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Abstract
Modeling influence diffusion in social networks is an important challenge. We
investigate influence-diffusion modeling and maximization in the setting of viral
marketing, in which a node’s influence is measured by the number of nodes it can
activate to adopt a new technology or purchase a new product. One of the
fundamental problems in viral marketing is to find a small set of initial adopters who
can trigger the most further adoptions through word-of-mouth-based influence
propagation in the network. We propose a novelmultiple-path asynchronous threshold
(MAT) model, in which we quantify influence and track its diffusion and aggregation.
Our MAT model captures not only direct influence from neighboring influencers but
also indirect influence passed along by messengers. Moreover, our MAT framework
models influence attenuation along diffusion paths, temporal influence decay, and
individual diffusion dynamics. Our work is an important step toward a more realistic
diffusion model. Further, we develop an effective and efficient heuristic to tackle the
influence-maximization problem. Our experiments on four real-life networks
demonstrate its excellent performance in terms of both influence spread and time
efficiency. Our work provides preliminary but significant insights and implications for
diffusion research and marketing practice.
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Introduction
People live in various social networks, and share information and ideas with friends in the
form of word-of-mouth (WOM) communication. New technologies and various social
media rapidly penetrate into every aspect of our daily life, and provide us new channels
and great convenience to exchange information and express opinions. They disseminate
massive volumes of information over different social media, and spread influence to each
other. As social media becomes prevalent, its influence on business, politics and society
becomes evident and significant. How new innovations, behaviors, and diseases spread
through social networks has a long history of study in social sciences. Research in this
area has exploded and drawn considerable attention from many disciplines over the last
decade. Many models of information and influence diffusion have been proposed for a
wide variety of applications, such as viral marketing (Kempe et al. 2003; Bhagat et al.
2012), cascading behavior and prediction (Leskovec et al. 2007; Cheng et al. 2014), infor-
mation spreading (Morales et al. 2014), outbreak detection (Leskovec et al. 2007), etc. In
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this paper, we look into modeling influence diffusion in the setting of viral marketing in
business.
In essence, viral marketing is a process of influence diffusion over social networks.

An effective viral marketing campaign requires that marketers identify individuals with
high social networking potential. A general setting can be depicted as follows: a com-
pany would like to market a new product, in the hopes that it would be adopted by as
many people as possible in a target social network. The company chooses a small num-
ber of influential individuals as the initial adopters/seeds by giving them free/discounted
samples of the product and encourages them to recommend the product to their friends,
hoping that their friends would be influenced to purchase the product, then influence
their friends, and so on. As a result, the influence would propagate through the network
and trigger widespread adoption in the end of the diffusion process. Viral marketing is
termed to describe such a marketing technique that induces the users in a social network
to pass on a marketing message (viral ad) to others so as to achieve the largest influence
spread in terms of product sales or brand awareness.
Viral marketing is driven by WOM communication and enhanced by network effects.

Survey-based statistical research has shown very strong support for the hypothesis that
network linkage can directly affect product/service adoption (Hill et al. 2006; Iyengar et al.
2011). The crucial factor to the success of viral marketing is for the marketers to identify
the most influential set of initial adopters. Researchers investigated different approaches
to seeding campaigns for marketing practice (Hill et al. 2006; Iyengar et al. 2011; Libai
et al. 2013; Rand and Rust 2011; Peres 2014). These studies significantly enhance our
understanding of WOM behavior and effects on promoting viral marketing. However,
the approach these researchers commonly use or rely on is explanatory modeling. They
apply various field experiments and/or statistical models to data for testing some causal
hypotheses or correlations between variables. For example, researchers find support for
the hypothesis that referrals from strong ties are more influential in receivers’ decision-
making than those from weak ties (Brown and Reinegen 1987), and that high-degree
seeding remains the most successful strategy (Hinz et al. 2011). Nevertheless, can we cre-
ate a robust seeding strategy that outperforms the high-degree seeding? Is it possible to
find the optimal or suboptimal seeding strategy? Can we estimate the cascade of adop-
tion given any set of initial adopters? Most of these qualitative approaches and empirical
studies fail to give answers to these important questions in an operational manner due to
the lack of an explicit/realistic influence-diffusion model.
While most marketing researchers focus on investigating WOM diffusion processes

using various explanatorymodels and/or qualitative methods, researchers from computer
science and other related fields aim to explicitly build influence-diffusion models so as to
maximize and/or predict influence spread. Influence maximization as an important algo-
rithmic technique for viral marketing was first posed by Domingos and Richardson (2001,
2002), in which they applied Markov random fields to model the influence among cus-
tomers and then choose the best marketing plan to maximize the profit. In their seminal
paper (Kempe et al. 2003), Kempe et al. formulate it as a discrete optimization problem:
given a social network, a stochastic diffusion model, and a number K (also called budget),
the objective is to find the seed set of K initial adopters (of a new product) who can trigger
the largest cascade of further adoptions, in which the influence diffusion process unfolds
in discrete time steps as described by the diffusion model.
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This influence-maximization (IM) problem has attracted a great deal of attention and
extensive studies. To address this problem, two key components are indispensable. First,
we need to build a realistic influence-diffusion model that captures in detail the diffusion
process and the activation mechanism of WOM marketing. Second, we need to develop
an effective and efficient algorithm that enables us to find the optimal or suboptimal
seed set under the diffusion model. Kempe et al. (2003) approach the problem under two
widely-studied stochastic diffusion models: independent cascade (IC) model and linear
threshold (LT) model. They show that this optimization problem is NP-hard for both the
IC and LT models, and provide the first provable approximation guarantees for heuris-
tic algorithms. Their work laid theoretical and algorithmic foundations for understanding
influence diffusion and addressing the IM problem. Since then, there has been a large
amount of follow-up work in two main directions: (1) extensive research has been done
to study various extensions to the IC and LT models (Bhagat et al. 2012; Goyal et al. 2010;
Chen et al. 2011; Borodin et al. 2010; He et al. 2012; Gayraud et al. 2015); (2) a large num-
ber of algorithms have been proposed to improve efficiency in finding the K-seed set
(Leskovec et al. 2007; Chen et al. 2010; Goyal et al. 2011b; Jiang et al. 2011; Wang et al.
2012). These extensions are the substantial complement of the classic IC and LT models.
However, there exist some significant limitations in these models.
First, they approach a social entity’s adoption likelihood from a confined scope, con-

sidering only the direct influence from the activated neighbors of the entity. However, a
social entity’s adoption decision could be influenced by other adopters who are not social
neighbors (Fang et al. 2013), e.g. through structural equivalence (Burt 1987) and three-
degrees-of-influence (Christakis and Fowler 2007). In reality, as described in the network
coproduction model (Kozinets et al. 2010), WOM messages do not flow unidirectionally
from seeded consumers to others, but rather may be exchanged among any connected con-
sumers in the network. In other words, a node in the network could be influenced and
activated by inactive neighbors who pass on the influence from other influencers. The IC
and LTmodels fail to capture such indirect influence passed along bymessengers whomay
or may not be activated. The findings of Fang et al. (2013) suggest that diffusion models
relying exclusively on direct influence are limited in predictive power. We argue that mes-
sengers play an important role in influence diffusion for viral marketing, which should be
taken into account to build a more realistic influence-diffusion model.
Second, both IC and LT models have an undesirable time-invariant property (Chen

et al. 2013). Delaying the activation attempts of any node in the IC model and delaying
adding the influence weights of some out-links of a newly activated node in the LT model
would not change the distribution of the final active set. This time-invariant property is
not realistic. Goyal et al. (2010) measure the number of actions that propagate between
pairs of neighbors in Flickr at different time intervals. They find that there is an expo-
nential decay in the number of actions propagated as the time elapses. In practice, the
time constraint and spreading speed are always critical concerns of marketers since they
are closely related to profit and competition. In fact, influence not only decays with time
but also attenuates along diffusion paths. As indicated in the three-degrees-of-influence
phenomenon (Christakis and Fowler 2007), while it keeps propagating up to a social
horizon of three hops, peer influence dissipates along the diffusion path. Supportive
experimental studies have continued to appear (Morales et al. 2014; Bond et al. 2012; Liu
et al. 2012).
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Third, the IC and LT models (and most generalizations) fail to capture the indi-
vidual temporal diffusion dynamics. In the IC model, each newly activated node gets
a single chance to simultaneously execute an activation attempt to each of its inac-
tive out-neighbors in one time step. In the LT model, an inactive node checks each of
its in-neighbors at the same time to compute the total influence weight in any time
step. Both of them are synchronous diffusion models. In fact, WOM communication
generally takes place in an asynchronous way. Some people are much more active in
WOM messaging than others, and people communicate much more frequently with
their family members and close friends than regular friends. Even if a person sends
out a message simultaneously to all her friends on Twitter, they may log in and check
out the message at different times. As shown by Iribarren and Moro in their viral
email experiment (Iribarren and Moro 2009), there is large heterogeneity in individual
human response time which has great impact on the dynamics of collective information
diffusion.
There is another subtle but more fundamental issue in existing models. WOM’s

effectiveness as an information source for consumers can be broken down into
WOM’s reach and impact. Unlike epidemic spreading in which each exposure acts
independently, WOM’s impact is usually derived from social reinforcement, where
repeated exposures continue to have large marginal effects on adoption (Centola
2010; Romero et al. 2011). We thus consider product adoption as a three-stage
process of influence accumulation. The first stage is awareness, where an inactive
entity gets exposed to the WOM message. The second stage is aggregation, in which
the entity gets reinforced with more and more WOM exposures. The last stage is
activation, where the entity adopts the product when the accumulated influence is
greater than a certain threshold of the entity. We refer to this procedure as the 3A
process, and attempt to explicitly reveal this process in an incrementally aggregate
manner.
We aim at developing a more realistic influence-diffusion model to address these

issues. We arrive at a multiple-path asynchronous threshold (MAT) model. In this
model, we naturally integrate the three stages of the 3A process, and quantify in an
incremental manner the aggregate consequences from informational influence to acti-
vation on the basis of complex WOM communication. We consider both direct and
indirect influence, take into account influence attenuation along diffusion paths and
influence decay with time, and model the individual temporal diffusion dynamics using
a contact-frequency-based Poisson process. Further, we develop a novel approximation
algorithm to address the influence-maximization problem under our MAT model, and
conduct extensive experiments on four real-life networks. Our work provides prelimi-
nary but important insights and implications for viral marketing and diffusion research in
other fields.

Related research
Viral marketing is an important and cost-effective marketing technique in business. There
are a large number of studies in the literature addressing influence diffusion and viral mar-
keting. Detailed surveys can be found in (Chen et al. 2013; Kempe et al. 2015; AlSumaidan
and Ykhlef 2016). Here we focus on several representative models and algorithms most
relevant to our work.
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Diffusion models

Kempe et al. published a seminal paper on maximizing influence spread in social
networks (Kempe et al. 2003). They formulate influence maximization as a discrete opti-
mization problem, and investigate the step-by-step dynamics of adoption under two
basic diffusion models: the independent cascade (IC) model and the linear threshold (LT)
model.
The IC model takes the social network G = (V ,E), the influence probability p(·) on

each link, and the initial seed set S0 as input, and the influence-diffusion process unfolds
in discrete time steps according to the following randomized propagation rule. At each
time step ti (i ≥ 0), each newly-activated node u is given a single chance to activate each
currently inactive out-neighbor v independently. It succeeds with the pre-specified influ-
ence probability puv. If successful, then v becomes active in step ti+1. But whether or not u
succeeds, it cannot make any further attempts to activate v in subsequent steps. The dif-
fusion process runs until no new nodes are activated. Such diffusion behavior is referred
to as simple contagion in social science, in the sense that activation could be triggered by
a single influencer independently. This model is suited for epidemic spread since an indi-
vidual may become infected once exposed to the virus. For viral marketing, it does not
fit very well. With respect to the 3A process described previously, the IC model reflects
the brand-awareness stage, but fails to explicitly capture the aggregation or activation
stages since most people cannot be convinced to adopt a new product after a singleWOM
interaction.
In the LT model, every link (u → v) of the social network G is associated with an

influence weight buv ∈ [ 0, 1], indicating the influence significance of u on v. Before the
diffusion process starts, each node v is assigned a threshold θv uniformly at random in the
range [0, 1]. The threshold can be interpreted as the personal latent tendency of a node to
adopt a new product. Once the initial seed set S0 is given, the diffusion process unfolds
deterministically in discrete time steps. In any step, an inactive node v becomes active if
and only if the total influence weight of its active in-neighborsNin

v is greater than or equal
to its threshold θv, i.e.,

∑
u∈Nin

v
buv ≥ θv. The diffusion process continues until no fur-

ther activation is possible. As opposed to the IC model, the LT model captures complex
contagion, in which an individual is usually not activated until she receives positive rein-
forcement from multiple influencers. The LT model is more suitable for viral marketing
than the IC model in this regard.
These two classic models lie at the core of a large number of generalizations in the sub-

sequent work. Bhagat et al. (2012) adapt the LTmodel to what they called linear threshold
with color (LT-C) model. They show that there exist tattlers who are activated without
adopting the product themselves. These tattlers serve as information bridges in influence
propagation and significantly affect product adoption. It is no doubt that distinguishing
tattlers from adopters is an important step toward a more realistic model. However, a
tattler does not have to be activated in order to spread influence in reality. For example,
Tom bought an iPhone, and told his friend Jeff that it is cool and he likes it. When Jeff
chats with their friend Nick at lunch, he simply tells Nick that Tom just bought an iPhone
and he really likes it. Jeff does not have to be activated or form his opinion about the
iPhone, but he does pass Tom’s influence on to Nick indirectly. Just like Jeff, many tattlers
are simply messengers who pass WOM messages on to their friends and implicitly pass
indirect/passive/informational influence around. This is an important feature of WOM
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communication, as described in the network coproduction model (Kozinets et al. 2010). In
fact, messengers play an important role in WOMmarketing, and should be distinguished
and included explicitly in influence-diffusion modeling.
To incorporate the temporal aspects observed in diffusion dynamics, Chen et al. (2012)

investigate time-critical influence maximization. They associate a degree-based or
randomly-selected meeting probability to each edge to reflect the time-delayed diffusion
dynamics. It is a realistic step to incorporate temporal diffusion dynamics of individual
nodes. However, this model has limitations on the following two respects. First, the meet-
ing probability would be meaningless if there is no deadline constraint or the deadline
constraint is set to a relatively large number. As noted in previous section, the IC model
has a time-invariant property, i.e., delaying the activation attempts of any nodes would
not change the distribution of the final active set. In other words, the meeting probabil-
ity has an effect in their model only because of the deadline constraint, which apparently
underestimate the impact of individual temporal dynamics on influence diffusion. We
argue that it would make more sense to associate the temporal diffusion dynamics with
the temporal influence decay. Second, they fail to capture the contact frequency in their
meeting probability. For most weighted social networks, the weight on a link is a natural
and important indicator that describes the strength of the relationship and/or the con-
tact frequency. A realistic diffusion model should incorporate the weight information to
better capture the individual temporal diffusion dynamics.
There are many other extensions of the classic IC and LT models to different scenarios.

Chen et al. (2011) extend the IC model to incorporate the emergence and propagation
of negative opinions. Chen et al. (2015) adapt the IC model to the topic-aware influ-
ence propagation, in which the influence probability on each link is determined by the
respective topic distribution. The LT model has been extended to address the influence-
maximization problem under competition (Borodin et al. 2010; He et al. 2012). Gayraud
et al. (2015) extend both the IC and LTmodels to study influence diffusion in dynamic net-
works. However, all the aforementioned models are probabilistic models. None of them
explicitly quantify the influence or directly compute the aggregation of influence to reveal
the 3A process from awareness → aggregation → activation.

Influence maximization

The IM problem is formally described as follows: Given a social network G = (V ,E)

with a total of n nodes (i.e., |V | = n), a stochastic diffusion model on G, and a
number K(K � n) that specifies the number of seed nodes (e.g., initial adopters of
a new product), find the seed set of K nodes to be activated first so that they can
trigger the largest cascade of further adoptions in the network. More precisely, let S0
denote a seed set, φ(S0) denote the final active set generated by the stochastic diffu-
sion model, and σ(S0) = E(|φ(S0)|) denote the influence spread of seed set S0, which
is the expected size of the final active sets of all random runs of influence diffusion
under the given diffusion model. Then the IM problem is to find the optimal seed set
S∗ such that

S∗ = argmax
S0⊆V , |S0|=K

σ(S0). (1)

The IM problem is NP-hard for both the IC and LT models (Kempe et al. 2003). More-
over, the influence spread function σ(·) in both the IC and LT models has two important
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properties: monotonicity and submodularity. A set function f : 2V → R is monotone
if for any subsets S ⊆ T ⊆ V , f (S) ≤ f (T), which in this context means that adding
more nodes to a seed set cannot reduce the size of the final activated set. The set func-
tion f is submodular if for any subsets S ⊆ T ⊆ V and any element u ∈ V \ T ,
f (S ∪ {u}) − f (S) ≥ f (T ∪ {u}) − f (T). Submodularity can be understood as diminish-
ing marginal return, which in this context means the marginal gain of node u when added
to a seed set T cannot exceed the marginal gain when adding it to a subset S ⊆ T . It
is shown that the influence spread function σ(·) for any general cascade model or gen-
eral threshold model is always monotone, but the general models may not satisfy the
submodularity property (Chen et al. 2013). As an example, consider the fixed threshold
model on a simple graph that contains only three nodes {u, v, i} and two links {(u → i),
(v → i)} with influence weight bui = bvi = 0.5. In a fixed threshold model, each node
has a fixed threshold instead of a threshold uniformly selected at random for each run
of influence diffusion. For this example, node i has a fixed threshold θi = 0.8. Then
we can calculate the influence spread and obtain: σ(∅) = 0, σ({u}) = σ({v}) = 1
(since bui = bvi = 0.5 < 0.8 = θi, node i is not activated), and σ({u, v}) = 3 (since
bui + bvi = 1 > 0.8 = θi, node i is activated). Now let us set S = ∅ and T = {u}.
Then we have σ(S ∪ {v}) − σ(S) = 1 < 2 = σ(T ∪ {v}) − σ(T). It indicates the
marginal gain of node v when added to T exceeds the marginal gain when adding it to S
(S ⊆ T). Therefore, the influence spread function σ(·) for this fixed thresholdmodel is not
submodular.
After exploiting these properties, Kempe et al. present a simple greedy hill-climbing

algorithm to find the “optimal” K-node seed set. As it relies on Monte Carlo (MC)
simulation to compute the influence spread, we refer to it as MC-Greedy hereafter. As
shown in Algorithm 1, MC-Greedy starts with an empty seed set (Line 2), and runs
K rounds to generate a set of K seed nodes. In each round, it sweeps over each node
u ∈ V \ S to compute the influence spread σ(S ∪ {u}). Since the exact computation of
influence spread under the IC and LT models is �P-hard (Chen et al. 2010), they run MC
simulation R times to estimate the influence spread (Line 6-10). Finally, the node that
together with current seed set S generates the maximum influence spread is added to
S (Line 12).

Algorithm 1MC-Greedy
1: procedureMC-GREEDY(G = (V ,E),K ,R)
2: Initialize S ← φ

3: for i = 1 to K do
4: for each node u ∈ V \ S do
5: gu ← 0
6: for j = 1 to R do
7: σu ← MC-simulation(S ∪ {u})
8: gu+ = σu
9: end for

10: gu ← gu/R
11: end for
12: S ← S ∪ {arg maxu∈V\Sgu}
13: end for
14: Return S
15: end procedure
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For any model (such as the IC and LT models) in which the influence spread function
σ(·) is monotone and submodular, MC-Greedy approximates the optimal within a factor
of (1 − 1/e − ε) for any ε > 0. This is a performance guarantee at least 63% of optimal.
However, this algorithm suffers from a very high computational cost. It requires O(nK)

evaluations of influence spread, and each evaluation needs to run R simulations of the dif-
fusion process. Not only is each simulation generally time-consuming, but R also has to
be large enough to maintain the effectiveness of the algorithm. This performance ineffi-
ciency makes it infeasible even for medium-sized networks of tens of thousands of nodes
and edges.
To improve its efficiency, one strategy is to reduce the number of influence-spread

evaluations. For example, Leskovec et al. (2007) exploit submodularity and present a
Cost-Effective Lazy Forward (CELF) scheme that significantly reduces the number of eval-
uations. Unfortunately, CELF and its extensions CELF++ (Goyal et al. 2011a) are still not
scalable due to the overhead of Monte Carlo simulation. Therefore new heuristic algo-
rithms that avoid the simulation are needed. This strategy requires exploiting specific
aspects of the diffusion model and the network structure. Wang et al. (2012) propose a
maximum influence arborescence (MIA) algorithm for the IC model. The main idea is
to use local arborescence structures of each node to approximate the influence propaga-
tion. Chen et al. (2010) present a local directed acyclic graph (LDAG) algorithm for the
LT model, in which they construct a LDAG for each node and restrict influence diffusion
to a node only through its LDAG. Goyal et al. (2011b) present a more efficient heuristic
called SIMPATH for the LT model. This algorithm is built upon the CELF optimization.

Methodology
In our previous work (Wang and Street 2014; 2015a), we develop a reachability-based
influence-diffusion model to exploit the implicit knowledge of influence-based connec-
tivity and vertex-pair similarity encoded in the network graph topology. This model
has been successfully used to uncover influence centrality and community structure
in social networks (Wang and Street 2015a, b). In this reachability-based model, a
node’s influence significance is measured by the total amount of information the node
spreads over its neighborhood within a pre-specified depth limit. Roughly speaking,
it focuses on information’s visibility (e.g., brand awareness) regardless of information’s
effect (e.g., adoption). In this paper, we investigate activation-based influence-diffusion
modeling for viral marketing, in which a node’s influence significance is measured
by the total number of nodes it can activate to adopt a new technology or pur-
chase a new product. We adapt our reachability-based influence-diffusion model to the
viral-marketing scenario and propose a novel, more realistic activation-based influence-
diffusion model. We call it the multiple-path asynchronous threshold (MAT) model,
in which we quantify influence and track its diffusion and aggregation. We inte-
grate direct and indirect influence, and instantiate the 3A process to model complex
WOM communication and its effects. Moreover, we naturally incorporate in our MAT
model the influence attenuation along diffusion paths, influence decay with time, and
individual temporal diffusion dynamics based on the relationship strength or contact
frequency between a node of interest and its neighbors. Further, we develop an effec-
tive and efficient heuristic, called IV-Greedy, to address the influence-maximization
problem.
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MATModel

Our model is applicable to both undirected/directed and unweighted/weighted net-
works. Without loss of generality, let G = (V ,E,W ) be a directed and weighted
network with |V | = n and |E| = m. The weight wuv ∈ W associated with a directed
edge (u → v) represents the relationship strength of node u over node v, e.g., the
frequency that u calls or emails v. The relationship strength is usually asymmetric
in directed networks. For any unweighted network, we regard it as a weighted net-
work with a weight of 1 on each link. For any undirected edge between two nodes,
we replace it with a pair of directed links pointing to each other, associated with the
same weight as the original weight on the undirected edge. The influence is propagated
through out-links.
We categorize all the nodes in the network into two types: influencers and messen-

gers. An influencer is an active node (product adopter) that can originate and spread its
influence in the network. Amessenger is an inactive node that may acquire influence and
also pass on to her friends the influence it receives from influencers or other messengers.
Once a messenger acquires influence that is greater than or equal to its threshold, it is
activated and turns into an influencer who starts to spread out its own influence to oth-
ers. It is noted that an influencer can not only diffuse its own influence to others but also
act as a messenger passing along the influence from other influencers. Our model cap-
tures an important characteristic of WOM communication (Kozinets et al. 2010) in that:
anyone (either active or inactive) can pass along WOMmessages and potentially influence
the recipient. In other words, a node can be activated by not only direct influence from
its active neighbors (influencers) but also indirect influence passed along by its inactive
neighbors (messengers). This is a distinguishing, more realistic feature built in our MAT
model.
From a graph-theoretic point of view, the influence diffusion from each influencer can

be regarded as a batch of random walks around the neighborhood of the influencer. Each
walk explores one diffusion path from the influencer and passes on the influence to the
nodes it visits along the path. All walks together constitute an influence-diffusion treewith
the influencer as the root node. To model the complex WOM communication in a more
realistic manner, we incorporate in the diffusion tree/process of each influencer several
important rules/mechanisms as follows:

• No cycles or loops are allowed. It makes sense since no one should repeatedly send
out the same WOMmessage to her friends when the message she sent out circulates
back to herself;

• A node may be visited multiple times along different diffusion paths. It resembles
that the message/influence may be passed on to the same person via different chains
of friends. This is a more realistic imitation of WOMmessaging and social
reinforcement in terms of repeated exposures (Romero et al. 2011);

• The diffusion tree of one influencer may contain other influencers. That is because
influencers also act as messengers passing along the message/influence from other
influencers;

• Influence dissipates along diffusion paths. Moreover, the diffusion process stops after
three hops from the influencer to match the well-known three-degrees-of-influence
phenomenon (Christakis and Fowler 2007);



Wang and Street Applied Network Science  (2018) 3:6 Page 10 of 26

• Influence diffusion from a parent node to its child nodes is asynchronous. This is an
important mechanism implemented in our model to capture the individual diffusion
dynamics.

It is worth pointing out that: 1) the influence-diffusion processes of different influencers
are independent of each other; 2) influence not only attenuates along diffusion paths but
also decays over time. We elaborate below how we quantify influence and keep track of
its diffusion and aggregation following the rules described above.
The relationship strength, as indicated by the weight on edges, may vary significantly

among family members, close friends, casual acquaintances, and so on. Stronger relation-
ship implies stronger influence potential in general. To quantify the relationship strength
on influence, we define a normalized influence weight that measures the fraction of influ-
ence a node receives from a specific in-neighbor relative to the total influence it may
receive from all of its in-neighbors. Given a directed edge u → v with a raw weight wuv,
and letting Nin

v denote the set of node v’s in-neighbors, the normalized influence weight
ŵuv is defined as

ŵuv = wuv
∑

k∈Nin
v
wkv

. (2)

To quantify the influence attenuation along a diffusion path, we define a depth-
associated attenuation coefficient

α = d−2, (3)

where d is the depth (number of hops) from an influencer to the node of interest along
a diffusion path. It is the same as what we define in the reachability-based influence-
diffusion model (Wang and Street 2014; 2015a). It can be interpreted as the probability of
an influencer’s influence reaching a node d hops away, as analogous to the probability of
a center node linking to a node at a fixed distance d of its concentric scales of resolution,
which is proportional to d−2 as depicted in (Easley and Kleinberg 2010). From a proba-
bilistic perspective, letting a random variable Xi denote the total amount of influence an
influencer i spreads, and letting a random variable Y denote any diffusion path from i,
then we can for now quantify influencer i’s total influence as the conditional expectation

E[Xi]=
∑

y
E[Xi|Y = y]P{Y = y}, (4)

where y is a diffusion path from influencer i to a destination node j. E[Xi|Y = y] is the
expected influence j acquires along the path y, which is estimated by the chain product
of the normalized influence weights of the corresponding links that constitute the dif-
fusion path y. P{Y = y} is the probability that i’s influence reaches j along the path y,
which is estimated by the depth-associated attenuation coefficient at the depth from i to j
along the path y. The depth-associated attenuation is actually a compounding factor that
incorporates the decreasing reaching probability, trustworthiness decay and information
corruption. As indicated in the three-degrees-of-influence phenomenon (Christakis and
Fowler 2007), the influence ceases to have a noticeable effect on people beyond three
degrees of separation. Therefore, we set the depth limit dmax to 3 for each influencer.
In other words, the influence of any influencer can propagate up to a social horizon of
three hops.
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Influence also dissipates over time. For example, right after we purchase a new prod-
uct, we usually feel the excitement and urge to tell our friends (potentially with stronger
attempt to influence them). Our enthusiasm and influence potential fade away as time
elapses. We model the temporal influence decay as a time-associated attenuation coeffi-
cient β(t) as an exponential function of time

β(t) = e−λt , (5)

where λ is a user-specified tunable parameter of decay rate. It can be used to account for
different products on various social media. When a node is newly activated, a timer is
attached to this new influencer and the time is set to 0 at that moment so that we can
track the number of hops/steps its influence propagates in its neighborhood. It is noted
that the timing for that node acting as a messenger of other influencers has no change.
The next is to model the individual diffusion dynamics. Many real-world networks are

thought to be scale-free, in the sense that the degree distribution follows a power law.
Therefore, at the network level, it is often seen that some people have much more friends
and are much more active inWOMmessaging than others. At the individual level, people
usually communicate much more frequently with their family members and close friends
than casual acquaintances. The contact frequency among friends is strongly correlated
with the relationship strength. As a result, WOM messaging from one person to each of
her friends generally takes place in an asynchronous manner. To capture the individual
temporal diffusion dynamics, we model the heterogeneity of WOM messaging as a Pois-
son process. For a directed edge (u → v), let Xuv denote the number of times node u
makes contact with node v during one time step. We assume that Xuv follows a Poisson
distribution with a rate of μuv. Its probability mass function can be written as

puv(x) =
{

μx
uve−μuv

x! , x = 0, 1, 2 . . .

0, elsewhere.
(6)

Statistically, μuv is the average number of times u makes contact with v per time step.
It can be estimated using out-link weights of each node to differentiate their activeness
and vertex-pair diffusion dynamics. In practice, the weights on edges may have different
meanings and properties, and their values may vary significantly. We use 0-1 scaling to
bring them into alignment. Specifically, μuv is computed as

μuv = μ̂ + μu + w̃uv, (7)

where μ̂ is a tunable parameter that measures the overall activeness of the network, and
μu and w̃uv can be interpreted as the global activeness of node u and local activeness of
u → v, respectively. A sensible range for μ̂ is (0,2]. The larger μ̂, the more active the
network is. When μ̂ = 2, the probability that a node contacts with its out-link neighbor
at least once in one time step is greater than or equal to 0.865. When μ̂ is too small,
the network would be too inactive to facilitate viral marketing. It can be learned using
data-driven approaches in practice. We set it to 1 by default. Let wu denote the sum of
all out-link weights of node u, and define wmax = maxi∈V wi and wmin = mini∈V wi. Let
wu:max and wu:min denote the maximum and minimum weight among node u’s out-links,
respectively. Then μu and w̃uv can be calculated as follows

μu = wu − wmin
wmax − wmin

, (8)



Wang and Street Applied Network Science  (2018) 3:6 Page 12 of 26

w̃uv = wuv − wu:min
wu:max − wu:min

. (9)

These normalization schemes enable us to differentiate a node’s activeness at both the
network and the individual levels. Specifically, for a scale-free network, there exist a few
hubs, which are nodes with a degree that greatly exceeds the average. These high-degree
nodes are usually more active and more influential, and play an important role in WOM
marketing. The global activeness μu has a desirable interpretation of the degree distribu-
tion. Hubs in a scale-free network would have a significantly larger μu than other nodes.
On the other hand, if the network of interest is not scale-free,μu would bemore randomly
or normally distributed. Degree-based seeding strategy would be no longer effective. In
case wmax = wmin (which rarely occurs), we set μu to 0.5 for all u ∈ V . Similarly, w̃uv cap-
tures node u’s local activeness, which is proportional to the weight on the link from u to
its respective neighbor. If wu:max = wu:min (e.g., unweighted networks), we set w̃uv to 0.5.
Once the rate μuv is determined, it is straightforward to calculate the probability

with which the WOM message propagates from node u to its out-neighbor v at one
time step as

puv = 1 − P(X = 0) = 1 − e−μuv . (10)

If the propagation is not realized at time step ti, then the probability for the message to
be transmitted at time step ti+1 is unchanged due to the memoryless property of Poisson
distribution. If u has delayed passing on the message to v for delaymax time steps (maxi-
mum delay), it is assumed that u has no intention to pass the message on to v at all. This
is a sensible mechanism reflecting the fact that not everyone is actively engaged inWOM
messaging with each of its neighbors at any time step. In addition, we set delaymax to 3
time steps in alignment with the depth limit dmax of 3, which implies that the message
would have no noticeable influence even if it is finally propagated after it has been held
for 3 or more time steps.
Now we can quantify the influence along a diffusion path at a specific time step. Let

σ
t,d
i:x→y denote the amount of influence (originated from an influencer i) that node x passes

on to node y at time step t and depth d. Then following a diffusion path from influencer
i → j → k → l, the influence that nodes j, k and l acquire from node i is respectively
calculated as

σ
t1,1
i:i→j = e−λt1 × 1

12
× ŵij, (11)

σ
t2,2
i:j→k = e−λt2 × 1

22
× ŵij × ŵjk , (12)

σ
t3,3
i:k→l = e−λt3 × 1

32
× ŵij × ŵjk × ŵkl. (13)

In each equation above, the first term on the right hand side is the temporal influ-
ence decay, the second term is the depth-associated influence attenuation, and the rest
is the chain product of the normalized influence weights on the corresponding links that
constitute the diffusion path from the influencer to the node of interest.
The diffusion process starts with an initial set of influencers (seed nodes) S0 with |S0| =

K , and unfolds in discrete time steps. At each time step, the influence is propagated one
hop from a node u (parent node) to each out-neighbor v (child node) with a probability
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puv. Each seed node is assigned an influence value of 1. Each inactive node v is initialized
with an influence value of 0, and selects an activation threshold θv uniformly at random
in the range [0, 1]. Let A denote the set of v’s in-neighbors who pass on influence to v, and
let fv(A) denote the threshold function of v, that is, the total influence that v receives from
nodes in A. Formally, we define fv(A) as

fv(A) = min
(

1,
∑

u∈A
buv

)

, A ⊆ Nin
v , (14)

where buv represents the total amount of influence that v receives from u, andNin
v denotes

the set of in-neighbors of v. Whenever fv(A) ≥ θv, v is activated and turns into an influ-
encer with an influence value of 1. Then it not only continues passing other influencers’
influence as a messenger, but also starts to spread out its own influence as an influencer.
The diffusion process stops when the number of hops of influence diffusion of each influ-
encer (including the seed nodes and all activated nodes) reaches the depth limit (dmax = 3
by default) and no new activation is possible.

Influence Maximization under MATModel

The influence-maximization (IM) problem under our MAT model can be described in a
general framework as follows: Given a social networkG = (V ,E,W ), a budgetK denoting
the seed-set size, and theMATmodel onG associated with parameters λ (temporal decay
rate), dmax (depth limit), puv for each (u → v) ∈ E (individual diffusion probability)
and delaymax (maximum delay) as input, find a seed set S0 ⊆ V with |S0| ≤ K such
that the expected influence spread σ(S0) is maximized under the MAT model. For viral
marketing, the seed nodes are the initial adopters of a new product, and the influence
spread is measured by the total number of people in the network who adopt the product
in the end of the diffusion process.
The IM problem is NP-hard under the MAT model, which can be proved by reduction.

If we set λ = 0, dmax = 1, delaymax = 0, and puv = 1 if u is active and puv = 0 if u is
inactive for any u ∈ V , the MAT model then reduces to the classic LT model. Therefore,
the IM problem over this class of instances is equivalent to the IM problem under the
classic LT model, which is known to be NP-hard (Kempe et al. 2003). This concludes the
proof.
It is easy to show that the influence spread function σ(·) for the MAT model is mono-

tone. For each run of the diffusion process, the threshold θv (for each v ∈ V ) is randomly
selected and fixed.When the seed set S0 grows, the final active set φ(S0) also grows under
these fixed thresholds, due to themonotonicity of fv(S). Finally, σ(S0) is simply the average
of the size of all final active sets among all possible threshold values selected in different
runs, and thus is monotone.
However, it is hard to prove that σ(·) for the MAT model is also submodular. The

widely-used approach is to construct a live-edge graph model (Chen et al. 2013) that is
equivalent to the diffusion model of interest. In a live-edge graph, any active node should
be reachable from at least one seed node along at least one live-edge path consisting
entirely of active nodes chained up from one to another. It implies that any active node
(except seed nodes) should have at least one active neighbor, which makes it infeasible to
apply this approach to our MAT model since a node without any active neighbors may
still be activated by indirect influence in the MATmodel. For now, we conjecture that the
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influence spread function σ(·) for our MAT model is submodular. We leave the proof as
future work.
To address the IM problem, we need to find the “optimal” seed set. Let us first clar-

ify two important concepts: aggregation and overlap. Aggregation means that an inactive
node is reinforced with more WOM exposures and receives more influence. When it
accumulates enough influence (greater than or equal to its threshold), it becomes active
and starts to spread its own influence as an influencer. Overlap means that an influ-
encer spreads its influence to any nodes that have been activated by other influencers.
On one hand, if seed nodes are closely clustered, they may potentially have large overlaps,
which leads to deterioration in performance. On the other hand, if seed nodes are totally
isolated, they can not achieve aggregation effect, which results in a detriment to new acti-
vations as well. Therefore, the ideal selection of the K seed nodes would be the K most
influential nodes such that: (1) each of them achieves individual influence spread as large
as possible; (2) they should be far enough away from each other to minimize potential
overlaps; and (3) they should be close enough to reinforce aggregation effects. Using these
guidelines in our seeding strategy, we develop a novel algorithm, IV-Greedy, to tackle the
IM problem under the MAT model.

IV-Greedy algorithm

As discussed in the previous section, MC-Greedy (Kempe et al. 2003) is a simple greedy
hill-climbing algorithm, using Monte Carlo (MC) simulation to estimate the influence
spread. Although its computational cost is extremely high due to the overhead of MC
simulation, it achieves the largest influence spread under the IC and LTmodels among all
state-of-the-art algorithms (Chen et al. 2013). Regardless of its low efficiency, the greedy
strategy used in MC-Greedy makes sense and is highly effective. We develop IV-Greedy
borrowing the greedy strategy of MC-greedy but replacing MC simulation by using the
influence vector of each node.
The influence vector of a node captures where and how much influence that node

spreads over its neighborhood based on a nonstochastic version of the MAT model, in
which we do not consider individual diffusion dynamics (i.e., let puv = 1 for any u ∈ V ),
or the activation of the nodes (i.e., only i is an influencer; all other nodes remain messen-
gers). In addition, we ignore the temporal diffusion decay (i.e., let λ = 0) when generating
the influence vectors such that our IV-Greedy is more robust with different decay rates.
We develop a modified depth-limited search algorithm, called IV-Builder, to explore the
diffusion tree of each node individually, and generate an influence vector for each node,
which records its influence spread to all the nodes in its neighborhood within a depth
limit of 3 (by default). IV-builder uses the same approach as we use to generate the
influence matrix for community detection in (Wang and Street 2014; 2015a). The only
difference exists in the weight normalization schemes. For community detection, we nor-
malize each in-weight of a node by the maximum in-weight of that node to capture the
relative susceptibility of the node to its in-neighbors, and the influence vectors are used
to differentiate vertex-pair similarity. For viral marketing, we normalize each in-weight of
a node by the total in-weight of that node to quantify the absolute influence transmitted
from each in-neighbor, and the influence vectors are used to find out which nodes are
more likely to be activated. Due to space limit, we refer the interested reader to (Wang
and Street 2015a) for implementation details on influence-vector generation.
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We use these influence vectors as a proxy for the stochastic influence-diffusion process
to avoid the expensive MC simulation. Specifically, We define the influence score of a
node as the sum of all elements in its influence vector, which represents an estimate of
its total influence spread. This influence score can be used to differentiate the influence
significance of the nodes in the network. An intuitive solution is to select the top-K nodes
of the highest influence scores as the seeds. Unfortunately, it does not work well. Like
those high-degree nodes, the nodes of high influence scores may be clustered or too close
to each other, leading to large overlaps of influence spread. We need to somehow separate
them from each other to minimize overlaps. The strategy that we use in IV-Greedy is a
greedy strategy similar to MC-Greedy, in which we sweep over the influence vector of
each node to repeatedly pick the node with themaximummarginal gain and add it to the
seed set until all K seeds are found. The pseudocode is shown in Algorithm 2.

Algorithm 2 IV-Greedy
1: procedure IV-GREEDY(G = (V ,E,W ), n = |V |, dmax,K )
2: S ← φ

3: Call IV-Builder to generate IVu of each node u ∈ V
4: for each node u ∈ V do
5: Ru ← ∑

j IVu(j)
6: end for
7: v ← arg maxu∈VRu
8: S ← S ∪ {v}
9: AR ← IVv

10: for k = 2 to K do
11: for node i = 1 to n and i ∈ V \ S do
12: gi ← 0
13: c ← 1 − AR(i)
14: for j = 1 to n do
15: p ← c × IVi(j)
16: q ← p + AR(j)
17: if q > 1 then
18: p ← 1 − AR(j)
19: end if
20: gi ← gi + p
21: end for
22: end for
23: v ← arg maxi∈V\Sgi
24: S ← S ∪ {v}
25: c ← 1 − AR(v)
26: for j = 1 to n do
27: AR(j) ← min(1,AR(j) + c × IVv(j))
28: end for
29: end for
30: Return S
31: end procedure

In IV-Greedy, each node is indicated by its node index from 1 to n. IV-Greedy starts
with an empty seed set (Line 2), and then generate the influence vector IVu for each node
u ∈ V (Line 3). IVu is an n-element array, in which element IVu(j) represents the amount
of influence node u exerts on node j. For each node u, we get its influence score Ru by
summing up all elements in its influence vector IVu (Lines 4-6). We find the node v that
has the highest influence score (Line 7), and add it to the seed set S as the first seed
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(Line 8). Then we make a copy of IVv to an array AR, which is used as a representation
of the collective influence distribution of currently selected seeds. To find the next seed,
we sweep over each node i ∈ V \ S and compute the marginal gain gi of adding i to S
individually. We compute its benefit factor c = 1 − AR(i) (Line 13). Recall that AR(i)
represents the amount of influence i receives so far, which can be also regarded as the
probability activating i. For example, if AR(i) = 1, it means that i has been activated, then
selecting i as a seed has no benefit to the overall influence spread. Then for each element
IVi(j), we get p = c× IVi(j) (Line 15), which represents the marginal gain that node j gets.
However, remember that the threshold function fv(S) is defined within the range [0, 1]. If
the amount of influence that node v receives is greater than 1, it is set to 1 since v has been
activated and more influence on v is of no more effect or benefit. Therefore, we add p to
AR(j) to get q (Line 16), which represents the accumulated influence that node j receives.
If q is greater than 1, we set the actual marginal gain p = 1 − AR(j) (Lines 17-19). Then
we add p to gi, which represents the total marginal gain of adding node i to S. Once we get
the marginal gain of each node i ∈ V \ S (Lines 11-22), we select the node that produces
the maximum marginal gain as a seed and add it to S (Lines 23-24). Then we update AR
by calculating the benefit factor c and adding the marginal gain to each element in AR
(Lines 25-28). We repeat the process described above (K − 1) times to find the (K − 1)
seeds, which along with the first seed node constitute a full seed set S.

Experiments
We conduct experiments on four widely-used real-life network datasets to evaluate our
MAT model and the performance of IV-Greedy, and compare it against a set of baseline
algorithms on both influence spread and time efficiency. The code is written in Visual
Basic and all experiments are carried out on a regular desktop PC with Intel(R) Core(TM)
i5-4670 CPU @ 3.40 GHz and 8.0 GB memory under Windows 7 64-bit OS.

Network description

To evaluate the applicability of our model and algorithms, we employ four real-life
networks with different combinations of link directionality and weights. We list their
statistics in Table 1. PGP (Boguna et al. 2004) is an undirected/unweighted network of
users of the Pretty-Good-Privacy algorithm for secure information interchange. Each
node represents a user, and each edge connects a pair of users of interest who have
assigned public keys of another based on trust between them. It is a single connected
component with relative clear community structure. NetHEPT (HEPT Collaboration
Network 2009) is an undirected/weighted collaboration network from the paper lists
extracted from “High Energy Physics (Theory)” section of the e-print arXiv from 1991
to 2003. Each node represents a unique author, and each edge represents co-authorship
of the two authors of interest, weighted by the number of papers they have co-authored.
This network has been frequently used in previous work (Chen et al. 2010; Goyal et al.
2011b). WikiVote (Wikipedia Who-vote-whom Network 2010; Leskovec et al. 2010) is a
directed/unweighted who-vote-whom network from Wikipedia. Nodes in the network
represent Wikipedia users and a directed edge from nodes i to j represents that user i
voted on user j. This link direction does not reflect the direction of influence flow. User i
voting on user j is actually because j has influence on i, as analogous to that of citing paper
i and cited paper j. Therefore, we reverse the link direction to reflect the actual influence
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Table 1 Statistics of network datasets

Dataset PGP NetHEPT WikiVote C.elegans

Directed No No Yes Yes

Weighted No Yes No Yes

Nodes 10,680 15,233 7,115 453

Directed links 0 0 97,835 2,025

Undirected edges 24,316 31,376 2,927 0

Average out-degree 4.6 4.1 14.6 4.5

Maximum out-degree 205 64 457 145

Average weight 1 1.9 1 2.3

Maximum weight 1 119 1 114

Connected components 1 1,781 24 1

Average component size 10,680 8.6 296.5 453

Largest component size 10,680 6,794 7,066 453

flow. This network has a giant component and a set of 23 small ones. The last network
dataset is C.elegans (White et al. 1986). It is a directed/weighted neural network of the
nematode worm C.elegans.

Baseline heuristics

The simplest and naive baseline is to select nodes uniformly at random (hereafter referred
to as RANDOM). Not surprisingly, this algorithm is very unstable and does not perform
well in terms of influence spread. Themost frequently used is the degree-centrality heuris-
tic (hereafter referred to as DEGREE), in which the seed nodes v are chosen in descending
order of out-degrees doutv . This seeding strategy is simple but effective. Empirical studies
(Kempe et al. 2003; Hinz et al. 2011) show that DEGREE results in larger influence spread
than other centrality-based heuristics, such as distance centrality and betweenness cen-
trality. A common feature of these centrality-based algorithms is that they rely solely on
one specific structural property of the network without considering the diffusion dynam-
ics. In fact, many of the highest-degree nodes may be clustered and have potentially large
overlaps of influence spread, which leads to deterioration in performance.
The next baseline is the Top-K algorithm. We present its pseudocode in Algorithm 3. It

sweeps over each node u ∈ V to compute the influence spread of each node individually
(Lines 2-9), using Monte Carlo simulation (Lines 4-7). Then, it selects the top K nodes
with the largest individual influence spread (Lines 10-13). It is worth noting that the top-
K nodes that produce the largest influence spread individually is usually not the same
as the K seed nodes that produce the largest influence spread together. For example, if
two top influencers are so close to each other that their influence spreads have a large
overlap, it is not a good idea to select both of them as seed nodes. While the DEGREE
algorithm relies solely on the structural properties of the network without considering the
diffusion dynamics, the Top-K algorithm relies solely on the diffusion dynamics without
considering the network structure.
MC-Greedy (as shown in Algorithm 1) is the last baseline heuristic. It considers both

the diffusion dynamics and the network structure (implicitly). One may notice that the
Top-K algorithm is actually the first round of the K rounds in MC-Greedy except that
MC-Greedy selects only top one influencer instead of top K influencers. It continues
exhaustively running MC simulation to find the next seed node that produces the max-
imum marginal gain in influence spread. This step iterates until a set of K seed nodes is
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Algorithm 3 Top-K
1: procedure TOP-K (G = (V ,E),K ,R)
2: for each node u ∈ V do
3: gu ← 0
4: for j = 1 to R do
5: σu ← MC-simulation(S ∪ {u})
6: gu ← gu + σu
7: end for
8: gu ← gu/R
9: end for

10: S ← φ

11: for i = 1 to K do
12: S ← S ∪ {arg maxu∈V\Sgu}
13: end for
14: Return S
15: end procedure

found. MC-Greedy usually achieves the largest influence spread of the K seed nodes at
the collective level. However, it suffers from a very high computational cost, which makes
it infeasible even for medium-sized networks.

Performance comparison

We run experiments on the four network datasets to compare the performance of IV-
Greedy against the four baseline algorithms in terms of influence spread and time
efficiency. As discussed in the previous section, we set both dmax and delaymax to 3, and
treat them as built-in parameters of the MAT model. We also set the network activeness
parameter μ̂ to 1 as defaulted. The temporal decay rate λ is regarded as a user-specified
parameter. The larger λ, the faster temporal decay of influence. We set it to 0.2 for per-
formance comparison of different algorithms, and then evaluate its effect on influence
spread with different values. In addition, both MC-Greedy and Top-K need to run MC
simulation R1 times in each round of influence-spread estimation. Once an algorithm
produces the seed set it finds, we run MC simulation R2 times to estimate the influence
spread of each algorithm for comparison. In our experiments, we set both R1 and R2 to
1000. In particular, due to the extremely low efficiency of MC-Greedy, we only report its
results for C.elegans dataset.

Influence spread

We illustrate in Fig. 1 the experimental results of the four network datasets. Each curve
shows the variation of the influence spread with respect to the seed-set size K. K is a
user-specified parameter. In practice, K is closely related to the marketing budget. For
diffusion research, we choose K primarily based on the network size. Specifically, we vary
the number of seeds K from 5 to 100 in an increment of 5 for PGP, NetHEPT andWikiV-
ote since they have 10680, 15233, and 7115 nodes, respectively. K is varied from 1 to 15
in an increment of 1 for C.elegans since it has only 453 nodes.
It is not surprising that RANDOM has the worst performance on all datasets. The

degree-centrality heuristic, DEGREE, greatly improves the influence spread, which is 4-
8 times better than RANDOM. It makes sense that the well-connected nodes (social
hubs) facilitate influence diffusion with their high reach to others. Top-K is analogous
to DEGREE in the sense of targeting the group of most influential nodes who achieve
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Fig. 1 Performance comparison on influence spread. a PGP dataset, b NetHEPT dataset, cWikiVote dataset,
and d C.elegans dataset

largest influence spread individually. It achieves an improvement of 28.4%, 3.8%, 6.5%,
and 7.3% over DEGREE on PGP, NetHEPT, WikiVote, and C.elegans, respectively.
However, its improvement on influence spread comes with a huge sacrifice on effi-
ciency since it relies on expensive MC simulation. Both DEGREE and Top-K fail
to capture the fact that many of the highest-degree or most influential nodes may
be clustered, which results in large overlaps of influence spread. IV-Greedy incor-
porates the mechanism to minimize overlaps, and achieves the best performance in
the comparison with RANDOM, DEGREE, and Top-K. The larger seed-set size, the
greater improvement. Specifically, for K=100 for PGP/NetHEPT/WikiVote and K=15
for C.elegans, IV-Greedy beats DEGREE by 35.1%, 14.9%, 8.6% and 10.8%, and out-
performs Top-K by 5.3%, 10.7%, 1.6% and 3.3%, respectively. It is only inferior to
MC-Greedy by 3% on C.elegans. As shown in the comparison of running time, IV-
Greedy runs several orders of magnitude faster than MC-Greedy (and Top-K) on the
other hand.
Moreover, we list in Table 2 the 95% confidence intervals (CI) for the expected

influence spread of the four network datasets, based on 1000 runs of MC sim-
ulation for each dataset. We also perform t-test at the 0.05 significance level on
IV-Greedy versus DEGREE and IV-Greedy versus Top-K, respectively. The corre-
sponding p-values for each dataset are calculated and included in Table 2 as well.
Clearly, both the confidence intervals and the p-values indicate that the improve-
ment of IV-Greedy over DEGREE and Top-K is statistically significant for all
datasets.
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Table 2 Ninety-five percent confidence intervals and p-values for the expected influence spread of
the four network datasets based on 1000 runs of MC simulation for each dataset

Dataset Measure
Algorithm

DEGREE Top-K IV-Greedy

PGP
95% CI 1666.3 ± 6.2 2139.3 ± 6.7 2251.7 ± 7.0

p-value 0 3.4e-103

NetHEPT
95% CI 1339.8 ± 5.7 1390.6 ± 5.4 1539.7 ± 6.4

p-value 0 5.0e-207

WikiVote
95% CI 2175.4 ± 6.6 2323.6 ± 6.6 2361.6 ± 6.7

p-value 1.5e-246 3.4e-15

C.elegans
95% CI 180.7 ± 0.7 193.9 ± 0.8 200.3 ± 0.8

p-value 1.4e-215 2.3e-26

Running time

An analysis of the time complexity of the proposed algorithms is given as follows. Let n
andm denote the number of nodes and edges in the network, respectively. For DEGREE,
it is straightforward to sweep over each node K times to select the top K nodes of the
highest degrees as the seed set. Therefore, the time complexity of DEGREE is O(Kn). IV-
Greedy (as shown in Algorithm 2) needs to call IV-builder to generate an influence vector
for each node first. Let L denote the average length of influence vectors. L is determined
by the average node out-degree b, depth limit dmax and and the community structure.
As elaborated in our previous work (Wang and Street 2014; 2015a), IV-builder may take
O(bd) time exploring the diffusion tree of each node. In most cases, the time complexity
of IV-builder is O(Ln), and L is way smaller than n, especially for large-scale networks.
Therefore, we usually do not maintain each influence vector in an n-element array in
practice, but only keep the non-zero influence values in a compact dynamic array instead.
Then in Line 11 of IV-Greedy, the number of iterations is reduced to L from n. Therefore,
the time complexity of IV-Greedy is O(KLn).
Both Top-K andMC-Greedy reply onMC simulation. Each run of MC simulation takes

O(m) time. Top-K (as shown in Algorithm 3) needs to sweep over each node to compute
the influence spread individually by running MC simulation R times for each node, and
thus it has a time complexity of O(nRm). As we can see, Top-K already has a very high
computational cost. Unfortunately, MC-Greedy (as shown in Algorithm 1) is much more
time consuming than Top-K . Top-K is just the first round in MC-Greedy finding the first
seed. This process has to repeat K rounds to find the K-node seed set. In each round, the
node that generates the maximum marginal gain is selected and added to the seed set.
Therefore, the time complexity of MC-Greedy is O(KnRm). In fact, in the kth round of
repetition, the seed-set size increases to k. The time that each run ofMC simulation in the
kth round takes is more than k times of that in the first round. In other words, the actual
running time of MC-Greedy could be several K2 times of that of Top-K, which makes it
infeasible even for medium-sized networks of thousands of nodes.
In Fig. 2, we illustrate the running time of the algorithms on the four network datasets.

A seed-set size of K=100 is set for the PGP, NetHEPT, and WikiVote datasets. K is set
to 15 for the C.elegans dataset. It is noted that the Y -axis is in logarithmic scale. Clearly,
DEGREE is the fastest algorithm. It finishes almost instantly on all datasets. IV-Greedy
significantly outperforms Top-K. Specifically, IV-Greedy is 63, 21, 155 and 590 times
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Fig. 2 Performance comparison on running time (CPU seconds)

faster than Top-K on PGP, NetHEPT, WikiVote and C.elegans, respectively. Not surpris-
ingly, MC-Greedy is the slowest one. As we can see on the C.elegans dataset of only 453
nodes and 2025 edges, while IV-Greedy takes only 0.2 seconds to find a set of 15 seed
nodes, Top-K takes 2 minutes 4 seconds, but MC-Greedy takes more than 25 hours. Due
to such a high computational cost, we are not able to run it on the other three datasets.
Overall, IV-Greedy is the best performing algorithm in terms of both influence spread
and running time.

Adoption rate

Marketers are concerned about not only the influence spread but also the adoption
rate, which is usually measured by the number of adopters in a given time period. How
fast the influence spreads is a critical factor for a viral marketing campaign, especially
when there exist competing products in the same social network. It is interesting to
observe the rate of adoption under our MAT model. We show in Fig. 3 the influence
spread over time on the four network datasets with IV-Greedy as the seeding strat-
egy. Again, the seed-set size is set to 100 for PGP, NetHEPT and WikiVote, and 15 for
C.elegans.
As we can see, the adoption rate shows similar pattern on all datasets. The influ-

ence diffuses at a high-speed rate at early stage, and the speed decreases monotoni-
cally. The influence spread reaches the saturation level in about 10 to 15 time steps.
At t = 5, the influence spread arrives at 87%, 84%, 93.4%, and 98.3% of the max-
imum on PGP, NetHEPT, WikiVote, and C.elegans, respectively. At t = 10, this
percentage increases to 97.4%, 97.3%, 99.5%, and 100%, respectively. It is observed
that WikiVote and C.elegans achieve higher adoption rates than PGP and NetHEPT,
which can be roughly explained by the high cohesiveness of WikiVote and the small
network size of C.elegans. This follows our intuition. In practice, marketers need
to carefully determine the period of a time step. It could be a day, a week, or
a month, etc. The influence decay rate and individual contact frequency may vary
accordingly.
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Fig. 3 Adoption rate achieved by IV-Greedy. a PGP dataset, b NetHEPT dataset, cWikiVote dataset, and
d C.elegans dataset

Parameter analysis andmodel comparison

The temporal decay rate λ is a user-specified parameter in our MAT model. The value
of λ can be varied to account for different products on different social networks. For a
particular application, it is possible to use a data-driven approach to learn the appropriate
value of λ. We evaluate the impact of λ on influence spread using different decay rates
under the MAT model. We also include the classic LT model (Kempe et al. 2003) as a
baseline for model comparison. DEGREE is a fairly effective and generic heuristic that
is applicable to both the MAT model and the LT model. Moreover, it always produces
the same seed set, which enables us to perform a fair comparison on different models.
Therefore, we use DEGREE in this experiment. We set λ to 0.1, 0.2, and 0.3, respectively.
The experimental results are illustrated in Fig. 4.
As expected, λ in ourMATmodel has significant impact on influence spread. A larger λ

indicates faster temporal decay of influence, and thus results in smaller influence spread.
It is good to see that λ in the MAT model enables us to gauge the influence spread
in a reasonably large range on all datasets. When λ increase from 0.1 to 0.3, influence
spread drops 45.4%, 48.1%, 36.7% and 25.4% on PGP, NetHEPT, WikiVote and C.elegans,
respectively.
Bhagat et al. (2012) evaluate the influence spread of several models. Their findings

suggest that the classic LT model overestimates the influence spread by large amounts.
As we can see, when λ = 0.2, the influence spread under the MAT model is already
15%, 24%, 21.3% and 19.9% smaller than the LT model on PGP, NetHEPT, WikiVote and
C.elegans, respectively. When λ = 0.3, the influence spread under the MAT model drops
to 35.4%, 43.2%, 36.4% and 31% smaller than the LT model on PGP, NetHEPT, WikiVote
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Fig. 4 Influence spread achieved by DEGREE under the classic LT model and the MAT model with different
temporal influence decay rates. a PGP dataset, b NetHEPT dataset, cWikiVote dataset, and d C.elegans dataset

and C.elegans, respectively. We believe that our MAT model is more powerful than the
LT model on prediction of influence spread. It is our future work to develop an effective
data-driven approach to learn λ from training data and then use it in the MAT model to
predict the diffusion.

Conclusion
In this paper, we propose a novel multiple-path asynchronous threshold (MAT) model
for viral marketing in social networks. It differs from existing diffusion models in several
aspects. We quantitatively measure influence and keep track of its spread and aggregation
during the diffusion process. OurMATmodel captures both direct and indirect influence,
depth-associated influence attenuation, temporal influence decay, and individual diffu-
sion dynamics. Our work is an important step toward a more realistic diffusion model.
Further, we develop an effective and efficient heuristic, IV-Greedy, to tackle the influence-
maximization problem. Our experiments on four real-life networks demonstrate its
excellent performance in terms of both influence spread and time efficiency.
Our work provides preliminary but significant insights and implications for mar-

keting practice. Firs of all, unlike other diffusion models relying exclusively on the
direct influence from influencers, our model draw managerial attention to messen-
gers who play an important role in spreading indirect influence in viral marketing.
Our model offers an algorithmic view of the complex WOM communications, as
described in the network coproduction model (Kozinets et al. 2010). Second, our work
provides pragmatic implications for how marketers should plan and leverage WOM
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campaigns. They need to take into consideration depth-associated influence attenua-
tion and temporal influence decay when determining the time period/steps. Specifically,
it is necessary for the marketers to find out the decay rate attuned to the product
and/or social media of interest. Third, to fully grasp the effect of the WOM marketing,
marketers need to look beyond the network structure and incorporate the weight infor-
mation on edges to capture the network activeness and individual diffusion dynamics.
Finally, our work suggests that marketers can create an efficient seeding strategy that
achieves larger influence spread than the high-degree seeding. They need to consider
both individual influence spread and the network structure to minimize the potential
overlaps.
Our work opens up several directions for future work on diffusion research. First, the

conjecture on submodularity of the influence-spread function under the MAT model
needs rigorous proof. Second, scalable heuristics need to be developed for large-scale
networks, especially for dense networks and large seed-set size. More importantly, it is
necessary to validate the MAT model with more real-life datasets from diverse domains.
It is desirable to have the dataset that contains both network connectivity and action
traces of a large set of instances. Then we can partition the instances into a training set
and a test set, and use the training set to learn model parameters, such as the temporal
influence decay rate and the network activeness. Finally, we use those learned parameter
values in the MAT model to predict the influence spread for the instances in the test set,
and evaluate the prediction accuracy based on the actual influence spread. This would be
a practical mechanism to not only validate themodel but also build an effective prediction
model. A lot of interesting work can follow.
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