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Abstract

In this paper, we study the joint data gathering and energy harvesting (JoDGE)

problem in rechargeable wireless sensor networks (RWSNs) with a mobile sink.

In RWSNs, the sensor nodes are equipped with RF circuit to harvest energy

from a mobile sink that moves along a pre-defined path, and at the same time,

transmit gathered sensor data to the sink. Given that the consumed and har-

vested energy at a sensor node is proportional and inversely proportional to

the square of transmission distance, a far-relay approach is proposed to se-

lect the sensor nodes closer to the path to assist the data transmission of the

farther sensor nodes. Under the far-relay approach, we formulate a network util-

ity maximization problem (NUM), and propose an optimal scheduling scheme

(Opt-JoDGE), which jointly considers the power allocation, relay selection and

time slot scheduling policies. By employing the Lyapunov drift theory, a near

optimal buffer-battery-aware adaptive scheduling (NO-BBA) scheme is further

proposed, in which the run-time status of the data buffer and battery are uti-

lized. Extensive simulation experiments validate the feasibility and performance

of JoDGE and NO-BBA. The results show that the performance of NO-BBA is

close to that of Opt-JoDGE, especially when a certain delay is tolerable.
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1. Introduction

One of the challenges in wireless sensor networks (WSNs) is how to gather

data from sensors through a resource-constrained wireless network [9]. In WSNs,

the sensor nodes periodically sample the physical entities under monitoring, and

then transmit the gathered sensor measurements to a sink, which is connected5

to the rest of the system for data processing and decision making.

In order to improve the sustainability, recently, various energy harvesting

technologies have been employed in WSNs [2, 14, 17, 19, 22]. This kind of

WSNs is referred to as rechargeable WSNs (RWSNs). Extensive research efforts

have been devoted on effective data gathering in RWSNs. For example, [14]10

proposed an energy-efficient cooperative data collection scheme for clustered

RWSNs. In [17], an optimal scheduling algorithm was proposed to minimize

data packet loss in RWSNs, where the sink is assumed to be a fixed station.

In RWSNs with static sinks, the transmissions of sensor data to the sinks

may pass through one or multiple relay nodes. Thus the sensor nodes geograph-15

ically closer to the sink usually have to forward more sensor data. Therefore,

they are more likely to become the bottleneck of the network due to heavy re-

lay workload. By contrast, data gathering in RWSNs with mobile sink(s) has

been shown to be a promising approach to jointly deal with unbalanced traf-

fic distribution and prolong the network lifetime. The mobile sink is assumed20

to travel along a pre-defined or online-learned path, and the network through-

put maximization (NTM) problems were investigated, e.g., through routing and

time-slot scheduling [30, 38], joint speed and power control [23], and mobility

planning [6, 28, 39, 40]. These works assumed that the sensor nodes harvest

energy from either unstable environment sources, i.e., solar and wind, or energy25

based on magnetic resonance coupling with small charging distance. On the

other hand, radio frequency (RF) based energy harvesting seems to be a better
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Figure 1: System Model: A rechargeable WSN with one mobile sink on a pre-defined path

potential for RWSNs with mobile sinks, i.e., more stable and controllable with

larger effective charging distance.

In this paper, we consider a representative RWSN with a mobile sink using30

RF based energy harvesting. As shown in Fig. 1, the sink moves along a pre-

defined path continuously and repeatedly. While it is moving, nearby sensor

nodes harvest energy from the signals emitted by the sink, and at the same

time send their sensed data back to the sink. In order to sustain the operations,

when gathering data from the sensor nodes, we need to balance the harvested35

energy and consumed energy at each sensor node. We call this problem as the

joint data gathering and energy harvesting (JoDGE) problem.

According to the wireless propagation theory [31], the received power level

is inversely proportional to the square of transmission distance. Therefore, the

nodes that are farther away from the path usually harvest less energy. On the40

other hand, these nodes may consume more energy for sending data directly to

the sink. To reduce the amount of energy consumed in these remote nodes, we

propose the far-relay approach, in which if a node is far away from the path, it

may pass its data to a relay node for forwarding its data to reserve energy, even

though it might be able to send the data directly to the sink.45

Based on the far-relay approach, we formulate the network utility maxi-

mization (NUM) problem with energy sustainable constraints to ensure that

the energy consumption at each sensor node is always less than its harvested

energy, and at the same time the relay selection, power allocation and time slot
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scheduling issues are jointly considered. Considering that the primal JoDGE50

problem is a mixed integer nonlinear problem (MINLP), we reformulate it to be

a convex optimization problem through a novel two-step transformation, and

derive the optimal Opt-JoDGE scheduling scheme.

To reduce the computation complexity of Opt-JoDGE, we further propose

the near-optimal buffer-battery-aware adaptive data gathering scheduling (NO-55

BBA) scheme to solve the JoDGE problem, in which the run-time status of the

data buffer and battery of all involved sensor nodes are also exploited.

Finally, we give comprehensive performance analysis for both Opt-JoDGE

and NO-BBA. Extensive simulations have also been performed to confirm the

feasibility and effectiveness of the proposed schemes and validate our perfor-60

mance analysis. The remainder of this paper is organized as follows: Section 2

presents a literature review on related works. Section 3 introduces the network

model. The formulations of the JoDGE problem and Opt-JoDGE scheduling

scheme are presented in Section 4. Section 5 introduces the NO-BBA scheme,

and the performance results of both Opt-JoDGE and NO-BBA are reported in65

Section 6. In Section 7, we conclude the paper with a brief discussion on the

future work. For the readers’ convenience, the symbols and their definitions

that are commonly referred in this paper are summarized in Table 1.

2. Related Work

Extending the lifetime of sensors with limited battery energy is a major70

research challenge in WSNs, and various approaches have been proposed for

efficient energy utilization [25, 32, 34, 37]. In [25], a fuzzy logic-based clustering

algorithm was presented to extend the network lifetime. In [37], the authors

investigated the energy consumption density performance in data gathering,

and proposed a directional virtual backbone based data aggregation scheme by75

employing the directional antennas and virtual backbone techniques.

Energy harvesting (EH) technologies have been introduced to charge the

sensor nodes in rechargeable wireless sensor networks (RWSNs) to improve

4
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their sustainability. The state-of-the-art of energy harvesting technologies was

reviewed for RWSNs in [1]. In RWSNs, energy may be harvested from ei-80

ther surrounding environment [18, 22, 23, 29, 30] or dedicated energy sources

[10, 14, 20, 24, 39]. When using dedicated energy sources, wireless charging

technologies utilize energy transmitter(s) to charge the sensor nodes wirelessly

via either non-radiative coupling or radiative radio-frequency (RF) techniques.

As one kind of non-radiative coupling, magnetic resonance coupling is based on85

evanescent-wave coupling to generate energy between two resonant coils through

magnetic field. The most important properties of non-radiative coupling are

small charging distance and high efficiency.

RF-based energy harvesting utilize diffused radio-frequency signals as a medium

to carry the energy. The energy harvesting model with different transmitter90

placements was analyzed in [24]. In [10], the authors proposed an energy-

efficient software-defined RWSN architecture. [8] studied the optimal scheduling

problem for stochastic event capture, i.e., how to jointly mobilize the readers for

energy distribution and how to schedule the sensor nodes. [19] exploited the col-

laborative energy and information transfer to realize the green smart cities via95

jointly optimize sub-carrier grouping, sub-carrier pairing and power allocation.

In [36] the energy-efficiency maximization problem based on the simultaneous

wireless information and power transfer (SWIPT) framework was considered,

and in [14], the authors incorporated SWIPT into cooperative clustered WSNs,

and proposed an efficient cooperative data collection scheme.100

Previous studies on WSNs with mobile elements [9] have shown that the mo-

bile sink approach significantly improves the network performance, for instance,

balancing the traffic load, reducing transmission delay and enhancing network

coverage. However, some new challenges also arise, such as contact detection,

power management and so on. Most previous works aimed to maximize network105

throughput, lifetime under predefined [12] or planned mobility patterns [21, 35].

In [22], a scheme was proposed to jointly control the data buffer and battery

in RWSNs to maximize the long-term average throughput under given QoS

constraints. The time-slot scheduling approach was presented in [30] for RWSNs

5
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with a mobile sink, in which the sink periodically traveled along a pre-defined110

path at a constant speed to collect data from sensor nodes within one hop.

[38] extended the work of [30] to multi-hop RWSNs, and aimed to maximize

the network utility by optimizing power and rate control. The joint power and

speed control was studied in [23], where one-hop transmission was assumed

and two scenarios with constant and varying speeds were analyzed. A multi-115

functional mobile entity, called SenCar, was proposed to serve as not only a

mobile data collector that roamed over the field to gather data but also an

energy source to charge static sensor nodes on its migration tour via wireless

energy transmissions. In [28], a greedy scheduling algorithm was proposed to

schedule limited mobile devices for energy replenishment and data collection120

in RWSNs with multiple sinks. In [6], the authors designed a node-Gosper

island-based scalable hierarchical cluster transmission method in conjunction

with a wireless recharging plan for data collection in RWSNs. In the proposed

transmission method, both the magnetic resonance coupling based and RF based

energy harvesting technologies were investigated.125

Compared to energy harvesting via ambient energy sources and magnetic res-

onance coupling, RF energy harvesting has a larger effective charging distance,

and the amount of harvested energy is inversely proportional to the square of the

transmission distance. This indicates that the sensor nodes closer to the path

can harvest more energy to support relaying traffic. Meanwhile, RF-energy har-130

vesting is an efficient method to provide reliably guaranteed energy supply [20].

Thus, the energy harvesting via RF radiation is highly suitable for RWSNs. To

the best of our knowledge, there is no previous work that jointly considers the

sink mobility and RF energy harvesting technology in RWSNs. In our work,

the run-time status of the data buffer and battery of each sensor node is also135

exploited to solve the network utility problem, in which the rate control, power

allocation, relay selection and time scheduling problems are jointly considered.
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Table 1: Symbols and Definitions

Symbol Definition

ak(t) Maximum sensing rate of sensor node k at time slot t

d0 Reference distance with measured path loss L0(d0)

de RF energy transfer radius

dh Vertical distance threshold of the one-hop manner

dtrk Transmission radius of sensor node k

dij Distance between node i and node j

dks(t) Distance between sensor node k and sink at time slot t

ehk(t) The amount of energy harvested by sensor node k at slot t

eck(t) The amount of energy consumed by sensor node k at slot t

esnk Energy consumed for sensing data at sensor node k

eij(t) The energy consumed on the link from nodes i to j

|gsk(t)|2 Channel fading gain between sink s and sensor k in WET mode

|hij(t)|2 Channel fading gain between nodes i and j in WDT mode

rij(t) The amount of bits transmitted from node i to node j at slot t

tek Earliest time slot that sensor node k can harvest energy

t
e
k Latest time slot that sensor node k can harvest energy

ttrk Earliest slot that sensor node k can transmit data

t
tr
k Latest time slot that sensor node k can transmit data

(x0(t), y0) Position of the sink at time slot t

(xk, yk) Position of sensor node k

xk(t) Data bits added into the data buffer of sensor node k

α Path loss exponent

τij(t) Scheduling variable for the link from node i to node j

η Energy conversion efficiency

K The set of all sensor nodes

Nd The set of the sensor nodes in the one-hop manner

Nc The set of the sensor nodes in the cooperative two-hop manner

7
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continued Table 1

Symbol Definition

Ri The set of candidate relay nodes of sensor node i

L0(d0) The path loss with reference distance d0

N Total number of time slots in one pass

T Duration of one time slot

Ps Power of the sink in wireless energy transfer

Pk(t) Power of sensor node k at time slot t

Ek(t) Battery status of node k at time slot t

Qk(t) Data buffer status of sensor node k at time slot t

3. System Model

3.1. Network and Mobility Model

As illustrated in Fig. 1, we consider a rechargeable wireless sensor network140

(RWSN), in which a mobile sink s moves along a pre-defined path, and a set of

K sensor nodes K = {1, 2, 3, · · · ,K} are randomly distributed around the path

of the sink. The sensor nodes are organized into a time-slotted network, e.g.,

based on 802.15.4e MAC protocol [33], and have network-wide synchronization

[5]. There are in total N time slots for scheduling data transmissions in one145

pass (from one end to the other end), and the size of each slot is defined as T .

The sink s moves continuously along a pre-defined path at a constant speed

v from one end to the other end (called a pass) repeatedly1. While s is moving,

it receives data from nearby sensor nodes, and also deliveries energy for charging

them via radio frequency signal. It is assumed that the sink has enough energy150

for charging all sensor nodes in the network. As the size of each slot is T , the

1Since the sink travels along the path at a constant speed continuously, the length of a

periodic cycle from the starting point to the end point or from the end point to the starting

point does not affect the performance from a long-term point of view.
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distance traveled by the sink in one time slot is equal to v ·T . It is assumed that

T is small enough so that the location of the sink can be assumed to remain

unchanged within one time slot. We define (x0, y0) as the initial location of

the sink at time slot 0. To simplify the discussion, it is assumed that the sink155

moves along a straight line, i.e., y0(t) = y0, x0(t) ∈ [0, v · N · T ]. As wireless

energy transfer (WET) technology is limited by its effective charging distance,

we define de as the effective energy transfer radius within which the sensor

nodes can harvest energy from the sink successfully. In order to guarantee that

all sensor nodes can harvest energy from the sink, we assume that the greatest160

distance between a sensor node and the path is always less than de. In large-

scale RWSNs deployment, multiple mobile sinks or a careful trajectory planning

may be needed. We defer those studies to our future work.

In order to sustainably sending data, each sensor node is equipped with

an RF energy harvesting circuit, and its wireless data transfer (WDT) opera-165

tion mode and WET operation mode can be performed simultaneously, e.g., by

splitting the frequency/time domain or employing separated receiver circuits.

In WET mode, a sensor node harvests energy from the RF signals emitted from

the sink to charge its own battery; in WDT mode, data collected by a sensor

node will be sent to the sink either directly or through other sensor nodes, which170

act as relay nodes.

We denote (xk, yk) as the fixed location of sensor node k, and use dtrk to

represent the transmission range of a sensor node k, within which it can transmit

data successfully. Each sensor node has a data buffer to temporarily store the

data generated by the sensor node itself or received from other sensor nodes.175

3.2. Far-Relay Approach

An important consideration in the JoDGE problem is the double near-far

problem [15]. In wireless energy transfer, the sensor nodes closer to the path

of the sink (the energy source) generally harvest more energy than the sensor

nodes which are farther away. On the other hand, the energy consumption is180

always proportional to the square of the transmission distance. Therefore, the

9
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sensor nodes that are farther away from the path may consume more energy for

data transmission but harvest less energy.

Due to the double near-far problem, how to maintain sustainable operation

of the sensor nodes while improving the network performance, especially how to185

fulfill the data transmission requirement of the farther sensor nodes, becomes a

critical issue. Inspired by wireless powered cooperative communication [7, 14],

we propose a far-relay approach to address this problem, in which if the physical

distance between a sensor node and the path is less than a threshold dh
2, it will

transmit data to the sink directly. Otherwise the sensor node may transmit data190

in a selectively cooperative manner by either choosing a relay node for assisting

data transmission or directly transmitting data to the sink.

According to the distance threshold dh, we divide the sensor nodes into two

subsets Nc = {1, 2, · · · , |Nc|} and Nd = {|Nc|+1, · · · , |Nc|+|Nd|} . Nd contains

the sensor nodes that transmit their data to the sink directly, i.e., their distances195

to the path are smaller than dh, while Nc contains the sensor nodes that send

data either directly or through a relay node. Define Ri as the set of candidate

relay nodes of sensor node i. For any sensor node j ∈ Ri, it must satisfy the

following two conditions: 1)j ∈ Nd, and 2) dij ≤ dtri , where dij is the distance

between nodes i and j.200

3.3. Data Transmission Model

Firstly, we introduce the data generation model at the sensor nodes. Similar

to [38], ak(t) is defined as the sensing rate (i.e., the amount of data generated

per time slot) of sensor node k at time slot t, which can be either a constant

or a stochastic process. As ak(t) may not be supported by the limited network205

capability, each sensor node needs to control the stored data to keep its data

buffer stable. We define the amount of data generated by node k and stored

into its data buffer at time slot t as xk(t), and it satisfies xk(t) ∈ [0, ak(t)].

2In this paper, we consider the constant distance threshold dh. How to derive the optimal

dh is left as the future work.
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Secondly, the time scheduling model is presented. Following the assumption

in [30], in order to avoid data transmission collision, each time slot can be210

scheduled to only one transmission link. Then we define τij(t) ∈ {0, 1} as a

binary time scheduling variable, and τij(t) = 1 indicates that time slot t is

allocated to the link from nodes i to j. Thus, the time scheduling variables

τ (t) = {τij(t), i ∈ K, j ∈ Nd ∪ s} satisfy

τ (t) ∈ Λ(t) =

{
τ (t) | τks(t)[τks(t)− 1] = 0,∀k ∈ K, t ∈ [ttrk , t

tr
k ];

τks(t) = 0,∀k ∈ K, t /∈ [ttrk , t
tr
k ]; τij(t)[τij(t)− 1] = 0,∀i ∈ Nc, j ∈ Ri;

τij(t) = 0,∀i ∈ Nc, j /∈ Ri or ∀i, j ∈ Nd;
∑

i∈K

∑

j∈Nd∪s
τij(t) = 1

}
, (1)

where Λ(t) denotes the feasible set of τ (t) at time slot t.
∑

i∈K
∑

j∈{Nd∪s} τij(t) =215

1 ensures that each time slot is allocated to only one transmission link, which

is either from a sensor node to the sink or from a sensor node to its selected

relay node. ttrk and t
tr
k denote the earliest and latest time slots that node k may

directly send data to s respectively, which is derived by the following lemma.

Lemma 1. For sensor node k ∈ K, only when the sink s moves within its220

transmission region, namely t ∈ [ttrk , t
tr
k ], node k may directly transmit data to

s. Thus, ttrk and t
tr
k can be given by

ttrk =
⌈max

{
xk −

√
(dtrk )2 − (yk − y0)2, 0

}

v · T
⌉
, (2)

t
tr
k =

⌊min
{
xk +

√
(dtrk )2 − (yk − y0)2, v ·N · T

}

v · T
⌋
. (3)

Observation 1 : If the distance of sensor node k to the path is smaller, the

time duration that the sink stays in its transmission region is longer, and thus

the number of time slots that can be used for direct transmission is also larger.225

Lastly, the transmission rate at the sensor nodes is introduced. Define

Pij(t) and eij(t) as the allocated power and consumed energy for data trans-

mission on the link from node i to node j at the t-th time slot respectively, and

eij(t) = τij(t)Pij(t)T . Meanwhile, rij(t) denotes the amount of data transmit-

ted through the link from node i to node j, and rij(t) ≤ R
(
τij(t), Pij(t), hij(t)

)
,230
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where R(·) is rate function and hij(t) is channel gain. In this paper, we use the

shannon capacity as the rate function [31] such that R
(
τij(t), Pij(t), hij(t)

)
=

τij(t)TW log2

(
1 +

Pij(t)|hij(t)|2
(dij(t)/d0)αL0(d0)N0

)
, where W is the bandwidth, (dij(t)/d0)α

L0(d0) represents the path loss, and N0 is the power of background noise.

For sensor node i ∈ Nc, the amount of data added into its data buffer at235

time slot t is xi(t). As sensor node i may transmit data to either the sink or one

of its relay nodes, the amount of data to be transmitted out of its data buffer

equals
∑
j∈Ri∪s rij(t). For sensor node j ∈ Nd, which directly transmits data to

the sink s, the amount of data added into its data buffer at time slot t includes

its generated data and the data received from sensor nodes in Nc. Thus, the240

amounts of received and transmitted data of sensor node j at time slot t are

xj(t) +
∑
i∈Nc rij(t) and rjs(t), respectively.

3.4. Energy Harvesting and Consumption Model

To simplify the discussion, the energy consumption for receiving data is

assumed to be negligible when compared to that of the sensing and transmitting245

operations, and we define a constant sensing energy consumption esnk for sensor

node k. According to the network and mobility model, at time slot t, the location

of mobile sink is (t · v · T, y0). Thus we can derive the distance between sensor

node k and the sink s at time slot t as dks(t) =
√

(xk − t · v · T )2 + (yk − y0).

Define tek and t
e
k as the earliest and latest time slots when the sensor node k is in250

the energy transfer region respectively, and then it yields the following lemma.

Lemma 2. Within the time slot t ∈ [tek, t
e
k], the sensor node k is in the energy

transfer region of the mobile sink s, and tek, t
e
k satify,

tek =
⌈max{xk −

√
d2
e − (yk − y0)2, 0}
v · T

⌉
, (4)

t
e
k =

⌊min{xk +
√
d2
e − (yk − y0)2, v ·N · T}

v · T
⌋
. (5)

Observation 2: If |yk−y0| is larger, tek and t
e
k are closer. Therefore, the sensor

nodes that are farther away from the path always have less time duration for255

energy harvesting. In contrast, the sensor nodes closer to the path have more

12
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time slots. Thus, the closer sensor nodes may allocate part of their harvested

energy for forwarding data on behalf of the farther sensor nodes.

During the time slot t ∈ [tek, t
e
k], sensor node k is within the energy transfer re-

gion, and the amount of harvested energy is denoted by ehk(t) = ηPsT |gsk(t)|2
(dks(t)/d0)αL0(d0) ,

where η is the energy conversion efficiency, Ps is the transmit power of the sink

for charging the sensor nodes, |gsk(t)|2 is the channel gain from the sink to sen-

sor node k in WET mode, and (dks(t)/d0)αL0(d0) is the path loss that depends

on the distance. Thus, the energy harvested by all sensor nodes at time slot t

can be denoted as eh(t) =
(
eh1 (t), · · · , ehK(t)

)
, and it satisfies:

eh(t) ∈ Λh(t) =
{
eh(t) | ehk(t) =

ηPsT |gsk(t)|2
(dks(t)/d0)αL0(d0)

, if t ∈ [tek, t
e
k]
}
, (6)

where Λh(t) denotes the feasible set of the amount of energy harvested at time

slot t. We define e(t) = {eij(t),∀i ∈ K, j ∈ Nd ∪ s} as the energy consumed on260

all the links for data transmission, and it satisfies e(t) ∈ Λe(t) =
{
e(t) | eij(t) =

τij(t)Pij(t)T
}

.

4. Joint Data Gathering and Energy Harvesting Scheduling

4.1. Problem Formulation

The network utility maximization (NUM) framework [16] has found many265

important applications in designing communication systems, especially in cross-

layer resource allocation. In NUM, each source has a local utility function over

its transmission rate, and it evaluates the value of its individual utility from the

perspective of the whole network. The network utility is the sum of all local

utilities. The utility function is usually a continuously differentiable, increas-270

ing and strictly concave function of the transmission rate. Two typical utility

functions are linear functions, i.e., U(Xk) = Xk, and logarithmic function, i.e.,

U(Xk) = log2(Xk), where Xk denotes the average transmission rate at node k.

If U(Xk) = Xk, the network utility is equal to the total network throughput.

While in the case of U(Xk) = log2(Xk), since a low rate seriously affects the275

network utility, i.e., limXk→0 U(Xk) = −∞, the logarithmic utility can provide

better fairness, and has been widely adopted in the literature [30, 35, 38].

13
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In this paper, we utilize the NUM framework to formulate the joint data

gathering and energy harvesting (JoDGE) problem, and the logarithmic utility

is adopted as it could simultaneously evaluate the throughput and fairness. The

logarithmic utility is set to be U(Xk) = log2(Xk), where Xk = 1
N

∑N
t=1 xk(t)

denotes the average amount of data stored at sensor node k in one pass. Mean-

while, Xk also defines the average transmission rate supported by the network,

which also implies that the rate control guarantees the data buffer to be stable.

Based on the energy and data transmission models, we formulate the JoDGE

problem as follows,

max
∑

k∈K
U
( 1

N

N∑

t=1

xk(t)
)

s.t. C1 :
1

N

N∑

t=1

xi(t) ≤
1

N

N∑

t=1

∑

j∈Ri∪s
rij(t),∀i ∈ Nc,

C2 :
1

N

N∑

t=1

∑

j∈Ri∪s
eij(t) ≤

1

N

N∑

t=1

ehi (t)− esni ,∀i ∈ Nc,

C3 :
1

N

N∑

t=1

[
xj(t) +

∑

i∈Nc
rij(t)

]
≤ 1

N

N∑

t=1

rjs(t),∀j ∈ Nd,

C4 :
1

N

N∑

t=1

ejs(t) ≤
1

N

N∑

t=1

ehj (t)− esnj ,∀j ∈ Nd,

C5 : 0 ≤ xk(t) ≤ ak(t), 0 ≤ rij(t) ≤ R
(
τij(t), Pij(t), hij(t)

)
,

τ (t) ∈ Λ(t), eh(t) ∈ Λh(t), e(t) ∈ Λe(t),∀k, i, j ∈ K,∀t.

(7)

Our goal is to derive an optimal scheduling scheme that jointly considers the

power allocation, relay selection, and time slot scheduling problems. Constraints

C1, C2, C3 and C4 are the stable and sustainable constraints of the data buffer280

and battery of each node respectively. For data buffer, the average amount

of received data must be no larger than that of scheduled data in the network.

For the battery, in order to ensure sustainable operations, the average consumed

energy must be smaller than its average harvested energy. Constraint C5 defines

the instantaneous feasible set to be satisfied at each time slot.285
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4.2. Problem Transformation

Problem (7) is a mixed integer nonlinear programming (MINLP) problem

that is difficult to be solved directly. Thus, we transform it into a convex prob-

lem and then develop an optimal joint data gathering and energy harvesting

scheduling (Opt-JoDGE) scheme. To achieve this goal, the following two steps290

will be performed: firstly, relaxing the mixed integer feasible set into a contin-

uous feasible set; and secondly, converting the non-concave rate functions to

concave functions based on the first step.

4.2.1. Time-sharing Relaxation

In problem (7), the binary variable vector τ (t) is introduced by the time295

slot scheduling among all transmission links. Thus, the first step is to relax

the binary variables to be a continuous feasible set. If τij(t) is relaxed to be a

continuous feasible set as τij(t) ∈ [0, 1], τ (t) satisfies:

τ (t) ∈ Λ′(t) =
{
τ (t) | τks(t)[τks(t)− 1] ≤ 0,∀k ∈ K, t ∈ [ttrk , t

tr
k ];

τks(t) = 0,∀k ∈ K, t /∈ [ttrk , t
tr
k ]; τij(t)[τij(t)− 1] ≤ 0,∀i ∈ Nc, j ∈ Ri;

τij(t) = 0,∀i ∈ Nc, j /∈ Ri or ∀i, j ∈ Nd;
∑

i∈K

∑

j∈Nd∪s
τij(t) = 1

}
. (8)

By the relaxation, Λ′(t) is a convex feasible set. Note that this relaxation has

its corresponding physical meaning: multiple transmission links may share one300

time slot by splitting it into multiple sub-slots with different ratios. This can

be considered as a time-sharing policy. In Lemma 3, we will derive that, for the

primal problem (7), the optimal τ∗ij(t) is always either 0 or 1. Therefore, the

time-sharing mechanism is not necessary.

4.2.2. Analysis of Convexity305

After the time-sharing relaxation, the problem is still non-convex due to

the non-concave rate function R
(
τij(t), Pij(t), hij(t)

)
. Fortunately, as f(x, y) =

x ln(1 + y
x ) is a concave function with respect to (x, y), we can easily derive

that if τij(t) ∈ [0, 1], the rate function could be replaced by the equivalent rate

function R
(
τij(t), eij(t), hij(t)

)
= τij(t)TW log2

(
1 +

eij(t)|hij(t)|2
τij(t)T (dij(t)/d0)αL0(d0)N0

)
.
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Thus, by the two steps and inserting Xk = 1
N

∑N
t=1 xk(t), problem (7) can be

transformed into the following convex problem:

max
∑

k∈K
U
(
Xk

)

s.t. C1 : Xi ≤
1

N

N∑

t=1

∑

j∈Ri∪s
rij(t),∀i ∈ Nc,

C2 :
1

N

N∑

t=1

∑

j∈Ri∪s
eij(t) ≤

1

N

N∑

t=1

ehi (t)− esni ,∀i ∈ Nc,

C3 : Xj +
1

N

N∑

t=1

∑

i∈Nc
rij(t) ≤

1

N

N∑

t=1

rjs(t),∀j ∈ Nd,

C4 :
1

N

N∑

t=1

ejs(t) ≤
1

N

N∑

t=1

ehj (t)− esnj ,∀j ∈ Nd,

C5 : 0 ≤ Xk ≤ āk, 0 ≤ rij(t) ≤ R
(
τij(t), eij(t), hij(t)

)
,

τ (t) ∈ Λ′(t), eh(t) ∈ Λh(t), e(t) ∈ Λe(t),∀k, i, j ∈ K,∀t.

(9)

where āk = 1
N

∑N
t=1 ak(t) denotes the average generation rate at sensor node k.

4.3. Optimal Joint Data Gathering and Energy Harvesting Scheduling Scheme

Since problem (9) is a standard convex problem, we can design an optimal

joint data gathering and energy harvesting scheduling (Opt-JoDGE) scheme by

employing dual decomposition and subgradient methods [4, 11].310

Denote λ = (λ1, λ2, · · · , λK) and ν = (ν1, ν2, · · · , νK) as the lagrange multi-

pliers associated with the stable and sustainable constraints, respectively. Thus

the dual function is given as,

L(λ,ν) = min−
∑

k∈K
U
(
Xk

)
+
∑

i∈Nc
λi

{
Xi −

1

N

N∑

t=1

∑

j∈Ri∪s
rij(t)

}

+
∑

i∈Nc
νi

{ 1

N

N∑

t=1

∑

j∈Ri∪s
eij(t)−

1

N

N∑

t=1

ehi (t) + esni

}

+
∑

j∈Nd
λj

{
Xj +

1

N

N∑

t=1

∑

i∈Nc
rij(t)−

1

N

N∑

t=1

rjs(t)
}

+
∑

j∈Nd
νj

{ 1

N

N∑

t=1

ejs(t)−
1

N

N∑

t=1

ehj (t) + esnj

}
.

(10)
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Given λ and ν, (10) is further sub-divided into two independent problems as,

L1(λ,ν) = min
Xk∈[0,āk],∀k∈K

−
∑

k∈K
U
(
Xk

)
+
∑

i∈Nc
λiXi +

∑

j∈Nd
λjXj , (11)

L2(λ,ν) = min
1

N

N∑

t=1

{
−
∑

i∈Nc
λi

∑

j∈Ri∪s
rij(t) +

∑

i∈Nc
νi

[ ∑

j∈Ri
eij(t)

− ehi (t) + esni

]
+
∑

j∈Nd
λj

[ ∑

i∈Nc
rij(t)− rjs(t)

]

+
∑

j∈Nd
νj

[
ejs(t)− ehj (t) + esnj

]}
.

(12)

For problem (11), by inserting U(Xk) = log2(Xk) and taking derivative of

Xk, the average data transmission rate of sensor node k can be given as

Xk =
1

N

N∑

t=1

xk(t) = min
{
āk,

1

λk ln 2

}
, (13)

where āk represents the average data generation rate of sensor node k. Mean-

while, the objective function of problem (12) is the sum of N sub-functions,

and each of them is associated with the variables at one individual time slot,

i.e., the t-th sub-function depends only on the variables τ (t), e(t), r(t). Thus

the problem can be decomposed into N sub-problems, and each sub-problem is

related to one time slot, i.e., the sub-problem at time slot t can be written as,

min −
∑

i∈Nc

∑

j∈Ri
[λi − λj ]rij(t)−

∑

k∈K
λkrks(t) +

∑

i∈Nc

∑

j∈Ri
νieij(t)

+
∑

k∈K
νj
[
eks(t)− ehk(t) + esnk

]

s.t. 0 ≤ rij(t) ≤ R
(
τij(t), eij(t), hij(t)

)
,∀i, j ∈ K

τ (t) ∈ Λ′(t).

(14)

In fact, the objective takes both the transmission rate and energy consumption

into consideration, and it aims to achieve larger weighted rate with less weighted

energy consumption, where the weights are dependent on λ and ν.315

The first step is to determine the optimal transmission rate r(t). If λi ≤ λj ,
it yileds rij(t) = 0. Given Xk = min

{
āk,

1
λk ln 2

}
, λi ≤ λj always implies that
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the data transmission rate of node j is less than that of node i, and it can be

stated as: for node j ∈ Nd, if it is a relay node, it must guarantee its own

transmission rate first before helping other nodes to forward data. Based on

this observation, we denote R′i as the set of real relay nodes of node i. Thus

R′i =
{
j|λi > λj ,∀i ∈ Nc, j ∈ Ri

}
. When j ∈ R′i, the optimal transmission rate

on the link from node i to node j is denoted as r∗ij(t) = R
(
τij(t), eij(t), hij(t)

)
.

Then, by inserting the optimal transmission rate r∗(t) into problem (14), the

energy/power allocation problem is given as,

min
e(t),τ (t)

−
∑

i∈Nc

∑

j∈R′i

[λi − λj ]R
(
τij(t), eij(t), hij(t)

)
+
∑

i∈Nc

∑

j∈R′i

νieij(t)

−
∑

k∈K
λkR

(
τks(t), eks(t), hks(t)

)
+
∑

k∈K
νk
[
eks(t)− ehj (t) + esnj

]

s.t. τ (t) ∈ Λ′(t), e(t) ∈ Λe(t).

(15)

where R
(
τij(t), eij(t), hij(t)

)
= τij(t)TW log2

(
1 +

eij(t)|hij(t)|2
τij(t)T (dij(t)/d0)αL0(d0)N0

)
.

Since each term is associated with only one energy allocation variable, the prob-

lem can be further decomposed. For example, to derive the allocated energy

eij(t), we only need to solve the following problem,

min
eij(t)

− [λi − λj ]τij(t)TW log2

(
1 +

eij(t)|hij(t)|2
τij(t)T (dij(t)/d0)αL0(d0)N0

)
+ νieij(t).

(16)

By taking derivative with respect to eij(t), this problem can be solved easily.

Similar procedure can be applied to variable eks(t),∀k ∈ K. Thus we can derive

the optimal energy allocation scheme.

Theorem 1. For the link between sensor node i ∈ Nc, and the corresponding

relay node j ∈ R′i, the optimal allocated energy is given as

e∗ij(t) = τij(t)TP
∗
ij(t) = τij(t)T

[λi − λj
ln 2 · νi

− (dij(t)/d0)αL0(d0)N0

|hij(t)|
]†
, (17)

where [x]† = max{0, x}, and P ∗ij(t) represents the optimal allocated power. For

sensor node k ∈ K that directly transmits data to the sink, the optimal allocated

energy can be written as

e∗ks(t) = τks(t)TP
∗
ks(t) = τks(t)T

[ λk
ln 2 · νk

− (dks(t)/d0)αL0(d0)N0

|hks(t)|
]†
. (18)
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Observation 3: The optimal energy/power allocation scheme complies with

the traditional water-filling mechanism [13]. As is shown in (17) and (18),320

the optimal power consists of two terms. The first term is associated with

lagrange multipliers λ and ν, and the second term depends on the channel gain

and transmission distance. For the second term, the optimal power allocation

scheme is a water-filling mechanism over the link condition. If the state is

better, the second part is smaller and the transmitter can allocate more power325

to achieve a higher transmission rate. Otherwise, it consumes less power to

avoid the waste of power/energy in the poor channel condition.

Lastly, the time scheduling problem needs to be solved. By inserting the

optimal energy allocation scheme, problem (15) can be rewritten as,

min
τ (t)
−
∑

i∈Nc

∑

j∈Ri
[λi − λj ]τij(t)R∗ij(t)−

∑

k∈K
λkτks(t)R

∗
ks(t)

+
∑

i∈Nc

∑

j∈R′i

νiτij(t)P
∗
ij(t) +

∑

k∈K
νk
[
τks(t)P

∗
ks(t)− ehj (t) + esnj

]
,

(19)

where R∗ij(t) = TW log2

(
1 +

P∗ij(t)|hij(t)|2
(dij(t)/d0)αL0(d0)N0

)
. (19) is a linear programming

problem, and thus the optimal time slot scheduling variable τij(t) is either 1

or 0. Since (9) is the relaxed problem of (7) by enlarging the feasible set, the330

optimal solution of (9) is an upper bound of that of (7). Since we observe that

the optimal solution of (9) also satisfies the constraints of (7), it is also the

optimal solution of (7). Finally, the following lemma can be derived.

Lemma 3. The optimal scheduling variable τij(t) is either 1 or 0. For the

optimal time slot scheduling, time-sharing is not necessary, and it only needs to335

allocate one time slot for one transmission link. Thus, the optimal solution for

problem (9) is also a feasible and optimal solution of problem (7).

As the optimal value for τij(t) is either 1 or 0, and there are finite links,

problem (19) can be solved by exhaustive search. Firstly, for sensor node i ∈ Nc,
it selects the “best” transmission links among all links to its relay nodes and340

the sink, which achieves the highest weighted transmission rate with the least

weighted energy consumption. This procedure can be considered as the relay
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selection. Secondly, for all sensor nodes k ∈ K, the time scheduling scheme is to

schedule the best sensor node to transmit data on its “best” link. The following

two theorems present the relay selection scheme and time scheduling scheme,345

respectively.

Theorem 2. For sensor node i ∈ Nc, the destination node is either the sink

or one of its relay nodes. The selected destination node is Si, namely, relay

selection policy, and it satisfies,

Si = arg max
j
Ai (20)

where Ai =
(
AiNc+1, · · · , AiK , Ais

)
and Aij is the scheduling reward that is the

weighted transmission rate minus the weighted energy consumption as follows,

Aij =





[λi − λj ]f∗ij(t)− νiP ∗ij(t)T, if j ∈ R′i
λif
∗
is(t)− νiP ∗ij(t)T, if j = s,

−∞, otherwise.

(21)

Theorem 3. The time slot scheduling scheme is to determine at each time

slot which sensor node is going to transmit data to a selected relay node or

the sink. Define the scheduling reward vector B = (B1, B2, · · · , BK), where

Bk = maxjAi,∀k ∈ Nc, and Bk = λkf
∗
ks(t) − νiP ∗ks(t)T, ∀j ∈ Nd, the optimal

time slot scheduling scheme is to choose the “best” transmission link with the

largest scheduling reward, and can be given as

τ∗ij(t) =





1, if i = arg maxk B and {i ∈ Nc, j = Si or i ∈ Nd, j = s},

0, otherwise.

(22)

Another critical issue is how to derive the Lagrange multipliers λ =
(
λ1, λ2,

· · · , λK
)

and ν =
(
ν1, ν2, · · · , νK

)
. Since problem (9) is a standard convex

problem, based on the KKT (Karush-Kuhn-Tucker) condition, the Lagrange

multipliers must be satisfied so that the stable and sustainable constraints C1,350

C2, C3 and C4 hold with equality. Even though this characteristic exists,

it is still difficult to derive their closed form expressions, and some numerical

methods such as the sub-gradient method [4, 11] are usually adopted.
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5. Near-Optimal Buffer-Battery-Aware Scheduling

The Opt-JoDGE scheme proposed in Section 4 depends on the Lagrange355

multipliers, whose closed form expressions are not easy to be derived. Further-

more, the run-time status of the data buffer and battery are not considered.

In this section, we introduce the Near-Optimal Buffer-Battery-Aware Adaptive

scheduling (NO-BBA) scheme, which also exploits the run-time status of the

data buffer and battery of individual sensor node, to derive the relationship360

between the average buffer size and the network performance. Meanwhile, some

implementation issues and special cases are also discussed.

5.1. Problem Formulation

Denote Qk(t) as the status of the data buffer of sensor node k at time slot t.

Based on the data transmission model as specified in Section 3.3, the evolution365

expressions of the status of data buffer at node i and node j, (i ∈ Nc, j ∈ Nd),
are presented as follows:

Qi(t+ 1) =
[
Qi(t)−

∑
j∈Ri∪s rij(t)

]†
+ xi(t),∀i ∈ Nc, (23)

Qj(t+ 1) =
[
Qj(t)− rjs(t)

]†
+ xj(t) +

∑
i∈Nc rij(t),∀j ∈ Nd. (24)

In order to monitor the environment continuously, it is assumed that sensor

node k consumes esnk energy at each time slot for sensing operations. The sensor

nodes should not consume all the energy in their batteries for data transmission,370

and should reserve sufficient amount of energy for sensing operations in the fu-

ture. For this purpose, we divide the battery of each sensor node into two virtual

sub-batteries: the first one is to store harvested energy for sensing operations

while the second one is for data transmission. In order to guarantee sustainable

sensing of the environment, we adopt the following energy reservation policy:375

at the beginning of each pass, the first sub-battery stores sufficient energy for

sensing operations in the current pass, usually no less than Nesnk . Therefore,

when a sensor node harvests energy, it first supplements the first sub-battery

to reserve enough sensing energy for the next pass. The remaining harvested

energy is to charge the second sub-battery for data transmission.380
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We use Esn
k (t) to denote the amount of energy to be harvested for sensing op-

erations in the first sub-battery of sensor node k at time slot t. At the beginning

of each pass, Esn
k (t) is set to beNesnk , i.e. Esn

k (mN+1) = Nesnk . Thus the evolu-

tion expression of Esn
k (t) can be written as Esn

k (t+1) = max{Esn
k (t)−ehk(t), 0} =

Esn
k (t) − ëhk(t), where ëhk(t) = min{Esn

k (t), ehk(t)}. ehk(t) represents the energy385

harvested by sensor node k at time slot t, and ëhk(t) is the actual amount of

energy replenished into the first sub-battery. At each time slot, after replenish-

ing the first sub-battery, the remaining harvested energy will be stored into the

second sub-battery. Thus at time slot t the energy stored for data transmission

can be denoted as ẽhk(t), which satisfies ẽhk(t) = ehk(t)− ëhk(t).390

As the above energy reservation policy can guarantee the energy consump-

tion of sensing operations, we thus ignore the first sub-battery and only consider

the harvested and consumed energy for data transmission. Therefore, in the fol-

lowings, we use the term “battery” to represent the second sub-battery.

Denote Ek(t) as the battery status of sensor node k at time slot t. Based on395

the energy harvesting and consumption model, the evolution equations of the

battery of sensor nodes i and j, (i ∈ Nc, j ∈ Nd), are presented as follows:

Ei(t+ 1) = Ei(t)−
∑

j∈Ri∪s
eij(t) + ẽhi (t),∀i ∈ Nc, (25)

Ej(t+ 1) = Ej(t)− ejs(t) + ẽhj (t),∀j ∈ Nd, (26)

where ẽhi (t) (or ẽhj (t)) and
∑
j∈Ri∪s eij(t) (or ejs(t)) represent the harvested

and consumed energy by sensor node i (or j) at time slot t, respectively.

The goal of the buffer-battery-aware scheduling is to maximize network util-

ity under the stability constraint of the data buffer and sustainable constraint

of the battery at each sensor node. Here, the stability constraint of data buffer

specifies that the amount of buffered data should not approach to infinity when

t → ∞, and the sustainable constraint of battery requires that the average

harvested energy must be no less than the average consumed energy for both

data transmission and sensing operations, namely, 1
N

∑N
t=1

∑
j∈Nd∪s E[ekj(t)] ≤

1
N

∑N
t=1 E[ehk(t)] − esnk . As ẽhk(t) = ehk(t) − ëhk(t), we have 1

N

∑N
t=1 E[ehk(t)] =
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1
N

∑N
t=1 E[ẽhk(t)] + 1

N

∑N
t=1 E[ëhk(t)]. According to the energy reservation policy,

we can find that the energy supplied to the first sub-battery in one pass is equal

to Nesnk , i.e., 1
N

∑N
t=1 E[ëhk(t)] = esnk . Thus, we can derive an equivalent form

of sustainable constraint as follows,

1

N

N∑

t=1

∑

j∈Nd∪s
E[ekj(t)] ≤

1

N

N∑

t=1

E[ẽhk(t)],∀k ∈ K, (27)

which only considers the harvested and consumed energy of the second sub-400

battery.

Proposition 1. For any queue q(t) with evolution q(t + 1) =
(
q(t) − u(t)

)†
+

λ(t), where u(t) and λ(t) represents the departure and arrival processes, re-

spectively. If the queue q(t) is mean rate stable, i.e., lim supN→∞
E[q(N)]
N = 0,

we have lim supN→∞
1
N

∑N−1
t=0

{
E[λ(t)]− E[u(t)]

}
≤ 0, which indicates that the405

average arrival process is no larger than the average departure process.

This proposition is similar to Theorem 2.5 in [27] and the proof procedure

is omitted here. With Proposition 1, the constraint in (27) can be converted

to the stability constraint of a queue. Therefore, we can construct an energy

queue, in which the consumed energy
∑
j∈Nd∪s ekj(t) and the harvested energy410

ẽhk(t) are the arrival and departure process, respectively. Comparing with the

evolution equations of the battery in (25) and (26), the constructed energy queue

is contrary to the battery, and thus we use φk−Ek(t) to denote the constructed

energy queue for sensor node k, and the evolution equation can be given by

φk −Ek(t+ 1) = φk −Ek(t)− ẽhk(t) +
∑

j∈Nd∪s
ekj(t). (28)

Here, the energy queue φk − Ek(t) can be stated as vacant battery, in which415

the constant φk can be considered as the ”virtual” capacity of the battery, and

φk − Ek(t) is the remaining space of the battery. A larger φk − Ek(t) implies

less stored energy in the battery.

5.2. Near-Optimal Buffer-Battery-Aware Adaptive Scheduling Scheme

We use Θ(t) =
[
Q1(t), · · · ,QK(t);φ1 − E1(t), · · · , φK − EK(t)

]
to denote420

the generalized queue, which consists of all data buffers and energy queues. We
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then introduce the quadratic Lyapunov function L
(
Θ(t)

)
= 1

2

∑
k∈KQk(i)2 +

1
2

∑
k∈K µk

[
φk −Ek(i)

]2
as similar as recommended in [27], where µk is a non-

negative control parameter to characterize the relative effect of the data buffer

and energy queue on the scheduling scheme, mainly to ensure that the first item425

and second item are in the same order of magnitude. Then, we can define the

one-slot conditional Lyapunov Drift ∆
(
Θ(t)

)
= E

[
L
(
Θ(t+1)

)
−L
(
Θ(t)

)
|Θ(t)

]
.

This drift characterizes the expected changes in the Lyapunov function over one

time slot, and reflects the increment of the generalized queue.

Combined with data transmission, we have the drift-plus-penalty as ∆
(
Θ(t)

)
−

V
∑
k∈K U

{
E[xk(t)|Θ(t)]

}
, where V is a non-negative control parameter that is

chosen to quantify the tradeoff of queue backlog (first term) and average achiev-

able performance (second term). If the channel gain is i.i.d over different time

slots, the drift-plus-penalty is upper bounded as follows,

∆
(
Θ(t)

)
− V

∑

k∈K
log2

(
E
[
xk(t)|Θ(t)

])
≤ B −

∑

k∈K

{
V log2

(
E
[
xk(t)|Θ(t)

])

−Qk(t)E
[
xk(t)|Θ(t)

]}
−
∑

i∈Nc

∑

j∈Ri

{[
Qi(t)−Qj(t)

]
E
[
rij(t)|Θ(t)

]

− µi
[
φi −Ei(t)

]
E
[
eij(t)|Θ(t)

]}
−
∑

k∈K

{
Qk(t)E

[
rks(t)|Θ(t)

]

− µk
[
φk −Ek(t)

]
E
[
ejs(t)|Θ(t)

]}
−
∑

k∈K
µk
[
φk −Ek(t)

]
E
[
ẽhk(t)|Θ(t)

]
,

(29)

where B is a finite constant independent of V and given by,

B ≥ 1

2

∑

i∈Nc

{
E
{

[xi(t)]
2|Θ(t)

}
+ E

{
[
∑

j∈Ri∪s
rij(t)]

2|Θ(t)
}

+ µiE
{

[
∑

j∈Ri∪s
eij(t)]

2|Θ(t)
}

+ µiE
{

[ẽhi (t)]2|Θ(t)
}}

+
1

2

∑

j∈Nd

{
E
{

[xj(t) +
∑

i∈Nc
rij(t)]

2|Θ(t)
}

+ E
{

[rjs(t)]
2|Θ(t)

}

+ µjE
{

[ejs(t)]
2|Θ(t)

}
+ µjE

{
[ẽhj (t)]2|Θ(t)

}}
.

(30)

Here, the procedure to derive the upper bound is similar to Lemma 4.6 in [27].430

In order to keep the involved buffer stable and satisfy the energy constraints,

we try to minimize the increment of the queue size. Meanwhile, in terms of effec-
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tive transmission, we need to maximize the rate of data transmission. All these

encourage us to minimize the drift-plus-penalty. Instead of directly minimizing

the drift-plus-penalty item, our scheduling scheme actually seeks to minimize

the upper bound in (29). At each time slot t, given the channel and queue sta-

tus, the Near-Optimal Buffer-Battery Aware Adaptive Scheduling (NO-BBA)

scheme can be utilized to solve the following optimization problem:

max
∑

k∈K
[V log2(xk(t))−Qk(t)xk(t)] +

∑

i∈Nc

∑

j∈Ri

{[
Qi(t)−Qj(t)

]
rij(t)

− µi
[
φ−Ei(t)

]
eij(t)

}
+
∑

k∈K

{
Qk(t)rks(t)− µk

[
φ−Ek(t)

]
eks(t)

}

s.t. 0 ≤ rij(t) ≤ Rij(τij(t), Pij(t), hij(t)), xk(t) ∈ [0, ak(t)],

τ (t) ∈ Λ(t),∀k ∈ K, i ∈ K, j ∈ Nd ∪ s.

(31)

Observation 5 : In problem (31), only the first term of the objective function

is associated with xk(t). Therefore, the optimization of xk(t) can be decom-

posed, and considered as the rate control problem to control the amount of

arrived data. The second and third terms have similar format, and they can be

regarded as choosing the “best” link that achieves a higher weighted transmis-435

sion rate with less weighted energy consumption, where the weighted values are

dependent on their corresponding status of the data buffer and energy queue.

By solving problem (31), we can derive the following scheduling algorithm.

1. Rate Control: For any sensor node k, the rate control problem decides

the amount of data to be added into the data buffer at each time slot t,440

namely, xk(t) = min
{
ak(t), V

ln 2·Qk(t)

}
.

2. Joint Power Allocation and Relay Selection for sensors in Nc:

First of all, the rate variables r(t) are optimized. When Qi(t) ≥ Qj(t), we

have rij(t) = τij(t)TW log2

(
1+

eij(t)|hij(t)|2
τij(t)T (dij/d0)L0(d0)N0

)
, otherwise rij(t) =

0. This indicates that sensor node j could become a candidate relay node445

only in the case with smaller data buffer size.

Secondly, by inserting rij(t), the power allocation scheme can be easily
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derived as follows,

P ∗ij(t) = min

{[ [Qi(t)−Qj(t)
]

ln 2µi
[
φi −Ei(t)

] − (dij/d0)αL0(d0)N0

|hij(t)|
]†
,
Ei(t)

T

}
,

(32)

P ∗is(t) = min

{[ Qi(t)

ln 2µi
[
φi −Ei(t)

] − (dis(t)/d0)αL0(d0)N0

|his(t)|
]†
,
Ei(t)

T

}
.

(33)

Lastly, the relay selection problem is to select the ”best” link among the

links from sensor node i to all its relay nodes and the sink. Si denotes the

destination of the selected link, and it can be given as

Si = arg maxAi, (34)

where Ai =
(
AiNc+1, · · · , AiK , Ais

)
. Aij represents the scheduling reward

on the link from node i to node j, and it can be computed by the weighted

transmission rate minus the weighted energy consumption as follows,

Aij =





[Qi(t)−Qj(t)]f
∗
ij(t)− µi

[
φi −Ei(t)

]
P ∗ij(t)T, if j ∈ R′i

Qi(t)f
∗
is(t)− µi

[
φi −Ei(t)

]
P ∗ij(t)T, if j = s,

−∞, otherwise,

(35)

where f∗ij(t) = TW log2

(
1 +

P∗ij(t)|hij(t)|2
(dij(t)/d0)αL0(d0)N0

)
denotes the amount of

data bits transmitted from node i to node j.

3. Power Allocation for sensors in Nd: Since only the third term of the

objective function in (31) is associated with ejs(t) (namely τjs(t)TPjs(t)),

the corresponding power allocation scheme for sensor node j ∈ Nd can be

easily derived as follows,

P ∗js(t) = min
{[ Qj(t)

ln 2µj
[
φj −Ej(t)

] − (djs(t)/d0)αL0(d0)N0

|hjs(t)|
]†
,
Ej(t)

T

}
.

(36)

4. Time-slot scheduling: The time scheduling scheme is to allocate the

time slots to the sensor nodes with the ”best” links, which achieves the
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largest weighted transmission rate by consuming the least weighted energy,

and is stated as:

τ∗ij(t) =





1, if i = arg maxk B and {i ∈ Nc, j = Si or i ∈ Nd, j = s},

0, otherwise,

(37)

where B = (B1, B2, · · · , BK) denotes the scheduling reward vector, and

Bi = ASi ,∀i ∈ Nc, Bj = Qj(t)f
∗
js(t)− µj

[
φj −Ej(t)

]
P ∗js(t)T, ∀j ∈ Nd.450

Observation 6: For the rate control policy, xk(t) not only depends on the

amount of generated data ak(t), but also relies on the status of the data buffer

Qk(t). This indicates that when the length of the data buffer is longer, the

amount of added data will be smaller.

Observation 7: The power allocation scheme complies with the traditional455

water-filling mechanism [13]. The allocated power consists of two terms. The

first term is associated with the corresponding status of the data buffer and

energy queue; the second term depends on the channel gain and transmission

distance. From (32) and (33), if the data buffer backlog Qi(t) or the backlog

difference Qi(t)−Qj(t) is larger, the first term is larger. This indicates that if460

the data buffer backlog is larger, it will result in larger allocated power. If the

energy queue φi−Ei(t) is smaller, the first term is also larger. Therefore, if the

condition of the battery is better, it can allocate more power. For the second

term, the power is a water-filling manner over channel fading state.

5.3. Performance Analysis465

In this sub-section, we will show that NO-BBA is capable of keeping the

data buffer and energy queue stable and guaranteeing the long-term average

constraints of the data buffer and battery. Meanwhile, the analytic performance

of NO-BBA is presented.

Theorem 4. For any V > 0, there exist the constants of B ≥ 0, ε ≥ 0,Ψ(ε),470

where Ψ(ε) is less than the optimal network utility
∑
k∈K U(X∗k), such that NO-

BBA will exhibit the following properties:
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(1) The data buffer Qk(t) and energy queue φk − Ek(t) for sensor node

k ∈ K are mean rate stable. Thus the stable constraint of the data buffer and

sustainable constraint of the battery on individual sensor node can be guaranteed;475

(2) The network utility and the average buffer length are bounded by

∑
k U(X∗k)− B

V ≤ limN→∞ sup
∑
k U
{

1
N

∑N
t=1 E[xk(t)]

}
≤∑k U(X∗k), (38)

limN→∞ sup 1
N

∑N
t=1

∑
k∈K E{Qk(t)} ≤ B+[

∑
k∈K U(X∗k)−Ψ(ε)]V

ε . (39)

Proof: See the appendix Appendix A.

Theorem 4 confirms us that, for any V > 0, NO-BBA guarantees the data

buffers and energy queues mean stable. The average total data buffer length

increases linearly with V , while the achieved network utility is arbitrarily close to480

the optimal as V increases. This implies a tradeoff of [O(V ), O( 1
V )] between the

average buffer length and the gap to the optimal network utility performance.

5.4. Implementation Issues and Special Cases

The previous sub-sections focus on the theoretical analysis of mobile data

gathering and energy harvesting in RWSNs, in which both the perfect chan-485

nel/buffer/ energy state information and centralized scheduling algorithm are

explored. In this sub-section, we will discuss some implementation issues, such

as computation complexity, the case of lacking channel state information (CSI),

and distributed implementation with local buffer and energy status information.

Computation Complexity: The rate control scheme is the minimum of490

two values, and the close-form expressions of the power allocation scheme are

presented in (32), (33) and (36). Thus, the computation complexity of NO-BBA

algorithm mainly depends on the computation complexity of the relay selection

problem and time slot scheduling problem. The relay selection problem is to

select the “best” link among the links from the farther sensor node to all its495

relay nodes and the sink. This can be solved by choosing the maximum value

from a K + 1-dimension vector, and the number of sensor nodes is less than

K. Thus, the worst computation complexity of the relay selection scheme is

O(K2). The time scheduling scheme is to allocate the time slots to the “best”
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link of all sensor nodes. Similarly, the worst computation complexity of the500

time scheduling scheme is O(K). Above all, we can see that the computation

complexity is not a critical issue.

Lack of channel state information: In the previous sub-section, the per-

fect channel state information is utilized to analysis the performance of RWSN.

Similar with the works in [23, 30, 38], it is assumed that the performance in505

wireless channel transmission only depends on the transmission distance. This

is a special case of our problem by letting |hij(t)|2 = 1, (∀i, j), and the schedul-

ing scheme would be similar. This case reduces the communication signaling

overhead. Meanwhile, it also suffers performance degradation. The impact on

performance will be demonstrated by our simulation results to be presented in510

Section 6.

With only local buffer and energy status: Each sensor node may only

have its own buffer and energy status information instead of the global buffer

and energy status to design the distributed scheduling algorithm. In this case,

the adaptive relay selection could be not employed, and instead the fixed relay515

selection (namely routing) is applied. For instance, the farther sensor node

chooses a near sensor node as its relay only based on the transmission distance.

Since the nearer sensor node always harvests more energy, it could take more

transmission load, and thus the farther sensor node may choose the sensor node

with the nearest distance to the path among its transmission area. Based on520

the fixed relay selection, the distributed scheduling scheme can be designed as

following steps:

1. Rate control similar with that in NO-BBA scheduling scheme;

2. Power control for each sensor node: The transmission power is only depen-

dent on its transmission distance, local buffer and energy status, and it can525

be derived as P ∗ij(t) = min
{[

Qi(t)

ln 2µi

[
φi−Ei(t)

]−(dij/d0)αL0(d0)N0

]†
, Ei(t)T

}
,

where j denotes the sink and relay sensor node for the near and far sen-

sor node respectively. Thus the scheduling reward is computed by the

weighted transmission rate minus the weighted energy consumption as
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Ai = Qi(t)TW log2

(
1 +

P∗ij(t)|hij(t)|2
(dij(t)/d0)αL0(d0)N0

)
− µi

[
φi −Ei(t)

]
P ∗ij(t)T .530

3. Distributed time slot contention based on the scheduling reward of each

sensor node. One possible approach is to use the method of distributed

timers proposed in [3]: upon receiving CTS transmitted by the mobile sink,

each sensor node starts a timer whose duration is inversely proportional

to its scheduling reward. The timer of the ”best” sensor node first expires535

and a flag packet with duration will be generated to notify the rest of the

network about its availability to the time slot.

6. Performance Evaluation

In this section, we report the experimental results obtained from the simu-

lation studies of an RWSN with a mobile sink to show the feasibility and per-540

formance of Opt-JoDGE and NO-BBA. Since there are no similar techniques

proposed for solving the JoDGE problem, the main parameters are decided ac-

cording to the typical RWSN settings as well as the parameter values used in

related studies. In the experiments, we first evaluated the performance of RF

energy harvesting. Then, we studied the performance of Opt-JoDGE and NO-545

BBA in terms of throughput and network utility. Thirdly, we investigated the

efficiency of the far-relay approach by comparing it with the direct transmis-

sion approach (called one-hop approach). Lastly, the network density issue was

investigated and the performance with different number of sensors is presented.

6.1. Simulation Settings550

We consider an RWSN with a mobile sink, where 100 sensor nodes are ran-

domly deployed in a 100m× 50m area, and the mobile sink moves along a line

(y0 = 25, x0 ∈ [0, 100]) with a given speed v = 1m/s to collect data from the

sensor nodes. The duration of each time slot T equals 10ms. Therefore, the

total number of time slots in one pass is N = 100
vT = 10000.555

The mobile sink transfers energy to all sensor nodes which use the harvested

energy to sense/transmit/receive data. The effective charging distance is 30
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Figure 2: Distance v.s. Average harvested energy per pass.

meters, i.e., de = 30m. The transmission radius dtrk of sensor node k ∈ K is set

to 20m, which is a parameter that can be adjusted and defined by the power of

the transmitter. The distance threshold dh is 15m. The average data generation560

rate ak of sensor node k is set to be 1.5kbps. The reference path loss is set to be

L0(d0) = 100 with reference distance d0 = 1 meter, and the path loss exponent

α is assumed to be 2. Meanwhile, the bandwidth is 20kHz, the average channel

gain of small scale fading is 0dB, and the noise power is N0 = −60dBm.

The energy consumed for sensing operation in one time slot is assumed to565

be 10−8 Joule, i.e, 3.6mWh. As is presented in [20], the energy conversion

efficiency ranges from 0.004 to 0.5. In our experiments, we set it to 0.5 for

theoretical analysis. Due to the low energy conversion efficiency, how to ensure

the harvested energy at each node is always greater than the consumed energy

is a critical issue, and we assume that the size of battery is always large enough570

for storing the harvested energy. Note that as obtained from our experiments,

the instantaneous battery is always less than 1 Joule, and the closer sensor

nodes have higher energy status due to more harvested energy. For instance,

the battery status of the farthest sensor node from the path ranges from 1∗10−4

joule to 1.7∗10−4 joule, while that of the sensor node closest to the path ranges575

from 0.90 joule to 0.93 joule. Unless otherwise stated, all simulation runs for at

least two hundred passes to obtain statiscally stable results.
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6.2. Performance of Energy Harvesting in RWSN with Mobile Sink

In this sub-section, we evaluate the average amount of energy harvested by

each sensor node in one pass. We first derive the theoretical performance of580

energy harvesting, and then compare it with the simulated results.

Given energy transfer radius de, only if the sink moves into the region be-

tween (xk −
√
d2
e − (yk − y0)2, y0) and (xk +

√
d2
e − (yk − y0)2, y0), sensor node

k is in the energy transfer region and charges its battery. When the sink moves

to (x, y0), the average amount of harvested energy is ηPsE[|gks(i)|2]
L0(d0)[dks(x)/d0]α

∆x
v , where

ηPsE[|gks(i)|2]
L0(d0)[dks(x0)/d0]α represents the statistical received power, and ∆x

v represents

the time duration. Thus, the harvested energy is expressed as

Ēk =

∫ xk+
√
d2e−(yk−y0)2

xk−
√
d2e−(yk−y0)2

ηPsE[|gks(i)|2]

L0(d0)[dks(x)/d0]α
dx

v

=
2ηPsE[|gks(i)|2]

L0(d0)|yk − y0|
arctan

(√d2
e − (yk − y0)2

|yk − y0|
)
.

(40)

Fig. 2 validates the harvested energy derived from the theoretical analysis

is consistent with the simulation results. Due to the incomplete symmetric

characteristics of the sensor nodes which are close to the start and end point of

the pre-defined path, the amount of energy harvested is slightly less than the585

theoretical results. From Fig. 2, the harvested energy is inversely proportional

to the square of distance, i.e., when |yk−y0| ≈ 1, the average harvested energy in

one pass is around 0.15 Joule; when |yk−y0| ≈ 25, that is close to 0.0023 Joule.

Thus the harvested energy of the sensor nodes closer to the path is much larger

than that of the sensor nodes farther away from the path. This observation590

motivates us to incorporate the far-relay approach into the scheduling algorithm.

6.3. Performance Comparison between Opt-JoDGE and NO-BBA

We then present the performance comparison of Opt-JoDGE, NO-BBA, NO-

BBA with lacking channel state information and distributed NO-BBA with local

buffer and energy status. Since Opt-JoDGE is proved to be optimal, it is used595

in the experiments as a reference. For NO-BBA, there are three important

parameters: V, φk and µk(∀k ∈ K). The parameter V quantifies the tradeoff
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(b) Network Throughput Performance

Figure 3: Network utility and network throughput with different V
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Figure 4: Average total data buffer of sensor nodes with different V.

between the queue backlog and achieved performance. In the simulation, we

varied V from 1 to 10 with a step of 1. φk is constant and set as 1, which can

be considered as the battery capacity. The rule of choosing µk is to ensure that600

the first and second terms of lyapunov function Θ(t) are in the same order of

magnitude. Therefore, we set µk = 1000V
5∗(log 2)2∗φk∗ak .

Fig. 3 presents the performance of network utility and network throughput.

The network utility could guarantee the fairness between the transmission rate

of each sensor node. While the network throughput only evaluates the sum605

of average transmission rate of all sensor nodes, the corresponding network

throughput maximization (NTM) problem can be formulated by replacing the

utility function with U(X) = X and solved with similar method. As shown in
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Fig. 3(a), with an increase in V , the network utility of NO-BBA keeps improving

and gets closer to the performance of Opt-JoDGE, which is consistent with the610

analysis in Theorem 4. For the performance of network throughput, similar

results are obtained such that a larger V results in a higher network throughput.

Compared with Opt-JoDGE and NO-BBA, the NO-BBA scheduling scheme

with lacking channel state information suffers a throughput and utility loss,

and the distributed NO-BBA scheduling scheme with local buffer and energy615

status suffers a larger utility and throughput loss.

Based on the analysis in Theorem 4, the average buffer length of all sensor

nodes in NO-BBA is normally proportional to V . A larger V indicates a larger

average total data buffer length, which always means larger transmission delay.

In Fig. 4, we show the average total data buffer length of all sensor nodes in620

NO-BBA. We can observe from the figure that a larger V results in a larger

data buffer size and the actual total data buffer size increases linearly with V ,

which is consistent with the analysis. Furthermore, the total data buffer length

of the sensor nodes in Nc and Nd are also presented in Fig. 4. From the results,

we can observe that, even though the number of sensor nodes in Nc is less than625

that of sensor nodes in Nd, their total buffer length is larger. This is because

the sensor nodes in Nc harvest less energy and have lower transmission rate.

6.4. Far-relay approach Vs. One-hop approach

In Opt-JoDGE and NO-BBA, the transmission links include not only the

links from the sensor nodes to their relay nodes, but also the links to the mobile630

sink. If only the transmission links from the sensor nodes to the sink are con-

sidered, the relay selection problem does not exist and our scheduling scheme

will be reduced to the one-hop approach. In this sub-section, we compare the

performance of Opt-JoDGE and NO-BBA with both far-relay approach and

one-hop approach. In order to guarantee all sensor nodes can transmit data to635

the sink, we set the transmission radius of all sensor nodes to be 25 meters.

The network utility and throughput performance of Opt-JoDGE and NO-

BBA with the far-relay approach and one-hop approach are presented in Fig. 5.
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Figure 5: Performance comparison of network throughput/utility between the far-relay ap-

proach and one-hop approach.
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Figure 6: Average transmission rate of each sensor node.

We can observe that the performance of both Opt-JoDGE and NO-BBA with

the far-relay approach in terms of both network utility and network throughput640

is much better than that with the one-hop approach. Furthermore, the network

utility improvement is much better than that of network throughput. This is

because the far-relay approach can improve the performance of the sensor nodes

in Nc and reduce the performance difference between the sensor nodes in Nc and

in Nd, and thus the fairness is improved and the network utility is increased.645

Fig. 6 compares the transmission rates of each sensor node in NO-BBA

with the far-relay approach and one-hop approach. We can observe from Fig.
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Figure 7: The link connectivity of one example sensor node #5.

Table 2: Number of scheduled time slots for sensor node #5 to its next-hop nodes

Destination s #49 #55 #78 #89 #96

# of slots(200 passes) 1498 1856 185 1443 3294 4769

Ratio of slots(%) 11.48 14.28 1.42 11.06 25.25 35.56

6 that the far-relay approach can improve the transmission rate of the sensor

nodes in Nc. It is because in the far-relay approach the sensor nodes in Nc
can select relay sensor nodes in Nd. This decreases both transmission distance650

and energy consumption. Compared with the one-hop approach, the largest

difference amongst the transmission rates of all sensor nodes in the far-relay

approach is smaller and thus the fairness is improved.

Fig. 7 shows the link connectivity of one example sensor node #5, whose

relay node set consists of sensor nodes #49,#55,#78,#89 and #96. In Table655

2, we present the number of scheduled time slots for each transmission link

starting from sensor node #5. The least number of time slots is allocated to

the link between sensor nodes #5 and #55 that has the least harvested energy

due to its largest distance to the path. On the other hand, the link between

sensor nodes #5 and #96 is scheduled with the largest number of time slots due660

to the shortest distance. By carefully examining the results in Table 2, we can

conclude that the number of scheduled time slots on a transmission link heavily
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(b) Network throughput
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Figure 8: Performance of network utility and throughput with different network densities.

depends on the charging distance from the relay node to the path.

6.5. Performance with different network densities

In this sub-section, we evaluate the performance of network utility and665

throughput with different network densities, i.e., the number of randomly de-

ployed sensor nodes ranges from 50 to 200. As is shown in Fig. 8(a) and

(b), the far-relay approach always performs better than the one-hop approach

in terms of both network utility and throughput. Compared with throughput

gain, the utility gain introduced by the far-relay approach is larger. It is because670

both Opt-JoDGE and NO-BBA aim to maximize the network utility instead of
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throughput. In Fig. 8(a), one may find that if the number of sensor nodes

is increased (e.g., higher density), the network utility first increases and then

decreases. It is because the average generated rate āk at a sensor node k is

limited to 1.5kbps. Since the network resource is shared by all the sensor nodes,675

in the case of low density, such as 50 and 75 sensor nodes, the transmission rate

of each sensor node is still large, i.e., log2(X) > 0 if X > 1 and log2(X) < 0

otherwise, and the network utility will increase with more sensor nodes. On

the other hand, in a higher network density case, the limited network resource

results that the transmission rate of a sensor node is decreasing, even though680

the number of sensor nodes is larger, the network utility is decreasing.

Fig. 8(c) shows the effects of network density on the transmission rates of

the sensor nodes which have different distances from the path. The first one

(called nf ) is the farthest sensor node from the path, and the second one (called

nc) is the sensor node that is the closest to the threshold. As shown in Fig.685

8(c), the transmission rate of nf is higher in the far-relay approach compared

with the one-hop approach. However, the transmission rate of nc is slightly

lower in the far-relay approach compared with the one-hop approach. This is

because in the far-relay approach, the sensor nodes whose distances to the path

are the closer to the threshold may act as relays to assist the data transmission690

of the farther sensor nodes. Furthermore, as shown in Fig. 8(c), with a higher

network density, the declined the transmission rate of sensor nodes closer to the

threshold is larger than that of the farther sensor nodes. This is because the

network fairness is guaranteed in the NUM problem and the rate gap between

the two sensor nodes should not be further increased.695

7. Conclusion and Future Work

In this paper, we study the joint data gathering and energy harvesting

(JoDGE) problem in rechargeable wireless sensor networks (RWSNs) with a

mobile sink. Due to the double near-far problem introduced by RF energy har-

vesting, the far-relay approach is proposed, in which the sensor nodes closer to700
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the path may allocate some of the harvested energy to assist the data trans-

mission of other sensor nodes that are farther away. Under the far-relay ap-

proach, we aim to maximize the network utility by jointly considering the re-

lay selection, power/energy allocation and time scheduling problems. We first

derive the optimal joint data gathering and energy harvesting scheduling (Opt-705

JoDGE) scheme, and then design the near-optimal buffer-battery-aware adap-

tive scheduling (NO-BBA) algorithm to provide an efficient solution, in which

the runtime status of data buffer and battery is considered. The performance

of NO-BBA is shown to be close to the optimal scheduling scheme with limited

cost of data buffer size. As the future work, we will consider related protocol710

and algorithm design in RWSNs with mobile sink(s), such as the path planning

of one or multiple mobile sinks, relay node placement problem, speed control

problem, the optimal number of mobile sinks and so on.
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Appendix A. Proof of Theorem 5.2

For the problem specified in Section 5, there exists a stationary randomized

scheme independent of buffer state and energy state, which satisfies

∑

k∈K
U
{ 1

N

N∑

t=1

E
[
x∗k(t)|Θ(t)

]}
=
∑

k∈K
U
{ 1

N

N∑

t=1

E
[
x∗k(t)

]}
= Ψ(ε), (A.1)

1

N

N∑

t=1

E
[
x∗i (t)−

∑

j∈Ri∪s
r∗ij(t)|Θ(t)

]
=

1

N

N∑

t=1

E
[
x∗i (t)−

∑

j∈Ri∪s
r∗ij(t)

]
≤ −ε, (A.2)

1

N

N∑

t=1

E
[
x∗j (t) +

∑

i∈Nc
r∗ij(t)− r∗js(t)|Θ(t)

]
=

1

N

N∑

t=1

E
[
x∗j (t) +

∑

i∈Nc
r∗ij(t)− r∗js(t)

]
≤ −ε,

(A.3)
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1

N

N∑

t=1

E
[ ∑

j∈Ri∪s
e∗kj(t)− ẽhk(t)|Θ(i)

]
=

1

N

N∑

t=1

E
[ ∑

j∈Ri∪s
e∗kj(ti)− ẽhk(t)

]
= 0. (A.4)

Here these expressions can be derived by the similar procedure in [27] and [26].720

The design idea behind NO-BBA is to minimize the RHS of (29) over all

possible policies. Thus, at each time slot, it yields the following inequality:

∆
(
Θ(t)

)
− V

∑

k∈K
U
{
E
[
xk(t)|Θ(t)

]}
≤ B − V

∑

k∈K
U
{
E
[
x∗k(t)|Θ(t)

]}

+
∑

i∈Nc

{
Qi(t)E

[
x∗i (t)−

∑

j∈Ri∪s
r∗ij(t)|Θ(t)

]
+ µi

[
φi −Ei(t)

]

E
[ ∑

j∈Ri∪s
e∗ij − ẽhi (t)|Θ(t)

]}
+
∑

j∈Nd

{
Qj(t)E

[
x∗j (t) +

∑

i∈Nc
r∗ij(t)

+−r∗js(t)|Θ(t)
]
µj
[
φj −Ej(t)

]
E
[
ec∗j − ẽhj (t)(t)|Θ(t)

]}
.

(A.5)

Using the sums over the time slot t, adding (A.1), (A.2) , (A.3) and (A.4) into

(A.5), and taking expectation, we have

1

N

N∑

t=1

{
E{L(Θ(N + 1))} − E{L(Θ(1))}

}
− V 1

N

N∑

t=1

∑

k∈K
U
{
E[xk(t)]

}

≤ B − V 1

N

N∑

t=1

∑

k∈K
U
{
E
[
x∗k(t)

]}
− ε 1

N

N∑

t=1

∑

k∈K
E{Qk(t)}.

(A.6)

(1). Based on Lyapunov function, we can get the following inequality by

rearranging (A.6)

E
{

[Qk(t)]2
}
≤ B ∗N + E{L(Θ(1))}+ V

N∑

t=1

∑

k∈K
U
{
E[xk(t)]

}
. (A.7)

Since the utility function is a concave function, we have 1
N

∑N
t=1

∑
k U
{
E[xk(t)]

}

≤∑k U
{

1
N

∑N
t=1 E[xk(t)]

}
≤∑k U(X∗k). And due to the fact that

[
E{|Qk(t)|}

]2

≤ E{[Qk(t)]2}, we have

E{|Qk(t)|} ≤
√

[B + V
∑

k∈K
U(X∗k)] ·N + 2E

{
L
(
Θ(1)

)}
. (A.8)

Dividing (A.8) by t and taking a limit as t→∞ results in limt→∞
E{|Qk(t)|}

t = 0.

Hence, the data buffer Qk(t) is mean rate stable, and similar proof can be
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applied to energy queue φ−Ek(t). Thus, the stability constraint of data buffer

and feasibility constraint of battery can be guaranteed.

(2). Dividing (A.6) with V t, rearranging items and using the fact that

E{L(Θ(t))} ≥ 0, we have

1

N

N∑

t=1

∑

k∈K
U
{
E[xk(t)]

}
≥ Ψ(ε)− B

V
− E{L(Θ(1))}

V N
. (A.9)

Due to the fact that 1
N

∑N
t=1

∑
k∈K U

{
E[xk(t)]

}
≤∑k∈K U

{
1
N

∑N
t=1 E[xk(t)]

}
,

we have
∑

k∈K
U
{ 1

N

N∑

t=1

E[xk(t)]
}
≥ Ψ(ε)− B

V
− E{L(Θ(1))}

V N
. (A.10)

Taking a limit as t→∞ and Ψ(ε)→∑
k∈K U(X∗k) as ε→ 0, we can derive the

lower bound of network utility. Similarly, we can rewrite (A.6) as

1

N

N∑

t=0

∑

k∈K
E{Qk(t)} ≤ B − VΨ(ε)

ε

+
V

ε

∑

k∈K

∑

k∈K
U
{ 1

N

N∑

t=1

E[xk(t)]
}

+
E{L(Θ(1))}

εN
.

(A.11)

Taking a limit as t→∞, the upper bound of buffer lenth is derived. Thus the725

theorem is proved.
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