
Computers and Electrical Engineering 74 (2019) 1–21

Contents lists available at ScienceDirect

Computers and Electrical Engineering

journal homepage: www.elsevier.com/locate/compeleceng

New approach to enhancing the performance of cloud-based

vision system of mobile robots

�

Mahmoud Badawy

a , ∗, Hisham Khalifa

a , Hesham Arafat b

a Computers Engineering and Control systems Department Faculty of Engineering Mansoura University, Egypt
b Mechanical Design and Production and graduated from a higher studies diploma in Automatic control - Faculty of Engineering

Mansoura University, Egypt

a r t i c l e i n f o

Article history:

Received 4 March 2018

Revised 15 December 2018

Accepted 3 January 2019

Keywords:

3D point cloud

Cloud computing

Cloud robotics

Computer vision

Computation offloading

Mobile robot

Real-time networking

Stereo vision

a b s t r a c t

Mobile robots require real-time performance, high computation power, and a shared com-

puting environment. Although cloud computing offers computation power, it may ad-

versely affect real-time performance owing to network lag. The main objective of this

study is to allow a mobile robot vision system to reliably achieve real-time constraints

using cloud computing. A human cloud mobile robot architecture is proposed as well as a

data flow mechanism organized on both the mobile robot and the cloud server sides. Two

algorithms are proposed: (i) A real-time image clustering algorithm, applied on the mobile

robot side, and (ii) A modified growing neural gas algorithm, applied on the cloud server

side. The experimental results demonstrate that there is a 25% to 45% enhancement in the

total response time, depending on the communication bandwidth and image resolution.

Moreover, better performance in terms of data size, path planning time, and accuracy is

demonstrated over other state-of-the-art techniques.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Mobile robots affect everyday life, as they can replace humans in several activities, such as material handling, building

construction and demolition, or even planting and harvesting.

Mobile robots are divided into two main categories: (i) Teleoperated mobile robots and (ii) Autonomous mobile robots.

Teleoperated robots can be controlled through a wireless or wired communication system, e.g., Internet, radio connection,

direct cable, or satellite. Autonomous robots can perform tasks such as house cleaning, planting and harvesting, searching

and rescuing, and constructing and demolishing with minimal user intervention. Therefore, to fully use their capabilities,

mobile robots should be controlled with the highest degree of autonomy. To this end, various architectures have been in-

vestigated. Robotic vision has played a major role in making mobile robot navigation safer, but its computational complexity

limits autonomy. One solution is to provide the robot with high computational power; however, this requires more hardware

resources, which may increase size and cost, as well as larger capacity batteries.

The term “Cloud Robotics” was introduced by Kuffner [1] to support “Remotely Brained” robots with parallel computation

and big data sharing over the internet. Cloud robotics exploits cloud technologies to gain elastic computation, storage, and
� Reviews processed and recommended for publication to the Editor-in-Chief by Associate Editor Dr. Guanglong Du.
∗ Corresponding author.

E-mail address: engbadawy@mans.edu.eg (M. Badawy).

https://doi.org/10.1016/j.compeleceng.2019.01.001

0045-7906/© 2019 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.compeleceng.2019.01.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compeleceng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compeleceng.2019.01.001&domain=pdf
mailto:engbadawy@mans.edu.eg
https://doi.org/10.1016/j.compeleceng.2019.01.001

2 M. Badawy, H. Khalifa and H. Arafat / Computers and Electrical Engineering 74 (2019) 1–21

Fig. 1. Computer vision.

robotic services, and to share data from other agents (robots, machines, smart objects, or humans). Users can allocate robots

to tasks through internet networks. By using cloud computing technologies, the robot’s overall cost is greatly reduced. Thus,

it is possible to construct lightweight, low cost, and smart robots with long-life batteries because computational load is

reduced. Those robots have an intelligent “brain” in the cloud. The “brain” is provided with a knowledge base, vast informa-

tion, learning models, data processing, 3D maps, and models.

Lightweight tasks use a small part of cloud processing, and thus resources are available for other purposes. In commercial

clouds, users pay only for the power they use, and heavy tasks consume more cloud computing power. Therefore, this

situation may be beneficial for robots that do not have high computational power. The concept of using cloud services for

some tasks that, for various reasons, should not be performed by the robot itself is known as “robotic brain”. This concept

is not new, but it is now feasible owing to cloud technology. Scalability is a major issue in mobile robot control systems. A

single user should be able to control multiple robots simultaneously, which may be physically distant from each other and

the user. Cloud computing can handle different nodes as long as they have a reliable connection.

In this study, a human cloud mobile robot (HCMR) architecture is proposed to enable single or multiple users to control

multiple autonomous mobile robots simultaneously. Recent research in mobile robot control has been concerned with two

major problems: (i) the computational power that a mobile robot requires, and (ii) the scalability issue that prevents mul-

tiple mobile robots from being added to the system. Cloud computing technology can be used in robotic systems to solve

these problems by exploiting its high computational power and scalability. Real-time networking may degrade system per-

formance; thus, a cloud vision data flow mechanism is used. Accordingly, two algorithms are proposed: (i) a real-time image

clustering algorithm (RT-IC), applied on the mobile robot side, and (ii) a modified growing neural gas (MGNG), applied on

the cloud server side.

The paper is organized as follows: In Section 2 , related work is reviewed. In Section 3 , the main problems and the objec-

tive of this study are presented. In Section 4 , the proposed HCMR architecture and algorithms are described. In Section 5 , the

procedure for solving the main problems is detailed, and the key algorithms are elaborated. In Section 6 , the experiments

are presented and the results are analyzed. In Section 7 , the paper is concluded.

2. Literature review

Recently, there has been extensive research on creating a new generation of robotic systems, particularly with regard to

mobile robot autonomy. A number of studies indicate that more autonomy requires more computational power to achieve

complex tasks, particularly for real-time applications. Robotic vision and computer graphics are among the most complex

tasks that mobile robots can perform. Computer vision uses artificial intelligence to extract information from images. As

shown in Fig. 1 , computer vision includes a wide range of research areas. Scene reconstruction involves computing a 3D

model of the scene from two or more images. Such 3D models could range from subsets of a 3D point cloud (3DPC) to 3D

surface models generated by sophisticated methods. Therefore, various algorithms have been proposed to extract multiple

images into 3D models or subsets of a raw point cloud.

In computer vision, 3D reconstruction using multiple images has been extensively studied. This resulted in improved

performance and quality of 3D model generation. Such 3D models may include, e.g., a real-time scene of a large city gener-

ated by thousands of images. 3D reconstruction is an automatic generation process of 3D representations of objects that are

M. Badawy, H. Khalifa and H. Arafat / Computers and Electrical Engineering 74 (2019) 1–21 3

Fig. 2. Knowledge exchange and cooperation with human architecture.

difficult to model. Such models are used in graphics applications for indoor and outdoor scenes, where certain improve-

ments are required to handle the large amounts of data and the uncontrolled environmental parameters that commonly

influence outdoor scenes.

Mobile robot navigation has become safer owing to robotic vision. However, the computation complexity of robotic vision

limits autonomy and reduces efficiency. One solution is to provide mobile robots with high computational power, but this

would require more hardware that might increase size and cost. It would also require larger battery capacity.

Several studies on controlling mobile robots have appeared, and various systems and architectures have been proposed

to allow a single user to control multiple robots. In [2] , human interaction with robotic systems was studied, and control-

ling multi-robots by using natural language (NL) was investigated. This type of control is suitable for some applications

such as service robots and automated wheelchairs for disabled people; it allows only one task to be executed at a time.

Podevijn et al. [3] presented a method for controlling subgroups of swarms using vision-based arm gestures. This method

is suitable for outdoor applications where mobile robots are used in wide areas such as agricultural and construction areas.

Other gesture-based control methods [4] depended on the processing of neural signals generated by arm gestures. Such

architectures require the user to be near the robot so that the signals can be received.

Research in mobile robots is also closely connected with research in human-robot interaction. Part of this research has

led to interesting outreach activities, such as the Personal Rover Project [5] , in which systems that can be used at home,

school, or local science museums were developed. Other studies presented human-robot interaction techniques based on

graphical user interfaces. An AJAX-based graphical user interface for a mobile robotic system with multiple sensors (an

ultrasonic array, a thermal sensor, and a video streaming system) was proposed in [6] to obtain environmental information

with path planning and obstacle avoidance capability. This system assumes that the environment is static.

Kakoty et al. [7] investigated mobile robot navigation and proposed a scheme, inspired by human pedestrian behavior,

for robot navigation assuming unknown dynamic environment. In this method, robots constructed grid maps using onboard

sonar sensors to maintain a safe direction and distance to avoid collisions with obstacles.

Ochiai et al. [8] proposed a touch panel interface to remotely control a robotic system that used simultaneous localization

and mapping (SLAM) and motion planning to achieve autonomy.

A system of service robot groups that can share skills and cooperate with groups of distant human agents was proposed

in [9] . Connection to the cloud was used as a knowledge repository for the robotic system. Consequently, distant groups of

robots exchange learned skills with each other and adapt to cooperation situations with human agents, as shown in Fig. 2 .

In [10] , an integration between the cyber world and the physical world was also presented to realize the idea of “Robot

Cloud”, thus combining the power of robotics and cloud computing.

Ayanian et al. [11] presented a GUI-based control method, namely, an iOS application that enables the user to move

a group of unmanned aerial vehicles (UAVs) through a selection box “prism” in a virtual environment. The destination

coordinates are sent to the server through a wireless connection, and subsequently the server transmits them to the UAV

controllers for processing. However, this architecture lacks scalability. Moreover, they introduced a motion control algorithm

that is well-suited to modern tablet and smartphone interfaces, but that system also lacks scalability.

Another study proposed a method that allows multiple users to direct a group of mobile robots; however, each user can

control only one robot [12] . Other studies investigated multiple robot control using user interfaces inspired by video games

[13] . The proposed HCMR architecture is an extension of that by Karulf et al. [13] . That study relates to the present study

in the following respects: (i) Exploiting cloud computing technology in mobile robot control systems to enhance scalability,

(ii) Allowing heterogeneous mobile robots to be controlled by the user, (iii) Allowing user devices with different platforms

to access the system and control mobile robots, and (iv) Using cloud computing to rapidly solve complex problems such as

path planning and computer vision.

Mobile robot vision has been widely studied, and it involves several issues and challenges. Fig. 3 can be found in [14] .

It shows the classification of mobile robot challenges based on the 5 W categories (why, what for, what with, how, where)

[14] . In the present study, two more categories (processing method, real-time requirements) and their child elements were

added to the taxonomy.

4 M. Badawy, H. Khalifa and H. Arafat / Computers and Electrical Engineering 74 (2019) 1–21

Fig. 3. Mobile robot vision taxonomy.

Recently, research on mobile robot vision has not considered the issue of real-time requirements. Object detection based

on high-resolution scale-invariant feature transforms can be expedited by transmitting on-board preprocessed image infor-

mation instead of raw image data to the external servers [15] ; however, the cloud computing paradigm is not fully exploited.

A cloud implementation of SLAM was studied in [16] , where both computation offloading and collaborative work were com-

bined to fuse information from several mobile robots. That study used a 640 × 480 pixel RGBD camera. Nimmagadda et al.

proposed minimizing the total execution time of object tracking [17] through offloading decision-making for object recog-

nition with different bandwidths, background complexities, and database sizes. In [18] , a standard UDP transport protocol

for transmitting large-volume images over an Ethernet network was proposed. Cloud image processing facilitated stability

control, but ingenious hold action occurred in the actuation signals owing to Ethernet protocol delays. In [19] , a mobile

robot was used to compare the performance of on-board execution and the performance of distributed offloading.

3. Problem statement and solution plan

As seen in Section 2 , numerous architectures have been proposed that can support a wide range of applications; however,

most of them lack scalability and miss the issue of real-time constraints. Mobile robots are required to react under real-time

constraints, which cannot be achieved by hardware with limited computational power. This issue has not been adequately

addressed in the literature.

The use of cloud computing technology can ensure scalability. The proposed HCMR architecture can overcome the prob-

lem of computational power by allowing mobile robots to offload heavy computation to the cloud server. Therefore, mo-

bile robots can start reasoning. However, another problem now arises, namely, real-time networking. Salmeron-Garcia et al.

[20] applied cloud computing to construct a cloud-based 3DPC extractor for stereo images, as shown in Fig. 4 . The purpose

was a dynamically scalable solution that could be applied to near real-time scenarios. Their system faced several challenges,

M. Badawy, H. Khalifa and H. Arafat / Computers and Electrical Engineering 74 (2019) 1–21 5

Fig. 4. Block diagram of the 3DPC extraction platform [20] .

Fig. 5. Various images showing a 3DPC extracted from a pair of 2D images.

such as stability, deadline conformance, and communication limitations. Fig. 5 shows a pair of images of a corridor and the

3DPC map reconstructed from them.

In the offloading algorithm presented in [20] , each mobile robot decides whether to perform 3DPC extraction locally or

to offload that task remotely to the cloud, according to Eqs. (1) –(3) . The proposed HCMR architecture is more complicated

than that in [20] , as it takes into consideration that each user should be updated with the robot’s physical state, surrounding

environment, and progress in the allocated task. Thus, the present study considers offloading the stereo images to the cloud

and letting the cloud server extract the 3DPC and other mapping data.

t local =

N 1

IP S
(1)

t remote =

N 1

IP S.S
+

D

BW

(2)

The process will be executed locally in its entirety if

N 1

D

>

IP S

BW

, (3)

where N 1 , IPS, D, BW , and S denote computer instructions (inst), number of instructions per second (inst/s), amount of data

sent and received (bit), network bandwidth (bit/s), and speed-up on the cloud server, respectively.

In Salmeron-Garcia et al. [20] , mobile robots require high communication bandwidth so that a large amount of data may

be transferred for each frame of the stereo camera. Although images with high resolution have large sizes and thus consume

a correspondingly large percentage of the connection bandwidth, there is a growing need to use them for extracting 3DPCs

instead of lower resolution images. High-resolution images will facilitate the reduction of 3DPC noise and enhance mapping

accuracy. For each pair of images extracted to 3DPC, the mobile robot receives a large-size 3DPC. Then, the mobile robot

starts reasoning. Transferring a large amount of data for each frame may reduce scalability and degrade the real-time perfor-

mance of the system. Another good solution for robust visual SLAM using cloud services is Robust-Secure-Elastic PlatForm

6 M. Badawy, H. Khalifa and H. Arafat / Computers and Electrical Engineering 74 (2019) 1–21

Fig. 6. Conceptual design of the proposed HCMR architecture.

(RSE-PF) proposed in [21] , which is capable of reducing network latency by compressing messages before transmission and

by adopting the HTTP of posting files to data servers instead of encoding them to JSON strings. The spatially hashed (SH)

volume data structure technique proposed in [22] is a solution for large-scale real-time 3D reconstruction on mobile devices

with noisy data and limited computational and memory resources, in which RGB-D datasets are used for 3D reconstruction.

In the present study, RES-PF [21] and the technique in [20] are considered in the experiments, where lower connection

bandwidth is also investigated.

4. Proposed human-cloud-mobile-robot architecture

The main objective of the proposed HCMR architecture is to enable a single or multiple users to control multiple mobile

robots simultaneously. A general overview is first presented. The block structure of the proposed architecture, as shown in

Fig. 6 , consists of three main layers: (i) The user interface layer, (ii) the cloud server layer, and (iii) the mobile robot layer.

HCMR can be implemented in a wide range of applications, such as automated urban works, agriculture, search and rescue,

army and defense, manufacturing, and home automation.

M. Badawy, H. Khalifa and H. Arafat / Computers and Electrical Engineering 74 (2019) 1–21 7

Fig. 7. Selected mobile robots moving simultaneously to the specified target through the generated paths.

Fig. 8. Robot map query system.

A computer device, tablet, or other platform is used to access cloud applications to preview the rendered location of

objects, obstacles, and mobile robots in the virtual map, constructed in the cloud, through a graphical user interface. Each

user is connected to the cloud server by thin client architecture. The user platform is provided with an application that can

access the virtual map constructed on the cloud server to preview, edit, remove, or add objects in certain locations on the

map (e.g. boundaries) so that mobile robots can handle them. The mobile robots are connected to the cloud server using a

P2P architecture.

The proposed architecture enables users to select certain mobile robots and then assign a high-level task to them. For

example, to move a robot from point A to point B, to handle an object, or to simultaneously perform a cooperative action

(e.g. cooperative grasping, object manipulation, formation, foraging, or flocking). Fig. 7 shows a group of mobile robots

selected by the user to move to a certain point on the map.

Each user can control the mobile robots by moving them to a certain point (destination point) on the virtual map. The

robots may have insufficient or expired information about the surrounding environment; thus, they follow a map query

procedure, as shown in Fig. 8 , to start path planning. First, a robot seeks an updated map in its local memory. If there is no

8 M. Badawy, H. Khalifa and H. Arafat / Computers and Electrical Engineering 74 (2019) 1–21

Fig. 9. Object recognition system for service robots.

updated map from the source to the destination, the robot attempts to acquire an updated map from neighboring robots. If

this fails, the robot requests the updated map from the cloud server. If this also fails, it starts searching and exploring the

environment until it reaches the destination.

In the task allocation module, the high-level task is broken down to lower level subtasks using task planning algorithms.

To achieve the allocated task, the robots have to navigate to the target location where the task is to be performed. This is

achieved by the pathfinding module, where several paths to the target are explored. For better performance, the HCMR ar-

chitecture calculates and chooses the shortest path from the source to the target by applying a path optimization algorithm.

To attain some degree of autonomy, the robots should be provided with a path planning sublayer so that they can navigate

in the surrounding environment in case the connection with the cloud server is slowed down or lost, and in case a group

of robots should cooperate in a certain task or move in unison.

If planning should take place in the cloud, the optimal path would break down into a group of straight lines whose

endpoints are called checkpoints. These checkpoints are sent to a robot in the form of a sequence of relative polar coordi-

nates (r, θ). A buffer is used to receive the sequence of instructions and checkpoints from the cloud. The buffer sends the

checkpoints to the motor driver individually, where they are translated into signals to be sent to the motors. After arriving

at the target location, the buffer sends the instructions to the actuators to perform the required task.

Obstacle avoidance is the task of satisfying some control objective subject to non-intersection or non-collision position

constraints. It is an active topic of research [23,24] owing to the growing need for easy navigation in urban, industrial, or

even military environments. Normally, obstacle avoidance differs from path planning in that it is usually implemented as a

reactive control law, whereas path planning involves the pre-computation of an obstacle-free path, along which the robot

will be guided by a controller.

To control a group of mobile robots, it is necessary to assign a group leader, so that in case a robot loses connection

to the cloud, it may continue receiving instructions through the leader. The leader is a robot with a reliable connection to

the cloud, and with the most effective communication with the other robots in the group. It is chosen by applying a leader

selection algorithm.

Mobile robot localization is achieved by odometry. The inertial measurement unit (IMU) is an electronic device that

measures a mobile robot’s orientation, velocity, and gravitational force by means of accelerometers and gyroscopes. IMU

sends the measured velocity and direction to the localization module. The localization module, in turn, gives feedback to

the motor driver and to the map in the cloud so that the robot’s location is re-rendered on the map.

There are several sensing devices that mobile robots can use to describe the surrounding environment, such as, Lidars,

stereo cameras, RGBDs, thermal cameras, and ultrasonic sensors. In this study, it is assumed that mobile robots in the

proposed architecture will use a stereo vision system. Stereo cameras mounted on mobile robots are used to capture real-

time stereo images. The onboard controller sends these stereo images to the cloud for object detection and tracking, object

recognition, and boundary estimation. The graphic models module in the cloud server layer is provided with a massive

library of 3D models of daily-life, industrial, or any other special objects. The captured images are compared with them to

perform the object recognition task, as shown in Fig. 9 . In the next section, the vision module in the cloud layer will be

explained in detail.

5. Data flow mechanism

To achieve real-time networking and the best utilization of cloud resources, the response time should be reduced when

computational tasks are offloaded to the cloud server. The response time can be reduced through (i) simplification of the

computational tasks by discarding redundant stereo image clusters, (ii) workload sharing between the mobile robot and

the cloud server or neighboring robots, (iii) parallelization of the work between cloud computational nodes, (iv) reducing

M. Badawy, H. Khalifa and H. Arafat / Computers and Electrical Engineering 74 (2019) 1–21 9

Fig. 10. Cloud-vision data flow mechanism.

Fig. 11. Various images illustrating image pair clustering.

the amount of data to be sent and received between the mobile robot and the cloud server, and (v) assigning priorities to

computational tasks, thus enabling the mobile robot to better handle real-time constraints in the surrounding environment.

A robot’s reasoning will be enhanced if part of the results arrives from the cloud server earlier while other parts are still

being processed in the cloud, as shown in Fig. 16 .

Tasks (i)–(v) above can be achieved using the data flow mechanism shown in Fig. 10 . In the next sections, there will be

a detailed description of the two proposed algorithms, namely, RT-IC, applied on the mobile robot side, and MGNG, applied

on the cloud server side. The navigation procedure in the surrounding environment will also be described.

5.1. RT-IC algorithm

During the exploration process, the mobile robot captures stereo images of the surrounding environment. The camera

frame rate is directly proportional to the robot’s speed. The image pairs are clustered, and then priorities are assigned to

each cluster (the middle lower clusters have higher priority because they are considered to be the nearest objects to the

robot. Detecting those near objects will enable the robot to efficiently meet deadlines in obstacle avoidance and path re-

planning calculations). As shown in Fig. 11 , the top priority is cluster number 1, which is the nearest to the robot.

10 M. Badawy, H. Khalifa and H. Arafat / Computers and Electrical Engineering 74 (2019) 1–21

Fig. 12. Real captured scene with its corresponding virtual scene.

Fig. 13. Canny edged real scene with its corresponding canny edged virtual scene.

Fig. 14. Dilated canned image of a virtual scene.

As Fig. 12 shows, a virtual scene is obtained by creating a viewport on the map that is stored in the robot’s memory.

Viewport location and orientation are obtained from the robot’s IMU.

Canny edging is an image processing technique used for edge detection. It is applied to real and virtual scene images, as

shown in Fig. 13 .

Dilation is an image processing technique for binary images that gradually enlarges region boundaries. By applying this

technique to canny edged images, edge thickening is achieved. Here, it is applied to canny edged virtual images. This step

is important because it ensures avoiding inaccurate congruence between real and virtual images during the subtraction

process. Fig. 14 shows the dilated canned image of a virtual scene.

In the subtracting module, the canny edged real scene images are subtracted from the dilated canny edged virtual scene

images. Each pixel in the real image is subtracted from each pixel in the virtual image. The result is then clustered into

M. Badawy, H. Khalifa and H. Arafat / Computers and Electrical Engineering 74 (2019) 1–21 11

Fig. 15. Various images showing the discarding of redundant clusters.

Fig. 16. (a) Traditional offloading method, (b) Clustering offloading method.

three rows and three columns of image clusters. If an image cluster contains non zero pixels, it is considered an area of

interest (AoI). Each AoI is then offloaded to the cloud server for surface extraction, and the cloud server map is updated

accordingly. Fig. 15 shows the image resulting from the subtraction process, and the AoI clusters. It is clear that textured

areas in the real images are not subtracted because 3D reconstructed surfaces are not textured so that they can be offloaded.

This problem will be the focus of future research.

Fig. 16 shows the difference in the time analysis of offloading processes with and without clustering. By using the clus-

tering technique, the robot will receive the most important part of the result (the nearest surface segments) earlier by � t ,

thus allowing the reasoning process to start before the complete result is received, as shown in Algorithm 1 (RT-IC).

Algorithm 1 RT-IC Algorithm.

PairImage= CapturePairImage

Counter =1

while C ount er � = 9 do

ClusterImage= getClusterImag e pr ior iyNumber = C ount er

if ClusterImage= AOI then

Offload(ClusterImage, MobileRobotID, position, orientation, FrameNo, ClusterPriority)

end if

Counter = Counter +1

end while

12 M. Badawy, H. Khalifa and H. Arafat / Computers and Electrical Engineering 74 (2019) 1–21

Fig. 17. FOV frustum of the mobile robot.

Fig. 18. Main FOV frustum is partitioned into nine frustums.

Fig. 19. Cloud server detects the planar surfaces located in the FOV of robot’s stereo camera.

5.2. MGNG algorithm

A 3D point-model usually contains thousands of points. 3DPCs are collections of scanned points. Assuming that stereo

image extraction produces a 3DPC containing 100 K points, each point will contain coordinates and color: four bytes for

each (XYZ) float coordinate and one byte for each (RGB) color ingredient. This will require each robot to have a connection

bandwidth of 15 MB/s, which is considered excessively high for real-time networking. 3DPCs may not even contain any

topological information. However, most of the topological information can be deduced by applying suitable algorithms. Thus,

a surface extraction technique is used after the application of 3D point extraction to the stereo clustered images for the

following reasons:

1. To reduce the amount of data transferred from the cloud server to each robot.

2. To achieve mapping accuracy by providing robots with a set of surfaces that contain sufficient topological information.

3. To simplify path planning calculations in the local robot controller, as it is highly efficient to estimate the optimal path

using a set of surfaces rather than searching each time in a 3DPC.

The mobile robot sends the position and orientation of the stereo image to the cloud server. From the position and

orientation values, the cloud server can simulate the field of view (FOV) frustum of the robot at the current frame on the

full map stored on the cloud server. Fig. 17 shows the FOV frustum of a camera. As the image pairs are clustered into

nine clusters, the FOV frustum must be partitioned into nine frustums as well. Fig. 18 shows the partitioned main frustum.

From the map stored on the cloud server, the number (n) of planar surfaces that lie inside or intersects with the FOV of the

robot’s camera can be calculated. Then the cloud server obtains the equations of the planar surfaces to be used in the region

growing layer. Subsequently, the dedicated frustum partition is used to perform a FOV culling by deleting all surfaces that

fully lie inside the frustum and to trim the inside parts of the intersecting surfaces. The point cloud is sampled by using a

voxel grid to reduce the total processing cost and decrease the number of noisy points.

M. Badawy, H. Khalifa and H. Arafat / Computers and Electrical Engineering 74 (2019) 1–21 13

Accordingly, the cloud server can parallelize the computation by executing (n+1) computational nodes. Each node from

1 to n is responsible for updating each planar surface structure by using the extracted 3DPC. One additional computation

node is responsible for non-planar surface extraction. For each point p in the 3DPC, if it approximately satisfies the equation

of any of n planar surfaces, it will be moved to the computational node corresponding to this planar surface. Once the point

p is moved, it will be inserted in a k–d tree. All points in the same computation node are extracted to separate planar

surfaces using the MGNG algorithm discussed in Section 5.2.1 . These surfaces are then returned to update the robot’s map

and the server’s full map. After the entire 3DPC has been searched, there will be a set of remaining unconstrained points

P UnConst that do not belong to any of the planar surfaces. These points will be inserted in a k–d tree, and the GNG algorithm

(discussed in Section 5.2.2) will be applied to extract planar and non-planar surfaces. The result will be returned to the

robot’s map and to the full map on the cloud server. Each computation node has now a set of points, where segmentation

and surface extraction are performed.

5.2.1. Planar-constrained computation nodes

For computational nodes that have planar point cloud constraint, the procedure and notation used in GNG are shown

in Algorithm 2 , where c s t is the edge joining s and t, c s n is the edge joining s and its neighboring node, e w

and e n are

Algorithm 2 MGNG algorithm.

Create two randomly positioned nodes w s , w t in R 3 and connect them with a zero age edge with error = 0

while Stopping criteria are not met do

Generate random input data X̄

Locate the two nodes s (nearest) and t (2nd nearest) nearest to X̄

if c s t = 0 then

c s t = 1

end if

er ror s = er ror s + || w̄ s − X̄ || 2
w s = w s + ew (̄X − w̄ s)

w n = w n + en (̄X − w̄ n)

Age c s,n = Age c s,n + 1 , ∀ n ∈ toNeighbors

if c s,n = 0 then

c s,n = 1

else

Age c s,n = 0

end if

if Age c > Age max , ∀ edge c ∈ C then

c = 0

if n c count = 0 , ∀ node n ∈ N then

Remove n

end if

end if

if Step number /λ = Integer then

Insert node N new

to Node list

W̄ N new
=

W̄ N Nearest
+ ̄W N 2 ndNearest

2
¯error N new

= ¯error N nearest

¯error N nearest
= α ∗ ¯error N nearest

¯error N 2 ndNearest
= α ∗ ¯error N 2 ndNearest

end if

end while

while Not all nodes are inside a boundary do

Node BoundaryList 0
= Node list le f tMost

Currentnode = Node BoundaryList 0
while CurrentNode � = Node BoundaryList 0

OR 1 stLoop do

Nod e BoundaryList N odeNumber
= Nod e MaxAngle CurrentN ode, + Y ∀ nod e ∈ currentNodeNeighbors

currentnode = Node BoundaryList n

n=n+1

end while

end while

while Stopping criteria are not met do

W̄ NodeBoundary = W̄ outsideKneighbor ∀ BoundaryNode ∈ BoundaryList

end while

14 M. Badawy, H. Khalifa and H. Arafat / Computers and Electrical Engineering 74 (2019) 1–21

Fig. 20. Planar point cloud is segmented into two topologies.

Fig. 21. Contour edges extracted marked in red color. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)

factors in the interval [0,1], vs is the position vector of the s node, and w n is the position vector of a node neighboring s.

Thereby, the topological structure of the 3DPC can be learned by the MGNG algorithm after the computational node learns

the topological structure of the planar point cloud, as shown in Fig. 20 . The outer contour of each segment is extracted as

shown in Fig. 21 . This will facilitate the application of the region growing algorithm and reduce the amount of data that

will be sent to the mobile robot, thereby reducing bandwidth consumption.

After the extraction of the outer contour of each segment, its outer nodes are enforced by the MGNG algorithm to push

outside and completely fit the 3DPC using the kd-tree arrangement, as shown in Fig. 22 .

5.2.2. Non-planar constrained computation nodes

For computational nodes that have non-planar point cloud constraint, it is required that planar and non-planar surfaces

be extracted. Accordingly, he GNG algorithm is applied to learn the topological structure of the 3DPC. Subsequently, segment

planarity is checked. If the segment is planar, it will then follow the pipeline in Section 5.2.1 . The planar segments are to be

applied to GNG with planar surface extraction. Then, a segment is sent to the mobile robot, and the full map on the cloud

server is updated.

The planarity check algorithm depends on estimating the normal vectors for all nodes, whereby the similarity s i,j between

the i and j nodes is defined. Specifically, similarity can be defined using the inner product of the normal vectors between
th th

M. Badawy, H. Khalifa and H. Arafat / Computers and Electrical Engineering 74 (2019) 1–21 15

Fig. 22. Boundary node is enforced to push outside to the nearest k-neighbor point.

nodes, and equals the angle between the normal vectors by applying Eq. (4) . If s i,j is approximately equal to 1 for all nodes

in the segment, the entire segment is planar.

s i, j =

n i .n j

| n i | . | n j | (4)

5.3. Mobile robot navigation

In the proposed HCMR architecture, the cloud server recognizes ground surfaces, i.e., planar surfaces on which the mobile

robot can move, as those with node normal approximately parallel to the Z vector of the mobile robot, assuming the terrain

is flat, and their Z levels are approximately equal to the Z level of the robot’s wheels. The cloud server will not extract this

surface as an outer contour of edges and vertices but as a raw nodal network generated directly from the GNG algorithm.

When the mobile robot navigates from its current point S to a destination point D , it will first reach the nearest node

point S nearest in the nodal network of the ground surface. During its movement toward S nearest , the robot estimates the

shortest path between S nearest and the nearest node D nearest to D. Then, the robot navigates along the shortest path selected

to D nearest and then to D, as shown in Fig. 23 . In this method, the time required for path planning is greatly reduced because

a simple algorithm through a nodal network is used compared to path planning through a 3DPC, which requires longer time

to execute a heuristic search using a complex artificial intelligence algorithm for optimal path selection.

6. Experimental result discussion and analysis

In this section, an application of the proposed approach is presented. The proposed approach takes into consideration

different conditions, image resolutions, point cloud sizes, and network bandwidths. On the mobile robot side, a Python code

with the OpenCV package was used to cluster the pair images of each frame and to discard redundant clusters. On the

cloud server side, the 3DPC extractor code written in Python with the OpenCV package was first used followed by the point

cloud segmentation code MGNG written in C++ with OpenGL on an Intel 2.5 GHz Corei5 processor with 6 GB RAM. The

proposed approach was applied to individual frames. To simulate cloud performance, the code was written so as to allow

multiple computation nodes and parallel processing. The cloud simulation parameters, such as number of created cloudlets,

instruction length of each cloudlet, and number of created computation nodes (virtual machines), were monitored to extract

different sets of image pairs. The parameters were applied to “CloudSim” (a professional cloud simulator), and the results

were found to be valid. The settings age max = 30 = 30, e w

= 0 . 05 , and e n = 0 . 002 were used. The experimental results were

analyzed in terms of response time, data size path planning time, and accuracy. The related discussion will be presented in

the next sections.

6.1. Response time analysis

To prove the efficiency of the proposed approach, the response time was used as a metric. Response time, as indicated in

Eq. (5) , is the total time T t for offloading clustered images, processing, and receiving 3D surfaces for one frame. The obtained

results were compared with those by other state-of-the-art techniques that do not use clustering or MGNG segmentation,

such as the technique in [20] and RSE-PF [21] .

T t = T 0 + T p + T C , (5)

where T t , T 0 , T p , and T c denote total time, time for offloading image pairs to the cloud server, time for surface extraction

from image pairs, and time for receiving results from the cloud server, respectively.

16 M. Badawy, H. Khalifa and H. Arafat / Computers and Electrical Engineering 74 (2019) 1–21

Fig. 23. Mobile robot navigation in the surrounding environment.

Fig. 24. Offloading time for different sizes of image pairs versus different communication bandwidths.

Fig. 24 (a) shows the time required to offload a pair of high-resolution images to the cloud server. There is no major

difference in t 0 between RT-IC with MGNG and the approach in [20] , as in both cases, image pairs of the same size will

be offloaded on the assumption that no redundant clusters are discarded; otherwise, the size of the image pairs will be

reduced, and consequently t 0 for RT-IC with MGNG will also be reduced. Fig. 24 (b) shows lower offloading time for RSE-PF

because it uses data compression before transmission, which may increase processing time, as will be seen later.

Fig. 25 shows the time required for image pair processing to extract the 3DPC using RT-IC and MGNG compared with

RSE-PF and the technique in [20] . Different sets of image resolutions and 3DPC sizes were considered in Fig. 25 (a)–(c). It is

obvious that the processing time for the MGNG algorithm is slightly longer than that for the other techniques because MGNG

starts nodal network surface extraction immediately after 3DPC extraction. Moreover, the processing time was calculated

without parallelization. The proposed approach, however, pipelines the cluster processing task within the same frame, thus

M. Badawy, H. Khalifa and H. Arafat / Computers and Electrical Engineering 74 (2019) 1–21 17

Fig. 25. Processing time comparison between RT-IC with MGNG and other state-of-the-art techniques.

Table 1

Time analysis (s) for processing different sizes of stereo images versus different bandwidths.

Technique RTIC_MGNG [20] RSE-PF

Image_Sizes Mb/s t 0 t p /cluster t c t t / frame Mb/s t 0 tp/frame t c t t / frame Mb/s t 0 t p /frame t c t t / frame

640_x_480 4 2 0.08 0.006 2.08 4 2 0.55 0.15 2.7 4 0.67 0.61 0.05 1.31

8 1 0.08 0.003 1.083 8 1 0.55 0.075 1.625 8 0.35 0.61 0.024 0.94

16 0.5 0.08 0.0015 0.583 16 0.5 0.55 0.0375 1.087 16 0.16 0.61 0.01 0.79

24 0.33 0.08 0.001 0.413 24 0.33 0.55 0.025 0.905 24 0.12 0.61 0.01 0.73

— — — — — — — — — — — — — — —

1024_x_768 4 4 0.087 0.03 4.092 4 4 0.6 0.3 4.9 4 1.35 0.77 0.12 2.24

8 2 0.087 0.015 2.09 8 2 0.6 0.15 2.75 8 0.72 0.77 0.05 1.54

16 1 0.087 0.01 1.09 16 1 0.6 0.1 1.7 16 0.45 0.77 0.031 1.25

24 0.66 0.087 0.005 0.749 24 0.66 0.6 0.05 1.31 24 0.297 0.77 0.018 1.01

— — — — — — — — — — — — — — —

1920_x_1080 4 8 0.21 0.06 8.284 4 8 2.2 0.6 10.8 4 2.43 2.42 0.18 5.03

8 4 0.21 0.03 4.281 8 4 2.2 0.3 6.5 8 1.26 2.42 0.09 3.77

16 2 0.21 0.015 2.279 16 2 2.2 0.15 4.35 16 0.63 2.42 0.05 3.1

24 1.33 0.21 0.01 1.608 24 1.33 2.2 0.1 3.63 24 0.39 2.42 0.03 2.84

Fig. 26. Comparison between receiving time for RT-IC with MGNG and other state-of-the-art techniques.

reducing the total processing time of the entire frame on the cloud server, as shown in the total response time analysis in

Fig. 27 and Table 1 .

Fig. 26 (a)–(d) show the time required to receive the extracted 3DPC from the cloud server for different 3DPC sizes. It can

be concluded that the proposed approach is less time-consuming in receiving data compared with other techniques because

the mobile robot receives a lightweight mapping dataset that consist of nodal network segments, whereas the mapping

datasets in RSE-PF and the technique in [20] consist of dense 3DPCs.

Fig. 27 shows the total response time analysis for the proposed approach in comparison with other state-of-the-art tech-

niques. Different bandwidths have been considered, indicating the advantage of the proposed approach over the technique

in [20] in Fig. 27 (a)–(d), and over RSE-PF for relatively higher bandwidths (above 8 Mbit/s) in Fig. 27 (c) and (d).

Table 1 shows a time analysis for different image resolutions versus different network bandwidths to compare the re-

sponse time using RT-IC with MGNG and other state-of-the-art techniques. As it is clear that the total time required to

18 M. Badawy, H. Khalifa and H. Arafat / Computers and Electrical Engineering 74 (2019) 1–21

Fig. 27. Comparison between total response time for RT-IC with MGNG and other state-of-the-art techniques.

Fig. 28. Data size of generated MGNG surface maps compared with different point cloud maps generated by other techniques.

process one frame of stereo images on the cloud server using RT-IC with MGNG is less than that for other techniques in

most cases, the superiority of the proposed approach is demonstrated.

6.2. Data size analysis

In this section, the amount of data received from the cloud server after 3D map reconstruction is investigated as an-

other metric to measure the efficiency of the proposed approach. Typically, this experiment was conducted several times to

measure the received data sizes for different 3DPC sets for the extracted frame and their corresponding nodal network seg-

ments that completely fit the 3DPC. Surely, the size of the received data affects not only network bandwidth usage but also

performance. Mobile robots may have limited memory, power, and storage capabilities. Therefore, the data received should

be minimized as much as possible. In addition, if memory usage is minimized, further calculations by the robot will be

facilitated, and hence performance will be enhanced. Fig. 28 shows the advantage of using the MGNG algorithm to reduce

the size of the received mapping results in comparison with other state-of-the-art techniques, namely, the techniques in

[21] (RSE-PF), [20,22] (SH).

6.3. Path planning time analysis

To prove the effectiveness of the proposed approach not only in scene reconstruction but also in path planning, Dijkstra’s

algorithm was used to select the shortest path from source to destination in an MGNG generated nodal network simulated

in MATLAB. The proposed simulated Dijkstra algorithm is referred to here as MGNG-D. The required time for path planning

in nodal networks extracted from 3DPCs of different sizes was measured, as shown in Fig. 29 . Fig. 30 shows the measured

path planning time in nodal networks extracted from 3DPCs of different sizes. It can be seen that path planning through

a pre-extracted nodal network using MGNG is less time consuming compared with those by other related state-of-the-art

techniques, namely the FSE (full subsumption Euclidean) and FSW (full subsumption weighted) techniques presented in

[25] . Fig. 31 shows the robot battery life using MGNG-D periodically compared with other techniques. Battery life is esti-

mated mathematically as BatteryLi f e = Batt eryC apacity/ [α ∗ T askExecutionT ime ∗ LengthO f Instructions] , where α is a factor

that indicates power dissipation per instruction. This factor is estimated experimentally.

M. Badawy, H. Khalifa and H. Arafat / Computers and Electrical Engineering 74 (2019) 1–21 19

Fig. 29. Various figures showing path planning from a source node to a destination node in a nodal network generated from different 3DPC sets.

Fig. 30. Path planning time using MGNG-D and other state-of-the-art techniques for different sets of mapping data.

6.4. Accuracy analysis

The accuracy of the final mapping is constrained by several factors, such as image pair resolution, 3DPC extraction algo-

rithm, and MGNG parameters. In the proposed MGNG algorithm, optimal parameter values were used to allow accurate map-

ping results. The accuracy of the proposed approach is greatly improved compared with other state-of-the-art techniques

because a) it can use high-resolution image pairs for mapping with less response time compared with other techniques.

As high-quality images are used, it yields better 3DPC accuracy; b) MGNG converts 3DPCs into nodal network surfaces

that completely match the 3DPC shape, and thus it is robust against noisy and cluttered points. The approximated error

in dimension measurements between mapping results and the real region of interest was obtained for different techniques

constrained by computation offloading frequency, which is the number of times the mobile robot sends stereo cluster pairs

to the cloud server, extracts mapping results and receives them back for one frame per second. In this case, image resolution

is specified so as to maintain computation offloading frequency. In Fig. 32 , each technique uses different image resolutions

to maintain a computation offloading frequency of 2 Hz. It can be deduced that the proposed approach has the highest map-

ping accuracy owing to its ability to maintain higher stereo image resolution within the specified computation offloading

frequency in comparison with the other state-of-the-art techniques.

7. Conclusion and future work

The HCMR architecture was proposed, whereby a single user can control a group of mobile robots simultaneously. HCMR

uses cloud technology, which allows an open shared environment with dynamically scalable computing capability. Cloud

computing stands short of facing the challenge of dealing with real-time applications due to its limited networking capa-

bilities comparatively with the high data transmission needed by such applications. A data flow mechanism was proposed

that overcomes this problem through simplification of the computational tasks, workload sharing, parallelization of the work

between cloud computation nodes, and reduction of the amount of data to be sent and received between the mobile robot

and the cloud server.

20 M. Badawy, H. Khalifa and H. Arafat / Computers and Electrical Engineering 74 (2019) 1–21

Fig. 31. Battery life in MGNG-D and other state-of-the art techniques.

Fig. 32. Accuracy measurement of our approach compared with other state-of-the-art techniques.

Although the experimental results demonstrated the feasibility of the proposed approach, there are certain problems that

should be investigated in future work. For instance, the mobile robot clustering algorithm does not eliminate redundant clus-

ters that contain textures; furthermore, it eliminates redundant clusters and hence reduces network utilization, but it may

increase processor utilization. However, critical processor utilization was not noticed. Additionally, the HCMR architecture

should be extended to include edge computing technology. The data flow mechanism including the 3D point processing al-

gorithms should be accordingly redesigned so as to allow greater reduction of the response time not only for navigation but

also for task achievement. In the present study, MGNG was designed to categorize 3D points into planar-constrained points

and non-planar-constrained points. Thus, the proposed MGNG algorithm should be extended so as to include more regular

geometric surfaces such as cones, ellipsoids, cylinders, or even partial geometric shapes.

Supplementary material

Supplementary material associated with this article can be found, in the online version, at 10.1016/j.compeleceng.2019.

01.001 .

References

[1] Kuffner J . Cloud-enabled humanoid robots. In: Proceedings of the IEEE-RAS 10th international conference on humanoid robots (Humanoids) Nashville
TN, United States, Dec.; 2010 .

[2] Remmersmann T , Schade U , Schlick C . Supervisory control of multi-robot systems by disaggregation and scheduling of quasi-natural language com-
mands. In: Proceedings of the IEEE international conference on systems, man, and cybernetics (SMC). IEEE; 2012. p. 315–20 .

https://doi.org/10.1016/j.compeleceng.2019.01.001
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0001
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0001
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0002
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0002
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0002
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0002

M. Badawy, H. Khalifa and H. Arafat / Computers and Electrical Engineering 74 (2019) 1–21 21

[3] Podevijn G , O’Grady R , Nashed YS , Dorigo M . Gesturing at subswarms: towards direct human control of robot swarms. In: Proceedings of the confer-
ence towards autonomous robotic systems. Springer; 2013. p. 390–403 .

[4] Shafivulla M , Rajesh V , Khan H . Semg based human computer interface for robotic wheel. In: Proceedings of the 4th international conference on
intelligent human computer interaction (IHCI). IEEE; 2012. p. 1–5 .

[5] Falcone E , Gockley R , Porter E , Nourbakhsh I . The personal rover project:: the comprehensive design of a domestic personal robot. Rob Auton Syst
2003;42(3–4):245–58 .

[6] Paolini C , Lee GK . A web-based user interface for a mobile robotic system. In: Proceedings of the IEEE 13th international conference on information

reuse and integration (IRI). IEEE; 2012. p. 45–50 .
[7] Kakoty NM , Mazumdar M , Sonowal D . Mobile robot navigation in unknown dynamic environment inspired by human pedestrian behavior. In: Pro-

ceedings of the progress in advanced computing and intelligent engineering. Springer; 2019. p. 441–51 .
[8] Ochiai Y , Takemura K , Ikeda A , Takamatsu J , Ogasawara T . Remote control system for multiple mobile robots using touch panel interface and au-

tonomous mobility. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS 2014). IEEE; 2014. p. 3272–7 .
[9] Quintas J , Menezes P , Dias J . Cloud robotics: towards context aware robotic networks. In: Proceedings of the international conference on robotics;

2011. p. 420–7 .
[10] Du Z , He L , Chen Y , Xiao Y , Gao P , Wang T . Robot cloud: bridging the power of robotics and cloud computing. Future Generat. Comput. Syst. 2016 .

[11] Ayanian N , Spielberg A , Arbesfeld M , Strauss J , Rus D . Controlling a team of robots with a single input. In: Proceedings of the IEEE international

conference on robotics and automation (ICRA). IEEE; 2014. p. 1755–62 .
[12] McCann E , McSheehy S , Yanco H . Multi-user multi-touch multi-robot command and control of multiple simulated robots. In: Proceedings of the

seventh annual ACM/IEEE international conference on human-robot interaction. ACM; 2012. p. 413–14 .
[13] Karulf E , Strother M , Dunton P , Smart WD . RIDE: A Mixed-Mode Control Interface for Mobile Robot Teams Report Number: WUCSE-2012-3. All Com-

puter Science and Engineering Research; 2012 .
[14] Martinez-Gomez J , Fernandez-Caballero A , Garcia-Varea I , Rodriguez L , Romero-Gonzalez C . A taxonomy of vision systems for ground mobile robots.

Int J Adv Rob Syst 2014;11(7):111 .

[15] Bistry H , Zhang J . A cloud computing approach to complex robot vision tasks using smart camera systems. In: Proceedings of the IEEE/RSJ international
conference on intelligent robots and systems (IROS). IEEE; 2010. p. 3195–200 .

[16] Riazuelo L , Civera J , Montiel J . C2 tam: a cloud framework for cooperative tracking and mapping. Rob Auton Syst 2014;62(4):401–13 .
[17] Nimmagadda Y , Kumar K , Lu Y-H , Lee CG . Real-time moving object recognition and tracking using computation offloading. In: Proceedings of the

IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE; 2010. p. 2449–55 .
[18] Wu H , Lou L , Chen C-C , Hirche S , Kuhnlenz K . Cloud-based networked visual servo control. IEEE Trans Ind Electron 2013;60(2):554–66 .

[19] Agostinho L , Olivi L , Feliciano G , Paolieri F , Rodrigues D , Cardozo E , et al. A cloud computing environment for supporting networked robotics applica-

tions. In: Proceedings of the IEEE ninth international conference on dependable, autonomic and secure computing (DASC). IEEE; 2011. p. 1110–16 .
[20] Salmerón-García J , Iñigo-Blasco P , Díaz-del Río F , Cagigas-Muñiz D . Study of communication issues in dynamically scalable cloud-based vision systems

for mobile robots. In: Robots and sensor clouds. Springer; 2016. p. 33–52 .
[21] Yun P , Jiao J , Liu M . Towards a cloud robotics platform for distributed visual slam. In: Proceedings of the international conference on computer vision

systems. Springer; 2017. p. 3–15 .
[22] Dryanovski I , Klingensmith M , Srinivasa SS , Xiao J . Large-scale, real-time 3D scene reconstruction on a mobile device. Auton Robots

2017;41(6):1423–45 .

[23] Mohammad SHA , Jeffril MA , Sariff N . Mobile robot obstacle avoidance by using fuzzy logic technique. In: Proceedings of the IEEE 3rd international
conference on system engineering and technology (ICSET). IEEE; 2013. p. 331–5 .

[24] Faisal M , Hedjar R , Al Sulaiman M , Al-Mutib K . Fuzzy logic navigation and obstacle avoidance by a mobile robot in an unknown dynamic environment.
Int J Adv Rob Syst 2013;10(1):37 .

[25] Schirmer R , Biber P , Stachniss C . Efficient path planning in belief space for safe navigation. In: Proceedings of the IEEE/RSJ international conference on
intelligent robots and systems (IROS). IEEE; 2017. p. 2857–63 .

Mahmoud Badawy is Assistant Professor in Computers Engineering and Control systems Dept. - Faculty of Engineering - Mansoura University, Egypt.

He received the B.Sc., M.Sc. and Ph.D. from Computers and Systems Engineering, Mansoura University, Egypt. His major research interests are computer
networking, Distributed control systems, Database Management systems, mobile robots and cloud computing.

Hisham Khalifa is a software engineer received a Bachelor’s degree in Mechanical Design and Production and graduated from a higher studies diploma
in Automatic control - Faculty of Engineering Mansoura University, Egypt. His interests are in the areas of software development, mobile robots, computer

vision, micro-controller programming, and Hardware design.

Hesham Arafat is a Professor - head of Computers Engineering and Control systems Dept. - Faculty of Engineering - Mansoura University, Egypt. He is a
founder member of the IEEE SMC Society Technical Committee on Enterprise Information Systems (EIS). His interests are in the areas of network security,

mobile agent, Network management, Search engine, pattern recognition and distributed databases.

http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0003
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0003
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0003
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0003
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0003
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0004
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0004
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0004
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0004
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0005
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0005
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0005
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0005
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0005
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0006
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0006
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0006
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0007
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0007
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0007
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0007
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0008
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0008
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0008
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0008
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0008
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0008
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0009
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0009
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0009
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0009
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0010
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0010
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0010
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0010
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0010
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0010
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0010
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0011
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0011
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0011
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0011
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0011
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0011
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0012
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0012
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0012
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0012
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0018a
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0018a
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0018a
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0018a
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0018a
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0013
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0013
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0013
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0013
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0013
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0013
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0014
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0014
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0014
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0015
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0015
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0015
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0015
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0016
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0016
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0016
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0016
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0016
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0017
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0017
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0017
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0017
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0017
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0017
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0018
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0018
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0018
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0018
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0018
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0018
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0018
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0018
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0019
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0019
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0019
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0019
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0019
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0020
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0020
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0020
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0020
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0021
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0021
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0021
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0021
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0021
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0022
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0022
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0022
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0022
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0023
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0023
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0023
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0023
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0023
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0024
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0024
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0024
http://refhub.elsevier.com/S0045-7906(18)30543-3/sbref0024

	New approach to enhancing the performance of cloud-based vision system of mobile robots
	1 Introduction
	2 Literature review
	3 Problem statement and solution plan
	4 Proposed human-cloud-mobile-robot architecture
	5 Data flow mechanism
	5.1 RT-IC algorithm
	5.2 MGNG algorithm
	5.2.1 Planar-constrained computation nodes
	5.2.2 Non-planar constrained computation nodes

	5.3 Mobile robot navigation

	6 Experimental result discussion and analysis
	6.1 Response time analysis
	6.2 Data size analysis
	6.3 Path planning time analysis
	6.4 Accuracy analysis

	7 Conclusion and future work
	Supplementary material
	References

