD and (b) NFD loadings.

Fig. 19. Average reliabilities for tfa demands under FD loadings (a) r < 8km and (b) r≥ 8 km.
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achieved for Limita≥ 0.425 g and for even Limita≥ 0.175 g for
T0,nom=2.0 s and T0,nom=3.5 s buildings, respectively.

5. Conclusions

In this study, seismic reliability of buildings with elastomeric base-
isolation systems is investigated using realistic fully three-dimensional
benchmark buildings considering the uncertainties in the isolation
system characteristics and the inherent record-to-record variabilities in
the ground motion records. Large sets of historical near-fault ground
motions with forward-directivity effects (FD) or without forward-di-
rectivity effects (NFD) are used. Two different levels of nominal isola-
tion periods (T0,nom=2.0 s and T0,nom=3.5 s) and three different levels
of uncertainty (Coefficient Of Variation; COV=5%, 10%, 15%) are
taken into account. The reliability of the buildings is investigated in
terms of structural integrity, isolation system safety, and the safety of
the vibration-sensitive contents of the buildings using the highest peak
bearing displacements and the peak top floor accelerations obtained
from the nonlinear time history analyses conducted in the framework of
the Monte Carlo simulations. The conclusions are summarized below:

1- The reliability plots presented here provide a comprehensive picture
in terms of the reliability level of a typical base-isolated building
and its vibration sensitive contents. They can be used to determine
the bearing displacement or the floor acceleration limit values that
should not be exceeded in order to achieve a specified reliability
level.

2- It is revealed that the record-to-record variability has the most im-
portant effect. That is, seismic reliabilities of base-isolated buildings
are much more dependent on the characteristics of ground motions
than the uncertainties in the mechanical characteristics of the iso-
lation systems.

3- Seismic reliabilities for FD loadings are sensitive to the closest fault
distance (r), PGA/PGV ratios, pulse periods, and pulse amplitudes of

ground motions. As a general trend, as r and PGA/PGV decrease and
pulse periods and pulse amplitudes increase, they decrease for both
bearing displacements and floor accelerations. However, no such
clear dependency is observed under NFD loadings.

4- The average reliabilities for both bearing displacements and floor
accelerations under FD loadings with r < 8 km and PGA/PGV < 7
are considerably lower than those obtained for FD loadings with
r≥ 8 km and PGA/PGV > 7, respectively.

5- The average reliabilities are sensitive to the nominal isolation per-
iods. The average reliabilities calculated based on the peak bearing
displacements decrease as nominal isolation period increases from
2.0 s to 3.5 s, particularly for FD loadings, whereas the average re-
liabilities calculated based on the peak top floor accelerations in-
crease as nominal isolation period increases from 2.0 s to 3.5 s.

6- The level of uncertainty, represented by COV, may have important
effects on the probability of failure values for a specific limit value
under a specific earthquake loading. However, on average, the
probability of failure values calculated for both peak bearing dis-
placement and peak top floor acceleration demands obtained under
FD and NFD loadings show little sensitivity to COV values.
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