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Abstract

In this paper, we study the joint data gathering and emergy harvesting (JoDGE)
problem in rechargeable wireless sensor networks (RWSNs) with a mobile sink.
In RWSNs, the sensor nodes are equipped withoRF circuit to harvest energy
from a mobile sink that moves along a pre-défined path, and at the same time,
transmit gathered sensor data to the\sink. Given that the consumed and har-
vested energy at a sensor node is, proportional and inversely proportional to
the square of transmission”distance;, a far-relay approach is proposed to se-
lect the sensor nodes eloser to the path to assist the data transmission of the
farther sensor nodes.a Undet the far-relay approach, we formulate a network util-
ity maximizationyproblem (NUM), and propose an optimal scheduling scheme
(Opt-JoDGE); which”jointly considers the power allocation, relay selection and
time slot* scheduling policies. By employing the Lyapunov drift theory, a near
optimaldbuffer-battery-aware adaptive scheduling (NO-BBA) scheme is further
proposed, in which the run-time status of the data buffer and battery are uti-
lized*"Extensive simulation experiments validate the feasibility and performance
of/ JoODGE and NO-BBA. The results show that the performance of NO-BBA is

close to that of Opt-JoDGE, especially when a certain delay is tolerable.
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1. Introduction

One of the challenges in wireless sensor networks (WSNs) is how to gather
data from sensors through a resource-constrained wireless network [9]. In WSNs,
the sensor nodes periodically sample the physical entities under monitoring;and
then transmit the gathered sensor measurements to a sink, which is connected
to the rest of the system for data processing and decision-making,

In order to improve the sustainability, recently, various energy harvesting
technologies have been employed in WSNs [2, 147317, 19, 22]. This kind of
WSNs is referred to as rechargeable WSNs (RWSNs). Extensive research efforts
have been devoted on effective data gatheringsin RWSNs. For example, [14]
proposed an energy-efficient cooperative ‘dataneollection scheme for clustered
RWSNs. In [17], an optimal scheduling algerithm was proposed to minimize
data packet loss in RWSNs, where the sink is assumed to be a fixed station.

In RWSNs with static_sinks, thetransmissions of sensor data to the sinks
may pass through one ot multiple relay nodes. Thus the sensor nodes geograph-
ically closer to thesink'usually have to forward more sensor data. Therefore,
they are more likely tobecome the bottleneck of the network due to heavy re-
lay workloadm By contrast, data gathering in RWSNs with mobile sink(s) has
been shewn t0 be a promising approach to jointly deal with unbalanced traf-
fic distribution and prolong the network lifetime. The mobile sink is assumed
to travel along a pre-defined or online-learned path, and the network through-
putymaximization (NTM) problems were investigated, e.g., through routing and
time-slot scheduling [30, 38], joint speed and power control [23], and mobility
planning [6, 28, 39, 40]. These works assumed that the sensor nodes harvest
energy from either unstable environment sources, i.e., solar and wind, or energy
based on magnetic resonance coupling with small charging distance. On the

other hand, radio frequency (RF) based energy harvesting seems to be a better
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Figure 1: System Model: A rechargeable WSN with one mobile sink on a“pre-defined path

potential for RWSNs with mobile sinks, 4.e., more stableland controllable with
larger effective charging distance.

In this paper, we consider a representative RWSNywith'a mobile sink using
RF based energy harvesting. As shown in Eigads.the sink moves along a pre-
defined path continuously and repeatedly. While it is moving, nearby sensor
nodes harvest energy from the signals emitted by the sink, and at the same
time send their sensed data back to the sink! In order to sustain the operations,
when gathering data from the sensor nodes, we need to balance the harvested
energy and consumed energy at eachi sensor node. We call this problem as the
joint data gathering and energy harvesting (JoDGE) problem.

According to thewwireless propagation theory [31], the received power level
is inversely proportional to the square of transmission distance. Therefore, the
nodes that’are farther away from the path usually harvest less energy. On the
other Wand, these nodes may consume more energy for sending data directly to
thessink: To/reduce the amount of energy consumed in these remote nodes, we
proposelthe far-relay approach, in which if a node is far away from the path, it
may pass its data to a relay node for forwarding its data to reserve energy, even
though it might be able to send the data directly to the sink.

Based on the far-relay approach, we formulate the network utility maxi-
mization (NUM) problem with energy sustainable constraints to ensure that
the energy consumption at each sensor node is always less than its harvested

energy, and at the same time the relay selection, power allocation and time slot
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scheduling issues are jointly considered. Considering that the primal JoDGE
problem is a mixed integer nonlinear problem (MINLP), we reformulate it to be
a convex optimization problem through a novel two-step transformation, and
derive the optimal Opt-JoDGE scheduling scheme.

To reduce the computation complexity of Opt-JoDGE, we further propose
the near-optimal buffer-battery-aware adaptive data gathering scheduling,(NO-=
BBA ) scheme to solve the JODGE problem, in which the run-time status of thé
data buffer and battery of all involved sensor nodes are also exploited:

Finally, we give comprehensive performance analysis for both Opt-JoDGE
and NO-BBA. Extensive simulations have also been performed to confirm the
feasibility and effectiveness of the proposed schemes and validate our perfor-
mance analysis. The remainder of this paper is.organized as follows: Section 2
presents a literature review on related works#Seetion.3 introduces the network
model. The formulations of the JoDGEwproblemyand Opt-JoDGE scheduling
scheme are presented in Section 4. Section/b introduces the NO-BBA scheme,
and the performance results of both Opt=JoDGE and NO-BBA are reported in
Section 6. In Section 7, we conclude the paper with a brief discussion on the
future work. For the readers™ convenience, the symbols and their definitions

that are commonly referrediin this paper are summarized in Table 1.

2. Related Work

Extending’ the lifetime of sensors with limited battery energy is a major
researeh challenge in WSNs, and various approaches have been proposed for
gfficient emérgy utilization [25, 32, 34, 37]. In [25], a fuzzy logic-based clustering
algorithm was presented to extend the network lifetime. In [37], the authors
inyestigated the energy consumption density performance in data gathering,
and proposed a directional virtual backbone based data aggregation scheme by
employing the directional antennas and virtual backbone techniques.

Energy harvesting (EH) technologies have been introduced to charge the

sensor nodes in rechargeable wireless sensor networks (RWSNs) to improve
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their sustainability. The state-of-the-art of energy harvesting technologies was
reviewed for RWSNs in [1]. In RWSNs, energy may be harvested from ei-
ther surrounding environment [18, 22, 23, 29, 30] or dedicated energy sources
[10, 14, 20, 24, 39]. When using dedicated energy sources, wireless charging
technologies utilize energy transmitter(s) to charge the sensor nodes wirelessly
via either non-radiative coupling or radiative radio-frequency (RF) techmiques:
As one kind of non-radiative coupling, magnetic resonance coupling/s based on
evanescent-wave coupling to generate energy between two resonantcoils through
magnetic field. The most important properties of non-radiative coupling are

small charging distance and high efficiency.

RF-based energy harvesting utilize diffused radio-frequencysignals as a medium

to carry the energy. The energy harvesting medel with different transmitter
placements was analyzed in [24]. In [10], 4hewauthors proposed an energy-
efficient software-defined RWSN architecture. [8] studied the optimal scheduling
problem for stochastic event capture,d.e., hew to jointly mobilize the readers for
energy distribution and how to schedule the sensor nodes. [19] exploited the col-
laborative energy and information‘transfer to realize the green smart cities via
jointly optimize sub-carrier grouping, sub-carrier pairing and power allocation.
In [36] the energy-effi¢iencyymaximization problem based on the simultaneous
wireless information and power transfer (SWIPT) framework was considered,
and in [14], thé authors incorporated SWIPT into cooperative clustered WSNs,
and proposed an efficient cooperative data collection scheme.

Previous studies on WSNs with mobile elements [9] have shown that the mo-
bile'sink .approach significantly improves the network performance, for instance,
balancing the traffic load, reducing transmission delay and enhancing network
coverage. However, some new challenges also arise, such as contact detection,
power management and so on. Most previous works aimed to maximize network
throughput, lifetime under predefined [12] or planned mobility patterns [21, 35].

In [22], a scheme was proposed to jointly control the data buffer and battery
in RWSNs to maximize the long-term average throughput under given QoS

constraints. The time-slot scheduling approach was presented in [30] for RWSNs
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with a mobile sink, in which the sink periodically traveled along a pre-defined
path at a constant speed to collect data from sensor nodes within one hop.
[38] extended the work of [30] to multi-hop RWSNs, and aimed to maximize
the network utility by optimizing power and rate control. The joint power and
speed control was studied in [23], where one-hop transmission was assuried
and two scenarios with constant and varying speeds were analyzed. A‘multi=
functional mobile entity, called SenCar, was proposed to serve as/not onlyya
mobile data collector that roamed over the field to gather data.but, also an
energy source to charge static sensor nodes on its migration tour via wireless
energy transmissions. In [28], a greedy scheduling algorithmewas proposed to
schedule limited mobile devices for energy replenishment and” data collection
in RWSNs with multiple sinks. In [6], the authorsidesigned a node-Gosper
island-based scalable hierarchical cluster tramsmission method in conjunction
with a wireless recharging plan for data gellection,in RWSNs. In the proposed
transmission method, both the magnetic resenance coupling based and RF based
energy harvesting technologies were investigated.

Compared to energy harvestingvia ambient energy sources and magnetic res-
onance coupling, RF energy harvesting has a larger effective charging distance,
and the amount of harvested.energy is inversely proportional to the square of the
transmission distance:/This indicates that the sensor nodes closer to the path
can harvest more energy to support relaying traffic. Meanwhile, RF-energy har-
vesting is.dn efficient method to provide reliably guaranteed energy supply [20].
Thus,the energy harvesting via RF radiation is highly suitable for RWSNs. To
the"best of our knowledge, there is no previous work that jointly considers the
sink mobility and RF energy harvesting technology in RWSNs. In our work,
the run-time status of the data buffer and battery of each sensor node is also
exploited to solve the network utility problem, in which the rate control, power

allocation, relay selection and time scheduling problems are jointly considered.



Table 1: Symbols and Definitions

Symbol  Definition

ax(t) Maximum sensing rate of sensor node k at time slot ¢

do Reference distance with measured path loss Lo(dp)

de RF energy transfer radius

dp, Vertical distance threshold of the one-hop manner

dir Transmission radius of sensor node k

dij Distance between node i and node j

dis(t) Distance between sensor node k£ and sink at time slot ¢

el (t) The amount of energy harvested by.sensor niode k at slot ¢
es(t) The amount of energy consumed by'sensornode k at slot ¢

e Energy consumed for sensing data at sensor node k

ei;(t) The energy consumed on the link from nodes i to j

lgsr(t)]? Channel fading gain between 'sink s and sensor k£ in WET mode
|hij ()| Channel fading gaintbetween nodes ¢ and j in WDT mode

35 (1) The amount of bits tramsmitted from node ¢ to node j at slot ¢
g Earliest time slot that sensor node k can harvest energy

fz Latest’ time slot'that sensor node k can harvest energy

thr Earliest slot/that sensor node k can transmit data

EZ Latest,time slot that sensor node k£ can transmit data
(20(t),0) W Position of the sink at time slot ¢

(i yk) Position of sensor node k

2k (t) Data bits added into the data buffer of sensor node &

@ Path loss exponent

7i; (1) Scheduling variable for the link from node ¢ to node j

n Energy conversion efficiency

K The set of all sensor nodes

Na The set of the sensor nodes in the one-hop manner

Ne The set of the sensor nodes in the cooperative two-hop manner
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continued Table 1

Symbol Definition

Ri The set of candidate relay nodes of sensor node 4
Lo(dp) The path loss with reference distance dg

N Total number of time slots in one pass

T Duration of one time slot

P, Power of the sink in wireless energy transfer
Pi(t) Power of sensor node k at time slot ¢

E(t) Battery status of node k at time slot ¢

Qx(t) Data buffer status of sensor node k at time slot ¢

3. System Model

3.1. Network and Mobility Model

As illustrated in Fig. 1, we consideria rechargeable wireless sensor network
(RWSN), in which a mobile sink sunoéves along a pre-defined path, and a set of
K sensor nodes K = {1, 2,3;“%, , K }‘are randomly distributed around the path
of the sink. The senser nodes are organized into a time-slotted network, e.g.,
based on 802.15.4¢‘MAC protocol [33], and have network-wide synchronization
[5]. There are/in, total N time slots for scheduling data transmissions in one
pass (froms6nejend t6 the other end), and the size of each slot is defined as 7'

The'sink 's.moves continuously along a pre-defined path at a constant speed
v from'efie end to the other end (called a pass) repeatedly!. While s is moving,
it receives’data from nearby sensor nodes, and also deliveries energy for charging
themvia radio frequency signal. It is assumed that the sink has enough energy

for charging all sensor nodes in the network. As the size of each slot is 7', the

1Since the sink travels along the path at a constant speed continuously, the length of a
periodic cycle from the starting point to the end point or from the end point to the starting

point does not affect the performance from a long-term point of view.
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distance traveled by the sink in one time slot is equal to v-T. It is assumed that
T is small enough so that the location of the sink can be assumed to remain
unchanged within one time slot. We define (x,yo) as the initial location of
the sink at time slot 0. To simplify the discussion, it is assumed that the sink
moves along a straight line, i.e., yo(t) = yo, xo(t) € [0,v - N - T]. As wireless
energy transfer (WET) technology is limited by its effective charging diStance;
we define d. as the effective energy transfer radius within which/the sensor
nodes can harvest energy from the sink successfully. In order to-guarantee that
all sensor nodes can harvest energy from the sink, we assumethat the greatest
distance between a sensor node and the path is always less-than d.. In large-
scale RWSNs deployment, multiple mobile sinks or a careful tzajectory planning
may be needed. We defer those studies to our fufure work:

In order to sustainably sending data, eac¢h@semsor node is equipped with
an RF energy harvesting circuit, and itsywirelessydata transfer (WDT) opera-
tion mode and WET operation modefcan be performed simultaneously, e.g., by
splitting the frequency/time domain ‘oremploying separated receiver circuits.
In WET mode, a sensor node harvests energy from the RF signals emitted from
the sink to charge its ownl battery; in WDT mode, data collected by a sensor
node will be sent to thé'sinkeither directly or through other sensor nodes, which
act as relay nodes.

We denote/ (2, yx) as the fixed location of sensor node k, and use d} to
represent the transmission range of a sensor node k, within which it can transmit
data stccessfully. Each sensor node has a data buffer to temporarily store the

data.generated by the sensor node itself or received from other sensor nodes.

8. 2uuFar-Relay Approach

An important consideration in the JoDGE problem is the double near-far
problem [15]. In wireless energy transfer, the sensor nodes closer to the path
of the sink (the energy source) generally harvest more energy than the sensor
nodes which are farther away. On the other hand, the energy consumption is

always proportional to the square of the transmission distance. Therefore, the
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sensor nodes that are farther away from the path may consume more energy for
data transmission but harvest less energy.

Due to the double near-far problem, how to maintain sustainable operation
of the sensor nodes while improving the network performance, especially how to
fulfill the data transmission requirement of the farther sensor nodes, becomes a
critical issue. Inspired by wireless powered cooperative communicationd7, 14];
we propose a far-relay approach to address this problem, in which if the physical
distance between a sensor node and the path is less than a threshold dj?, it will
transmit data to the sink directly. Otherwise the sensor node may transmit data
in a selectively cooperative manner by either choosing a relay-node for assisting
data transmission or directly transmitting data to the sink.

According to the distance threshold dj, we divide the sensor nodes into two
subsets N, = {1,2,- -+, |Ne|} and Ny = {|Noftymaay| Ve |+ |NVg|} . Ng contains
the sensor nodes that transmit their data te.the sink directly, i.e., their distances
to the path are smaller than dj,, while N, \¢ontains the sensor nodes that send
data either directly or through a relay node. Define R; as the set of candidate
relay nodes of sensor node i. For any sensor node j € R;, it must satisfy the
following two conditions:1); €Ny, and 2) d;; < d", where d;; is the distance

between nodes ¢ and 4"

3.3. Data TrawsmissionModel

Firstly/we introduce the data generation model at the sensor nodes. Similar
to [38]¢ ay(t)is defined as the sensing rate (i.e., the amount of data generated
pemtime slot) of sensor node k at time slot ¢, which can be either a constant
or a stochastic process. As ay(t) may not be supported by the limited network
capability, each sensor node needs to control the stored data to keep its data
buffer stable. We define the amount of data generated by node k and stored

into its data buffer at time slot ¢ as xy(¢), and it satisfies x4 () € [0, ar(t)].

2In this paper, we consider the constant distance threshold dj,. How to derive the optimal

dy, is left as the future work.

10
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Secondly, the time scheduling model is presented. Following the assumption

20 in [30], in order to avoid data transmission collision, each time slot can be
scheduled to only one transmission link. Then we define 7;;(t) € {0,1} as a
binary time scheduling variable, and 7;;(t) = 1 indicates that time slot ¢ i

allocated to the link from nodes ¢ to j. Thus, the time scheduling varia ,@

T(t) = {mi;(t),i € K,j € NgU s} satisfy ,\/
tr,

T(t) € A(t) = {T(t) | Tos (t)[Ts(t) — 1] = 0,Vk € K, t € [t} ,T

a5 where A(t) denotes the feasible set of 7(t) at timeslo ek 2 jeinus) Tis(t) =

1 ensures that each time slot is allocated to transmission link, which
is either from a sensor node to the sink _or fro sensor node to its selected
relay node. t{” and f}:: denote the earliest est time slots that node k may

directly send data to s respectively, is derived by the following lemma.

» Lemma 1. For sensor node k € only when the sink s moves within its

{ar — \/(df:.)T_ (Y — o) ,O}-" 2)
= s B

b atton 1: If the distance of sensor node k to the path is smaller, the

e duration that the sink stays in its transmission region is longer, and thus

»s  the number of time slots that can be used for direct transmission is also larger.
Lastly, the transmission rate at the sensor nodes is introduced. Define

P;;(t) and e;;(t) as the allocated power and consumed energy for data trans-
mission on the link from node 7 to node j at the t-th time slot respectively, and
ei;(t) = 7i;(t)Pi; (t)T. Meanwhile, r;;(t) denotes the amount of data transmit-

20 ted through the link from node i to node j, and ri;(t) < R(7i;(t), Pij(t), hi; (1)),

11
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where R(-) is rate function and h;;(t) is channel gain. In this paper, we use the
shannon capacity as the rate function [31] such that R(7;;(t), Py;(t), hij(t)) =
7ij () TW logy (1+ (s ) ), where W s the bandwidth, (d; (1)/do)”
Lo(dg) represents the path loss, and Ny is the power of background noise.

For sensor node i € N,, the amount of data added into its data buffer”at
time slot ¢ is x;(t). As sensor node ¢ may transmit data to either the sinkier one
of its relay nodes, the amount of data to be transmitted out of its,data buffer
equals >~ ., 7i5(t). For sensor node j € Ny, which directly trahsmits data to
the sink s, the amount of data added into its data buffer at time slot ¢ includes
its generated data and the data received from sensor nddes<in, N.. Thus, the
amounts of received and transmitted data of sensor node jwat time slot ¢ are

zj(t) + D ien, Tij(t) and rjs(t), respectively.

3.4. Energy Harvesting and Consumption Model

To simplify the discussion, the energy consumption for receiving data is
assumed to be negligible when comparedito that of the sensing and transmitting
operations, and we define a constant sensing energy consumption ej" for sensor
node k. According to the network and mobility model, at time slot ¢, the location

of mobile sink is (¢ - v~T,9p). Thus we can derive the distance between sensor

node k and the sinkys at time slot ¢ as dis(t) = /(zx —t-v-T)2 + (yx — Yo)-
Define ¢ and #, as the eafliest and latest time slots when the sensor node k is in

the energyAransfer region respectively, and then it yields the following lemma.

Lemma 2. Within the time slot t € [t$,T;], the sensor node k is in the energy

transfer region of the mobile sink s, and 5,1, satify,
1 = ’Vmax{xk vV dz - (yk - y0)270}—‘
ok v T ’

e _ {min{wk + V2 = (yx —yo)%,v- N~T}J

(4)

ty (5)

Observation 2: Tf |yx —yo| is larger, t¢ and 7;, are closer. Therefore, the sensor
nodes that are farther away from the path always have less time duration for

energy harvesting. In contrast, the sensor nodes closer to the path have more

12
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time slots. Thus, the closer sensor nodes may allocate part of their harvested
energy for forwarding data on behalf of the farther sensor nodes.

During the time slot ¢ € [t§,7}], sensor node k is within the energy transfer re-
gion, and the amount of harvested energy is denoted by el (t) = %,
where 7 is the energy conversion efficiency, P;s is the transmit power of the sink
for charging the sensor nodes, |gsx(t)|? is the channel gain from the sink‘o sen=
sor node &k in WET mode, and (dgs(t)/do)*Lo(do) is the path loss that depends

on the distance. Thus, the energy harvested by all sensor nodgs*at time slot ¢

can be denoted as e (t) = (ef(t), - , el (t)), and it satisfies:

o _ 0P Tlga ()P
e"(t) € Ap(t) = {e} ()] ei(t) = (dis(t)/do)*Lo(do)

where Ay, (t) denotes the feasible set of the amount of energy harvested at time

T} (©)

slot ¢. We define e(t) = {e;;(t),Vi € K,j € NgU.s} as the energy consumed on
all the links for data transmission, and it satisfies.e(t) € A.(t) = {e(t) | e;;(t) =
7ij () Py (H)T'}-

4. Joint Data Gathering and Energy Harvesting Scheduling

4.1. Problem Formulation

The network utility maximization (NUM) framework [16] has found many
important applications/in designing communication systems, especially in cross-
layer resourcedallocation. In NUM, each source has a local utility function over
its transmission rate; and it evaluates the value of its individual utility from the
perspective ofithe whole network. The network utility is the sum of all local
utilities.,, The utility function is usually a continuously differentiable, increas-
ing and/strictly concave function of the transmission rate. Two typical utility
functions are linear functions, i.e., U(Xy) = X}, and logarithmic function, i.e.,
U(Xk) = logy(X), where X}, denotes the average transmission rate at node k.
If U(Xy) = X, the network utility is equal to the total network throughput.
While in the case of U(X}y) = log,(Xk), since a low rate seriously affects the
network utility, i.e., limx, o U(X)) = —o0, the logarithmic utility can provide

better fairness, and has been widely adopted in the literature [30, 35, 38].

13
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In this paper, we utilize the NUM framework to formulate the joint data
gathering and energy harvesting (JoDGE) problem, and the logarithmic utility
is adopted as it could simultaneously evaluate the throughput and fairness. The
logarithmic utility is set to be U(Xy) = logy(Xy), where Xj, = 4 Zil x(t)
denotes the average amount of data stored at sensor node k in one pass. Mean-
while, X}, also defines the average transmission rate supported by the nétwork;
which also implies that the rate control guarantees the data buffer to be stable:
Based on the energy and data transmission models, we formulate the JoDGE

problem as follows,

1
max ZU NZxk(t))
keK t=1
1 & 1 &
s.t Cl:Nle(t)gﬁz (1) Vi € Ne,
t=1 t=1jER.Us
1 & &
C2 Nz Z eij(t) < ﬁZef(t)fef",Vz € N,
t=1 jER;Us t=1
LN LN (7)
C3: > [xj(t)+ rij(t)] < D ris(t). V) € N,
t=1 1ENZ t=1
1 & 1
C4 : NZejs(t)ﬁ Nze?(t)fe}mvv]e'/\/d’
t=1 t=1

[ /\

C5: 0 <wye(t) < ar(t),0 < ry;(t) < R(7i5(t), Pij(t), hiz (1)),

() € A(t),e"(t) € An(t),e(t) € Au(t),Vk,i,j € K,V

Our geal is to,derive an optimal scheduling scheme that jointly considers the
power allocation, relay selection, and time slot scheduling problems. Constraints
C1, C2,)C3 and C'4 are the stable and sustainable constraints of the data buffer
and battery of each node respectively. For data buffer, the average amount
of received data must be no larger than that of scheduled data in the network.
For the battery, in order to ensure sustainable operations, the average consumed
energy must be smaller than its average harvested energy. Constraint C5 defines

the instantaneous feasible set to be satisfied at each time slot.

14
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4.2. Problem Transformation

Problem (7) is a mixed integer nonlinear programming (MINLP) problem
that is difficult to be solved directly. Thus, we transform it into a convex prob-
lem and then develop an optimal joint data gathering and energy harvesting
scheduling (Opt-JoDGE) scheme. To achieve this goal, the following two steps
will be performed: firstly, relaxing the mixed integer feasible set into a“contin=
uous feasible set; and secondly, converting the non-concave rate functions to

concave functions based on the first step.

4.2.1. Time-sharing Relazation

In problem (7), the binary variable vector 7(¢) i$ introduced by the time
slot scheduling among all transmission links. Thusj.the first step is to relax
the binary variables to be a continuous feasible.set\If 7;;(¢) is relaxed to be a

continuous feasible set as 7;;(t) € [0, 1], 7-(t) satisfies:

T(t) € N'(t) = {T(t) | Ths (8) [hs @) — 1K< 0, VK € K, t € [t )]];
Ths(t) = 0,k € KC, LB By 17,5 (1) 135 () — 1] < 0,¥i € N, j € Ry;
T (t) = 0,Vi € Neyg ¢ Rvvor Vi j e Ny > 7ij(t) = 1}. 8)
i€k jEN4Us
By the relaxation, A/(t),is aigonvex feasible set. Note that this relaxation has
its corresponding’ physicalsmeaning: multiple transmission links may share one
time slot by splitting it into multiple sub-slots with different ratios. This can
be considered as a time-sharing policy. In Lemma 3, we will derive that, for the
primal problem” (7), the optimal 77(¢) is always either 0 or 1. Therefore, the

time-sharing mechanism is not necessary.

4.2.2. Analysis of Convezity

After the time-sharing relaxation, the problem is still non-convex due to
the non-concave rate function R(7;;(t), Pi;(t), hi;(t)). Fortunately, as f(z,y) =
zIn(l + %) is a concave function with respect to (z,y), we can easily derive
that if 7;;(¢) € [0,1], the rate function could be replaced by the equivalent rate

. €ij hij 2
function R(7;;(t), €;;(t), hi;(t)) = 7;()TW log, (1 + - (t)T(dU(é))l/dogi)‘Lo(do)NO).
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Thus, by the two steps and inserting X = % Zil x(t), problem (7) can be
transformed into the following convex problem:

> u(x)

ke

N
st. Cl:X;< N; RZ ri;(t),Vi € N,
N 1 N
Cc2: Z ew(t)< 72621(15)—9;”,\7@'6/\@,
t=1 t=1

1
C3: 7’” S ers v.] ENd)

t:l

= \

zM

ER;U
N
1 1
Ch: Zejs(t) <5 D el(t) — e Vi e Wi,
t=1 t=1
C5:0 < X < ag,0 < rij(t) < Rlmaglt)yei; (), his(1)),
T(t) € N(t),e"(t) € Ajt), e(t)'€ A (1), Vk, i, j € K, Vt.

where a; = % vazl ar(t) denotes thelaverage generation rate at sensor node k.

4.3. Optimal Joint Data Gathering and Energy Harvesting Scheduling Scheme
Since problem (9) is asStandard convex problem, we can design an optimal
joint data gathering and emergy harvesting scheduling (Opt-JoDGE) scheme by

s employing dual deComposition and subgradient methods [4, 11].
Denote A = (Mg, A2, "+ , Ax) and v = (vq, 19, -+, Vk) as the lagrange multi-
pliers associated with the stable and sustainable constraints, respectively. Thus

the dual function is given as,

N
E(/\,V):min—ZU(Xk)—i- Z /\i{Xi_%Z Tij(t)}
keK i€N. t=1jER;Us
1 & 1<
Y u{F Y e - dmrer
€N, t=1jER;Us t=1 (10)
N N
+ ) NX + % SN ) - %Zrﬁ(t)}
JEN t=14iEN, t=1
N 1N
+ Z V]{ Zejs(t)—ﬁz€?(t)+ejn}
JENa t=1 t=1



Given X and v, (10) is further sub-divided into two independent problems as,

Li(Av) = i N Uux)+ Y X+ Y NX,

N
Lo =mn S-S 0+ Y[ X e

t=1 i€N. jER;Us iEN, JER;
—el(t) +e5"} Z Aj [Z 135 (t) — rjs(t)} (12)
jENd i€EN.
+ Z vj [ejs(t) — e?(t) + e‘;"} }
JEN

For problem (11), by inserting U(X}) = log,(Xx) and taking derivative of

X, the average data transmission rate of sensor node k can be given as

1 & !
= N;xk(t) = min {ak,m}, (13)

where aj, represents the average data/ generation rate of sensor node k. Mean-
while, the objective function of problem, (12) is the sum of N sub-functions,
and each of them is associated with the variables at one individual time slot,

e., the t-th sub-function”depends only on the variables 7(t), e(t),r(¢t). Thus
the problem can be deecomposed into IV sub-problems, and each sub-problem is

related to one time slot] ¢.es, the sub-problem at time slot ¢ can be written as,

Z Z le(t Z )‘k’rks(t) + Z Z I/ieij(t)

1€N. JER, keKx i€N: JER,
FY v lens(t) — e () + €]
kek (14)

s, 070 < rig(t) < R(mij(t), eq(t), hij(t)), Vi, j € K
7(t) € N(1),

In fact, the objective takes both the transmission rate and energy consumption
into consideration, and it aims to achieve larger weighted rate with less weighted

a5 energy consumption, where the weights are dependent on A and v.
The first step is to determine the optimal transmission rate r(t). If A; < A,

it yileds 7;(¢t) = 0. Given X} = min {ELk, m}, Ai < A; always implies that

17



the data transmission rate of node j is less than that of node 4, and it can be
stated as: for node j € Ny, if it is a relay node, it must guarantee its own
transmission rate first before helping other nodes to forward data. Based on
this observation, we denote R/ as the set of real relay nodes of node i. Thus
R, = {jlXi > \;,Vi € Ni,j € R;}. When j € R}, the optimal transmission rate
on the link from node i to node j is denoted as ry;(t) = R(7i;(t), ei;(t); Ry (1))
Then, by inserting the optimal transmission rate r*(¢) into problem (14), the
energy/power allocation problem is given as,

e(®)r(t) =D D P MR (0, e (1), hig (1) + 3 adTpieilt)

1EN: JER] i€l jeER!,

=) MR (s (8), ers(t) his (1) + > vifers (B —el(t) + e57]  (15)

ke ke

sit. T(t) € N(t),e(t) € Ac(t).

eij (t)hij (8)|?
where R(7i;(t), es;(t), hij(t)) = 7i;(t)TWelog, (1 + TU(t)T(d:j((t))‘/doga)Lo(do)No)'
Since each term is associated with only one'énergy allocation variable, the prob-
lem can be further decomposed.. For\example, to derive the allocated energy

ei;(t), we only need to solve the following problem,

.. .. 2
min — [\ — Aj]ri; () TWelog, (1 . eij()[hi; (t)]

el T o)) Loty ) + e

(16)
By taking derivative with/respect to e;;(t), this problem can be solved easily.
Similar procedure ean be applied to variable egs(¢), Vk € K. Thus we can derive

the optimalienergy allocation scheme.

Theéorem 1, For the link between sensor node i € N, and the corresponding

relay node j € R}, the optimal allocated energy is given as

7 . /\j _ (dij(t)/do)*Lo(do)No 1t
e;;(t) = 7i; () TP;(t) = Tu(t)T OB ”Z_j(t)? U2 an

where [x]' = max{0,z}, and P;;(t) represents the optimal allocated power. For
sensor node k € K that directly transmits data to the sink, the optimal allocated

energy can be written as

Ae (dus(t)/do)*Lo(do) No Tt

m2- (1) (18)

€hs (1) = Ts ()T P (8) = s (T
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Observation 3: The optimal energy/power allocation scheme complies with
the traditional water-filling mechanism [13]. As is shown in (17) and (18),
the optimal power consists of two terms. The first term is associated with
lagrange multipliers A and v, and the second term depends on the channel gain
and transmission distance. For the second term, the optimal power allocation
scheme is a water-filling mechanism over the link condition. If the .state is
better, the second part is smaller and the transmitter can allocate more power
to achieve a higher transmission rate. Otherwise, it consumes less power to
avoid the waste of power/energy in the poor channel condition.

Lastly, the time scheduling problem needs to be solved.+By inserting the
optimal energy allocation scheme, problem (15) can be rewrittén as,

Izl(ltl)l - Z Z 7_1] t)R Z AkaS(t qu( )

NejER; kex
iEN. jE € (19)

+ 0 uimOP5) + Y vl (B () — €h () + €],

IEN: JER) keK

" P (0)hijt)]? . . .
where R};(t) = TW log, (1+ @ (t)J/(ngaiE)()zio)No)' (19) is a linear programming
problem, and thus the optimal time slot scheduling variable 7;;(t) is either 1
or 0. Since (9) is the relaxed problem of (7) by enlarging the feasible set, the
optimal solution of (9) is anjupper bound of that of (7). Since we observe that

the optimal solution of (9) also satisfies the constraints of (7), it is also the

optimal solution of\(7). Finally, the following lemma can be derived.

Lemma.3.The optimal scheduling variable 7;;(t) is either 1 or 0. For the
optimal time)slot scheduling, time-sharing is not necessary, and it only needs to
allocate one time slot for one transmission link. Thus, the optimal solution for

problem (9) is also a feasible and optimal solution of problem (7).

As the optimal value for 7;;(t) is either 1 or 0, and there are finite links,
problem (19) can be solved by exhaustive search. Firstly, for sensor node i € N,
it selects the “best” transmission links among all links to its relay nodes and
the sink, which achieves the highest weighted transmission rate with the least

weighted energy consumption. This procedure can be considered as the relay
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selection. Secondly, for all sensor nodes k € IC, the time scheduling scheme is to
schedule the best sensor node to transmit data on its “best” link. The following
two theorems present the relay selection scheme and time scheduling scheme,

respectively.

Theorem 2. For sensor node i € N, the destination node is either thefsink
or one of its relay nodes. The selected destination node is S;, namely, welay

selection policy, and it satisfies,
S; = argmax A; (20)
J

where A; = (Ai/\/c+1» e Ak Ais) and A;j is the schedulingsreward that is the

weighted transmission rate minus the weighted energy consumption as follows,

s = M5 (0) — v PO TN TE R
Aij = N f 5 () — v P (DT, if j=s, (21)
—00, otherwise.

Theorem 3. The time slot scheduling scheme is to determine at each time
slot which sensor node is going tostransmit data to a selected relay node or
the sink. Define the scheduling reward vector B = (By, Ba,--- , Bk), where
By, = max;jA;,Vk € N;, and B, = A\ f,(t) — vi Pr,($)T,Vj € Ng, the optimal
time slot scheduling scheme is to choose the “best” transmission link with the
largest scheduling weward, and can be given as

Y, if i =argmaxy B and {i € N.,j = S; or i € Ny, j = s},
i) = (22)

0, otherwise.

Another critical issue is how to derive the Lagrange multipliers A = ()\1, Ao,
,)\K) and v = (Vl,ug,~~~ ,VK). Since problem (9) is a standard convex
problem, based on the KKT (Karush-Kuhn-Tucker) condition, the Lagrange
multipliers must be satisfied so that the stable and sustainable constraints C1,
C2, C3 and C4 hold with equality. Even though this characteristic exists,
it is still difficult to derive their closed form expressions, and some numerical

methods such as the sub-gradient method [4, 11] are usually adopted.
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5. Near-Optimal Buffer-Battery-Aware Scheduling

The Opt-JoDGE scheme proposed in Section 4 depends on the Lagrange
multipliers, whose closed form expressions are not easy to be derived. Further-
more, the run-time status of the data buffer and battery are not considered:
In this section, we introduce the Near-Optimal Buffer-Battery-Aware Adaptive
scheduling (NO-BBA) scheme, which also exploits the run-time status of.the
data buffer and battery of individual sensor node, to derive thedrelationship
between the average buffer size and the network performance. Meanwhile; some

implementation issues and special cases are also discussed.

5.1. Problem Formulation

Denote Qg(t) as the status of the data buffer.6f sensor node k at time slot t.
Based on the data transmission model as spegified=innSection 3.3, the evolution
expressions of the status of data buffer at.node ivand node j, (i € N, j € Ny),

are presented as follows:
t
Qu(t+1) = [Qult) Ak, X7 (8)] +:(0), Vi € A, (23)
T
Qs(t+1) = [ Qs (Bmge (O] + 25(8) + Ticw, ris(0), Vi €N (24)

In order to monitet the ‘environment continuously, it is assumed that sensor
node k consumes e; " energy at each time slot for sensing operations. The sensor
nodes should wot'‘econsume all the energy in their batteries for data transmission,
and should reserve sufficient amount of energy for sensing operations in the fu-
ture. For this purpose, we divide the battery of each sensor node into two virtual
sub=batteries: the first one is to store harvested energy for sensing operations
while the second one is for data transmission. In order to guarantee sustainable
sensing of the environment, we adopt the following energy reservation policy:
at the beginning of each pass, the first sub-battery stores sufficient energy for
sensing operations in the current pass, usually no less than Nej". Therefore,
when a sensor node harvests energy, it first supplements the first sub-battery
to reserve enough sensing energy for the next pass. The remaining harvested

energy is to charge the second sub-battery for data transmission.
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We use E;" () to denote the amount of energy to be harvested for sensing op-
erations in the first sub-battery of sensor node k at time slot t. At the beginning
of each pass, E{"(¢) is set to be Ne”, i.e. E;"(mN+1) = Nej™. Thus the evolu-
tion expression of E§™(t) can be written as Es™(t+1) = max{E{"(t)—e}(t),0} =
E"(t) — ér(t), where éi(t) = min{E{"(t),el'(t)}. el(t) represents the enefgy
harvested by sensor node k at time slot ¢, and é}'(¢) is the actual améunt of
energy replenished into the first sub-battery. At each time slot, after replenish?
ing the first sub-battery, the remaining harvested energy will besstored.into the
second sub-battery. Thus at time slot ¢ the energy stored for data transmission
can be denoted as €l (t), which satisfies e} (t) = el (t) — éR (1)«

As the above energy reservation policy can guarantee,the.energy consump-
tion of sensing operations, we thus ignore the first{sub-battery and only consider
the harvested and consumed energy for data transmission. Therefore, in the fol-
lowings, we use the term “battery” to represent the second sub-battery.

Denote E(t) as the battery status of sensor'node k at time slot ¢. Based on
the energy harvesting and consumption model, the evolution equations of the

battery of sensor nodes i and j, (i'€ Ne, j € Ny), are presented as follows:

Ei(t +D=Ei(t) — D eij(t) + (1), Vi € N, (25)
JER:Us
E;(B£ 1) = E;(t) — ejs(t) + €"(t),V] € Ny, (26)

where ¢?(t)*(or '5?(15)) and D7 cp s €ij(t) (or ejs(t)) represent the harvested
and consumed energy by sensor node i (or j) at time slot ¢, respectively.

The goal of the buffer-battery-aware scheduling is to maximize network util-
ity under the stability constraint of the data buffer and sustainable constraint
of the-battery at each sensor node. Here, the stability constraint of data buffer
specifies that the amount of buffered data should not approach to infinity when
t — oo, and the sustainable constraint of battery requires that the average
harvested energy must be no less than the average consumed energy for both
data transmission and sensing operations, namely, Z,{il > jenus Blewi (t)] <

N Elef(t)] - e, As €i(t) = ef(t) — él(t), we have & S Elef(t)] =
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+ Zi\;l E[e}(t)] + + Zi\il E[él(t)]. According to the energy reservation policy,
we can find that the energy supplied to the first sub-battery in one pass is equal
to Nej", i.c., + Zivzl E[el(t)] = ef™. Thus, we can derive an equivalent form

of sustainable constraint as follows,
N

N
T3 Y Eley )] < 1 YUERLW] VE e K, (30

t=1jEN4Us t=1
which only considers the harvested and consumed energy of the second sub-

battery.

Proposition 1. For any queue q(t) with evolution q(t + 1).=(q(t) ~ u(t))Jr +
A(t), where u(t) and A\(t) represents the departure apd @Frival processes, re-
spectively. If the queue q(t) is mean rate stable, ié., limsupN_,mw =0,
we have limsupy_, . % Zivzgl {EA1)] — E[u(t)]}'< 0,'which indicates that the

average arrival process is no larger than the average departure process.

This proposition is similar to Theorem 2.5%n [27] and the proof procedure
is omitted here. With Proposition 1, the constraint in (27) can be converted
to the stability constraint of a“’queues’ Therefore, we can construct an energy
queue, in which the consumed. energy ZjENdUS er;(t) and the harvested energy
e (t) are the arrival and'departure process, respectively. Comparing with the
evolution equations©f the battery in (25) and (26), the constructed energy queue
is contrary to the battery/and thus we use ¢, — Eg(t) to denote the constructed
energy queuetfor sensor node k, and the evolution equation can be given by

e Br(t+1) = ¢ — Ep(t) = ep(t) + Y ex;(t). (28)

JENGUs
Here, the energy queue ¢ — Eg(t) can be stated as vacant battery, in which
the constant ¢, can be considered as the ”virtual” capacity of the battery, and
o — Eg(t) is the remaining space of the battery. A larger ¢ — Ex(t) implies

less stored energy in the battery.

5.2. Near-Optimal Buffer-Battery-Aware Adaptive Scheduling Scheme
We use ©(t) = [Qi(t), -+, Qx(t);¢1 — E1(t), -+ ,¢x — Ex(t)] to denote

the generalized queue, which consists of all data buffers and energy queues. We

23



then introduce the quadratic Lyapunov function L(©(t)) = § >, o Qr(i)? +
3 ek b [on — Ek(z)] as similar as recommended in [27], where py is a non-
negative control parameter to characterize the relative effect of the data buffer
w5 and energy queue on the scheduling scheme, mainly to ensure that the first item
and second item are in the same order of magnitude. Then, we can define/he
one-slot conditional Lyapunov Drift A(©(t)) = E[L(©(t+1))—L(©(t)){©(t)]:
This drift characterizes the expected changes in the Lyapunov function ever oné
time slot, and reflects the increment of the generalized queue.
Combined with data transmission, we have the drift-plus-penalty as/A (@(t)) —
VY ex U{E[z,(1)|©(t)]}, where V is a non-negative controkparameter that is
chosen to quantify the tradeoff of queue backlog (first term) and average achiev-
able performance (second term). If the channel.gain'is i.i.d over different time

slots, the drift-plus-penalty is upper boundedtasfollows,

VZIng xk |®(t)]) <.B — Z {VlogQ( [ k(t)|®(t)])

keK keK
- QuE[®O®]} - 3 YN[Qi1) - QM]E[r; 1]e()]
1ENCGER:
— (6~ Bi(0)|E [ezj(t”@(tﬂ} ~ Y {QuEf(0]O0)
ke
— e [or — Ex (@] E[e;s()O(2) } Zﬂk or — Ei(t)|E[er(t)|O(t)],
ke (29)
where B is asfinite constant independent of V' and given by,
B30 (BP0} +E{ Y m@Flew)
ieN. JER:Us
SLE{ Y esPlOW) +mE{R P00}
JER;Us (30)
£o 3 (Bl + X 0100} + B 07100}
QEN,; i€Ne

+ 1B {[ess (2100} + B (1]210(1)} }-

a0 Here, the procedure to derive the upper bound is similar to Lemma 4.6 in [27].
In order to keep the involved buffer stable and satisfy the energy constraints,

we try to minimize the increment of the queue size. Meanwhile, in terms of effec-
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tive transmission, we need to maximize the rate of data transmission. All these
encourage us to minimize the drift-plus-penalty. Instead of directly minimizing
the drift-plus-penalty item, our scheduling scheme actually seeks to minimize
the upper bound in (29). At each time slot ¢, given the channel and queue sta,
tus, the Near-Optimal Buffer-Battery Aware Adaptive Scheduling (NO-BBA)
scheme can be utilized to solve the following optimization problem:

maxz [V1ogy(zk(t)) — Qr(t)xk(t)] + Z Z { Qi(t) — (t)]rij(t)

ke i€EN. JER;

— 136 = Bu®)]ess ()} + > {QuOna(® - lo SBQlesl0}

st 0 <y (t) < Rij(mij (1), Pij (1), haj(t)), wr(t) € [0;an(t)],
T(t) e A(t),Vk e K,i € K,j € NyUs.

Observation 5: In problem (31), only the first ternt of the objective function
is associated with x(t). Therefore, the ‘Optimization of xy(t) can be decom-
posed, and considered as the rate Gomtrol\problem to control the amount of
arrived data. The second and third.terms have similar format, and they can be
regarded as choosing the “best” link that achieves a higher weighted transmis-
sion rate with less weighted energy consumption, where the weighted values are
dependent on their ¢orresponding status of the data buffer and energy queue.

By solving problemy(31), we can derive the following scheduling algorithm.

1. Rate Control: For any sensor node k, the rate control problem decides

the amount of data to be added into the data buffer at each time slot t,
nainely, () = min {ay(t), m}
2. Joint Power Allocation and Relay Selection for sensors in A_:

First of all, the rate variables r(¢) are optimized. When Q;(t) > Q;(t), we
have Tij (t) =T (t)TW 1Og2 (1 + . eij()|hi; (8)]2 )j otherwise - (t) _

i3 (8)T(dij/do)Lo(do) No
0. This indicates that sensor node j could become a candidate relay node

only in the case with smaller data buffer size.

Secondly, by inserting r;;(t), the power allocation scheme can be easily

25



derived as follows,

P5(t) = min {{ [Qi() —Q;()] (dz'j/do)aLo(do)No}T Ei(t) }’

In 241 [¢; — By (t)] |hij(t)] T
(32)
Clpy Qi(t) ~ (dis(t)/do)* Lo(do) No T Ei(%)
P (t) = mln{ [ln 211 [0 — Eq(1)] |his(t)] } T }("33)

Lastly, the relay selection problem is to select the ”best’”link among the
links from sensor node i to all its relay nodes and thesinks. S; dénotes the

destination of the selected link, and it can be given as
S; = arg max Ay, (34)

where A; = (Ai./\fc+1’ e Ak, A,-S). A;; represents the scheduling reward
on the link from node i to node j, andsit.can be computed by the weighted

transmission rate minus the weighted energy consumption as follows,

[Qi(t) — Q5 =wi|di — Ei()] P5(0)T, if j € R]
Aij = Qi) £ (0= Hg[gs = Ea(t)] Py ()T, if j=s, (35
—00, otherwise,

* P (1) |hij (1)]?
where frAt) = TWlog, (1 + (dri,j(t)/do)"Lo(do)No) denotes the amount of

data bits transmitted from node i to node j.

. Power Allocation for sensors in Ny: Since only the third term of the
objective function in (31) is associated with e;s(t) (namely 7;5(t)T Pjs(t)),
the corresponding power allocation scheme for sensor node j € Ny can be

easily derived as follows,

.y Q;(t) (djs(t)/do)*Lo(do)No 1T E;(t)
PjS(t)_mm{[mZM[éj—Ej(t)] N ;4 (0)] ] T }
(36)

. Time-slot scheduling: The time scheduling scheme is to allocate the

time slots to the sensor nodes with the ”"best” links, which achieves the
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largest weighted transmission rate by consuming the least weighted energy,
and is stated as:
1, if i =argmax, B and {i € N,j = S; or i € Ny, j = s},

7i(t) =
0, otherwise,

(87)
where B = (B, B, -+, Bx) denotes the scheduling reward vector;yand

Bi = As,,Vi € Ne, B = Q;(t) f7,(t) — p [¢5 — Ej(t)] Pr, (t) Y5 € Na-

Observation 6: For the rate control policy, x(¢) not only depends on the
amount of generated data a(t), but also relies on the status of the data buffer
Qi (t). This indicates that when the length of the data buffer is longer, the
amount of added data will be smaller.

Observation 7: The power allocation scheme.complies with the traditional
water-filling mechanism [13]. The allocated power. consists of two terms. The
first term is associated with the corresponding status of the data buffer and
energy queue; the second term dependsion’the channel gain and transmission
distance. From (32) and (33), if the data buffer backlog Q;(t) or the backlog
difference Q;(t) — Q,(t) islarger, the first term is larger. This indicates that if
the data buffer backlog islarger, it will result in larger allocated power. If the
energy queue ¢; —F;(¢) is smaller, the first term is also larger. Therefore, if the
condition of the battery is better, it can allocate more power. For the second

term, the power is ajwater-filling manner over channel fading state.

5.8.”Performance Analysis
In this sub-section, we will show that NO-BBA is capable of keeping the
dataybuffer and energy queue stable and guaranteeing the long-term average

constraints of the data buffer and battery. Meanwhile, the analytic performance

of NO-BBA is presented.

Theorem 4. For any V > 0, there exist the constants of B > 0,e > 0,¥(e),
where V(e) is less than the optimal network utility ), e U(X}), such that NO-
BBA will exhibit the following properties:
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(1) The data buffer Qi(t) and energy queue ¢ — Ex(t) for sensor node
k € K are mean rate stable. Thus the stable constraint of the data buffer and
sustainable constraint of the battery on individual sensor node can be guaranteed;

(2) The network utility and the average buffer length are bounded by

SR UXG) — £ <limyoosup 3, U{ & S0 Bl ()]} < 32, U(X;)1(88)
th_>OO Sup % ZiVZI Zke’c E{Qk(t)} S B+[Zke’€ U(Xk)_\p(s)]v' (39)

€

Proof: See the appendix Appendix A.

Theorem 4 confirms us that, for any V' > 0, NO-BBA guarantees the data
buffers and energy queues mean stable. The average total*data buffer length
increases linearly with V', while the achieved network utility.is‘arbitrarily close to
the optimal as V' increases. This implies a tradecff.of [O(}7), O( )] between the

average buffer length and the gap to the optimal network utility performance.

5.4. Implementation Issues and Special Casés

The previous sub-sections focus on the theoretical analysis of mobile data
gathering and energy harvesting in RWSNs, in which both the perfect chan-
nel/buffer/ energy state ififormation and centralized scheduling algorithm are
explored. In this subsSection, we will discuss some implementation issues, such
as computation complexity, the case of lacking channel state information (CSI),
and distributed implementation with local buffer and energy status information.

Computation Complexity: The rate control scheme is the minimum of
two values, and the close-form expressions of the power allocation scheme are
presented in/32), (33) and (36). Thus, the computation complexity of NO-BBA
algorithm mainly depends on the computation complexity of the relay selection
problem and time slot scheduling problem. The relay selection problem is to
select the “best” link among the links from the farther sensor node to all its
relay nodes and the sink. This can be solved by choosing the maximum value
from a K + 1-dimension vector, and the number of sensor nodes is less than
K. Thus, the worst computation complexity of the relay selection scheme is

O(K?). The time scheduling scheme is to allocate the time slots to the “best”
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link of all sensor nodes. Similarly, the worst computation complexity of the
time scheduling scheme is O(K). Above all, we can see that the computation
complexity is not a critical issue.

Lack of channel state information: In the previous sub-section, the per-
fect channel state information is utilized to analysis the performance of RWSN.
Similar with the works in [23, 30, 38], it is assumed that the performance in
wireless channel transmission only depends on the transmission distance. This
is a special case of our problem by letting |h;;(¢t)|* = 1, (Vi, j), ard thé schedul-
ing scheme would be similar. This case reduces the communication/signaling
overhead. Meanwhile, it also suffers performance degradations, The impact on
performance will be demonstrated by our simulation results<to’be presented in
Section 6.

With only local buffer and energy status:=Each sensor node may only
have its own buffer and energy status infermation-instead of the global buffer
and energy status to design the distributed/scheduling algorithm. In this case,
the adaptive relay selection could be notiemployed, and instead the fixed relay
selection (namely routing) is applied. " For instance, the farther sensor node
chooses a near sensor nodé as its relay only based on the transmission distance.
Since the nearer sensor node always harvests more energy, it could take more
transmission loadgandthus the farther sensor node may choose the sensor node
with the nearést distance to the path among its transmission area. Based on
the fixed relay) selection, the distributed scheduling scheme can be designed as

following steps:
1. Ratercontrol similar with that in NO-BBA scheduling scheme;

2."Power control for each sensor node: The transmission power is only depen-
dent on its transmission distance, local buffer and energy status, and it can
T
: * o Qi (t o E;(t
be derived as Pj;(t) = min { [m—(dij/do) Lo(do)No} , #}7
where j denotes the sink and relay sensor node for the near and far sen-
sor node respectively. Thus the scheduling reward is computed by the

weighted transmission rate minus the weighted energy consumption as
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P (0)|hi; (1) *
Ai = Q’L (t)TW 10g2 (1 + (dij(t)J/do)aLg(do)No) — Hi [sz - Ei(t)] Pij (t)T

3. Distributed time slot contention based on the scheduling reward of each
sensor node. One possible approach is to use the method of distributed
timers proposed in [3]: upon receiving CTS transmitted by the mobile sink,
each sensor node starts a timer whose duration is inversely proportional
to its scheduling reward. The timer of the ”"best” sensor node first expires
and a flag packet with duration will be generated to notify therestsof-the

network about its availability to the time slot.

6. Performance Evaluation

In this section, we report the experimental résultsiobtained from the simu-
lation studies of an RWSN with a mobile sink t6"show the feasibility and per-
formance of Opt-JoDGE and NO-BBA. ‘Since there are no similar techniques
proposed for solving the JoODGE problem, the main parameters are decided ac-
cording to the typical RWSN settings, asywell as the parameter values used in
related studies. In the experiments, we first evaluated the performance of RF
energy harvesting. Thenswe studied the performance of Opt-JoDGE and NO-
BBA in terms of threughput and network utility. Thirdly, we investigated the
efficiency of the far-relay approach by comparing it with the direct transmis-
sion approach{(called one-hop approach). Lastly, the network density issue was

investigated and the performance with different number of sensors is presented.

6.1." Simulation Settings

We ¢onsider an RWSN with a mobile sink, where 100 sensor nodes are ran-
domly deployed in a 100m x 50m area, and the mobile sink moves along a line
(Mo = 25,z € [0,100]) with a given speed v = 1m/s to collect data from the
sensor nodes. The duration of each time slot T equals 10ms. Therefore, the
total number of time slots in one pass is N = % = 10000.

The mobile sink transfers energy to all sensor nodes which use the harvested

energy to sense/transmit/receive data. The effective charging distance is 30
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Figure 2: Distance v.s. Average harvested energy per pass.

meters, i.e., d. = 30m. The transmission radius d}” of sensor_node k € K is set
to 20m, which is a parameter that can be adjusted and defined by the power of
the transmitter. The distance threshold dj, is4dm, The average data generation
rate @ of sensor node k is set to be 1.5kbps. The'reference path loss is set to be
Lo(do) = 100 with reference distancedy =\l/meter, and the path loss exponent
a is assumed to be 2. Meanwhile, the\bandwidth is 20kHz, the average channel
gain of small scale fading is 0dB, and the noise power is Ny = —60dBm.

The energy consumedAor Sensing operation in one time slot is assumed to
be 1078 Joule, i.e, 3.6mWh. As is presented in [20], the energy conversion
efficiency ranges from,0.004to 0.5. In our experiments, we set it to 0.5 for
theoretical analysis. Dug'to the low energy conversion efficiency, how to ensure
the harvested energy at each node is always greater than the consumed energy
is a critical issue, and we assume that the size of battery is always large enough
forastoring the harvested energy. Note that as obtained from our experiments,
the instantaneous battery is always less than 1 Joule, and the closer sensor
nodes have higher energy status due to more harvested energy. For instance,
thie battery status of the farthest sensor node from the path ranges from 1104
joule to 1.7% 10~ joule, while that of the sensor node closest to the path ranges
from 0.90 joule to 0.93 joule. Unless otherwise stated, all simulation runs for at

least two hundred passes to obtain statiscally stable results.
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6.2. Performance of Energy Harvesting in RWSN with Mobile Sink

In this sub-section, we evaluate the average amount of energy harvested by
each sensor node in one pass. We first derive the theoretical performance of
energy harvesting, and then compare it with the simulated results.

Given energy transfer radius d., only if the sink moves into the region{be-
tween (zr — \/d2 — (Y — ¥0)2, yo) and (xx +/d2 — (yx — Y0)?, Yo ), sensorynode
k is in the energy transfer region and charges its battery. When the’sink moves

12
to (z,yo), the average amount of harvested energy is %%, where

__ nP:E[lgrs()?]
Lo(do)[dks(z0)/do]>

the time duration. Thus, the harvested energy is expressed-as

represents the statistical received power, and % represents

B, /rk+ d2—(yr—yo)? nP.E[|gxd))?] di
ek B—(n—yo2 Lo(do)[drs(z)/do}* v (40)
_ 20P:E[|gns (i) ] dz = (ox — yo)Q)
Lo(do)lyr — ol

1Yk — Yol
Fig. 2 validates the harvested energy derived from the theoretical analysis

arctan (

is consistent with the simulation. results)” Due to the incomplete symmetric
characteristics of the sensor nodes which are close to the start and end point of
the pre-defined path, the amount of energy harvested is slightly less than the
theoretical results. From Fig. 2, the harvested energy is inversely proportional
to the square of distance, i.e., when |y —yo| ~ 1, the average harvested energy in
one pass is around 0.15 Joule; when |y, — yo| & 25, that is close to 0.0023 Joule.
Thus the/harvested energy of the sensor nodes closer to the path is much larger
than thatyof the sensor nodes farther away from the path. This observation

motivates.us to incorporate the far-relay approach into the scheduling algorithm.

6.3 Performance Comparison between Opt-JoDGE and NO-BBA

We then present the performance comparison of Opt-JoDGE, NO-BBA, NO-
BBA with lacking channel state information and distributed NO-BBA with local
buffer and energy status. Since Opt-JoDGE is proved to be optimal, it is used
in the experiments as a reference. For NO-BBA, there are three important

parameters: V, ¢ and pr(Vk € K). The parameter V' quantifies the tradeoff
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Figure 3: Network utility and network throughput with differentV’
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Figure 4: Average total/data buffer of sensor nodes with different V.

between the queue backlog and achieved performance. In the simulation, we
varied V from|1 to 10 with a step of 1. ¢y is constant and set as 1, which can
be considered as the battery capacity. The rule of choosing puy is to ensure that
theMirstiand/second terms of lyapunov function ©(¢) are in the same order of
magnitude. Therefore, we set up = Moglg?%.

Fig. 3 presents the performance of network utility and network throughput.
The network utility could guarantee the fairness between the transmission rate
of each sensor node. While the network throughput only evaluates the sum
of average transmission rate of all sensor nodes, the corresponding network
throughput maximization (NTM) problem can be formulated by replacing the
utility function with U(X) = X and solved with similar method. As shown in
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Fig. 3(a), with an increase in V', the network utility of NO-BBA keeps improving
and gets closer to the performance of Opt-JoDGE, which is consistent with the
analysis in Theorem 4. For the performance of network throughput, similar
results are obtained such that a larger V results in a higher network throughput,
Compared with Opt-JoODGE and NO-BBA, the NO-BBA scheduling scheme
with lacking channel state information suffers a throughput and utility. loss;
and the distributed NO-BBA scheduling scheme with local buffer and energy
status suffers a larger utility and throughput loss.

Based on the analysis in Theorem 4, the average buffer length of /all sensor
nodes in NO-BBA is normally proportional to V. A larger Viindicates a larger
average total data buffer length, which always means larger transmission delay.
In Fig. 4, we show the average total data buffer length of all sensor nodes in
NO-BBA. We can observe from the figure thatwaslarger V' results in a larger
data buffer size and the actual total data,buffer size increases linearly with V,
which is consistent with the analysis.{Furthérmore, the total data buffer length
of the sensor nodes in A, and Ny are alsoypresented in Fig. 4. From the results,
we can observe that, even though the number of sensor nodes in N, is less than
that of sensor nodes in Ny, their total buffer length is larger. This is because

the sensor nodes in Mz harvest less energy and have lower transmission rate.

6.4. Far-relay approach Vs. One-hop approach

In Opt<JoDGE and NO-BBA, the transmission links include not only the
links from theysensor nodes to their relay nodes, but also the links to the mobile
sink, Ifonly/the transmission links from the sensor nodes to the sink are con-
sidered, the relay selection problem does not exist and our scheduling scheme
will"be reduced to the one-hop approach. In this sub-section, we compare the
performance of Opt-JoDGE and NO-BBA with both far-relay approach and
one-hop approach. In order to guarantee all sensor nodes can transmit data to
the sink, we set the transmission radius of all sensor nodes to be 25 meters.

The network utility and throughput performance of Opt-JoDGE and NO-
BBA with the far-relay approach and one-hop approach are presented in Fig. 5.
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Figure 5: Performance comparison of network throughput/utility between the far-relay ap-
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We can obserye that the performance of both Opt-JoDGE and NO-BBA with
the far-relay approach in terms of both network utility and network throughput
is"much better than that with the one-hop approach. Furthermore, the network
utility improvement is much better than that of network throughput. This is
begause the far-relay approach can improve the performance of the sensor nodes
in AV, and reduce the performance difference between the sensor nodes in A/, and
in Ny, and thus the fairness is improved and the network utility is increased.
Fig. 6 compares the transmission rates of each sensor node in NO-BBA

with the far-relay approach and one-hop approach. We can observe from Fig.
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Figure 7: The link connectivity of one example sensor node #5.

Table 2: Number of scheduled time slots for sensor node #5\to its next-hop nodes

Destination S #49 | #55.| #78/ #89 | #96
# of slots(200 passes) | 1498 | 1856 |“185 |"1443 | 3294 | 4769
Ratio of slots(%) 11.48 | 14.28w,,1.427 11.06 | 25.25 | 35.56

6 that the far-relay approach can,improve the transmission rate of the sensor
nodes in A,. It is because"ilnthe far-relay approach the sensor nodes in N,
can select relay sensor.nodes in/Ay. This decreases both transmission distance
and energy consumption: \Compared with the one-hop approach, the largest
difference amongst the transmission rates of all sensor nodes in the far-relay
approach is'smaller and thus the fairness is improved.

Fig/"7 shows the link connectivity of one example sensor node #5, whose
relay node set consists of sensor nodes #49, #55, #78, #89 and #96. In Table
2, we present the number of scheduled time slots for each transmission link
starting from sensor node #5. The least number of time slots is allocated to
the link between sensor nodes #5 and #55 that has the least harvested energy
due to its largest distance to the path. On the other hand, the link between
sensor nodes #5 and #96 is scheduled with the largest number of time slots due
to the shortest distance. By carefully examining the results in Table 2, we can

conclude that the number of scheduled time slots on a transmission link heavily
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Figure 8: Performéance of metwork utility and throughput with different network densities.

depends on the charging distance from the relay node to the path.

6.5, Performance with different network densities

In this sub-section, we evaluate the performance of network utility and
throughput with different network densities, i.e., the number of randomly de-
ployed sensor nodes ranges from 50 to 200. As is shown in Fig. 8(a) and
(b), the far-relay approach always performs better than the one-hop approach
in terms of both network utility and throughput. Compared with throughput
gain, the utility gain introduced by the far-relay approach is larger. It is because

both Opt-JoDGE and NO-BBA aim to maximize the network utility instead of
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throughput. In Fig. 8(a), one may find that if the number of sensor nodes
is increased (e.g., higher density), the network utility first increases and then
decreases. It is because the average generated rate aj at a sensor node k is
limited to 1.5kbps. Since the network resource is shared by all the sensor nodes,
in the case of low density, such as 50 and 75 sensor nodes, the transmission rate
of each sensor node is still large, i.e., logo(X) > 0 if X > 1 and log,(X) <0
otherwise, and the network utility will increase with more sensorModes. On
the other hand, in a higher network density case, the limited network.resource
results that the transmission rate of a sensor node is decreasing, even though
the number of sensor nodes is larger, the network utility lis_deereasing.

Fig. 8(c) shows the effects of network density on the, transmission rates of
the sensor nodes which have different distancesdfromythe/path. The first one
(called ny) is the farthest sensor node from thie'path;and the second one (called
n.) is the sensor node that is the closestyto the\threshold. As shown in Fig.
8(c), the transmission rate of ny is higher\in the far-relay approach compared
with the one-hop approach. However, the transmission rate of n. is slightly
lower in the far-relay approach compared with the one-hop approach. This is
because in the far-relay approach, the sensor nodes whose distances to the path
are the closer to the thresheld may act as relays to assist the data transmission
of the farther sensormédes) Furthermore, as shown in Fig. 8(c), with a higher
network density, the declined the transmission rate of sensor nodes closer to the
threshold.ds larger than that of the farther sensor nodes. This is because the
network fairness is guaranteed in the NUM problem and the rate gap between

the*two sensor nodes should not be further increased.

7. Conclusion and Future Work

In this paper, we study the joint data gathering and energy harvesting
(JoDGE) problem in rechargeable wireless sensor networks (RWSNs) with a
mobile sink. Due to the double near-far problem introduced by RF energy har-

vesting, the far-relay approach is proposed, in which the sensor nodes closer to
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the path may allocate some of the harvested energy to assist the data trans-
mission of other sensor nodes that are farther away. Under the far-relay ap-
proach, we aim to maximize the network utility by jointly considering the re-
lay selection, power/energy allocation and time scheduling problems. We first
derive the optimal joint data gathering and energy harvesting scheduling (Qpt-
JoDGE) scheme, and then design the near-optimal buffer-battery-awaré adap=
tive scheduling (NO-BBA) algorithm to provide an efficient solutionl, in whieh
the runtime status of data buffer and battery is considered. The-performance
of NO-BBA is shown to be close to the optimal scheduling scheme with limited
cost of data buffer size. As the future work, we will considersrelated protocol
and algorithm design in RWSNs with mobile sink(s), such as<the path planning
of one or multiple mobile sinks, relay node placément, problem, speed control

problem, the optimal number of mobile sinkst@andsso on.
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Appendix A. Proof'of Theorem 5.2

For she problem specified in Section 5, there exists a stationary randomized

scheme independent of buffer state and energy state, which satisfies
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70  Here these expressions can be derived by the similar procedure in [27] and [26].
The design idea behind NO-BBA is to minimize the RHS of (29) over all

possible policies. Thus, at each time slot, it yields the following inequality:;
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Using the sums over the time slot ¢, adding (Asl)s(A.2) , (A.3) and (A.4) into

(A.5), and taking expectation, we have

Zm@ +1)} - E{L(© %ZZMMW
- N :jv * (A.6)
<8 Z S ULl 0]} - ex LA
t=1 ke t=1 kck

(1). Based on Lyapunov function, we can get the following inequality by

rearranging (A,6)

E{[Qk()]>} < B* N +E{L(©(1) }+VZZU{Ea:k (A.7)

t=1kek

Sirice theutility function is a concave function, we have 3; Zf;l > U{E[z ()]}
<> U{+ Zil Elzk(t)]} < >, U(Xf). And due to the fact that [E{|Qk(t)|}]2
< E{[Qk(1)]?}, we have

E(|Qit)} < [[B+V Y UX;)]-N +2E{L(©(1))}. (A.8)
ke
Dividing (A.8) by t and taking a limit as ¢ — oo results in lim;_, o, w =0.

Hence, the data buffer Qx(t) is mean rate stable, and similar proof can be
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applied to energy queue ¢ — E(t). Thus, the stability constraint of data buffer
and feasibility constraint of battery can be guaranteed.

(2). Dividing (A.6) with Vi, rearranging items and using the fact that
E{L(©(t))} > 0, we have

¥ 2 DU R} 2 900 - - ROy

Due to the fact that & SN L ke UE[R ()]} < Y pex U{NZt wBlep@)] |,

we have
B ]E{L(@(l))}

ke

Taking a limit as t — co and W(e) = >, e U(X))a@s € 50, 5e can derive the

lower bound of network utility. Similarly, we can tewrite.(A.6) as

*ZZE{Q’““ w

t=0 kek

+— ZZU{ ZIE W.

keK kel

(A.11)

Taking a limit as t — oo, thesupper bound of buffer lenth is derived. Thus the

theorem is proved.
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