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a b s t r a c t

Limiting global warming to 1.5 �C requires a substantial decrease in the average carbon intensity of
buildings, which implies a need for decision-support systems to enable large-scale energy efficiency
improvements in existing building stock. This paper presents a novel data-driven approach to strategic
planning of building energy retrofitting. The approach is based on the urban building energy model
(UBEM), using data about actual building heat energy consumption, energy performance certificates and
reference databases. Aggregated projections of the energy performance of each building are used for
holistic city-level analysis of retrofitting strategies considering multiple objectives, such as energy saving,
emissions reduction and required social investment. The approach is illustrated by the case of Stockholm,
where three retrofitting packages (heat recovery ventilation; energy-efficient windows; and a combi-
nation of these) were considered for multi-family residential buildings constructed 1946e1975. This
identified potential for decreasing heat demand by 334 GWh (18%) and consequent emissions reduction
by 19.6 kt-CO2 per year. The proposed method allows the change in total energy demand from large-scale
retrofitting to be assessed and explores its impact on the supply side. It thus enables more precisely
targeted and better coordinated energy efficiency programmes. The case of Stockholm demonstrates the
potential of rich urban energy datasets and data science techniques for better decision making and
strategic planning.
© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Reaching the Paris Agreement goal of limiting climate change
well below 2 �C requires transformation of energy systems globally.
The world is becoming increasingly urbanised, with more than 50%
of the global population currently living in cities (X. Wang et al.,
2017). Thus, sustainable and viable cities play an important role
in energy system transformation.

In 2014, buildings accounted for 31% of final energy use and 8%
of energy-derived CO2 emissions globally. Coal and gas are
commonly used for supplying heating and cooling. The more
stringent target for global warming, of 1.5 �C, implies that the
asichnyi).
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carbon intensity of buildings must be limited to on average 36 g/
kWh. This can be achieved through a combination of reduced
heating and cooling demand, and/or transforming supplying en-
ergy to buildings (Rogelj et al., 2018).

In buildings, about 50% of the energy demand comes from space
heating and cooling and 16% fromwater heating (IEA, 2017a). While
conserving energy through the use of more efficient appliances
could play an important role (Huebner et al., 2016), heating and
cooling account for almost 80% of direct CO2 emissions from
buildings (IEA, 2017a). Therefore, reducing the space heating and
cooling demand, combined with decarbonisation of district heating
and electricity generation, is recognised as an essential strategy in
realising a vision of ‘decarbonised buildings’ (EU Commission,
2016). Setting stricter requirements on new buildings is one part
of the strategy, supported by energy standards for new buildings or
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Nomenclature

Acronyms
CAPEX capital expenditure
DH district heating
EPC energy performance certificate
ES energy signature
GHG greenhouse gas
IDE integrated development environment
IRR internal rate of return
KPI key performance indicator
NPV net present value
PVQ present value quota

RDBMS relational database management system
UBEM urban building energy model

Variables and parameters
Atemp heated area [m2]
qðtÞ specific heat power [W/m2]
t ambient temperature [�C]
q balance point temperature [�C]
c base load (domestic hot water consumption) [W/m2]
b energy performance coefficient [W/m2.K]
r discount rate [%]
P number of time periods
t time period [year]
Rt net cash flow in period t [Swedish krona, SEK]
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building energy codes established in around 60 countries for resi-
dential and non-residential buildings (IEA, 2017b). However, the
vast majority of building stock in the European Union (EU), North
America and China already exists and requires energy efficiency
improvements (IEA, 2017a). In particular, more than 60% of existing
buildings in the EUwere built under limited or non-existent energy
efficiency requirements and most of these will still be part of the
building stock in 2050 (EU Commission, 2016). Thus, energy ret-
rofitting of the existing building stockmust constitute an important
part of energy efficiency strategies (Zhou et al., 2016).

Although sizeable energy savings can be achieved through
‘conventional’ retrofitting (i.e. simple measures such as improving
insulation or installing energy-efficient windows), there are mul-
tiple barriers to retrofit uptake by energy consumers (Bertone et al.,
2018). These barriers include lack of concern, lack of awareness of
possibilities and benefits, limited access to trusted advice and
reliable information on technical details and financial models, split
incentives between property owners and tenants (e.g. when im-
provements in energy efficiency are used to justify a rent increase)
and financing constraints (Webber et al., 2015). These barriers can
partly explain the reported information gap between city author-
ities who introduce retrofitting schemes and property owners or
other individual energy consumers who must finance these
schemes (Rysanek and Choudhary, 2013). Therefore, city author-
ities and large property owners need methods and tools that allow
faster identification and evaluation of energy efficiency potential on
a large scale (Cerezo Davila et al., 2016).

Large-scale identification of the potential of energy efficiency
measures would enable mapping of the building stock, revealing
cases where economically driven retrofitting is viable (Moschetti
et al., 2018). This might stimulate the retrofitting market and in-
crease the pace of retrofitting. It could also provide information to
decision makers and legislators, facilitating introduction of new
policies supporting the retrofitting market (Persson and Gr€onkvist,
2015). There are many models available for identification of opti-
mum retrofitting packages for individual buildings based on their
geographical, architectural and operational characteristics
(Rysanek and Choudhary, 2013). In contrast, models targeting
large-scale retrofitting strategies are rarely addressed in research,
possibly because of a lack of high-resolution data on actual heat
energy use by individual buildings (Gupta and Gregg, 2018).
However, the cities of today are becoming smarter and more
information-intense, as reflected in a number of recent studies on
big-meter data within energy contexts (Deakin and Reid, 2018).
Many of these studies focus on smart meters and electricity con-
sumption, e.g. Gouveia et al. (2017) showed, for a limited sample of
19 households, how air temperature and electricity consumption
could be understood through using smart meters. Other studies
report on retrofitting and optimisation of electrical equipment (Ye
and Xia, 2016). An Irish study of 4232 households showed how
metering data could be used for targeted energy efficiency pro-
grammes addressing electric power consumption (Beckel et al.,
2014). Another Irish study using metering data from more than
5000 households examined how social factors influence electricity
consumption (Tong et al., 2016). Use of metering data has been
extended beyond electric power, e.g. a Brazilian study included
water consumption in a smart metering project (Fr�oes Lima and
Portillo Navas, 2012), while a wider study analysed data from
more than 8 000 000 gas and electricity meters in London and
Chicago, to identify improvements for energy-related practices
(Mohammadi and Taylor, 2017). Systematic collection and trans-
parent availability of data are crucial in monitoring and improve-
ment of retrofitting activities, in terms of both uptake and energy
efficiency benefits (Brooks et al., 2014). Using rich datasets allow for
more advanced data analysis techniques for developing retrofitting
strategies and assessing conducted retrofits (Geyer et al., 2017).

Urban retrofit transitions are complex, co-evolutionary, non-
linear processes that draw upon a range of actors and focus on
different levels and dimensions over time (Dixon et al., 2018). They
can be seen as intersections between diverse infrastructures, non-
aligned policy objectives and generally diverging interests and
perspectives of a variety of social groups (Sp€ath and Rohracher,
2015). Hence urban retrofitting requires an integrated approach
combining environmental, economic and social sustainability
(Eames et al., 2014). Large-scale implementation of energy effi-
ciency measures can have an effect on total heat load duration and,
consequently on operation of heat supply, and should be further
studied (Truong et al., 2018). In a quest for evenmore holistic views,
system boundaries for analysis of building retrofits can be
expanded to the multi-system nexus (Engstr€om et al., 2018), life
cycle (Seo et al., 2018) and socio-economic (Mangold et al., 2016)
perspectives.

The aim of this study was to develop, demonstrate and evaluate
a data-driven approach to planning city-wide building retrofitting.
The significant advantage of the proposed novel data-driven urban
building energy model (UBEM)-based approach is the use of high-
resolution metered data in fact-based modelling of the energy
performance of the building stock. This paper contributes to the
literature on city-scale building energy modelling by introducing
the use of large datasets that have become available recently,
particularly high-resolution metered data on heat energy use. The
contributions of this study are two-fold. First, a novel method for
strategic planning of building energy retrofitting based on the city-
wide building energy modelling framework is presented. This
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method makes it possible to assess changes in the total energy
demand from large-scale retrofitting and explore the impact on the
supply side. The level of detail provided by the method makes it
suitable for the development of customised strategies by city au-
thorities and large housing institutions targeting retrofitting in-
vestment options that meet certain criteria. Second, the method
was demonstrated for the case of retrofitting ‘Million Programme’
buildings in Stockholm, which have been regularly highlighted for
their high energy-retrofitting potential (Johansson et al., 2017).
Heat recovery ventilation and energy-efficient windows were
chosen as retrofitting options. Analysis of three retrofitting sce-
narios from multiple perspectives (energy, environment, eco-
nomic) was used to reveal the benefits and drawbacks of each
retrofitting measure and to make strategic decisions based on in-
formation about related trade-offs. The results of the study served
as input to the City of Stockholm's ongoing work on its climate
strategy. Finally, this paper demonstrated the outcomes of digital-
isation ongoing in the urban energy, pointing out the importance of
urban energy data for urban strategic planning.

The remainder of the paper is organised as follows: section 2
presents the theoretical and empirical background to the study;
section 3 describes the methodology in 10 sub-sections that outline
the approach; section 4 describes the results of applying the stra-
tegic planning framework developed in section 3 to the case of
large-scale retrofitting of ‘Million Programme’ buildings in Stock-
holm; section 5 discusses use of the framework and the results
obtained; and finally section 6 presents some conclusions.

2. Background

2.1. Urban building energy modelling (UBEM)

New information and communication technologies (ICT),
including internet of things (IoT) and applications, and digital-
isation in all sectors of society are driving an exponential increase
in the volume of information and the rate of information sharing at
an ever-decreasing cost (Barahona and Pentland, 2007). This
development has created a ‘big data’ challenge for conventional
approaches to building energy simulations, creating a need for new
ways of handling and utilising the data (Sanyal and New, 2014). The
recently developed urban building energy model (UBEM) (W. Li
et al., 2017), a hybrid of top-down statistical and bottom-up engi-
neering approaches (Kavgic et al., 2010), can resolve this challenge.

According to Reinhart and Cerezo Davila (2016), UBEM will
become an important planning tool for urban planners, energy
utilities and other policy makers. Sola et al. (2018) highlight UBEM
as an important component of urban-scale energy models (USEM)
and provide a comprehensive review of modelling tools currently
available for UBEM. Nageler et al. (2018a) cite physical and data-
driven approaches as the two main paradigms for UBEM. Physical
UBEMs are based on building energy simulations, and therefore
have better potential for co-simulation. However, they require
more input data, modelling efforts and computational power
(Nageler et al., 2018b), which can be partly addressed through
automation in the case of large-scale applications (Dogan and
Reinhart, 2013). Data-driven UBEMs are based on statistical rep-
resentation of the building energy performance obtained from
measured data, and therefore are usually less complex. For
instance, Swan and Ugursal (2009) argue that energy signatures
(defined as reduced-order physics-based regression models) are a
useful tool because they are simple, requiring only energy use data,
and ensure comparability across large numbers of buildings.
However, data-driven models alone can hardly be used to predict
the effect of retrofitting measures (Y. Chen et al., 2017).

Building archetyping is the most widespread technique used in
various UBEMs and provides a satisfactory compromise between
accuracy and speed of simulation (Q. Li et al., 2015). This approach
has been employed to analyse the current state of building stock
and the aggregated impact of new energy efficiency policies and
measures using regional and national bottom-up building stock
models (Mata et al., 2014). Archetyping can also be used as a test-
bed for retrofit scenarios in small urban districts (Sokol et al., 2017).

In this study, we developed a UBEM that combines energy sig-
natures and building energy simulations. Calibrated engineering
models combined with building energy simulation tools enable
reliable simulations of various measures in order to evaluate their
potential outcomes in terms of energy savings and emissions re-
ductions (Fumo, 2014). As noted previously (Foucquier et al., 2013),
this hybrid approach is “a nice trade-off between physical and
machine-learning based methods”. In model development we used
DesignBuilder, an interactive interface for the energy simulation
programme EnergyPlus that has beenwidely applied for modelling
building heating, cooling, ventilation and other energy flows
(Cl�ement, 2012). Frayssinet et al. (2018) stress that the individual
power demand of urban buildings depends on the diversity of
occupant behaviours, rapid micro-meteorological phenomena and
specific building characteristics. Therefore, the time resolution of
the measured data should be at least as high as the time resolution
of any analysis based on the UBEM (Sokol et al., 2017).

2.2. Stockholm case

Sweden has always been a pioneer in setting and achieving
climate goals: reducing greenhouse gas (GHG) emissions by 40%,
exceeding 50% share of renewables and improving the efficiency of
energy use by 20% by 2020 (compared with 1990). It has set the
overall goals of having net zero emissions of GHG by 2050 and
becoming “one of the first fossil-free welfare states in the world”
(Ministry of the Environment and Energy, 2015).

The City of Stockholm is even more ambitious, recently shifting
its fossil-free goal from 2050 to 2040 (Stockholms stad, 2015).
Heating and cooling of the building stock produces approximately
40% of total GHG emissions in Stockholm and thus this is a
fundamental target for the City of Stockholm to decrease its energy
use. Setting stricter requirements on new buildings is part of the
strategy. However, since most of the city's building stock (64
million m2; Stockholms stad, 2019) already exists, in order to
achieve its environmental goals the city intends to introduce en-
ergy efficiency measures (varying for different categories of build-
ings) that will achieve an average decrease of 30% in energy use for
heating and cooling (Stockholms stad, 2014).

The Greater Stockholm area has an extensive district heating
(DH) system that supplies half the overall heating demand in the
region (see Fig. 1 for the demand structure in the City of Stock-
holm), providing around 12 TWh with a dimensioning load of
4.8 GW annually. AB Stockholm Exergi (co-owned by Fortum
Group) is the largest actor, producing around 8 TWh annually
(Levihn, 2017). The system is one of the most advanced multi-
energy systems in the world and largely corresponds to “fourth-
generation DH” (Lund et al., 2014).

The case of the City of Stockholm was chosen to test and refine
the method developed in the present study, based on availability of
data and interest among local stakeholders.

3. Methods

A city-wide building energy retrofitting modelling framework
was developed based on the principle of the hybrid (‘grey-box’)
bottom-up model, combining physical and statistical approaches to
construct an integrated view of building heat energy consumption



Fig. 1. Heat energy consumption by the City of Stockholm's building stock according to energy performance certificates (energy declarations). Block size corresponds to total heated
area,1 Atemp. Lighter-coloured bands beside/below each block indicate the heat energy demand met not by district heating (DH). Supporting data for this diagram are provided in
Appendix A (Table A1).
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(total heated area)1 on city scale (Table 1). Coupled with emissions
accounting and investment analysis modules, this approach
enabled us to perform a comprehensive evaluation of the city-wide
building energy retrofitting plans from both an exploration (‘what
if’) and optimisation (‘which’) perspective.

Two key principles were formulated to guide framework
development:

1. The workflow had to be arranged according to reproducible
research principles (Peng, 2011), i.e. with all primary data kept
unchanged, no side data transformations and all calculations
being independently repeatable.

2. A modular structure (Pereverza et al., 2019) had to be used, to
decrease interdependencies throughout the modelling frame-
work and reduce the complexity of further upgrades in different
stages.
3.1. Data import

The proposed framework utilises data about measured building
heat energy use and data from energy performance certificates and
reference and climate databases.

Measured data on heat energy use for the case of Stockholm
were obtained from the main heat generation utility, AB Stockholm
Exergi, and are thus limited to the building stock connected to the
city's DH network, which accounts for approximately 85% of the
total heated area. For initial framework development, data for one
calendar year (2012), representing 15 068 district heating delivery
points in the city of Stockholm with hourly precision, were
provided.

Energy performance certificate (EPC) data were obtained from
the national building energy declarations database maintained by
the Swedish Board of Housing, Building and Planning (Boverket).
1 In the remainder of the paper we use the industry standard Atemp , which rep-
resents the area heated to above 10 �C.
The imported dataset represented energy declarations for 30 472
buildings in Stockholm, with 58.45 million m2 total heated area,
and contained information on building type, construction year,
floor area, envelope form, energy use per source, energy system
installations etc.

Reference data on standardised use and building envelope in-
formation were obtained from the Sveby project
(Svebyprogrammet, 2012) and the book “Så byggdes husen” (Bj€ork
et al., 2013).

Climate data were extracted from the Swedish Meteorological
and Hydrological Institute (SMHI) Open Data Catalogue (SMHI
2017). Hourly and daily ambient temperature measurements from
SMHI's Observatorielunden station (climate number 98 210/
98 230) were used.

Most of the data used were imported into PostgreSQL
(PostgreSQL 2019), a widely used free, open-source RDBMS2 well
supported in various platforms, research and office software.

3.2. Data pre-processing

Most of the data pre-processing and analysis were performed in
RStudio (RStudio Team, 2015), a free open-source IDE3 for R, a
programming language for statistical computing and graphics (R
Core Team, 2013). R is one of the most popular languages in data
science, as reflected in its well-developed ecosystem, i.e. various
third-party extensions and a strong user community. In particular,
it has good scalability potential for elastic and distributed cloud
services using Hadoop/Spark, which is important for future devel-
opment of the proposed framework.

To make the energy performance of buildings comparable, most
of the calculations were made for specific units, so power demand
was calculated for all measured values of actual energy use. Data
tables were re-arranged according to the ‘tidy data’ paradigm
(Wickham, 2014) to meet the objectives of the study. Data quality
2 Relational database management system.
3 Integrated development environment.



Table 1
The nine stages in the proposed modelling framework.

Stage Summary

1. Data import Data are imported from external data sources (data dumps from partner data warehouses, open data sources etc.) to a single database engine,
which serves as a unified data source for the computation environment. General compliance of formats, scales and measurement units is
established at this stage.

2. Data pre-processing The collected data are curated, treating missing data and outliersa. Auxiliary parameters (e.g. specific energy consumption, aggregates per
various grouping factors) are calculated. The dataset is restructured in accordance with the ‘tidy data’ paradigm (Wickham, 2014).

3. Segmentation The entire building stock is divided into different building clusters corresponding to several archetypes. Stages 4e5 are performed for each
building cluster separately.

4. Characterisation Parametric models of building energy performance based on the energy signatures method are identified for each building through regression
from the measured data.

5. Building energy
simulations

An archetype building energy model is created based on the statistics for the whole building cluster. The model is then calibrated through
matching energy signatures.

6. Scenarios Retrofitting packages, target key performance indicators (KPIs) and available investment mechanisms are identified and translated into the
scenarios to be analysed in the model. Scenarios can differ for different building clusters.

7. Aggregation Building energy performance for each building in the entire building stock is projected from the results of the archetype building simulations
for baseline and with possible retrofitting packages.
Energy savings, emissions reductions and economic performance indicators for the proposed retrofitting measures are calculated and then
aggregated for the city level.

8. Testing and optimisation Sensitivity analysis is performed for the solutions identified.
The optimisation problem is solved to meet the targets identified in Stage 6 with regard to the various optimisation objectives (e.g. capital
investment required).

9. Communication The potential of proposed retrofitting packages identified for the whole city building stock is communicated to the research community and
project stakeholders through various visualisation tools. Feedback is also used to improve the workflow.

a Data points very different from most of the remaining data (Aggarwal, 2015).
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assessment was an essential part of this stage, using the approach
we describe in a previous paper (Pasichnyi et al., 2019b). Building-
related information and building categorisation information were
extracted from the specific energy use data as separate tables, while
temperature data were joined to it. A normal year4 for the period
1981e2010 was constructed to make normal-year correction ac-
cording to Schulz (2003).
3.3. Segmentation

The building archetyping (segmentation and characterisation)
was performed as described in our previous paper (Pasichnyi et al.,
2019a). The analysed building stock was split into building clusters,
i.e. subsets of buildings of the same kind, through filtering by
nomenclature from the imported datasets. The clusters obtained
4 ‘Normal year’ is a Swedish analogue for typical meteorological year (TMY).
were summarised through creation of ‘archetype buildings’, i.e.
virtual buildings corresponding to the cluster centroids weighted
by heated area Atemp. Virtual archetype buildings were then used
for validation of the clusters through comparison with reference
buildings (those in Bj€ork et al., 2013; Svebyprogrammet, 2012).
3.4. Characterisation

Each building cluster was characterised from the measured heat
energy use data for the ensemble of heating delivery points used to
supply heat to the buildings in that cluster. All buildings at a heating
delivery point i were characterised with an energy signature (ES)
(see Fig. 2):

ESi : MeteredHeatConsumptioni/ðq; c; bÞi (1)

obtained from fitting the specific heat power qðtÞ calculated from
themeasured datawith the following quasilinear regression model:



Fig. 2. Example of (left) the energy signature of a building qðtÞ and (right) specific heat energy use by time qðtÞ. Measured and modelled values are coloured orange and black,
respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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qðtÞ ¼
8<
:

cþ b ðq� tÞ; t < q
c; t � q

(2)

where t is ambient temperature, q is balance point temperature, c is
base load (domestic hot water consumption) and b is energy per-
formance coefficient.

Energy signature was selected for its simplicity and compara-
bility across large numbers of dwellings (Swan and Ugursal, 2009).
This model and its applications have been addressed in a number of
studies, being first described 30 years ago (Hammarsten, 1987). It is
still relevant for large-scale applications (e.g. Nageler et al., 2018a)
and is being used as a European standard (EN 156036:2008).

The ES value for each archetype building was then obtained
through weighted averaging of all energy signatures by heated area
Atemp for the corresponding building cluster:

featurearchetypei ¼
X

cbuilding2archetypei

featurebuilding
Atempbuilding

; i ¼ 1::N (3)

3.5. Building energy simulations

To obtain the baseline for archetype buildings used in the
analysis, building energy models were constructed in the computer
simulation tool DesignBuilder.5 It was chosen because it is flexible
and easy to use, due to a user-friendly graphical user interface.
Moreover, DesignBuilder is based on the EnergyPlus6 simulation
engine, which allows for automated simulation, a process planned
for future investigations.

Models of buildings allow evaluation of the energy performance
for the current state and analysis of the effects of energy-saving
measures on performance. Simulation provides the opportunity
to get a picture of the building's energy performance and the in-
fluence of changes in any of the underlying systems, in a fast and
cost-efficient way. The baseline models for specific archetype
buildings were constructed using standardised occupant input data
from the Sveby project (Svebyprogrammet, 2012) and building
envelope information (Bj€ork et al., 2013). The models were further
validated and calibrated using measured data for the specific
archetype analysed.
5 https://www.designbuilder.co.uk.
6 https://energyplus.net.
The information from the simulations was then used to inves-
tigate the impact of the energy efficiency measures analysed on all
buildings in the specific building cluster. An individual energy
signature for each of the building types considered was obtained
through scaling back, as exemplified for the balance point tem-
perature parameter:

q*building ¼
q*archetypei
qarchetypei

,qbuilding cbuilding2archetypei; i ¼ 1::N;

(4)

where qarchetypei and qbuilding are, respectively, baseline balance
point temperature of the virtual archetype building and the
modelled building; and q*archetypei and q*building are, respectively,
estimated balance point temperature of the virtual archetype
building and the modelled building after retrofitting measures.

3.6. Scenarios

A scenario approach is widely applied to inform and support
decision-making processes (Amer et al., 2013). In the present study,
internal and external scenarios were considered. Internal scenarios
represent the space of strategies (combinations of decisions)
available to decisionmakers. External scenarios represent the space
of futures (combinations of key uncertainties accompanied by
existing trends) and were used for robustness analysis of the
selected strategies. Depending on the needs of a particular case,
scenario analysis can be conducted from explorative (‘what if’),
normative (‘given the limitations’) and/or optimisation (‘the most
efficient’) perspectives. Thus, the required input for scenario con-
struction can include: a) possible alternatives for exploration, b)
normative constraints and c) targets for optimisation. The scenario
space was generated here following the morphological approach
(Pereverza et al., 2017).

Input alternatives represent possible internal changes (e.g.
implementation of energy-saving measures in the particular subset
of the building stock) and external options (e.g. discount rates
applied for financing approved investment projects). Energy-saving
measures were selected and tested one-by-one and were further
combined into energy-saving packages.

National building regulations, accompanied by the thresholds
representing the available financial mechanisms, constituted the
set of constraints applied to the scenario space generated. As most
of energy-saving measures analysed are not universal for different
building clusters, auxiliary consistency constraints were set up.

Cost optimisation with respect to defined energy and climate

https://www.designbuilder.co.uk/
https://energyplus.net/
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targets is a widespread practice for selection of the most optimal
scenario (e.g. Yazdanie et al., 2017). However, our workflow allows
different optimisation target functions to be applied for the sce-
narios analysed, as described further in subsection 3.8 ‘Testing and
optimisation’.
3.7. Aggregation

Overall changes on the city level were determined by adding
together the projections for individual building energy perfor-
mance for the normal year.
3.7.1. Energy savings
Changes in total energy consumption for heating purposes in

the baseline and in selected retrofitting scenarios were calculated
through accounting for total annual energy consumption at each
heating delivery point included. In building energy retrofitting,
heat energy consumption generally undergoes a reduction, but for
some retrofitting solutions (those that require additional use of
electrical energy), a certain amount of additional electricity con-
sumption may arise. Projections for total heat load demand were
also used to investigate the effect of energy efficiency measures on
DH supply (as proposed by Truong et al., 2018).
3.7.2. Emissions reduction
Estimated changes in total energy consumption were then used

to account for the changes in emissions associated with the retro-
fitting scenarios. Emissions for projected energy demand were
accounted for in two ways: a) with a physical process-based load
duration optimisation model (Minerva) owned and operated by the
DH utility; and b) by direct calculation using the emissions factors
from the reference dataset (Gode et al., 2011). TheMinerva model is
logically similar to the EUROSPOT and Optima models used by
Egeskog et al. (2009) and Levihn (2014), but essentially has higher
detail and time resolution and allows all heating plants to be
covered, accounting for limitations in distribution, maintenance
shut-downs and boundary conditions for interactions between
district cooling and district heating production in heat pumps.
Using Minerva, changes in emissions of carbon dioxide (CO2), par-
ticulate matter (PM10), sulphur (S), nitrous oxide (NOx) and mer-
cury (Hg) were calculated. For comparative purposes, CO2
emissions were also calculated using statistical emissions factors
from local, residual and marginal perspectives (as in Levihn, 2014).
7 BRF stands for ‘bostadsr€attsforening’ (housing association).
3.7.3. Investment analysis
Evaluating a potential investment decision is not easy, as

different economic actors show different economic behaviour and
preferences (Simon, 1959). One basic assumption is that profit
generated tomorrow has less value than profit generated today
(Levihn, 2016). This rests on the assumption that profit generated
today might be used for generating more profit in the future or
attract additional capital that might be used for generating future
profit (Stiglitz, 1993). In this paper, the economic analysis and
corresponding discussion were limited to the following four eval-
uation criteria:

i) Capital expenditure (CAPEX), or simply the sum of money
invested I (equation (5)). It is important to consider CAPEX, as
there may be various reasons to limit or expand the amount of
fixed capital held by a firm.

CAPEX ¼
X

I (5)
ii) Net present value (NPV), which takes into account the time-
dependent aspects of cash flow. NPV is calculated by adding
together the present value of all CAPEX, incomes and costs over
the lifetime of the investment. NPV depends on the number of
periods P (set at 25 years corresponding to Swedish accounting
practices for building retrofits), discount rate r (discussed
below), time period t, and net cash flow at each period Rt:

NPVðr; PÞ ¼
XP

t¼0

Rt
ð1þ rÞt (6)
iii) Internal rate of return (IRR). While NPV calculates the total
profitability of an investment, some actors prefer near-term
generation of profit, or a profit less sensitive to risk. Opti-
mising IRR meets this requirement and is calculated by
solving for the value of r at which NPV equals 0:

IRRðrÞ; NPV ¼ 0 (7)
iv) Present value quota (PVQ). By dividing equation (5) by
equation (6), the PVQ is generated. It provides insights into
how much profit is generated per unit capital invested. This
metric bears some similarity to return index, which is often
usedwhen evaluating the profitability of public corporations,
by basically being return index minus 1. PVQ is defined as:

PVQ ¼ NPV
CAPEX

(8)

These four criteria provide different answers, but investment
options that are better according to all four should be prioritised.
These options would provide the largest and fastest generated
profits with the least investment.

Thus, the first objective in city-scale analysis was screening for
these economically preferable investments. However, most options
can be expected to excel in one criterion, but not in the others. Thus,
a discussion of how different investments correspond to different
investor priorities is included in this paper.

The discount rate is always a matter of debate. Some building
sector actors in Stockholm value formal demand on dividend on
equity provided by shareholders and interest rate paid on debt.
Other actors demand very fast payback, while some old housing
cooperatives (BRF7) in central Stockholm with low or no debt, and
with excess income from rented office spaces or stores, value
capital as free. In the present case, rates of 4%, 8% and 20% were
selected to represent different investment behaviours. Actors cor-
responding to these rates are explained and exemplified further:

� 4% d actors with easy access to capital and low demand for the
profitability of investment, e.g. old housing associations with
low debt and incomes from businesses on the ground floor of
their buildings;

� 8% d actors with a demand for dividend on equity, some risk
exposure and interest paid on debt, e.g. real estate companies;

� 20% d private actors seeking very fast payback on their in-
vestment, e.g. owners of individual houses who want quick
generation of positive cash flow. This is a less normative dis-
count rate, describing behaviours rather than intention and thus
implicit discount rates. Previous research has shown that actual
behaviours of individuals correspond to implicit discount rates
sometimes above 60% (Meier and Whittier, 1983). Jaffe et al.



Fig. 3. Data analysis workflow. (Adapted from Wickham and Grolemund, 2017).
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(2004) provide an empirical interval of 0% to over 100% for
implicit discount rates and use 20% in their examples.

3.8. Testing and optimisation

The retrofitting scenarios were then analysed using the
following two approaches:

1. Sensitivity analysis. Sensitivity analysis techniques were applied
to improve understanding of the uncertainty embodied in the
model and to perform robustness testing of the scenarios
considered.

2. Mathematical optimisation. The set of retrofitting scenarios
was used as a domain for optimisation of the target function. An
optimisation problem can accordingly be treated either as (a) a
linear programming (LP) problem with one of the initial targets
(energy saving, emission reduction, social investment costs) as an
objective function and the remaining targets as constraints; or (b) a
multi-objective optimisation problem for all target functions
considered.

3.9. Communication

Various data visualisation techniques and reference indicators
were used to: a) gain a better understanding of imported datasets
and guide the data curation process; b) test various hypotheses and
techniques; c) check the accuracy of calculations at each stage; and
d) communicate results to external actors. Communication and
discussion of the preliminary results within the research team and
with project partners were used to tune the workflow set-up and
validate results from early stages of the study.

Data visualisation was conducted partly in R for quick hands-on
exploration by the research team, while Tableau (Tableau Software,
2019) or MS Excel chart engine was used for further communica-
tion to external collaborators. Tableau was found to be more rele-
vant for visualising larger datasets and for live demonstrations,
through additionally created interactive data products.

3.10. Modelling process

The interconnection of all tools used in the modelling frame-
work during the data analysis workflow is illustrated in Fig. 3.
While Table 1 explained the logic of the framework, which is quite
linear and modular, Fig. 3 illustrates the process, which is largely
iterative.
Two core stage sequences in Table 1 correspond to the iterative
part of Fig. 3: a) computing in stages 3e6 (segmentation, charac-
terisation, building energy simulations and scenarios), where the
energy hybrid statistical-physical model is set up and calibrated
using the tidied data input; and b) analysis in stages 7e8 (aggre-
gation, testing and optimisation), where the input scenarios are
investigated using the city-level aggregates for energy, emissions
and costs.
4. Results

This section presents the main results from development and
application of the framework to the case of Stockholm.

1. Data import. Measured heat energy use data were provided in
the form of the MS SQL Server database dump. The data were
imported into PostgreSQL and then normalised, splitting data on
meterings, heat delivery points and heat delivery points cate-
gories into separate tables. The EPC data were provided in the
form of a text data file that was read in directly from the RStudio.
The reference data were imported manually at Stage 5 (“Build-
ing energy simulations”). The climate data were imported into
PostgreSQL.

2. Data pre-processing. Missing values were treated in two ways.
In cases where imputation was easy to apply and did not pose a
risk of distribution distortion (e.g. a single missing point in
temperature time series), mean/linear imputation was applied
and the sample was retained for further analysis. In all other
cases the complete sample approach was applied, excluding
corresponding objects from further investigation.

Outliers were treated in a similar way as missing values.
Extreme values and anomalies were first identified with basic
physical (e.g. HeatEnergy � 0 for DH consumers) or statistical (e.g.
x2½ �3s;3s�Þ thresholds. Some additional errors were identified
through checking the energy balances for each building. Errors
were then corrected to the closest marginal values where appli-
cable, or otherwise discarded.

3. Segmentation. Three building archetypes that we developed
and described in a previous study (Pasichnyi et al., 2019a) were
used to analyse building retrofitting potential. To exemplify the
strategic planning framework developed in this study, a single
homogeneous cluster of multi-family residential buildings
constructed in the period 1946e1975 was used for further
analysis. These buildings were largely constructed within the



Fig. 4. Distribution of features for the archetype 1 (multi-family residential, 1946e1975) building cluster: a) energy performance, kWh/m2. year; b) year of construction; c) heated
area Atemp; d) number of floors; e) number of basement floors; f) number of stairwells; g) spatial distribution.
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‘Million Programme’ and are the most widespread type in
Stockholm, representing 26% of the total and 33% of the resi-
dential building stock in the city (Fig. 4). The building subset
considered can be split into a number of subsets, e.g. by con-
struction age or number of floors (as proposed by (Q. Wang and
Holmberg, 2015). The total number of buildings was 5400, the
number of DH heat delivery points was 2402 and the total
heated area Atemp was 14.18 million m2.

The characteristics of the virtual archetype building for the
constructed cluster were obtained through weighted averaging of
the features of all buildings in the cluster by the heated area, while
its heated area was set to mean Atemp ¼ 2876m2.

4. Characterisation. Each heat delivery point was characterised
with the energy signature (ES) model derived from fitting
measurements of the actual heat energy consumption (Fig. 5).
The energy signature method proved useful in this case, as it
described the energy performance of the investigated building
type reflecting the characteristics of the building set-up, with or
without imposed energy-saving measures.

5. Building energy simulations. Based on the descriptive statistics
from the segmentation stage and the input reference data, a
base case building energy simulation model for the virtual
archetype building was created. It was then calibrated to
correspond to the aggregated ES from the characterisation stage
(Fig. 6).

6. Scenarios. Three retrofitting packages were selected for analysis
in this study. The first comprised installation of heat recovery
ventilation, the second installation of energy-efficient windows
and the third installation of both heat recovery ventilation and
energy-efficient windows. According to Brown et al. (2014), 83%



Fig. 5. Distribution of parameters in the characterisation models (each dot represents a model): a) balance point temperature q vs base load c; b) balance point temperature q vs
energy performance (EP) coefficient b; c) base load c vs energy performance coefficient b.

Fig. 6. Energy signatures for the virtual archetype 1 (multi-family residential,
1946e1975) building.

Fig. 7. Energy-saving potential of the archetype 1 (multi-family residential,
1946e1975) buildings for the baseline and three selected retrofitting packages.
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of the calculated stockwide embodied global warming potential
for refurbishment measures arises from only two types of
measures e ventilation and windows.

The first selected measure chosenwas exhaust air heat recovery
(scenario S1). The reason for choosing this measure was that 93% of
the buildings in this particular subset are fitted with exhaust air-
type ventilation without heat recovery and heat losses from
ventilation are usually significant. Besides, this measure is often
implemented by professional building owners and is considered
profitable. The heat recovery system implemented in the simula-
tion model was designed to have a temperature efficiency of 50%.

The second measure selected was changing windows (S2). It is
known to be an energy-saving measure that is not economically
justified based on energy savings. In the model, the thermal
transmittance (U-value) of the windows was changed from 2.7 to
0.8W/m2.K.

The third package (S3) was intended to show how combining
measures affected the cumulative energy performance and influ-
enced the economics of building retrofitting.

Information regarding costs for implementation of the different
energy-saving measures was taken from the renovation catalogue
Repab (Incit AB, 2014) and adapted to different building sizes.

7. Aggregation. Energy. The results of building energy simulations
for the virtual archetype building with implementation of
selected retrofitting packages were scaled out to the entire
archetype building cluster, to obtain individual projections of
the energy performance for all metering points considered. A
summary of the heat energy consumption by the building
cluster analysed (multi-family residential buildings constructed
in 1946e1975) in different selected scenarios is provided in
Fig. 7. Installation of heat recovery ventilation (S1) had greater
energy-saving potential than switching to energy-efficient
windows (S2). Implementation of the combined retrofitting
package (S3) reduced the heat energy demand by 18%, or
334 GWh per year.

The effect of large-scale retrofitting on heat supply was exam-
ined using the Minerva model to calculate the resulting reduction
in supplied energy corresponding to the changed demand aggre-
gated per hour of the normal year. Fig. 8 exemplifies the change in
demand before and after retrofitting for the combined package
(S3). The resulting reduction in supplied energy due to the changed
demand is the energy depicted between the two dotted lines. As
can be seen from Fig. 8, retrofits do not affect the performance of
buildings uniformly over the year, e.g. no or less heat is required
outside the heating season combined with the different effects of
different retrofitting options. Hence different heat production
processes are affected differently, with no effect on waste inciner-
ation combined heat and power (CHP) plants and a larger effect on
heat pumps and bio-oil utilisation.

Emissions. Hourly projections on changes in the energy demand
were then used to account for associated emissions changes for
each of the retrofitting strategies (S1eS3). Using the Minerva
model, local emissions changes for the year 2025, with forthcoming
changes in DH production structure included, were computed
(Fig. 9a). The estimates for CO2 emissions changes obtained using
the Minerva model (2025) and current (2016) emissions factors for



Fig. 8. Annual load duration for Stockholm district heating (DH) production before and after the implementation of the combined retrofitting package (S3). The change in demand
before and after retrofitting is the area between the two dotted lines.

Fig. 9. Emissions changes for the three retrofitting packages (S1eS3). a) Projections for 2025 obtained using Minerva, a physical model of district heating (DH) production after
phase-out of coal-based combined heat and power in 2022 and introduction of new production facilities, and b) comparison of estimated changes in CO2 emissions in 2025 from
Minerva (local and global) and the current system (2016), obtained using emissions factors for the various allocation schemes.
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various allocation schemes are compared in Fig. 9b. For heat pro-
duction, energy mixes for DH Stockholm and Sweden were
considered, while for electricity production Swedish average,
Nordic average, Nordic residual and Nordic marginal data were
used.

It was found that while the installation of heat recovery venti-
lation had a positive environmental effect from an ‘accounting’
perspective (local energy mixes), the effect from a ‘long-term’

marginal perspectivewas negative for both 2016 and 2025. In other
words, if the electrical system is viewed as more CO2-intensive,
adopting this option could actually result in increased CO2 emis-
sions. This can be explained by the substitution effect of this
measure when the reduction in heat energy use is partly
compensated for by increased electric energy use and by the fact
that the environmental profile of heat production by local DH is
better than that of Nordic electricity production. At the same time,
the environmental effect of energy-efficient windows was found to
be positive in all cases.
Economics. A general picture of the investments associated with
the different retrofitting options (S1eS3) is provided in Fig. 10.
Overall, installation of heat recovery ventilation (S1) proved to be
economically viable (NPV>0, IRR>15%, r¼ 4%). This resulted in a
competitive reduction of 2.85MW through retrofitting buildings
from 493 (21%) metering points with heat recovery.

For energy-efficient windows (S2) and for combining this option
with heat recovery (S3), it was difficult to achieve a positive eco-
nomic outcome for the vast majority of the building stock. As an
example, even at a reduced discount rate and demand for IRR in S3
(NPV>0, IRR>0%, r¼ 0%), buildings from only 7 (0.3%) metering
points met the investment criteria, resulting in only 86.3 kW saved.

For investors prioritising multiple investments, the generally
higher PVQ for heat recovery ventilation measures (S1) shows that
multiple investments in ventilation should be preferred over in-
vestments in energy-efficient windows (S2) or a combined package
(S3). It should be noted, however, that the effect on property values,
which could tilt the result, was not included in the analysis.



Fig. 10. Investment indicators for the three retrofitting packages considered (S1eS3). Sensitivity analysis of the investments for different discount rates (r¼ 4%, 8% and 20%) is
provided for NPV>0 and IRR>0.
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8. Testing and optimisation. Sensitivity analysis was performed
for the discount rates used for making economic projections
(Fig. 10). As the main goal of the example case study was to
provide the accounting function of the framework to analyse
different ‘what-if’ scenarios, development of an optimisation
module that allows fitting portfolios of buildings and measures
to various targets is planned for future work.

9. Communication. Communication of the modelling results was
organised in three tiers: i) project team of researchers; ii)
project representatives of non-academic stakeholders and
associated researchers; and iii) a broad academic audience. Tier
(i) was characterised by high intensity, short frequency, large
amount and low adaptation of exported information. Tiers (ii)
and (iii) were characterised by low intensity, long frequency,
small amount and high adaptation of exported information.
5. Discussion

The framework developed in this study allows the effects of
applying various retrofitting options to a large part of the urban
building stock to be analysed. Considering the available scenarios
from multiple perspectives (energy, environment, economic), as
done here for the empirical case of Stockholm, makes it possible to
identify the benefits and drawbacks of each retrofitting measure
and to make strategic decisions with information about related
trade-offs, therefore reducing the ‘silo effect’ identified previously
(Brooks et al., 2014). For example, installation of energy-efficient
windows (S2) had good energy reduction potential and a positive
environmental effect, but could not compete with heat recovery
ventilation (S1) in terms of investment attractiveness and eco-
nomic viability in general.

The level of detail provided by the framework means that it can
be applied for development of customised strategies for large
management institutions targeting retrofitting investment options
that meet certain criteria, e.g. meeting particular targets for
reduction of final heat energy use and CO2 emissions with a fixed
amount of capital investment.

The framework's architecture and the underlying data analysis
methods ensure good scalability. This allows for analysis of multi-
ple building archetypes and scenarios in the case example of
Stockholm. After setting the core framework, building energy
simulation is the only effort-demanding stage for such an exten-
sion. Furthermore, the modularity principle applied allows for
flexibility in further development of the framework, as adding or
modifying particular modules is associated with low efforts
required to enable their compliance with the rest of the framework.

It is worth pointing out that, in development of modelling
frameworks, there is a permanent trade-off between further model
improvement and associated gains in requirements and applica-
bility. Moreover, the complexity related to refinement of such
frameworks is largely related to organisational issues of data
availability, quality and consistency, rather than the methodology
per se.

The use of well-known and validated simulation software for
building energy simulations limits the uncertainty factors to the
input parameters. The input parameters should be transparent and
well established. In the present study the input parameters were
taken from the Sveby framework for building energy simulation
(Svebyprogrammet, 2012). The output data from the simulation
model were then validated against measured data to ensure reli-
able output from the model.

The possibility of large-scale energy retrofitting of ‘Million
Programme’ buildings in Sweden has been frequently discussed
(Johansson et al., 2017; Mangold et al., 2016). In the context of
Stockholm, this study showed that wide-scale implementation of
only two measures (heat recovery ventilation and energy-efficient
windows)would reduce final energy use by 334GWh,which is only
~3% of total city heat energy demand. However, while the positive
environmental effects and investment attractiveness of this com-
bined package were not very impressive in the case of Stockholm,
the outcome would depend on local contexts, e.g. the environ-
mental effect could be greater in European cities with less efficient,
fossil-based heating systems. This finding aligns with SR15 con-
clusions (IPCC, 2018) that a combination of energy efficiency
measures and less carbon-intensive supply is needed to meet
stringent climatemitigation goals. We demonstrated the possibility
of applying different perspectives in accounting of GHG emissions
and showed how this can significantly affect the key environmental
performance indicator of CO2 emissions for a particular set of
measures. The results also illustrated the short- and long-term ef-
fects of large-scale retrofitting on the heat supply, information that
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can be used to analyse the interplay of supply and demand in urban
energy strategies, as proposed elsewhere (Lundstr€om and Wallin,
2016).

The proposed method can also be applied in other geographical
locations and contexts, although at the moment the availability and
quality of input data might be considered a bottleneck for its wider
utilisation, which is a frequently cited limitation with data-driven
models (e.g. Nageler et al., 2018a). However, the recent trend for
rapid urban digitalisation indicates positive prospects for model-
ling frameworks of this type (Liu et al., 2014).

A significant advantage in this study was the great availability of
metered data of high resolution, which allowed us to construct a
fact-based model of the energy performance for the building stock
analysed. However, using datasets of high volume and veracity
required advanced analytical approaches for data cleaning, multi-
thread computations etc. Use of multiple data sources also
imposed a number of consistency problems to be solved (linking
metered and EPC datasets, matching similar features etc.), but it
allowed us to perform a number of cross-validation checks during
the whole modelling process, as described in our previous paper
(Pasichnyi et al., 2019b).

The study also confirmed the growing value of urban energy
data and consequent emergence of new functions of urban energy
utilities such as data collection and provision. The current extensive
digitalisation initiatives provide new possibilities to combine in-
formation from multiple big data sources in large-scale identifica-
tion of tailored measures to increase the energy performance of
individual buildings. Hence cities with more centralised energy
systems and homogeneous energy datasets can be expected to have
an additional advantage in developing a fact-based understanding
of urban building energy use and more precisely targeting policies
related to building energy efficiency. At the same time, possible
conflicts of interest between data providers (energy utilities) and
data users (city authorities and building owners) pose a higher risk
of lock-ins that would require additional efforts in finding paths for
‘win-win’ data collaboration between all stakeholders involved.
Hence, following the definitions from Sp€ath and Rohracher (2015),
energy data can be treated as another urban junction emerging at
the moment.

Limitations: The method presented has some limitations that
should be acknowledged. Due to the availability of high-resolution
metering data, it was possible to obtain a precise individual char-
acterisation model for each building analysed. However, the
resulting models were affected by the behaviour of the single vir-
tual archetype building, an effect which was only partly compen-
sated for through proportional scaling of effects for the initial
energy signature parameters of each building. As the fundamental
object for metering factual heat energy use by the DH utility is not
stand-alone physical buildings, but metering points, this resulted in
a lower level of resolution for the metered dataset and conse-
quently led to the necessity for uniform distribution of results ob-
tained for separate metering points to corresponding buildings.
However, in the vast majority of cases each metering point had
connections from buildings of the same type, so this did not have a
significant influence on the accuracy of the model obtained. While
residents' behaviour was not explicitly distinguished as one of the
factors affecting cumulative building heat energy demand, it was
embedded in the actual energy use meter data. Hence residents’
behaviour was accounted for through calibration of the physical
building energy simulation model with statistical characterisation
models and standardised occupant input data. However, issues
such as social acceptance of retrofitting and possible rebound ef-
fects for energy saved from retrofitting were beyond the scope of
this study.

Future work: In future work, we plan to explore the following
refinements to the method. First, there is potential for reducing
exclusion of buildings at the data pre-processing stage by applying
more advanced techniques for treating missing values (Graham,
2009). Second, a shift from nomenclature-based to data-driven
segmentation should allow more relevant virtual archetype build-
ings to be constructed and should provide statistical quality control
on the information reduction happening in the model transition
from the ‘single building’ to the ‘archetype/set of buildings’ modes
and back. Third, the building energy simulation stage has good
potential for automation and improvement of model resolution
through accounting for individual building geometry for each
processed building, as proposed recently (Cerezo Davila et al.,
2016). Fourth, for such sparse urban areas as Greater Stockholm,
more advanced urban climatemodelling (as presented e.g. by (Yang
and L. Chen, 2016)) could benefit the overall accuracy of the model.
Fifth, developing an even more holistic view on the retrofitting
process from an industrial ecology perspective could be achieved as
proposed by Brown et al. (2014) by applying a life cycle perspective
and including in the analysis the building renovation process itself,
with its embodied energy use and related GHG emissions.

6. Conclusions

The significant advantage of the proposed novel data-driven
urban building energy model (UBEM)-based approach is the use
of high-resolution metered data in fact-based modelling of the
energy performance of the building stock. This paper contributes to
the literature on city-scale building energy modelling by intro-
ducing the use of large datasets that have become available
recently, particularly high-resolution metered data on heat energy
use.

A new method for strategic planning of building energy retro-
fitting based on a city-wide building energy modelling framework
was developed. This method makes it possible to assess the change
in total energy demand from large-scale retrofitting and explore its
impact on the supply side. The method uses high-resolution actual
energy use datasets and advanced analytics techniques to construct
an UBEM of high detail and to identify buildings and retrofitting
measures that have the highest potential. This can improve the
quality of decisionmaking through analysis of city energy strategies
from multiple perspectives.

The method was empirically tested in the case of retrofitting
‘Million Programme’ buildings in Stockholm with heat recovery
ventilation and energy-efficient windows. The results revealed that
large-scale introduction of these two retrofitting measures would:
a) reduce the annual heat energy demand of the building stock in
question by 18%; b) have variable impacts on the environmental
performance of urban energy systems; and c) be only partly
economically viable. These outcomes are partly explained by
availability of an advanced DH system in Greater Stockholm, where
the supply of energy has largely been decarbonised. The results
were further used in the City of Stockholm's ongoing work on its
climate strategy. The proposed method can be applied in different
geographical locations and contexts, depending on sufficient
availability and quality of input data. The study exemplified the
effects of ongoing digitalisation of the energy sector in cities and
demonstrated the growing value of urban energy data, particularly
for urban strategic planning.
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Appendix A
Table A1
Structure of Stockholm building stock by building usage types and connection to district heating (DH) according to energy performance certificates data

Total Connected to DH

Building usage type N, number of buildings Heated area Atemp, m2 N, number of buildings Heated area Atemp, m2 % of total area

Multi-residential buildings 12 817 41 951 339 11 218 39 898 962 95%
Offices 1645 17 984 850 1363 17 201 730 96%
Schools 867 2 674 287 651 2 514 371 94%
Single family houses 14 452 2 484 998 2265 323 943 13%
Hospitals 638 1 692 365 285 1 454 459 86%
Public 177 1 677 425 124 1 644 927 98%
Industry 231 1 562 831 173 1 391 272 89%
Other 140 759 025 103 722 429 95%
Culture 122 709 433 87 660 366 93%
Communications 72 611 748 36 543 211 89%
Sports 91 551 927 63 540 070 98%
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