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A B S T R A C T

During their lifetimes, tramway networks become increasingly susceptible to mechanical damage in the form of
rail fractures. Understanding the underlying reasons, and initiating appropriate countermeasures may be fa-
cilitated by (computational) modeling tools. The development of such tools calls for a sound theoretical foun-
dation. The latter is still largely missing, as the cross-sectional shapes of grooved rails employed in tramway
networks differ significantly from those of (in this regard) well-investigated railroad systems. As a first step
towards closing this knowledge gap, we here report on a novel beam theory approach allowing to compute
typical shear stress distributions throughout the cross sections of grooved rails. Based on classical concepts, such
as Bernoulli and Saint-Venant beam kinematics, cross-sectional boundary value problems for the related shear
stress distributions are derived, and corresponding solutions are obtained in the form of 2D Finite Element
approximations. This way, it is revealed that practically relevant loading scenarios induce distinctive shear stress
concentrations. Remarkably, the positions of the latter agree well with fracture patterns observed in situ.

1. Introduction

In many urban areas, the tramway network is the backbone of the
local public transport system [1–4]. Hence, the reliability of tramway
networks is key for the functionality of public life in such areas. The
primary causes for disturbances are fractured rails [5,6], as well as
degradation due to wear and environmental influences [7,8]. It is evi-
dent that rail fractures occur if the loads acting onto the rails induce
stress states which exceed the strengths of the steels the rails are made
of. A purely experimental approach to the challenge of predicting
where and when fractures occur turns out as difficult (if not im-
possible), given the huge dimensions of the problem (in terms of both
size and load magnitude). This calls for computational approaches, and
the current state of the art in the field may be briefly sketched as fol-
lows: The contact forces between wheel and rail have been quantified
for different types of rails (i.e. railroad, subway, and tramway)
[5,9–11]. Other modeling approaches are concerned with the estima-
tion of residual stresses. This is often done based on the Finite Element
(FE) method, with the main focus lying on Vignole rails [12–18], and an
only marginal amount of work spent on tramway rails [19]. Residual
stresses have been shown to arise in the rails from the straightening and

bending processes prior to mounting the rails [10,12–18,20,21], and
change, over time, due to the overrunning by wheels [9–11,22–24],
hence under standard operation conditions [22–25]. Numerical
methods have also been developed for crack propagation analysis in
Vignole rails, either under consideration of residual stresses [27,26], or
neglecting the latter [24,28]. The adverse effects of residual stresses
may be alleviated by a process called transformation-induced plasticity
[17,29], which was also studied numerically [30]. Finally, dynamic
effects in train operation have been simulated [35,36], some of which
deal with the vibrations caused by tramway operation [37].

In summary, while each of the above-mentioned works deal with
phenomena which are of high relevance for the production and op-
eration of rail networks, it turns out that (to the best of our knowledge)
the mechanical study of rails in general, and of tramway rails in par-
ticular, remains a widely open field, with the available scientific lit-
erature being very sparse. The present paper aims at filling this gap.
Thereby, the focus is on loading types dominated by shear forces, as
they may, for example, arise under abruptly changing embedment
conditions. Aiming at an efficient numerical tool for quantifying cor-
responding shear stress distributions across the cross sections of
grooved rails (introduced in Section 2), the following theoretical and
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computational steps are undertaken: Based on the classical Bernoulli
and Saint-Venant beam kinematics, a reduced elastostatics model is
derived (in Section 3). The latter gives access to two boundary value
problems at the cross-sectional level, one related to shear force-induced
shear stresses (see Section 4), and one related to torsion-induced shear
stresses (see Section 5). These two boundary value problems are solved
for load cases comprising unit shear forces (also included in Sections 4
and 5), as well as for practically relevant load cases, see Section 6.
Corresponding results are discussed in Section 7, where also concluding
remarks and an outlook to reasonable model extensions and improve-
ments are presented.

2. Definition of studied type of rail

The present study is concerned with the grooved rails used in the
Viennese tramway system, in particular with the three profiles shown in
Fig. 1, denoted by 60R1, 60R3, and 63R1 [21,31–34]. Notably, profile
60R3 is usually applied in straight tracks, profile 63R1 is usually ap-
plied in curved rail tracks, and profile 60R1 is used in straight as well as
in curved rail tracks. Standardly, rails used in straight tracks are made
of self-hardening steel, whereas rails used in curved tracks are made of
heat-treated steels. The heat treatment implies accelerated cooling of
the rail heads, which, strictly speaking, results in non-homogeneous,
graded distributions of the microstructure across such rails [38–40].

In the current contribution, we focus on the effects of the rail geo-
metry and of the loading on the elastic behavior of rails (on the cross-
sectional level). Hence, merely the stiffness of the rail steel is needed as
material property entering the subsequently elaborated model. We
consider an isotropic and homogeneous stiffness of the rail steel (de-
spite the aforementioned heterogeneous microstructure which is to be
expected across heat-treated rails), defined (at room temperature)
through a Poisson’s ratio of = 0.28, and a Young’s modulus of

=E 210 GPa [41,42]. This choice was confirmed for ferritic-pearlitic
steels by means of resonant ultrasonic spectroscopy [43], for SS400 and
SM490 steels by means of nanoindentation [44,45], and for ferritic iron
by means of tensile mechanical tests [46,47]. Notably, the aforemen-
tioned elastic constants E and correspond to the bulk modulus K via

= =K E/[3(1 2 )] 159.09 GPa, and to the shear modulus G via
= + =G E/[2(1 )] 82.03 GPa.

3. Bernoulli and Saint-Venant beams – reduced elastostatics
model

Our theoretical considerations start with the ubiquitiously used
beam theories of Bernoulli and Saint-Venant [48], which are, strictly
speaking, only valid for constant bending and torsional moments; but
which are nevertheless practically relevant for moderately changing
bending and torsional moments along the beam axis, i.e. in direction ex
of an orthonormal base frame e e e, ,x y z ; with location vectors being
denoted as = + +x y zx e e ex y z, see Fig. 2. In more detail, we consider
a prismatic beam, and adopt several well-known relations, introduced
next:

• The relation between shear forces S x( )y and S x( )z , and the
corresponding, bending-related normal stress component x( )xx is
given in the format [49–51]

Fig. 1. Grooved rail profiles used in the Viennese tramway network: (a) 60R1, (b) 60R3, and (c) 63R1, see [21,31–34] for further details on the geometries of these
profiles; dimensions (rounded to integer numbers) are given in mm.

Fig. 2. Photograph of a 60R1 profile (courtesy of Wiener Linien GmbH & Co
KG), with indication of stress resultants giving rise to cross-sectional shear
stress distributions: horizontal shear force S x( )y , vertical shear force S x( )z , and
torsional moment M x( )T .
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and with the shear forces S x( )y and S x( )z being related to shear
stress components x( )xy and x( )xz via

=S x x( ) ( ) d ,y A xy (3)

and

=S x x( ) ( ) d .z A xz (4)

In Eqs. (3) and (4), denotes the cross-sectional domain, whereas A
denotes the cross-sectional area. Furthermore, in Eq. (2), A A,yy zz,
and Ayz are the second-order area moments, defined by

=A y d ,yy A
2

(5)

=A z d ,zz A
2

(6)

and

=A yz d ,yz A (7)

see Table 1 for the numerical values characterizing the profiles il-
lustrated in Fig. 1. Thereby, coordinates y and z are measured from
the geometrical center; i.e. they are related to an arbitrarily trans-
lated coordinate system y z¯, ¯ through

=y
A

z¯ 1 ¯ d ,
AGC (8)

and

=z
A

y¯ 1 ¯ d .
AGC (9)

• Shape preservation of cross sections during shear and torsional de-
formation is expressed mathematically via a vanishing shear strain
component x( )yz ,

=x( ) 0.yz (10)

• The relation between shear forces S x( )y and S x( )z , acting at dis-
tances zSC and ySC from the shear center, and the corresponding
(primary) torsional moment MT reads as

=M x S x y S x z( ) ( ) ( ) ,z yT SC SC (11)

with ySC and zSC, the coordinates of the shear center, following from
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In Eqs. (12) and (13), S denotes the shear warping function; in the
general case, this function depends not only on y and z, but also on
the coordinate along the beam axis, x. Furthermore, it should be
noted that computation of ySC (or zSC, respectively) requires con-
sideration of an arbitrary but non-zero shear force Sz (or Sy, re-
spectively), while Sy (or Sz, respectively) is set to zero.

• Considering primary torsion, a torsional moment M x( )T induces a
constant twist, =x( ) , defined through

= M x
G I

( ) ,T

T (14)

with the torsional inertia moment reading as

= +

+

I y y y y y z
z

z z z z y z
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M
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see Table 1. In Eq. (15), y z( , )MT denotes the torsional warping
function, defined such that the corresponding shear strain compo-
nents fulfill

= y z
y

z zx( ) 1
2

( , ) ( ) ,xy
M

SC
T

(16)

and

= +y z
z

y yx( ) 1
2

( , ) ( ) .xz
M

SC
T

(17)

Adoption of Eqs. (1)–(17) implies the reduction of the standard gov-
erning equations of elastostatics to the following set of 12 equations:

• An adapted set of six compatibility conditions specified for the
constraint given in Eq. (10),

+ =
y x x y
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2

( )
0,xx yy xy2

2

2

2

2

(18)
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(20)

+ =
x z x y y z

x x x( ) ( ) ( ) 0,xy xz xx
2 2 2

(21)

Table 1
Cross-sectional parameters related to profiles 60R1, 60R3, and 63R1, as defined
in Fig. 1; the coordinates of the geometrical center, ȳGC and z̄GC, are given with
reference to the left bottom corner of the cross sections.

Quantity Unit 60R1 60R3 63R1

A cm2 77.15 76.06 80.41
ȳGC mm 97.09 98.98 102.58
z̄GC mm 94.34 112.79 117.13
Ayy cm4 925.87 839.45 1018.94
Azz cm4 3350.88 4744.78 5018.05
Ayz cm4 237.41 376.99 595.51
ySC mm 6.03 2.05 7.04
zSC mm 31.64 32.89 27.27
IT cm4 131.40 110.86 122.58
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and
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• one equilibrium condition in the direction of the beam axis,

+ + =
x y z

x x x( ) ( ) ( ) 0 ;xx xy xz

(24)

• three equations related to linearly elastic normal deformations,
reading in matrix format as

=
E E E
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x
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(25)

• two equations related to linearly elastic shear deformations,

= Gx x( ) ( ),xy xy (26)

and

= Gx x( ) ( ),xz xz (27)

with =x x( ) 2 ( )xy xy and =x x( ) 2 ( )xz xz . From Eqs. (1)–(27), shear
stresses arising in response to resultant shear forces acting on tramway
rail cross sections can be computed. The corresponding analysis is split
into two sub-problems, hereafter referred to as shear and torsional
problem, see Sections 4 and 5.

4. Sub-problem I: Shear force-induced shear stresses

We start from expressions for the shear strains x( )xy and x( )xz ,
which, together with Eq. (1), and with the elasticity relations given in
Eq. (25), fulfill Eqs. (18)–(23) provided that the shear forces, Sy and Sz,
are applied to the beam at a distance x from the cross section under
investigation. They read as [51]
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S
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(29)

Insertion of Eqs. (28) and (29) into the elasticity law for shear stresses
given by Eqs. (26) and (27), and of the result, as well as of Eq. (1) into
the equilibrium condition given by Eq. (24), while also considering the
standard definition of the shear modulus, yields a Laplace-type differ-
ential equation of the form

+ =
+
+

G
y z

a x y a x zx x( ) ( ) ( ) ( )
1

in .
S S y z2

2

2

2 (30)

Hence, Eq. (30) defines infinitely many boundary value problems in
infinitely many y-z planes, with each of these planes being associated to
one coordinate value x. For deriving corresponding boundary condi-
tions related to the contour of the cross sections lying in the afore-
mentioned y-z planes, we consider vanishing shear stresses on the
contour of the cross section ,

+ =n s n sx x( ) d ( ) d 0 on ,xy y xz z (31)

from which the following condition in x( )S can be derived:

+ =
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S

y
S
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(32)

For solution of the boundary value problem given by Eq. (32), a
considerable array of numerical methods is available, both in open
scientific literature and in form of commercial software products, in-
cluding (but not limited to) the Finite Element (FE) method
[50,51,52,53], the boundary element (integral equation) method
[54,55], and meshless methods [56–59]. In this work, we prefer the FE
method due to its computational efficiency, and the straightforward
implementability of various boundary conditions, as compared to, for
example, meshless methods [60,61].

In particular, for x being fixed, and for given shear forces Sy and Sz,
Eqs. (30) and (32) are solved by the FE method. For that purpose, the
divergence theorem and integration by parts are applied, yielding the
following integral expression:

+

=
+

+ +
+

+

G
y

y z
y z

y z
z

a n a n y z s a y a z

( , ) ( , ) d

1
[ ] d 1

1
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(33)

with the test function belonging to the test function space
= ={ in , 0 on }1H , where 1H denotes the Sobolev

space [62]. Since the weak form of sub-problem I, given in Eq. (33),
exclusively comprises first-order derivatives, finite elements fulfilling
C0-continuity can be used for discretization of the studied domain.
Hence, four-noded quadrilateral finite elements were used, see Fig. 3
for the FE mesh representing profile 60R1 (consisting of 2308 ele-
ments). The meshes representing profiles 60R3 and 63R1 consist of
2242 and 2408 finite elements – since they are very similar to the one

representing profile 60R1, they are not shown in this paper. The FE
discretization was realized by means of the commercial FE software
Abaqus (version 6.14), whereas all subsequently described computa-
tions were implemented in the commercial mathematics software Ma-
tlab (version 2016B), by means of an in-house code.

Pursuing an isoparametric concept, the element-specific shear
warping function S i, , the element-specific test function i, and the
element-specific coordinates y i and zi, all of which contain the values
relating to the four element nodes, and are hence vectorial quantities,
are approximated by the same bilinear shape functions

Fig. 3. Exemplary illustration of the FE mesh representing rail profile 60R1,
consisting of 2308 quadrilateral finite elements.
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= y zN N( , ), (34)

interpolating between the element-specific nodal values through
[50,63]

= y zN( , ) ,S i S i, , (35)

= y zN( , ) ,i i (36)

=y y zN y( , ) ,i i (37)

and

=z y zN z( , ) .i i (38)

Inserting the (approximate) expressions given in Eqs. (35)–(38) into Eq.
(33) yields the well-known formulation

)c()b()a( µm

)f()e()d( µm

mc)i()h()g( 2

Fig. 4. Computed shear warping functions = =y z S S( , ; 1 kN, 0)S
y z for profiles (a) 60R1, (b) 60R3, (c) 63R1, see Fig. 1, and = =y z S S( , ; 0, 1 kN)S

y z for profiles
(d) 60R1, (e) 60R3, (f) 63R1; (load-independent) torsional warping function y z( , )MT for profiles (g) 60R1, (h) 60R3, (i) 63R1.

Table 2
Minimum and maximum values of the shear warping functions, = =y z S S( , ; 1 kN, 0)S

y z and = =y z S S( , ; 0, 1 kN)S
y z , and of the torsional warping function

y z( , )MT .

Warping functions Unit 60R1 60R3 63R1

min max min max min max

= =y z S S( , ; 1 kN, 0)S y z mm ×11.10 10 4 ×5.40 10 4 ×2.65 10 4 ×3.41 10 4 ×1.95 10 4 ×3.77 10 4

= =y z S S( , ; 0, 1 kN)S y z mm ×6.32 10 4 ×15.62 10 4 ×3.93 10 4 ×5.95 10 4 ×4.97 10 4 ×4.87 10 4

y z( , )MT cm2 51.94 48.61 61.80 63.41 69.59 72.89
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(39)

where denotes the matrix assembly operator and nel denotes the total
number of elements. For the shear problem, the element stiffness ma-
trix, KS i, , is defined by

= +G
y y z z

K N N N N d ,S i
T T

, el
el (40)

and the respective element force vector FS i, reads as

=
+

+

+
+

+

a n a n y z s

a y a z

F N N N

N N N

1
( )( ) ( ) d

1
1

[ ( ) ( )] d .

S i T
z y y z

i i

T
y

i
z

i

, el

el

el

el (41)

The integrals included in Eqs. (40) and (41) were numerically evaluated
by means of the Gauss quadrature with ×2 2 Gauss points.

The above-described FE model was evaluated in order to compute
the profile- and load-specific shear warping functions y z S S( , ; , )S

y z .

(i) for a unit horizontal shear load Sy = 1 kN (while Sz =0), see
Fig. 4(a)–(c); and

(ii) for a unit vertical shear load Sz = 1 kN (while Sy = 0), see
Fig. 4(d)–(f).

The corresponding minimum and maximum values of the shear
warping functions are given in Table 2. Insertion of the shear warping
functions computed for case (i) into Eq. (13), and of the shear warping
functions computed for case (ii) into Eq. (12) yields the coordinates of
the shear center, as given in Table 1.

5. Sub-problem II: Torsion-induced shear stresses

Insertion of torsion-related shear strains following from Eqs. (16)
and (17) into the elasticity law given by Eqs. (26) and (27) yields tor-
sion-related shear stresses of the format

= G y z
y

z zx( ) ( , ) ( )xy
M

M
SCT

T

(42)

and

= +G y z
z

y yx( ) ( , ) ( ) .xz
M

M

SC
T

T

(43)

Insertion of Eqs. (42) and (43) into the equilibrium condition defined in
Eq. (24) yields

=y z( , ) 0 in .MT (44)

In analogy to sub-problem I, Eq. (44) is complemented by boundary
condition

+ =y z
y

n y z
z

n z z n y y n( , ) ( , ) ( ) ( ) on ,
M

y
M

z y zSC SC
T T

(45)

again following from Eq. (31), so that Eq. (44), together with Eq. (45),
can be transformed into an integral equation of the form

+

=

y z
y y

y z
z z

z z n y y n s

( , ) ( , ) d

[( ) ( ) ] d ,

M M

y zSC SC

T T

(46)

which can be solved by the FE method. Analogously to the FE approach
introduced for the calculation of the shear force-induced shear stresses,
see Section 4, the weak form of sub-problem II, given in Eq. (46), finally
yields the FE-typical formulation

(47)

For the torsional problem, the element stiffness-like matrix, KM i,T , is
defined by expression

= +
y y z z

K N N N N dM i
T T

, elT
el (48)

and the respective element force vector FM i,T reads as

= n n sF N N z Ny([ ( ) ( )] d .M i T
y

i
z

i, elT

el (49)

Again, the integrals given in Eqs. (48) and (49) were numerically
evaluated by means of the Gauss quadrature with ×2 2 Gauss points.

The above-described FE model was evaluated in order to compute
the profile-specific torsional warping functions, see Fig. 4(g)–(i), with
the corresponding minimum and maximum values as given in Table 2.

6. Critical loading scenarios: Unit shear forces due to wheel
contact

Shear forces with lines of action as seen in Fig. 5 imply torsional
moments according to Eq. (11), and resulting shear stresses follow from
summation of the shear stresses related to sub-problems I and II, re-
spectively. As regards sub-problem I, the solution y z( , )S , see
Fig. 4(a)–(c) and (d)–(f), is first inserted in Eqs. (28) and (29), and the
results enter Eqs. (26) and (27), see Fig. 6 for the corresponding shear
stresses, and Table 3 for the minimum and maximum values. As regards
sub-problem II, the solution y z( , )MT , see Fig. 4(g)–(i), is inserted in
Eqs. (42) and (43), see Fig. 7 for the corresponding shear stresses, and
Table 4 for the minimum and maximum values.

From the aforementioned unit force-related shear stresses, the effect
of any combination of arbitrarily large shear forces can be determined
according to the following multi-linear scaling relations:

= = + =

+ = + =

S S S S
S

S

S S S S S
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[ ( ) ( )]
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xy xy
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z z
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,0 ,0
,0

,0 ,0
,0

T

T

(50)

and

= = + =

+ = + =

S S S S
S

S

S S S S S
S

[ ( ) ( )]

[ ( ) ( )] ,

xz xz
S

y y xz
M

y y
y

y

xz
S

z z xz
M

z z
z

z

,0 ,0
,0

,0 ,0
,0

T

T

(51)

where the stress distributions relating to =S 1y,0 kN and =S 1z,0 kN are
shown in Figs. 6 and 7.

It is instructive to perform a corresponding evaluation for a

Fig. 5. Loads applied on the rail in curved tracks for computing the primary
torsion-related shear stress distributions, shown exemplarily for profile 60R1;
abbreviation GC stands for geometrical center, while abbreviation SC stands for
shear center.
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aPM)c()b()a(

aPM)f()e()d(

aPM)i()h()g(

aPM)l()k()j(

Fig. 6. Computed horizontal and vertical shear force-induced shear stresses: component = =y z S S( , ; 1 kN, 0)xy
S

y z for profiles (a) 60R1, (b) 60R3, (c) 63R1;
component = =y z S S( , ; 1 kN, 0)xz

S
y z for profiles (d) 60R1, (e) 60R3, (f) 63R1; component = =y z S S( , ; 0, 1 kN)xy

S
y z for profiles (g) 60R1, (h) 60R3, (i) 63R1 and

component = =y z S S( , ; 0; 1 kN)xz
S

y z for profiles (j) 60R1, (k) 60R3, (l) 63R1; compare Fig. 5 for applied loads.
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practically relevant load case, comprising, on the one hand, a vertical
load of =S 59.694z kN, referring to the maximum wheel load of a
Viennese tramway car at full capacity [64]. On the other hand, a hor-
izontal load Sy is considered, relating to the centrifugal force that occurs
in curved rails sections. For that purpose, we make use of the following
relation [65,66]:

=S S v
R g

,y
z

2

(52)

with the gravitational acceleration =g 9.81 m/s2, the velocity of the
wheel v, and the curvature radius R. Here, we consider a velocity of
5 m/s, which is a practically reasonable velocity in curved rail tracks of
the Viennese tramway network [67], and the respective minimum rail
curvature radius of 18 m [68]. Then, when considering a right-curved
track, a horizontal force of =S 16.903y kN (assuming a movement of the
tramway in positive direction of the x-axis, see Fig. 2) can be expected,
according to Eq. (52). If the rail embedment abruptly changes from a
semi-rigid foundation to a very soft or even missing support, as it may
happen in very old tracks or in tracks under maintenance conditions,
then the aforementioned forces (Sy and Sz) appear directly as internal
shear forces. Hence, it makes sense to insert corresponding values for Sy
and Sz in Eqs. (50) and (51); in order to provide access to the respective
shear stress distributions. For being able to better interpret the dis-
tributions of xy and yz, the related distributions of von Mises stresses
are computed, according to

= +3( ) ,xy xzvM
2 2

(53)

see Fig. 8 for the profile-specific von Mises stress distributions. The
corresponding maximum values amount to = 203.06vM MPa for profile
60R1, = 230.67vM MPa for profile 60R3, and = 189.23vM MPa for
profile 63R1. The computed stress concentrations agree well with a
failure pattern observed in an 18-year-old rail with profile 60R1 having
reached its service life, see Fig. 9; after excavation of the rail, a long-
itudinal crack appears in the rail web, just below the rail head.

7. Discussion

7.1. Interpretation of results

The 2D FE method presented in this paper gives access to both shear
and torsional warping functions. As illustrated in Fig. 4(a)–(c), the
shear warping functions due to a unit horizontal shear force

=y z S( , ; 1 kN)S
y decrease with increasing y-coordinate, whereas the

shear warping functions due to a unit vertical shear force
=y z S( , ; 1 kN)S

z , see Fig. 4(d)–(f), decrease with increasing z-co-
ordinate. Remarkably, the shear warping functions are not only influ-
enced by the loading but also by the geometry of the cross section.
Given that profiles 60R3 and 63R1 differ only in terms of the thicker

check rail of the latter, see also Fig. 1(b) and (c), the shear warping
functions of these two profiles are also very similar. In turn, profile
60R1 is significantly smaller than the two other profiles studied in this
paper, resulting in a substantially different shear warping function
distribution. Hence, our results clearly demonstrate the geometry de-
pendence of shear warping functions.

The primary torsional warping functions, in turn, see Fig. 4(g)–(i),
are purely geometrical quantities. However, in contrast to the shear
warping functions, they do not differ significantly between the studied
cross sections. Hence, the torsional behavior of grooved rails turns out
to be not so much affected by the exact geometrical dimensions, but
rather by their characteristic shapes.

As for the critical loading scenarios presented in Section 6, com-
parison of the computed von Mises stress distributions to crack patterns
observed in situ is considered to be a valid approach. For that purpose,
we make use of the photograph of a discarded rail section which was
thankfully provided by the Wiener Linien GmbH & Co KG. Namely, a
rail profile 60R1 is considered, which was excavated from a right-
curved rail section after 18 years of operation, see Fig. 9. The computed
location of the stress maximum, see Fig. 8(a), agrees well with the lo-
cation of the crack observed in situ, which is in the rail web, just below
the rail head.

7.2. Concluding remarks

Building on recent theoretical and computational developments in
the relatively old field of beam theories [49–51], the key novelty pre-
sented in this paper is the utilization of beam theory for mechanically
assessing grooved (tramway) rails – to the best of our knowledge,
comparable approaches are not documented in open literature. In
particular, shear stress distributions are computed which occur when
specific cross sections of such rails are subjected to shear forces, thereby
(optionally) also inducing primary (i.e., Saint-Venant-type) torsion.

Moreover, it should be mentioned that the presented approach is
extremely versatile. From a conceptual point of view, there is no lim-
itation as to the geometry of the studied cross section; hence, applica-
tion to other types of rails, or to rails that have undergone some sort of
degradation (e.g., due to wear, or corrosion) is quite straightforward.

7.3. Outlook

Considering the modeling concept and the results presented in this
paper, several future extensions are desirable, aiming at remedying
currently existing limitations:

• The here presented, beam theory-based 2D FE analysis of grooved
rail cross sections could be extended into the longitudinal direction,
taking thereby into account normal and shear forces, bending mo-
ments, and non-uniform (secondary) torsion. Such a fully

Table 3
Minimum and maximum values (in MPa) of the shear-force induced shear stresses = = = = = =y z S S y z S S y z S S( , ; 1 kN, 0), ( , ; 1 kN, 0), ( , ; 0, 1 kN)xy

S
y z xz

S
y z xy

S
y z

and = =y z S S( , ; 0, 1 kN)xz
S

y z for profiles 60R1, 60R3, 63R1.

Shear force-induced shear stresses 60R1 60R3 63R1

min max min max min max

= =y z S S( , ; 1 kN, 0)xy
S

y z ×3.45 10 4 ×5.20 10 1 ×3.53 10 4 ×4.70 10 1 ×2.36 10 4 ×5.95 10 1

= =y z S S( , ; 1 kN, 0)xz
S

y z ×2.99 10 1 ×3.28 10 1 ×3.33 10 1 ×3.03 10 1 ×4.11 10 1 ×4.37 10 1

= =y z S S( , ; 0, 1 kN)xy
S

y z ×2.88 10 1 ×3.94 10 1 ×2.37 10 1 ×3.27 10 1 ×2.35 10 1 ×3.25 10 1

= =y z S S( , ; 0, 1 kN)xz
S

y z ×8.05 10 3 ×6.81 10 1 ×2.38 10 4 ×6.07 10 1 ×3.17 10 4 ×6.04 10 1
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Fig. 7. Computed horizontal and vertical torsion-induced shear stresses due to eccentrically acting shear forces: component = =y z S S( , ; 1 kN, 0)xy
M

y zT for profiles
(a) 60R1, (b) 60R3, (c) 63R1; component = =y z S S( , ; 1 kN, 0)xz

M
y zT for profiles (d) 60R1, (e) 60R3, (f) 63R1; component = =y z S S( , ; 0, 1 kN)xy

M
y zT for profiles (g)

60R1, (h) 60R3, (i) 63R1; and component = =y z S S( , ; 0, 1 kN)xz
M

y zT for profiles (j) 60R1, (k) 60R3, (l) 63R1; compare Fig. 5 for applied loads.
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generalized beam model could also consider the effects of an elastic
foundation, as well as temperature effects, and the influence of
(longitudinal) residual stresses. Particularly, the latter task is highly
challenging. Hence, approaching this issue based on residual
stresses found in experimental studies [25,69–71] seems to be a
reasonable strategy for eventually assessing the contribution of re-
sidual stresses to rail fractures.

• The critical loading scenario presented in Section 6 is thought to
underline the practicability of our method. Once the aforemen-
tioned extension to a full 3D analysis is completed, more realistic
scenarios can be simulated, such as emergency braking, potentially
involving significant longitudinal forces.

• While the current paper focusses on the computation of stress peaks
in rails which may lead to macroscopic rail fractures that are ob-
served in situ, future research activities may also include studying
the post-cracking behavior, based on the wealth of respective works
reported in literature, on both brittle materials, see, e.g., [72–75],
and ductile materials, see, e.g., [76–78].
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Appendix A. Nomenclature

Abbreviations

FE Finite Element
GC geometrical center
SC shear center

Latin symbols

a a,y z proportionality factors related to shear forces
A cross-sectional area
Aij second-order area moments, with =i j x y z, , ,
E Young’s modulus
e e e, ,x y z unit vectors associated to the longitudinal, horizontal and

vertical beam axes
e e,y z eccentricities of shear forces Sz and Sy with respect to SC
FS i, force vector of the shear problem
FM i,T force vector of the torsional problem
G shear modulus
g gravitational acceleration

1H Sobolev space
IT torsional inertia moment
K bulk modulus
KS i, stiffness matrix of the shear problem
KM i,T stiffness matrix of the torsional problem
MT torsional moment with respect to SC
N row vector of shape functions for the isoparametric four-

noded bilinear quadrilateral finite element

Table 4
Minimum and maximum values (in MPa) of the torsion-induced shear stresses = = = = = =y z S S y z S S y z S S( , ; 1 kN, 0), ( , ; 1 kN, 0), ( , ; 0, 1 kN)xy

M
y z xz

M
y z xy

M
y zT T T

and = =y z S S( , ; 0, 1 kN)xz
M

y zT , due to eccentrically acting shear forces for profiles 60R1, 60R3, 63R1.

Torsion-induced shear stresses 60R1 60R3 63R1

min max min max min max

= =y z S S( , ; 1 kN, 0)xy
M

y zT 3.79 2.91 4.44 3.64 3.80 3.03

= =y z S S( , ; 1 kN, 0)xz
M

y zT 3.20 3.58 4.30 4.39 3.60 3.63

= =y z S S( , ; 0, 1 kN)xy
M

y zT ×5.18 10 1 ×3.97 10 1 ×5.40 10 1 ×4.43 10 1 ×4.55 10 1 ×3.64 10 1

= =y z S S( , ; 0, 1 kN)xz
M

y zT ×4.38 10 1 ×4.89 10 1 ×5.22 10 1 ×5.34 10 1 ×4.31 10 1 ×4.36 10 1

aPM)c()b()a(

Fig. 8. Distributions of von Mises stresses vM in a rail along a right-curved rail track in response to a typical load case for profiles (a) 60R1, (b) 60R3, (c) 63R1.

Fig. 9. Photograph of an excavated tramway rail showing a long crack running
approximately parallel to rail axis in an 18-year-old, right-curved rail of profile
60R1, by courtesy of Wiener Linien GmbH & Co KG.
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n unit normal vector
n n,y z components of the unit normal vector in the cross-sectional

plane
nel total number of elements
R curvature radius
sel outer boundary of contour finite element
Sy horizontal shear force
Sy,0 horizontal unit shear force of 1kN
Sz vertical shear force
Sz,0 vertical unit shear force of 1kN
v velocity of tramway car wheel
x location vector
x Cartesian coordinate along beam axis with origin in GC
y z, Cartesian coordinates perpendicular to beam axis with origin

in GC
y z¯, ¯ Cartesian coordinates perpendicular to beam axis with origin

in left bottom corner of cross section
y z,i i coordinates approximated across finite element
y z,i i vectors comprising nodal coordinate values in finite element
y z,SC SC coordinates of SC in Cartesian coordinate system with origin

in GC
y z¯ , ¯GC GC coordinates of GC in Cartesian coordinate system with origin

in left bottom corner of cross section

Greek symbols

, ,xx yy zz normal components of strain tensor
, ,xy xz yz shear components of strain tensor
,xy

S
xz
S shear force-induced shear strain components in cross-sec-

tional plane
,xy xz shear strains in cross-sectional plane
,xy

S
xz
S shear force-induced shear strains in cross-sectional plane

twist of the beam
Poisson’s ratio

vM von Mises stress
xx normal stress component in longitudinal beam direction

,xy xz shear stress components in cross-sectional plane
,xy

M
xz
MT T torsion-induced shear stress components in cross-sectional

plane
,xy

S
xz
S shear force-induced shear stress components in cross-sec-

tional plane
test function space of 2D FE method
test function

i test function approximated across finite element
i vector comprising nodal -values in finite element
S shear warping function
S i, shear warping function approximated across finite element
S i, vector comprising nodal S-values in finite element
MT torsional warping function
M i,T torsional warping function approximated across finite ele-

ment
M i,T vector comprising nodal M i,T -values in finite element

cross-sectional domain
el domain of finite element

cross-sectional contour

Operators

assembly operator
Laplace operator
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