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Abstract 

An experimental investigation of the effect of mean stress on the fatigue life and corrosion fatigue life of cylindrical specimens is 
presented. Force controlled constant amplitude axial fatigue tests in the regime of 105 to 107 cycles were conducted for two 
different environments:  in air (without corrosion) and in-situ in a corrosive environment, 0.824% 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 aqueous solution flow. 
The test results are assessed with respect to various standard models of mean stress influence on fatigue. The reduction in 
material fatigue strength due to the corrosion environment is evaluated and the results obtained show that in a low salinity 
aqueous corrosive solution, the fatigue strength at 4x106 is reduced of a factor of 2 compared to no corrosion tests. 
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1. Introduction 

Corrosion fatigue failure is relevant many industrial fields, including the mining industry, where pump 
components are design to operate under cyclic loading in corrosive environments. The effect of mean stress in such 
components is of high importance in the design process, as it can significantly influence fatigue strength.  Low 
carbon steel is widely used in the mining industry because its cost and mechanical properties. The main problem 
with this material is that is affected by environmental conditions and is susceptible to corrosion.  
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Many studies have been conducted to understand how corrosive environments affect fatigue life of steel [1] and 
how the corrosion fatigue strength of the material decreases. Usually, sea water conditions are tested and many data 
are available in literature relevant to this condition. However, other corrosive environments have received less 
attention in research and, consequently, less data are available. This study considers corrosion fatigue behavior in a 
fresh water environment. 

The effect of mean stress on fatigue life is a long established research topic. Several models have been proposed 
to describe its effects of the on the fatigue limit and more generally on material fatigue strength [2-6]. Several 
comparison of these different methods have been done to understand which of them better predicted the material 
behavior and many materials, including low alloy steel, have been compared [7,8]. However, the effect of corrosion 
has not been taken in account in these models. Recently some workers have studied the effect of mean stress on 
crack propagation in corrosive environment but in these investigations the stress-life approach is not considered. 
This study aims to understand if mean stress models developed and validated from data for a non-corrosive 
environment, can fit with low carbon steel experimental data obtained in a fresh water corrosive environment. 

 

2. Material and testing condition 

2.1. Material description  

The material investigated is a low carbon forged steel (S355J2G3+N). It is a popular type of structural steel, used 
in a variety of industrial application where both static loading conditions and dynamic loading conditions occur. Its 
chemical composition and mechanical properties under quasi-static monotonic tension are shown in Table 1 and 
Table 2.  

     Table 1.  
Chemical composition of S355 (%) 

C Mn Si P S Cr Ni Mo Al 

0.2 1.32 0.34 0.009 0.002 0.01 0.03 0.01 0.042 

 

     Table 2. 
Mechanical Properties 

Young’s Module 

[MPa] 

Yield Stress 

[MPa] 

Ultimate Stress 

[MPa] 

Elongation 

[%] 

172 258 500 35.6 

 

2.2. Specimens and testing condition 

Fatigue test were carried out in air at room temperature and in 0.842% 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 corrosive aqueous solution. Both 
fatigue test in air and in corrosive solution were performed using 6 mm diameter cylindrical specimens, as shown in 
Figure 1. The specimen geometry was designed according to ASTM E466-07 [9]. The roughness of the gauge length 
surface was evaluated for each specimen through the arithmetic mean of four different measurements. Values were 
between Ra=0.095 micron and Ra=0.130 micron. 

An environment chamber for corrosion fatigue tests compatible with a servo-hydraulic testing machine was 
designed and manufactured. The chamber allows a continuous flow of aqueous corrosive environment during the 
application of dynamic loads. The chamber encases the test specimen so as to allow the corrosion of its central part 
during the fatigue test, as shown in Figure 2. 
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Fig. 1. Specimen geometry for fatigue test in air and corrosive environment 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2 Corrosion system and detail of the chamber 

The test chamber inlet and outlet diameter are 9 mm. To create the circulation of solution during the test, the inlet 
of the chamber was linked through a plastic pipe to a water pump with nominal flow of 600l/h placed in a tank. 
From the outlet the aqueous solution was returned to the tank through the same dimension plastic pipe. An air pump 
of nominal capability of 100 l/h was located in the tank to oxygenate the water during the test. Characteristics of the 
aqueous corrosive solution are given in Table 3. 
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     Table 3. 
Characteristics of aqueous solution environment 

 

Temperature Salinity Conductivity pH Flow 

25 ± 1℃; 0.84% 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 2.0 ± 0.2 𝑚𝑚𝑚𝑚 6.9 ± 0.1 130 𝑁𝑁/ℎ 

 
 
 
Fatigue tests in air were carried out under axial loading and load control on a servo-hydraulic Instron 

250 𝑘𝑘𝑁𝑁 machine. The frequency of all tests in air was fixed at 15 Hz. Fatigue tests in aqueous solution were carried 
out under axial loading and load control on a servo-hydraulic Instron 100 𝑘𝑘𝑁𝑁 machine. All the corrosion fatigue 
tests were performed at 10 Hz.  

 

3. Experimental results and discussion 

3.1. Fatigue in air and corrosion fatigue results 

Fig. 3 shows S-N curves for the low alloy steel the following conditions: 
 

 Fully reversed fatigue loading ,stress ratio 𝑅𝑅 = −1, in air at room temperature; 
 Positive mean stress,  stress ratio 𝑅𝑅 = 0, in air at room temperature; 
 Fully reversed fatigue loading ,stress ratio 𝑅𝑅 = −1, in 0.824% 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 aqueous solution; 
 Positive mean stress,  stress ratio 𝑅𝑅 = 0, in 0.824% 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 aqueous solution 

 
The results are plotted in semi-Log scale. Fig. 3 shows the effect of positive mean stress both in air and in 

corrosion environment. The trend shown in air is the typical behavior of steel under positive mean stress loading 
condition. Under positive mean stress the fatigue strength decreases and the fatigue limit appears at lower number of 
cycles.  

A similar trend is observed for the corrosive environment: positive mean stress negatively affects the fatigue life 
and fatigue strength decreases compared to that obtained in a fully reversed load condition. 

Fig. 3 show a decrease in the fatigue strength for specimens tested in the corrosive environment compared with 
specimens without corrosion. At 4 × 106cycles, the fatigue strength of a specimen cycled under fully reversed load 
in corrosion is115 𝑀𝑀𝑀𝑀𝑁𝑁. That is a decrease of 47% compared to the non-corroded specimen (214 𝑀𝑀𝑀𝑀𝑁𝑁). At the 
same number of cycles, the fatigue strength of a specimen under positive mean stress tested in a continuous 
corrosive flow is 88 𝑀𝑀𝑀𝑀𝑁𝑁, a decrease of 51% compared to the non-corroded specimen under the same mean stress 
ratio (180 𝑀𝑀𝑀𝑀𝑁𝑁 ) and a decrease of 59% compared to the non-corroded specimen under fully reversed load.   

Similar trends have already been found by Pérez-More et al. [11] for a martensitic-bainitic hot rolled steel in a 
saline corrosive environment. The results presented in [11] were for an artificial sea-water environment that 
represents higher salinity than the fresh-water environment considered here (0. 824% 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁).  

Each S-N curve from Fig. 3 can be expressed using Basquin’s equation: 
 
                                                            b

A a N                                                                                               (1) 
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Figure 3: S-N curves of low alloy steel in different conditions 

 
 
 

3.2. Mean stress analysis  

In order to analyze the effect of mean stress in the corrosive environment, different relations have been 
considered to understand how they correspond with the experimental data. As the tests were carried out in load 
controlled condition, the main relations used in this analysis are based on the stress-life approach. A similar 
approach was used by Dowling [7] for several steel and non-ferrous metal to understand which model best 
represented experimental data. Here only one material is considered but for both in air and corrosive environments. 
The four mean stress models considered are: 

 
 Modified Goodman relation: 

                                                                                                                                                       
 (2)    

  
 

 Geber parabola relation: 
 

                                                   (3) 
 
 
 
 

 Smith-Watson-Topper Approach, (SWT): 
 

 
 (4) 
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 Walker relation: 

 
 (5) 

 
 

where: 𝜎𝜎𝐴𝐴 is the stress amplitude, 𝜎𝜎𝑚𝑚 is the mean stress, R is the stress ratio, 𝜎𝜎𝑒𝑒𝑒𝑒  is the completely reversed stress 
expected to cause the same life as the actual combination of amplitude and mean, (𝜎𝜎𝐴𝐴, 𝜎𝜎𝑚𝑚) , 𝜎𝜎𝑢𝑢 is the ultimate strength 
and 𝛾𝛾 is a mathematical parameter that may be changed to better fit the equation to experimental data. 

Each method has been used to calculate the combination of mean stress and alternating stress (𝜎𝜎𝑚𝑚, 𝜎𝜎𝐴𝐴) that causes 
material failure at certain number of cycles. To calculate corresponding pairs of stresses, the value of number of 
cycles, Ni, is fixed between 105 and 107.  In the S-N curve for fully reversed loading condition (R=-1), for each fixed 
value of Ni the corresponding value of sigma alternating, 𝜎𝜎𝐴𝐴(𝑅𝑅=−1), is used to calculated stresses (𝜎𝜎𝑚𝑚, 𝜎𝜎𝐴𝐴)  required to 
cause the fracture at the same number of cycles. This value of sigma alternating is the equivalent alternating stress, 
𝜎𝜎𝑒𝑒𝑒𝑒 , defined above and required in all of the considered methods to evaluate the effect of mean stress. This 
calculation has been done using both fully reversed alternating stress for S-N curve in air (without corrosion) and in 
corrosive environment.  

From each pair of mean and alternating stress calculated with the five different approaches, Equation 1 has been 
used to evaluate the experimental number of cycles at which samples have been broken. The predicted number of 
cycles, for each method, has been plotted in a logarithmic scale against the observed data. Figure 4 to 7 show the 
results. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Predicted against observed fatigue life using Goodman criterion a) in air, b) in corrosion 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5: Predicted against observed fatigue life using Geber criterion a) in air, b)in corrosion 
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Figure 6: Predicted against observed fatigue life using SWT criterion a) in air, b) in corrosion 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Predicted against observed fatigue life using Walker criterion a) in air, b) in corrosion 
 
 
Goodman and SWT criterions result too conservative when applied with data obtained in air, as showed in Figure 

4a and 6a. However predicted number of cycles with both models give a better fit in corrosion environment, even if 
Goodman criterion in high number of cycles gets non-conservative. Geber prediction has an opposite trend in air and 
in corrosion: indeed, predicted fatigue life in air is non-conservative but it is fixing better in corrosion with a 
conservative prediction.  

Walker criterion has the advantage of fit data using the 𝛾𝛾 parameter that is actually calculated in order to give the 
best fit with data. Using a value of 𝛾𝛾=0.7, therefore, it appears the best fit for data presented in this paper.  

4. Conclusion 

This study presents the experimental results of the effect of fresh water environment on fatigue strength and the 
effect of mean stress on corrosion fatigue life for a low carbon steel. 

Experimental results show that the effect of the fresh water environment is to reduce the fatigue strength of the 
material: the degradation is higher at lower level of stress but occurs even at lower number of cycles. At 4 × 106 
cycles the fatigue strength for specimens under fully reversed cycles is decreased by 47% compared with non-
corroded sample. At the same number of cycles, the specimens tested with a stress ratio R=0 present a reduction in 
the fatigue strength of 51% compared to the fatigue strength of non-corroded specimens. A fatigue limit is not 



588 Marta Morgantini et al. / Procedia Engineering 213 (2018) 581–5888 Marta Morgantini et al./ Procedia Engineering 00 (2017) 000–000 

observed for either stress ratio considered. Further investigation, with test in lower level of stress, is required to 
better understand if a fatigue limit could occur in a non-aggressive corrosion environment. 

The effect of mean stress has been presented using different predictive models widely known in literature. 
Models have been applied to experimental data both from fatigue in air and corrosion fatigue. These predictive 
models are common in the study of mean stress and in the prediction of fatigue life in a non-corrosive environment. 
But it is not proven that they take into account the corrosion effect. It was found that the Walker equation fits both 
sets of data. In particular, when the material parameter 𝛾𝛾 has the value 0.7, the equation results the best fit for 
experimental result obtained in air and in corrosion.   
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