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A B S T R A C T

In a large organization, learning and forgetting may occur at different rates at the various levels of the orga-
nization. Recently, it has been shown that a multiple-level learning model works effectively for the accurate
measurement and prediction of learning and forgetting in such an organization. Due to a lack of sufficiently
detailed data at each organizational level, however, it is often necessary to use the conventional aggregated
single-level model to estimate the learning and forgetting of the entire organization. In such an approximation,
the potentially different impacts of learning and forgetting at different levels of the organization is not explicitly
considered. This paper investigates the accuracy of this single-level approximation. The single-level approx-
imation, of course, cannot be used to explain how the learning and forgetting occur at various levels of an
organization. However, numerical experiments based upon the Liberty ships dataset show that the single-level
approximation can provide surprisingly good estimates of the organization’s key performance measure, e.g.,
production time per unit. It can therefore yield good estimates of the learning and forgetting rates aggregated for
the entire organization, and these estimates can be used to compare the performance of one organization to
another. The single-level approximation is shown to perform particularly well when the data exhibit a large
amount of dispersion, the number of units used for fitting is large, the learning occurs slowly, or the forgetting
rate is high.

1. Introduction

Organizational learning is a well-known phenomenon evidenced by
numerous empirical studies. Since Wright’s (1936) application of the
log-linear learning curve function to aircraft manufacturing, many
different forms of learning curve functions have been proposed and
examined in various types of processes across different industries. Yelle
(1979) provided an extensive survey of the classical learning curve
functions published in the management and engineering literature.
Jaber (2011) provided a collection of recent developments in learning
curve models and their applications in the area of management, eco-
nomics, engineering, and psychology. Nembhard and Uzumeri (2000)
empirically compared various functional forms of the learning curve.
Balasubramanian and Lieberman (2011) estimated learning curve rates
in over 250 U.S. industries, finding a wide range of rates between and
within industries. More recently, Grosse, Glock, Christoph, and Müller
(2015) fit eleven different learning curve functions to over a hundred
datasets to determine which functions obtained the best fit for different

types of data. For many industries, learning models have been in-
corporated into broader planning models in pursuit of better resource
allocation decisions (Grosse, Glock, & Christoph, 2015a,2015b; Nadeau,
Kar, Roth, & Kirchain, 2010; Nembhard & Bentefouet, 2015; Van
Peteghem & Van Houcke, 2015). Given the large variations in learning
rates across and within industries, a key element of successful planning
is determining an accurate estimate of future learning.

The reverse of learning, i.e., forgetting, has also been recognized at
the organizational level and incorporated into learning curve functions.
Argote, Beckman, and Epple (1990) developed a discrete time forget-
ting model and applied it to the construction of Liberty ships during
World War II. Other authors applied similar models to other industries
(Benkard 2000; Darr, Argote, & Epple, 1995; Epple, Argote, & Murphy,
1996). Using a new, disaggregated dataset for the Liberty ship data,
Thompson (2007) developed a forgetting model in which knowledge
was assumed to depreciate continuously over time. While Thompson’s
model used a single time series for each Liberty shipyard, Kim,
Moskowitz, Plante, Seo, and Tang (2007) and Kim and Seo (2009)
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extended Thompson’s model by considering multiple time series for
each shipyard, one for each of the multiple shipways in a shipyard. Just
as learning models have been used in a broad range of resource plan-
ning and allocation decisions, the notion of forgetting has also been
incorporated into various planning models (Heimerl & Kolisch, 2010;
Suer & Tummaluri, 2008).

While the above authors have focused on measuring the amount of
learning and forgetting, other authors have speculated on the possible
components of organizational learning. Recently, Glock and Jaber
(2014) proposed a mathematical model in which group or organiza-
tional learning develops based on the compatibility of group members’
knowledge, their willingness and ability to share and absorb knowl-
edge, and the structure of the group. Without speculating on the precise
relationship of individual and organizational learning, Harvey (1979)
suggested a breakdown of “total [organizational] learning” into two
constituents: learning at the operator level was due to increased worker
dexterity and task competency at each work station, while higher-level
learning consisted of improved task definition and process manage-
ment. Similarly, Argote (1999) grouped organizational learning factors
into three categories: increased individual proficiency, improvements
in the organization’s technology, and improvements in its structure,
routines and methods of coordination. This suggests that learning and,
by extension, forgetting occurs at every organizational level and that
the rates of learning and forgetting vary from one level to another.

Most empirical studies, however, measure learning and forgetting at
a single aggregated level of an organization. These studies therefore
implicitly assume that the estimation obtained from this single-level
approach is a good approximation for the sum of all learning and for-
getting occurring at the various levels of the organization. If different
learning and forgetting rates were in effect at different levels in an
organization, however, this approximation could lead to poor perfor-
mance measure estimates and, consequently, poor managerial deci-
sions.

Recently, Park, Springer, and Kim (2013) proposed a model which
considers both learning and forgetting at two levels in an organization.
They applied the model to the Liberty ships dataset, since each Liberty
shipyard possessed a two-level organization: each “shipyard,” or fa-
cility, consisted of one or more “shipways,” or production lines.
Learning and forgetting was measured at both the shipway and the
shipyard levels. They found that almost all of the shipway-level
learning occurred during the production of the first few ships, while the
shipyard-level learning occurred throughout the production of all ships.
Based on these results, they theorized that the knowledge at the
shipway level was stored in a soft form manifested in the operational
skills of workers and, as a result, was acquired and depreciated at a
faster rate, while the knowledge at the shipyard level was stored in a
hard form such as documents and, therefore, was acquired and depre-
ciated at a slower rate.

When learning and forgetting occur differently at the various levels
of an organization, a multiple-level model has the potential for greater
accuracy than a single-level model in estimating the amount of learning
and forgetting in the organization. However, use of a multiple-level
model is not without drawbacks. The multiple-level model has at least
twice as many parameters as the single-level model; in addition, the
multiple-level model requires a disaggregated dataset, which allows the
researcher to track each unit produced through the multiple levels of
the organization. The multiple-level model may therefore not be a
feasible option for every dataset because of the depth of detail that the
model requires. Consequently, it is important to determine how much
the two models differ in their prediction accuracy and under what
circumstances.

In this paper, the authors compare the performance of the single-
and two-level models. Specifically, we first generate datasets based on a
two-level learning model, i.e., we assume an organization exhibits both
learning and forgetting at two levels, an upper and a lower level, of the
organization. Analogous to the Liberty shipbuilding process, the upper

level could represent a factory and the lower level could represent each
of the multiple production lines in the factory. The range of learning
and forgetting exhibited in the datasets is anchored in the parameter
estimates obtained from the earlier analysis of the Liberty ship datasets
(Park et al., 2013).

We then fit the generated datasets using two alternative single-level
models as well as the two-level model; one single-level model assumes
that all learning takes place at the factory-wide organizational level,
while the other single-level model explicitly considers only the learning
that happens within each production line. The experiment therefore
mimics situations where multiple levels exist in an organization, but
due to a paucity of data, the difficulty of data collection, or a lack of
modelling sophistication, a single-level learning and forgetting model is
applied. While the two-level model can be expected to outperform both
single-level approximations under such circumstances, the relative
performance of these single-level approximations and the factors af-
fecting their performance are the subjects of this study. Given the
common use of single-level models in studies of learning and forgetting,
answers to these questions have important managerial implications.

The rest of the paper is organized as follows: In Section 2, the details
of the multiple-level learning and forgetting models are presented. In
Section 3, the Liberty ships dataset and the methodology for generating
datasets is discussed. In Section 4, we compare the performance of the
single- and the two-level models and discuss the accuracy of the single-
level approximations. Section 5 provides conclusions.

2. Multiple-level learning and forgetting models

2.1. A modeling framework of multiple-level learning and forgetting models

Consider an organization with M organizational levels. At each
level, there exists a multiple number of parallel entities. As an example,
consider an automobile manufacturer which produces a vehicle at
multiple plants, each of which consists of multiple and parallel as-
sembly lines. This manufacturer is an example of a three-level model
(M=3) with the company, plants, and assembly lines being the first,
second, and third levels. The total effect of learning and forgetting is the
product of the learning and forgetting at each level, a functional form
consistent with the Cobb-Douglas production function (Cobb &
Douglas, 1928).

The mathematical representation of a multiple-level learning and
forgetting model is then as follows:
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where Q k[ ]M is the performance measure, e.g., the processing time or
production cost, for the kth item produced in level M. In order to apply a
multiple-level model, the dataset containing all items produced in the
organization needs to be arranged M different ways, one for each level.
At the first or the highest level, all items should be configured into a
single time series ordered by the start or completion time of each unit.
At the second level, the same items should be configured into multiple
parallel time series, one for each organizational entity at the second
level, ordered by the start or completion time of each unit in the cor-
responding entity. For notational simplicity, a single index in a bracket
k[ ]m is used to represent the ordering for level m. In the above equation,
the performance measure Q k[ ]M is specified by the index at level M, the
lowest organizational level in an M-level model. However, it could be
indexed by any time series at any level since the items in the dataset are
identical no matter how they are indexed.

The constant α represents the initial starting point of the perfor-
mance measure. The learning curve function F (·)m at level m de-
termines how the performance measure is affected by the stock of ex-
perience or knowledge E k

m
[ ]m available for the [k]th unit at level m.

Finally, k[ ]M is an error term for the [k]th unit at level M, which is an
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identically and independently distributed normal random variable with
a mean of 0 and standard deviation of α.

As the production continues, the stock of knowledge accumulates.
On the other hand, as time passes, this stock continuously depreciates.
To capture these phenomena, we assume that the stock of experience or
knowledge at each level accumulates and depreciates according to the
following recursive mechanism:

= + = …E e E m M( 1), for 1, 2, ,k
m S

k
m

[ ] [ 1]m
m km m

[ ] (2)

The interpretation of the above recursive formula is straightfor-
ward. First, the accumulation of knowledge is shown within the par-
enthesis. The unit of knowledge is defined such that the production of
an item adds one unit of knowledge to its stock at each level. It should
be noted that this does not mean that the same amount of knowledge is
accumulated at all levels. By assuming independent and distinctive
parameters of learning and forgetting for each level, the model allows
the production of an item to generate different amounts of knowledge
for each level. Second, the stock of knowledge depreciates from one
item to the next due to the time elapsed between the two items.
Specifically, S k[ ]m , the difference in production starting time between
the [k]th and [k−1]th items at level m is used in Eq. (2). The in-
stantaneous knowledge depreciation rate at level m is represented by

m. Thus, as the production continues, the stocks of knowledge may
increase or decrease depending on whether the acquisition of new
knowledge is greater or less than the depreciation of knowledge.

It is assumed that the forgetting occurs continuously during the
elapsed time between two consecutive units. At the individual level, it
would be more plausible to assume that forgetting begins immediately
upon ceasing production but not during production (Jaber, 2006). At
the organizational or group level, on the other hand, it is often assumed
that the forgetting occurs throughout the period, including a break as
well as a production period (e.g., Sikstrom & Jaber, 2012). Regarding a
functional form for forgetting, an exponential function is used in Eq.
(2). As Bailey (1989) discovered in his experiments, forgetting mainly
depends on the passage of time and the stock of knowledge. We
therefore adopt a continuous depreciation of knowledge. Specifically,
the stock of knowledge E depreciates over time t at a constant rate
depending on the stock of knowledge: =dE dt E/ . By solving the
above differential equation, we have =E t E e( ) t

0 , an exponential
decay, which is common in many physical phenomena (e.g., radioactive
decay) and also in the organizational forgetting examined in many
empirical studies (Argote et al., 1990; Benkard, 2000; Kim & Seo, 2009;
Kim et al., 2007; Park et al., 2013; Thompson, 2007). While our current
model is restricted to exponential forgetting, it should be noted that the
power function, as a mirror image of a power learning function, has also
been commonly used to model forgetting (Sikstrom & Jaber, 2012).

The multiple-level model given in Eq. (1) does not contain an ex-
plicit functional form of the knowledge transfer (or interactions) be-
tween different organizational levels or among the entities in the same
organizational level. However, the model considers such interactions
through the stocks of knowledge stored at multiple levels. Consider a
two-level case, where the upper level organizational entity is a plant
and the lower level organizational entities are assembly lines. As shown
in Eq. (1), the performance measure of a unit produced in an assembly
line depends not only on the stock of knowledge accumulated at the
assembly line, but also on that accumulated at the plant. At the same
time, the stock of knowledge at the plant depends on any units pro-
duced in any assembly lines as well as its own creation of knowledge at
the plant as shown in Eq. (2). In other words, the knowledge created at
an assembly line will be transferred to the plant and then transferred
back down to another assembly line through the mechanisms specified
in Eqs. (1) and (2). These equations can therefore be used to model very
different relationships between organizational levels. For example, the
plant may invest in a formal “skunkworks” that repeatedly designs and
rolls out process improvements to all assembly lines; if the assembly

line work was highly standardized and designed to require limited
worker judgement, learning at the upper level by management would
be much more than the sum of the learning occurring on the assembly
lines spread across the organization. Alternatively, the plant could have
minimal formal upper-level process improvement initiatives, and in-
stead rely on accumulating improvements developed by experienced
workers on the shop floor. In such a situation, upper-level learning
would largely be a delayed reaction to the learning at the lower levels
of the organization. And it is, of course, possible to imagine situations
between these two extremes.

The multiple-level learning and forgetting model presented here
does not assume a functional relationship between learning or forget-
ting at the different levels, but rather relies on the timing of observed
learning and forgetting between as well as within lower organizational
units to estimate the contribution to learning and forgetting at each
level. The nature of the relationship between learning and forgetting at
the different levels may be of interest, but our model only estimates the
rates (and amounts) of learning and forgetting at each level, not the
extent of any functional relationship. The model therefore has the ad-
vantage of being applicable regardless of the relationship between
learning and forgetting at the different organizational levels.

2.2. Learning curve functions

Three learning curve functions are considered for our experiment:
log-linear, accumulation, and replacement functions. While the log-
linear function implicitly assumes unbounded learning, the accumula-
tion and the replacement functions are bounded, i.e., the performance
measure cannot be improved beyond a certain terminal value.
Conceptually, the accumulation function assumes that new knowledge
is added without loss of prior knowledge; the replacement function
assumes that some knowledge is replaced by other more productive
knowledge (Restle & Greeno, 1970). The functional forms of the
learning curve for all levels are assumed to be identical. The log-linear
function has the forms
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Finally, the replacement function has the forms
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m is the rate of learning at level m. Consider a case when the perfor-
mance measure is either production time or cost. As the stock of
knowledge approaches infinity, the log-linear curve asymptotically
converges to zero, while the accumulation and the replacement curves
converge to the terminal value m at level m. For the log-linear function,

m is the initial stock of knowledge at level m. This initial stock is
needed in the log-linear learning function to avoid the initializations
problem of the first unit in each level. In the numerical experiments
discussed in section 3, we set all initial knowledge stocks equal to one
without loss of generality.

2.3. Parameter estimation

To estimate the parameters of the above model, the parameters of M
different time series must be estimated simultaneously, where all time
series are constructed from a single dataset but arranged in M different
ways. For the experiments in this paper, a two-level organization was
modelled, so an iterative algorithm which linked the values in the two
time series was used. Details of the algorithm may be found in Park
et al. (2013).
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2.4. The single-level approximations

We consider two different versions of the single-level model. The
first single-level model assumes that learning and forgetting occur only
at the upper level of the organization, while the second single-level
model assumes that they occur only within the lower level organiza-
tional entities. Most of the existing research in learning and forgetting
relies on aggregation at the upper-level (Argote et al., 1990; Benkard,
2000; Darr et al., 1995; Epple et al., 1996; Thompson, 2007), while only
a handful of researchers utilize aggregation at the lower-level (Kim &
Seo, 2009; Kim et al., 2007). We refer to the former as the upper single-
level model and the latter as the lower single-level model. The upper
single-level model considers a single and long sequence of units pro-
duced in the entire organization, while the lower single-level model
considers multiple short sequences of units produced in each of the
lower level entities separately. The long sequence of the upper single-
level model contains the order information of the units in each of the
short sequences of the lower single-level model. As a result, it is likely
that the upper single-level model will perform better than the lower
single-level model unless most of the learning occurs at the lower level
and little or no learning occurs at the upper level.

It is important to emphasize that we are considering the relative
accuracy of single-level models when used as approximations in a si-
tuation where the learning and forgetting are actually occurring at
multiple levels. Large organizations are likely to have multiple orga-
nizational levels, but, as noted above, most learning and forgetting
research focuses on the application of single-level models. Given the
frequency with which single-level models are used to approximate
learning and forgetting at multiple organizational levels, and the ex-
istence of models (e.g., Park et al., 2013) that can estimate learning and
forgetting at multiple levels, it is important to know what – if anything
– is being lost by continuing to use single-level approximations when
learning and forgetting are taking place at multiple levels. More pre-
cisely, we wish to answer three key questions. First, are multiple-level
models more accurate in forecasting production time than single-level
models when learning and forgetting occur at multiple levels? The
answer to this question is not necessarily yes, since the number of
parameters in multiple-level models can be quite large compared to
single-level models; this makes it difficult for the multiple-level models
to provide accurate forcasts, especially when the system exhibits a large
amount of variability. Second, if the answer to the first question is yes,
how large is the difference in accuracy? And finally, how do different
factors – such as production time variability, or the underlying learning
and forgetting rates at the different organizational levels – impact the
relative performance of the multiple-level and single-level models?
Even if a difference exists “on average” between models, it is likely that
the magnitude of the difference varies depending upon the nature of the
data. Knowing how external factors impact model performance can
help guide model selection in a real-world application.

3. Data generation for numerical experiments

3.1. The liberty ships case

To generate data close to a real situation, the benchmark dataset of
Liberty ships is used as a basis for determining the parameter ranges.
During World War II, a total of 2710 Liberty ships were produced at
sixteen shipyards. Most shipyards1 produced a large number of ships,
ranging from 82 to 384 ships for a period of two to four years. Each
shipyard consisted of multiple parallel shipways ranging from 6 to 16
shipways, and each shipway produced between 13 and 31 Liberty ships.

All shipyards experienced a great amount of learning, with production
time per ship dropping from as high as 332 days to as low as 13 days.2

This dataset has a unique structure which is not commonly found in
other datasets. A single homogeneous product, the Liberty ship, was
produced from homogenous raw materials in a large number of orga-
nizations (sixteen different shipyards) with workers who shared a
common level of prior industry experience. Consequently, the Liberty
ships case has been widely used in many previous studies on learning as
mentioned in Section 1.

Park et al. (2013) measured learning and forgetting at both the
shipway and the shipyard level by applying their two-level model,
finding that learning at the shipway level occurred at a much faster rate
than learning at the shipyard level. We use the estimation results of the
Liberty ships case, discussed below, as a foundation in determining the
parameter values of our two-level model.

3.2. Shipyard and shipway size

In the Liberty ships case, the average number of shipways per
shipyard was 9.69, and the largest number of ships produced in a single
shipway was 31. The organization modelled in this paper therefore has
ten parallel lower-level organizational entities, each of which can
produce at most 30 units of product, resulting in a total of 300 units for
the entire organization.

3.3. Learning rates and the amount of learning

For the log-linear function, a single parameter m at each organi-
zational level determines both the rate and the amount of learning. For
the accumulation and the replacement functions, however, an addi-
tional shape parameter m, the terminal value, allows the learning
amount to be manipulated independently of the learning rate.

3.3.1. Amount of learning: high vs. low
To enable a fair comparison of all three learning curve functions, it

is first necessary to determine what constitutes a “high” and a “low”
amount of learning at each organizational level; parameters for the
three functions can then be chosen such that the amount of learning
after a specified number of units is approximately the same for each
function at a specified organizational level of learning. The “amount of
learning,” m, is defined as a fraction indicating the proportionate re-
duction in the production time of a unit of product after the production
of a fixed number of units. In the Liberty ships data, the observed log-
linear learning rates implied learning amounts of 46.5% at the upper
level and 28.7% at the lower level after production of 300 units. These
learning amounts were similar to those obtained from the two bounded
learning functions, which were estimated as 0.529 and 0.264 for the
replacement function and 0.444 and 0.196 for the accumulation func-
tion. Since the accumulation function requires a very large number of
units until it reaches its terminal values, while the replacement function
reaches its terminal values rather quickly, it was considered more
straightforward to first set the parameters of the replacement function
and then determine those of the accumulation function to make the
accumulation function learning curve achieve a certain target amount
of learning within a given number of units. This paper therefore, based
on the replacement function, sets 0.3 and 0.5 as the values of high and
low amounts of learning achieved by the time of the production of the
last unit.3 These values are shown as the upper- and lower-level

1 Three of the sixteen shipyards produced less than 20 Liberty ships and were
converted to produce other types of ships after a short period of producing
Liberty ships.

2 The production time of one ship produced at the second Permanente Metals-
Richmond shipyard in Richmond, CA, was only 7 days, which in fact was set up
for propaganda and was not considered as the shortest one.
3 Since the learning occurs at two levels, the total amount of learning com-

bining the two levels together will be much higher. As an example, if one level
has high learning (terminal value= 0.3) and the other level has low learning
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terminal values, 1 and 2, of the replacement function in Table 1.

3.3.2. Rate of learning: fast vs. slow
The amount of learning m determines how much learning will

occur, while the learning rate m determines how fast the maximum
amount of learning can be achieved. As mentioned above, the learning
amount and learning rate are not independent for the log-linear func-
tion. Thus, if the learning function is to yield learning amounts of 0.3
for high learning and 0.5 for low learning, this will determine the va-
lues of the learning rate parameters for fast and slow learning. The
values of the upper and lower learning rates m that yield these learning
amounts for the log-linear function are shown in Table 1. When these
rates are translated into “progress ratios,” i.e., the percentages that the
performance measure is reduced to by a doubling of cumulative output,
the range of rates is quite similar to the range found by
Balasubramanian and Lieberman (2011) in their aforementioned survey
of 250 industries; the twenty-fifth and seventy-fifth percentiles of pro-
gress ratios across all examined facilities were found to be 87% and
78%, respectively.

For the replacement and accumulation functions, since the learning
rates are independent of the learning amount, the impact of fast vs.
slow learning rates can also be investigated. Park et al. (2013) observed
that almost all of the shipway-level learning occurred during the first
few ships while the shipyard-level learning occurred throughout the
production of all ships. The fast and slow learning rates can be set to
show the similar patterns. Specifically, with the fast learning rate, ap-
proximately 95% of learning can be achieved by the first one third of
the units (the 100th and 10th units for the upper and lower levels,
respectively), while, with the slow learning rate, the same amount of
learning can be achieved by the last unit (the 300th and 30th units for
the upper and lower levels, respectively). Learning rates at the lower
and upper levels of the replacement function are therefore set at 0.3 and
0.03, respectively, for fast learning, and 0.1 and 0.01, respectively, for
slow learning. Since the organization (upper level) has ten parallel sub-
organizational entities (lower levels), whenever each sub-entity pro-
duces a unit, the entire organization produces, on average, ten units.
That is why the learning rate of the upper level is only one tenth of that
of the lower level for the same speed of learning.

Finally, the parameters of the accumulation function are determined
so as to make its learning curves as close as possible to those of the
replacement function for a given learning rate and learning amount
combination. A simple optimization approach is used to minimize the
difference between the learning curves of the two functions. Note that
for the accumulation function, the terminal value m needed to achieve
a certain amount of learning depends on the value of the learning rate
as well as the desired amount of learning. Hence, as shown in Table 1,
the parameters 1 and 2 necessary to calculate the learning function are
determined by, but are distinct from, the experimental factors 1 and 2
used to investigate the impact of the learning amount. For the re-
placement function, on the other hand, 1 and 2 are equivalent to 1 and

2.

3.4. Factors common across all learning functions

In addition to the two learning curve function-specific factors dis-
cussed in the previous sections, we consider another important factor,
the forgetting rate, which clearly affects the total amount of learning
over the course of production. The Liberty ships case demonstrated that
learning was not persistent but depreciated over time; the forgetting
rate was high at the shipway level and low at the shipyard level. Based
on the these results, the instant forgetting rate, m, was set at 0.2 for the
high level of forgetting and 0.1 for the low level of forgetting; these
correspond to monthly knowledge retention rates of 90.4% and 81.9%,
respectively. To further assess the robustness of the single-level ap-
proximations, the level of randomness and the number of production
units available for model fitting are also introduced as factors. The
higher the degree of randomness in the data, the more difficult it is
likely to be to estimate the parameters. As a result, the forecasting ac-
curacy is expected to deteriorate as the data contain more noise.

The standard deviation of the error term, σ, is set at two levels: 0.01
for a low level of dispersion and 0.05 for a high level of dispersion. In
Park et al. (2013), the estimated values of σ are 0.105, 0.119, and 0.116
for the two-level log-linear, accumulation, and replacement models
fitted to the liberty ship data. The levels of sigma used in the current
project are therefore lower than those estimated for the liberty ship
data. As discussed in greater detail below in Section 4.2, the lower
range for σ increased our ability to identify those factors which differ-
ently impacted the performance of our learning and forgetting models.

The final factor is the number of units, n, which is available for
fitting the learning curve functions. As a greater number of units are
observed, the parameter estimates of the learning curve functions
should become more accurate. Two cases are tested: when data for the

Table 1
Parameter values for experiment.

Learning curve function Experimental factors Factor notation Corresponding parameter (If different
from factor)

Parameter notation (If not
factor)

Low value High value

All functions Initial # of units per production
line

n 50 150

Standard deviation of error σ 0.010 0.050
Upper-level forgetting rate δ1 0.100 0.200
Lower-level forgetting rate δ2 0.100 0.200

Log-linear Upper-level learning rate β1 0.121 0.211
Lower-level learning rate β2 0.204 0.354

Accumulation Upper-level learning rate β1 0.009 0.043
Lower-level learning rate β2 0.093 0.533
Upper-level learning amount ν1 Upper-level terminal value τ1 (with low β1) 0.326 0.056

τ1 (with high β1) 0.439 0.215
Lower-level learning amount ν2 Lower-level terminal value τ2 (with low β2) 0.330 0.062

τ2 (with high β2) 0.448 0.227

Replacement Upper-level learning rate β1 0.010 0.030
Lower-level forgetting rate β2 0.100 0.300
Upper-level learning amount ν1 Upper-level terminal value τ1 0.500 0.300
Lower-level learning amount ν2 Lower-level terminal value τ2 0.500 0.300

(footnote continued)
(terminal value= 0.5), the terminal value of the total learning will be
0.3× 0.5=0.15, i.e., the production time converges to 15% of the initial
production time as the cumulative number of units approaches to infinity.
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first 50 units are available, and when data for the first 150 units are
available. In both cases, these are the first units available from the
perspective of the upper organizational level, which corresponds
roughly to the first 5 units and the first 15 units per each organizational
sub-entity at the lower level. Parameters for the learning curve func-
tions are estimated based on the above initial observations, and then
production times are forecasted for the next 100 units. Accuracy of the
forecasts is measured using the mean absolute percentage error
(MAPE).

3.5. Generation of data sets

A complete list of factors, as well as the corresponding parameter
values necessary for each factor combination, is given in Table 1. Da-
tasets are generated based on a two-level full factorial design with three
replications (Box, Huner, & Hunter, 1978); note that in this context,
“two-level” refers to the number of levels for each factor in the ex-
periment, and does not refer to the number of levels of learning in the
organization. For all generated datasets in the experiments, for ex-
ample, the forgetting rate at the upper organizational level was set to
either 0.10 or 0.20 Relying on a two-level full factorial design ensures
that the estimates of the regression coefficients are statistically in-
dependent, i.e., there is no multicollinearity. Thus, the estimate of the
impact of the forgetting rate at the upper organizational level will not
be “confounded” with the estimate of the impact of any other factor in
the experiment. A single set of factors, with each factor set at one of the
two factor levels specified in Table 1, is therefore the basis for each
dataset. For a single replication of a two-level full factorial design, each
dataset’s factor combination is unique. Using the standard procedure
for generating two-level full factorial designs (Box et al., 1978), with six
factors the total number of unique factor combinations generated for a
single replication of the log-linear function experiment is 26 or 64. For
the replacement and accumulation function experiments, we have two
additional factors, and the total number of unique factor combinations
generated for a single replication of each of these experiments is
therefore 28 or 256.

In generating each dataset, once the parameter settings are fixed the
only random element is the error term k[ ]M specified in (1), and the size
of the error terms is of course dependent on the magnitude of the factor
σ. If σ is nonzero, as it is in all of our experiments, the same unique
factor combination with a different random number seed will generate
different datasets. To improve our estimates of MAPE, as well as to
provide a measure of standard error to enable hypothesis testing, each
experiment consisted of three replications, i.e., each unique factor
combination was used to generate three different datasets using three
different random number seeds. This resulted in 64×3 or 192 datasets
for the log-linear function experiment and in 256× 3 or 768 datasets
for the accumulation and replacement function experiments. For the

regressional analysis discussed below in Section 4.2, the factor settings
(low or high) for each dataset and the MAPE of the resulting model fit
constituted a single observation, and the regressions were therefore
performed on either 192 (log-linear) or 768 (accumulation and re-
placement) observations.

4. Forecasting accuracy of single-level approximation

Clearly, using a single-level learning model for an organization with
multi-level learning is not appropriate if our primary interest is in the
accurate estimation of learning and forgetting rates at each level.
However, if the primary interest is in predicting the performance
measure, which is usually a productivity measure such as production
costs, manufacturing lead times or labor hours, the aggregated ap-
proach based on a single learning curve may provide reasonably ac-
curate estimates

4.1. Overall performance of single-level approximations

For each dataset generated as described in Section 3.5, three dif-
ferent versions of the corresponding learning function were fitted: the
two-level model, the upper single-level model, and the lower single-
level model. We refer to these three versions of curve-fitting models as
forecasting models. For each fitted dataset, the MAPE for the next 100
production estimates was then calculated. Table 2 shows the mean
MAPEs for all nine combinations constructed by three learning curve
functions (log-linear, accumulation, and replacement) and three fore-
casting models (two-level, upper-level, and lower-level).

As one can see from the table, the pattern for each of the three
different learning curve functions is the same: the two-level model
outperforms the upper-level model, and the lower-level model has the
worst performance. It is certainly not surprising that, on average, the
two-level models outperform the two single-level models, as two-level
learning was the basis of each dataset; any errors observable for the
two-level model therefore represent error introduced by the random-
ness of the data.4 Perhaps surprisingly, however, the mean MAPE for
the upper-level models is generally greater than that for the two-level
models by only 1 or 2%, while the lower-level models generally have
MAPEs approximately twice as great (greater by 3 to 8%) as the two-
level MAPEs.

To formally test for significant differences among the MAPEs of the
three forecasting models, a Kruskal-Wallis medians test5 was performed

Table 2
Mean Absolute Percentage Errors for different learning curve functions.

Learning curve function Forecasting model Number of observations Mean MAPE Median test: Kruskal-Wallis significance Paired sign test significance

Forecasting model

Two Upper Lower

Log-Linear Two 192 0.0355 8.41E-20 2.11E-11 1.18E-28
Upper 192 0.0452 6.86E-15
Lower 192 0.0691

Accumulation Two 768 0.0361 7.88E-64 2.49E-32 1.21E-87
Upper 768 0.0435 1.24E-41
Lower 768 0.0715

Replacement Two 768 0.0487 6.75E-49 1.80E-18 5.60E-72
Upper 768 0.0641 5.87E-60
Lower 768 0.1210

4 The two-level models consistently yielded a MAPE of zero when the un-
derlying data were deterministic.
5 The distribution of MAPEs were highly skewed to the right for all nine

combinations (three learning curve functions× three forecasting models) and
far from a normal distribution. Thus, we used this non-parametric test instead
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for each learning curve function. As can be seen in Table 2, the null
hypothesis of equality among the median MAPEs of the forecasting
models was rejected for each of the three learning curve functions with
extremely low p-values. For each learning curve function, this result
was followed up with three paired sign tests for the equivalence be-
tween the median MAPEs for each pair of the forecasting models.
Table 2 again shows that the null hypotheses of equivalence are re-
jected in each instance with a high degree of significance.

While the differences between the different forecasting models are
statistically significant, however, they are not necessarily of practical
and managerial significance. The difference in mean MAPE between the
two-level and the upper-level model is 0.97% for the log-linear func-
tion, 0.74% for the accumulation function, and 1.54% for the replace-
ment function. In practical terms, the upper-level model may be con-
sidered to perform equally well as the two-level model in terms of
average forecasting accuracy.

4.2. Impact of learning parameters on model accuracy

To examine how MAPEs behave with respect to the experimental
factors, for each of the nine learning curve function/forecasting model
combinations the MAPE was regressed on the factors. The results are
given in Table 3. The values reported for each factor are the increase
(+) or decrease (−) in the MAPE resulting from setting the factor at its
high level; the additive inverse of the reported value would reflect the
impact on the MAPE of setting the factor at its low level. For example,
setting the initial number of units n used to fit the data at its high value
of 150 reduces the MAPE, on average, by 0.78% from the overall mean
MAPE of 3.55% for the two-level model using log-linear learning
functions; setting n to its low value of 50 would increase the MAPE by
0.78% over the average mean MAPE for this model. Italicized estimates
are significant at the 0.05 level.

Not surprisingly, the coefficients of the factor for n are negative for
all nine learning function/forecasting model combinations, i.e., as n
increases, the MAPE decreases. Perhaps less obviously, the two-level
models appear to be least affected by the amount of data available for
fitting, while the availability of data more dramatically affects the
lower-level models. This effect is evident in Fig. 1, which illustrates the
relationship between the MAPE and n for a greater range of n. Fig. 1
shows the MAPEs when fitting two-level, upper-level, and lower-level
models to data from a two-level learning system with the log-linear
learning curve function. The parameters for the underlying two-level
learning systems have been chosen to make the data difficult to fit. Each
point plotted on the graph represents an average of thirty observations.

While all models show improvement as n increases from five to twenty,
the more poorly-performing single-level models shows a greater sensi-
tivity to data availability. Since, for a specified rate and total amount of
learning, the per-unit amount of learning is greatest for items early in
the learning process, this phenomenon likely indicates that the more
accurate two-level model loses its comparative advantage as the
learning curves at both levels flatten out.

Another expected phenomenon is the change in MAPE with respect
to the standard deviation σ of the disturbance term; as σ increases, the
MAPE also increases. In contrast with the factor n, σ appears to have a
greater impact on the accuracy of the two-level models than the single-
level models. As shown in Fig. 2, increasing σ results in an increase in
MAPE for all three models, but the performance of the single-level
models deteriorates less rapidly than that of the two-level model. The
declining advantage of the two-level model when σ is large may be due
in part to the number of parameters in the two-level model; since the
two-level model has twice as many parameters as either single-level
model, as σ increases the standard errors associated with the estimators
also increase faster. This phenomenon was investigated further in a
series of follow-up experiments where σ was set at 0.10 for all datasets.
For each model and learning function combination shown in Table 4, an
experimental run was conducted using the same factor levels and
number of replications as discussed above, except that sigma was set at
0.10 for all trials. The resulting learning model MAPEs and adjusted R-
squared values of the regression models examining the impact of each
factor are shown in columns 3 and 4 of Table 4; the MAPEs and adjusted
R-squared values for the initial experiments shown in Table 2 are re-
produced in columns 5 and 6 for comparison.

As expected, the MAPEs for the high-sigma experiments are much
higher than the MAPEs for the original (sigma ranging from 0.01 to
0.05) experiments. Equally important, however, is that at the higher
level of sigma, the difference between the upper-level and two-level
model is negligible or at least much reduced. This is the logical ex-
tension of the phenomenon noted in Fig. 2. Since our thesis is that the
upper-level model can, under certain circumstances, perform as well as
the two-level model even when the actual learning and forgetting are
taking place at two levels, and we did not want to overly bias the ex-
periments in favor of our thesis, we chose parameters settings that gave
the two-level models the best chance of outperforming the single-level
models.

In addition, a sigma value of 0.10 introduces variability that limits
the ability of the regression model to predict the impact of each factor;
not only are the MAPEs higher for the high sigma experiments, but the
adjusted R-squared values of the regressions are also notably lower.
Since one goal of the current project was to judge the impact of the
factors on model accuracy, with an emphasis on identifying factors
affecting the relative performance of two-level and single-level models,
the authors were concerned that using a higher sigma (e.g., 0.10) for

Table 3
Impact of experimental factors on MAPE.

Effect estimates

Log-linear function Accumulation function Replacement function

Factor Factor notation Two-level Upper level Lower level Two-level Upper level Lower level Two-level Upper level Lower level

Initial # of units per production line n −0.0078 −0.0111 −0.0234 −0.0087 −0.0128 −0.0244 −0.0192 −0.0288 −0.0526
Standard deviation of error term σ 0.0198 0.0117 0.0097 0.0203 0.0151 0.0076 0.0269 0.0159 −0.0070
Upper-level learning rate β1 0.0035 0.0067 0.0220 0.0034 0.0088 0.0100 0.0099 0.0219 0.0350
Lower-level learning rate β2 0.0019 0.0025 0.0173 0.0009 0.0016 0.0222 0.0053 0.0143 0.0615
Upper-level learning amount ν1 0.0024 0.0034 0.0142 0.0067 0.0163 0.0312
Lower-level learning amount ν2 0.0010 0.0000 0.0179 0.0045 0.0101 0.0382
Upper-level forgetting rate δ1 −0.0022 −0.0026 −0.0097 −0.0027 −0.0043 −0.0074 −0.0063 −0.0163 −0.0176
Lower-level forgetting rate δ2 0.0010 0.0030 −0.0063 −0.0008 −0.0010 −0.0113 −0.0052 −0.0055 −0.0262

Adjusted R-squared 0.8711 0.6118 0.9117 0.7815 0.6631 0.8975 0.5431 0.6722 0.7484

Italicized numbers are significant at the 0.05 level.

(footnote continued)
of single-factor ANOVA.
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the high factor setting would introduce so much variability that it
would mask the impact of the other factors.

All six remaining explanatory variables also show a consistent be-
havior. The upper and lower-level learning rate factor effects are sig-
nificant and positive in all nine learning function/forecasting model
combinations, and the impact on MAPE is greatest for the lower-level
models and smallest for the two-level models; a high learning rate leads
to poorer forecasts, and this is more so the case for the single-level
approximations. Eleven of the twelve learning amount factor effects are
significant and positive, indicating that a greater amount of learning
also increases forecasting error; as with the learning rates, the error is
greatest for the lower-level models and least for the two-level models.
These observations are not unexpected; it tends to be more difficult to
predict the response variable based on a learning curve function if the

learning occurs faster and in a larger amount.
Finally, fifteen of the eighteen coefficients for the forgetting rate

factors are significant at the 0.05 level, and all but one of these are
negative. Since more forgetting results in less learning, it is reasonable
to expect that more forgetting results in more accurate forecasts for the
same reasons that less and slower learning was seen to result in greater
accuracy. As with learning, the impact is greatest for the lower-level
models than for the two-level models.

4.3. Pairwise comparisons of different forecasting models

Consider now a different, and perhaps more informative, approach
to comparing the relative impact on forecasting error of using a single-
level model to estimate future production times when the actual

Fig. 1. MAPE for log-linear function for various levels of n.

Fig. 2. MAPE for log-linear function for various levels of σ.
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learning and forgetting occurs on two levels. For each dataset, let the
response variable be the difference in MAPE between either the upper-
level or lower-level model and the two-level model; the response vari-
ables are then positive if the single-level model performed worse than
the two-level model, and negative if the reverse is the case. These dif-
ferences are then regressed on the same experimental factors as dis-
cussed in Section 4.2. The results are shown in Table 5, where all
coefficients significant at the 0.05 level are italicized. The coefficients
now represent how much the difference in accuracy between the single-
level and two-level models increases or decreases as the factor level
changes. For the log-linear function, for example, setting n to its high
value leads to a decrease in the difference in MAPE between the upper-
level and two-level models of 0.0033.

As shown in the table, the coefficients of the first factor n are all
negative and significant. As noted above, as n increases, the forecasts
become more accurate and the MAPEs of all three models decrease. The
benefit of a larger n, however, is more apparent with the single-level
models than with the two-level model. As a result, the difference in
MAPE between either of the single-level models and the two-level
model decreases as we use more units for fitting the models. The
coefficients of the second factor σ are also all negative and significant.
When the standard deviation of errors is small, the two-level model
outperforms both single-level models. However, when the standard
deviation becomes bigger, the advantage of the two-level model di-
minishes. This may be partly due to the large number of parameters in
the two-level model; it may not be easy to estimate all parameters in the
two-level model with reasonable accuracy when σ is large. The single-
level models also suffer with large σ, but they do not seem to be affected
as much as the two-level model because the single-level models have
only half the number of the parameters of the two-level model. When
both n and σ are large, the two-level model could be equaled or even
outperformed by the upper single-level model. These observations
could explain the satisfactory performance of the single-level models,

especially the upper single-level model, in previous studies.
The impact of the six remaining factors is less readily understood.

There is a clear pattern for the upper and lower-level learning rates; the
coefficients are significant at the 0.05 level in eleven out of twelve
cases, and in those eleven cases the coefficients are positive. This evi-
dence indicates that higher learning rates worsen the error gap between
the single-level and the two-level models. No equally clear pattern
emerges with the eight estimates of the impact of learning amounts, of
which six are significant at the 0.05 level. Similarly, only eight of the
twelve estimates for the forgetting rate are significant at the 0.05 level,
and seven of those are negative. Thus, while the learning amount and
forgetting rate results are not as consistently signed as the learning rate
estimates, the above results indicate a tendency for the differences
between the single-level and the two-level models to get worse as the
learning becomes faster and the forgetting becomes slower.

4.4. Performance of different models when no learning and/or forgetting
exists

While the above analysis outlines the relative performance of the
different models for a range of learning and forgetting parameters, it
does not examine the performance of the models when there is no
forgetting and/or no learning occurring at one or more of the levels. To
consider these possibilities, we conducted fifteen additional experi-
ments, focusing on scenarios where learning and/or forgetting occurred
at only one level or (in the case of forgetting) at neither organizational
level.

The three basic types of additional “zero forgetting” experiments set
either the lower level, upper level, or both the lower and upper level
forgetting to zero; for each type of forgetting experiment, all other
factors were set to the high or low levels specified in the original ex-
periments to ensure a two-level full factorial design. The two basic
types of additional “zero learning” experiments set the lower level

Table 4
Comparison of mean MAPE and regression adjusted R-squared for original and high sigma experiments.

High sigma experiments Original experiments (Tables 2 & 3)

Learning function Model Mean MAPE Adjusted R-squared Mean MAPE Adjusted R-squared

Log-linear Two-level 0.1107 0.5323 0.0355 0.8711
Log-linear Upper-level only 0.1106 0.3005 0.0452 0.6118
Log-linear Lower-level only 0.1640 0.7574 0.0691 0.9117
Accumulation Two-Level 0.1073 0.3296 0.0361 0.7815
Accumulation Upper-level only 0.1075 0.3274 0.0435 0.6631
Accumulation Lower-level only 0.1147 0.5040 0.0715 0.8975
Replacement Two-level 0.1260 0.3227 0.0487 0.5431
Replacement Upper-level only 0.1356 0.3629 0.0641 0.6722
Replacement Lower-level only 0.1442 0.4600 0.1210 0.7484

Table 5
Pairwise comparisons of forecasting model impacts on MAPE.

Effect estimates

Log-linear function Accumulation function Replacement function

Factor Factor notation Upper-two Lower-two Upper-two Lower-two Upper-two Lower-two

Initial # of units per production line n −0.0033 −0.0156 −0.0042 −0.0158 −0.0095 −0.0334
Standard deviation of error term σ −0.0081 −0.0100 −0.0052 −0.0127 −0.0110 −0.0339
Upper-level learning rate β1 0.0032 0.0186 0.0054 0.0066 0.0120 0.0251
Lower-level learning rate β2 0.0006 0.0154 0.0007 0.0213 0.0091 0.0562
Upper-level learning amount ν1 0.0010 −0.0047 0.0096 0.0246
Lower-level learning amount ν2 −0.0011 −0.0106 0.0056 0.0337
Upper-level forgetting rate δ1 −0.0004 −0.0075 −0.0015 0.0117 −0.0100 −0.0113
Lower-level forgetting rate δ2 0.0020 −0.0073 −0.0003 0.0168 −0.0002 −0.0209

Adjusted R-squared 0.2715 0.8234 0.3180 0.8316 0.3574 0.6449

Italicized numbers are significant at the 0.05 level.
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learning and forgetting to zero, or the upper level learning and for-
getting to zero; the remaining factors were set, as with the “zero for-
getting” experiments, at their original high and low levels to yield a
two-level full factorial design. For each of these five types of experi-
ments, three experiments were conducted: one for log-linear functions,
one for accumulation functions, and one for replacement functions.

The mean MAPEs for each experiment, along with the mean MAPEs
for the original two-level learning and forgetting models shown in
Table 2, are displayed in Table 6. Several interesting, but perhaps not
unexpected, patterns can be seen from these results. First, all models –
two-level, lower-level, and upper-level – perform worse when applied
to data where there is learning at two levels but no forgetting at one or
more levels. More surprising, perhaps, all three models perform better
when applied to scenarios where there is no learning or forgetting at
one level. And similar to the original scenario, where learning and
forgetting were occurring at both levels, the two-level model also
generally outperforms the two single-level models for the three for-
getting scenarios; it is matched or slightly outperformed by the upper-
level model or the lower-level model only when the single-level models
match the actual learning and forgetting scenario, i.e., the upper-level
model does best when there is only learning and forgetting at the upper
level, and the lower-level model outperforms when there is only
learning and forgetting at the lower level.

4.5. Performance of different models when additional explanatory variables
are present

So far, we have not considered any explanatory variables other than
the variables directly affecting the stock of knowledge. In some situa-
tions, additional explanatory variables such as capital, labor or tech-
nology-related changes may be known to also impact the performance
measure. If the functional relationship of these explanatory variables to
the performance measure can be approximated, these variables can be
incorporated into the general multi-level learning and forgetting model
shown in (1). For purposes of illustration, we will show how a single
explanatory variable could be added to the model, and how it’s ex-
istence could affect the relative performance of two- and single-level
models.

Let Z be an additional explanatory variable that increases pro-
portionately to the passage of time. While virtually all levels of the
organization can have additional explanatory variables, we consider
just a single variable and further assume that the variable is measured
when production is started for each item. That is,
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where a is the initial level of Z at the start time of the first unit, and b is
the increase in Z for each unit of time.

With the new variable, the response or the performance measure, Q,
is determined in a multiplicative form as follows:
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Among the three learning curve functions, since the log-linear
function is the most widely used functional form in the literature, we
consider the log-linear function for purposes of illustration. We assume
that the functional relationship between the response variable and the
new variable also follows a log-linear form:

=G Z Z( ) ,k k[ ] [ ]M M (8)

where γ is a parameter representing how intensely Z affects the re-
sponse. We vary γ from 0 to 2.0 with an increment of 0.25 to model
situations where the impact of Z on Q decreases < <(0 1), remains
constant =( 1), or increases <(1 2) over time. Note that when
γ=0, the new variable has no impact on the response, i.e., Eq. (7)
reduces to the original mathematical representation given in Eq. (1). All
other parameters are set so that the advantage of the two-level model
over the single-level models is maximized. Specifically, we consider
that case when the data exhibit a small amount of dispersion ( = 0.01),
the number of units used for fitting is small ( =n 5), the learning rates
are high ( = 0.2111 , = 0.3542 ), and the forgetting rates are low
( = = 0.11 2 ). To generate values ofG Z( )k[ ]M that are not grossly out of
scale with the F E( )m

k
m

[ ]m for the extreme values of γ, we set =a 1.0 and
=b 0.25, yielding Z equal to one for the first item being produced and

increases at the rate of 0.25 per unit of time thereafter. When fitting the
single-level models to the data, we include G Z( )k[ ]M in the model being
fitted along with the single-level component.

Our results are shown in Fig. 3. Each point plotted on the chart is the
mean of thirty observations. Note that the two-level model consistently
outperforms the two single-level models, with the upper-level model
generally outperforming the lower-level model. The performance of all
three models deteriorates as γ increases; if the new variable has an
increasing impact on production over time, mis-specifying the model
leads to increasing forecasting errors. Furthermore, the degree of de-
terioration is quite significant with the lower-level model but is rela-
tively small with the two-level model. The performance of the upper-
level model falls in the middle.

If we reverse the experimental parameters to
lessen the advantage of the two-level model
( = = = = = =n0.05, 15, 0.121, 0.204, 0.2, 0.2),1 2 1 1 Fig. 4
shows that for values of γ below one, the performance of the single- and
two-level models are quite similar. As γ increases beyond one, however,
the performance of all three models deteriorates somewhat, with the
lower-level model becoming significantly worse. Unlike the previous
case when the advantage of the two-level model over the single-level
models is maximized, the performance of the two-level model is not
distinctively different from that of the upper-level model.

In situations where the additional explanatory variable Z becomes
increasingly important in estimating Q as time passes, therefore, the
performance of all three models declines, although the two-level model
continues to dominate, followed by the upper-level and then the lower-
level models. Furthermore, the same parameter combination that was

Table 6
Mean absolute percentage errors for scenarios with no learning and/or forgetting.

Learning function

Log-linear function Accumulation function Replacement function

Model Two-level Upper-level Lower-level Two-level Upper-level Lower-level Two-level Upper-level Lower-level

Two-level learning & forgetting 0.0355 0.0452 0.0691 0.0361 0.0435 0.0715 0.0487 0.0641 0.1210
No lower-level forgetting 0.0709 0.0859 0.1738 0.0520 0.0650 0.1109 0.0640 0.1049 0.1583
No upper-level forgetting 0.0488 0.0657 0.1715 0.0394 0.0451 0.1435 0.0592 0.0733 0.2153
No lower- or upper-level forgetting 0.0713 0.0872 0.2057 0.0530 0.0698 0.1661 0.0652 0.1133 0.2346
No lower-level learning or forgetting 0.0292 0.0293 0.0422 0.0322 0.0305 0.0453 0.0337 0.0326 0.0561
No upper-level learning or forgetting 0.0340 0.0452 0.0337 0.0313 0.0412 0.0290 0.0334 0.0416 0.0320
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found to favor the two-level model in the absence of additional ex-
planatory variables exacerbates the relative differences between the
models when a new explanatory variable is present.

4.6. Summary of model performance

The experimental results when learning and forgetting occurs at
both levels can be summarized as follows:

• In terms of average forecasting accuracy the upper single-level
model performs nearly as well as the two-level model, and it could
equal or even outperform the two-level model when n and σ are
large.
• As the standard deviation of errors σ increases, the MAPE increases
in both the two-level and the single-level models, and it increases
faster with the two-level model than with the single-level models.
• As the number of ships used for fitting n increases, the MAPE

decreases for all models, and the gains are greatest for the single
level models.
• As the rate or amount of learning increases, the MAPE increases. It
would be more difficult to predict the response variable based on a
learning curve as the learning occurs faster or in a larger amount.
The error gap between the single-level and two-level models ex-
pands as the learning rates increases. However, no clear pattern is
observed between the error gap and the amount of learning.
• For the same reason as the learning rate, as the forgetting rate in-
creases, the MAPE decreases. The error gap between the single-level
and two-level models mostly shrinks as the forgetting rates increase.
• The upper single-level model performs better than the lower single-
level model in virtually all cases. Especially when n is small, its
superiority over the lower single-level model stands out more dis-
tinctively.

When learning and forgetting do not both occur at two levels, we

Fig. 3. MAPE for high-learning log-linear function with added variable Z.

Fig. 4. MAPE for low-learning log-linear function with added variable Z.
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observe that:

• The two-level model generally outperforms both single level models
when there is learning at both levels but no forgetting at one or
more levels.
• The two-level model performs almost as well as the correctly spe-
cified single-level model when there is no learning or forgetting at
one level.

As discussed in the introduction, the learning curve has played an
important role in the estimation of future production time, the accuracy
of which is critical for decisions regarding scheduling, inventory man-
agement and workforce assignment. In many practical situations, due to
a lack of sufficiently detailed data, it is often necessary to rely on the
conventional aggregated single-level model for these production time
estimates. For managers interested primarily in accurate forecasts of
future production times, rather than precise estimates of the extent of
learning and forgetting at different levels in the organization, our
findings provide a practical guidance on when the upper-level ap-
proximation works well and how much uncertainty the approximation
generates. More broadly, the solid performance, under a wide range of
conditions, of the upper-level approximation in estimating production
times generated under conditions of two-level learning confirms the
utility of the commonly used single-level learning models.

More specifically, our results show that the upper single-level model
approximates the total learning and forgetting occurring at two levels
generally well unless the volatility of the performance measure is very
small. In the Liberty ships dataset, the estimated standard deviation of
the error term was about 0.1 (since we assume a multiplicative model as
shown in Eq. (1), this is equivalent to =e 1.1050.1 or approximately
10.5% forecasting errors on average), at which the upper single-level
model performed nearly equally as the two-level model. Caution in
using the upper single-level model is warranted, however, in the early
stages of a learning curve when n is small or the learning curve is steep;
in these situations the upper single-level approximation did not perform
well and a more careful monitoring of learning at various levels of an
organization is suggested. After the early stages of learning have passed
(in our experiments when n=10 or higher), we can safely apply the
upper single-level approximation to predict the performance measures.

5. Conclusions

Learning can occur at every level of an organization, and the rates of
learning can vary from one level to another. Most conventional learning
models measure learning and forgetting at a single aggregated level and
implicitly assume that this is a good approximation of the total learning
and forgetting for the entire organization. Recently, Park et al. (2013)
proposed a two-level learning model, which is capable of measuring
learning and forgetting at two different levels of an organization. While
a multiple-level model may be closer to the real process of learning in
an organization, due to the lack of disaggregated data it may still be
necessary to use a conventional single-level model for prediction. This
paper compared the performance of the single- and two-level models
using extensive numerical experiments based upon the Liberty ships
dataset. Datasets were generated according to the two-level model, and
two versions of the single-level model as well as the two-level model
were then fitted to the datasets. This enabled the authors to determine
how accurately the aggregated single-level models could estimate the
learning and forgetting which actually occurred at two levels of an
organization.

Single-level models may not be appropriate for accurately mea-
suring the rates of learning and forgetting at each level, but single-level
models may provide quite accurate estimates for the performance
measure of the entire organization; this is most likely in scenarios
where a large degree of randomness is present in the data or where
future learning is expected to be relatively modest. This last situation

can occur not only when learning rates are low and/or forgetting rates
are high, but also when the cumulative number of items produced has
moved the organization to the relatively flatter part of the learning
curves. While organizations may be unwilling to delay model fitting to
improve the accuracy of a single-level model, the wide range of learning
rates and forgetting rates reported in the literature for different in-
dustries, as well as the noisiness expected in field data, suggests that
there are likely many situations in which one or more of the above
criteria are satisfied.

As discussed early in the paper, the Liberty ships dataset was used to
set the parameters of our numerical experiments. While we feel that the
parameter ranges set in this manner were representative of a wide
range of applications, our results are limited to these ranges, and dif-
ferent parameter ranges could be used to further test our conclusions.
Furthermore, other learning and forgetting functions – such as the
power functions used by Sikstrom and Jaber (2012) – could be used to
test the robustness of our results. A more direct test, perhaps, would be
to apply the approaches discussed in this paper to other real datasets
where the learning and forgetting processes differ from the Liberty
ships case.

In addition, while we briefly examined the impact of additional
explanatory variables on the relative performance of the single- and
two-level models, these results are based on just two somewhat extreme
cases where the advantage of the two-level model is maximized or
minimized; a more thorough numerical analysis would be required
before we could make a firm conclusion on the impact of additional
explanatory variables. Another possible extension of this study would
be to examine the performance of all three models, especially the ac-
curacy of the single-level approximation, in the presence of various
types of additional explanatory variables.

More fundamentally, the current model assumes that the learning
and forgetting rates at the shipway level are identical across all ship-
ways. This assumption may be valid in many organizations, especially
manufacturing plants, which consist of multiple and nearly-homo-
geneous entities in terms of the types of equipment, the scope of pro-
cedures, and the skills of workforce. In organizations without such
homogeneity, however, use of the proposed two-level model without
further modification would not be valid. One possible extension of the
two-level model, therefore, is to consider an organization consisting of
heterogeneous lower-level entities, representing a situation where en-
tities using quite different processes and producing different products
are managed by the same upper-level organization. In such a scenario,
each entity at the lower level is allowed to have its own learning and
forgetting rates. The heterogeneity in the lower level is most likely to
increase the variability of the performance measure or the response
variable. As we have seen with σ, the standard deviation of the error
term, increased variability disadvantages the two-level model, and this
same effect could result from an increase in lower-level heterogeneity.
On the other hand, different learning and forgetting rates could make
the aggregation by a single-level model more difficult, and result in less
accurate forecast for the upper single-level model. Further experi-
mentation will be necessary to examine how the heterogeneity affects
the accuracy of the approximation by a single-level model.
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