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Abstract 

The cyclic response and low-cycle fatigue strength of a CuAg0.1 alloy for thermo-mechanical applications are investigated by 
isothermal strain-controlled fatigue tests at three temperature levels (room temperature, 250°C, 300°C). Both cyclic and 
stabilized stress-strain responses are used for identifying the material parameters of non-linear kinematic (Armstrong-Frederick, 
Chaboche) and isotropic models. The identified material parameters are used in numerically simulated cycles, which are 
successfully compared to experiments. Linear regression analysis of experimental fatigue data allows the “mean” low-cycle 
fatigue curves to be estimated. Approximate statistical methods are finally adopted to evaluate the design low-cycle fatigue 
curves at prescribed failure probability and confidence levels. 
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combined to mechanical loads. An example in continuous casting plants is a mold (or crystallizer), which is a long 
(~1m) hollow component where the molten steel starts to solidify. Owing to the high temperatures of the molten 
steel, the mold is subjected to a high thermal flux − also varying over time (due to plant switch on/off) − which may 
cause a network of thermal cracks to appear on the inner surface.  

In the design phase, finite element modeling can profitably be used for simulating the mold thermo-mechanical 
response and to compute stresses and strains, which, combined with fatigue curves, allow the mold service life to be 
estimated. Numerical modeling requires suitable plasticity models, calibrated on experimental data. Conventional 
molds are usually made by CuAg, CuCrZr, or sometimes CuNiBe alloys [1]. While thermo-physical and mechanical 
properties in the literature mainly refer to CuCrZr alloys, data for CuAg alloys are far more scarce [1]. 

Aiming to provide a contribution, this work will experimentally characterize a CuAg0.1 alloy for thermo-
mechanical applications by using low-cycle fatigue tests at three different temperatures (room, 250 °C, 300 °C). 
Stress-strain data recorded in each test are used for identifying parameters of non-linear kinematic and isotropic 
plasticity models. Numerical simulations using the identified material parameters are next compared to experimental 
cyclic responses. 

Experimental data are finally used for estimating the low-cycle fatigue curves by regression analysis and further 
re-analyzed by approximate statistical methods to evaluate design fatigue curves at prescribed levels of failure 
probability and confidence. The results of this extensive experimental characterization could be used both for 
numerically simulating the cyclic plasticity response and for estimating the service life of components in CuAg alloy 
that are subjected to thermo-mechanical loads. 

 
Nomenclature 

b speed of stabilization β confidence level 
c fatigue ductility exponent γ non-linear recovery parameter 
C initial hardening modulus εa,el elastic strain amplitude 
D ductility εa,pl plastic strain amplitude 
e fatigue strength exponent εa,tot total strain amplitude 
E Young’s modulus dεpl plastic strain rate tensor 
N number of cycles  εpl,acc accumulated plastic strain 
Nf number of cycles to failure ε'f fatigue ductility coefficient 
2Nf number of reversals to failure σy0 initial yield stress 
R drag stress - isotropic variable σys cyclic (saturated) yield stress 
R∞ saturation value σa stress amplitude 
s standard deviation σ'f fatigue strength coefficient 
S deviatoric stress tensor σmax,1 maximum stress in 1st cycle 
X back stress (kinematic) tensor σmax,s maximum stress in stabilized cycle 
 failure probability σuts ultimate tensile strength 

2. Non-linear hardening models: theoretical background 

The yield surface can be represented by a combined kinematic and isotropic model as [2]: 

    0:
2
3

y0  RXSXS    (1) 

where S is the deviatoric stress tensor, X is the kinematic tensor (back stress), R is the isotropic variable (drag stress), 
σy0 is the initial yield stress (in absence of plastic deformation). The back stress controls the translation of the yield 
surface (kinematic model), whereas the isotropic variable R controls the homothetic expansion (isotropic model) of 
the yield surface. Kinematic and isotropic models are implemented in commercial finite element codes and allow 
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simulating the elasto-plastic response of materials subjected to cyclic loadings, especially in steel-making 
components [3-7]. 

The literature provides several theories for kinematic and isotropic models. In the non-linear kinematic 
Armstrong-Frederick (AF) model, for example, the increment of the back stress tensor is related to the increment of 
both plastic strain tensor dεpl and accumulated plastic strain εpl,acc [2]: 

accpl,pl dd
3
2d εC XεX     (2) 

where C is the initial hardening modulus and γ is the non-linear recovery parameter that controls the decrease rate of 
the hardening modulus as plastic strain accumulates. For uniaxial loading, Eq. (2) yields [2]: 

  pl,0pl0 exp 





 









CXCX    (3) 

in which ν=±1 defines the load direction (tension or compression), εpl,0 and X0 are the initial values of plastic strain 
and back stress, respectively, at the beginning of each loading branch. In a stabilized cycle, the stress amplitude σa, 
the saturated yield stress σys and the plastic strain amplitude εa,pl are related by [2]: 

 pla,ysa tanh 



C

    (4) 

The Chaboche model is obtained by superimposing several AF models [2]: 

  
 i

n CC pla,i
i

i
ysaaccpl,iipli i

1i
 i tanh            dd

3
2d; 


 XεXXX   (5) 

The non-linear isotropic model is governed by the following equation [2]: 

  accpl,dd RRbR      (6) 

where R∞ is the saturated drag stress, b is the parameter that controls the speed of hardening (R∞>0) or softening 
(R∞<0). Integration of Eq. (6) for uniaxial loading gives an expression that links drag stress to accumulated plastic 
strain [2]: 

  accpl,exp1 bRR      (7) 

For cyclic loading, the evolution of R can also be correlated to the change of maximum stress σmax,i in the Nth cycle, 
relative to the maximum stress in the first cycle, σmax,1, and in the stabilized cycle, σmax,s [2]: 

accpl,1
1max,smax,

1max,max, 


 bi e

R
R 







   (8) 

In strain-controlled loading, the accumulated plastic strain after N cycles is εpl,acc≈2ΔεplN, where Δεpl=2εa,pl is the 
plastic strain range (twice the amplitude) in one cycle. The non-linear isotropic model in Eq. (8) assumes that the 
change of maximum stress σmax in cyclic hardening/softening only depends on the amount of accumulated plastic 
strain εpl,acc, independently of the actual value of plastic strain amplitude εa,pl. In a combined model, the kinematic 
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and isotropic models sum up and, in uniaxial loading, the maximum stress at a certain level of accumulated plastic 
strain εpl,acc is σmax(εpl,acc)=σy0+X(εpl,acc)+R(εpl,acc). 

3. Plasticity models: identifying parameters from experimental data 

3.1. Experimental tests 

Low-cycle fatigue (LCF) tests were carried out on a CuAg0.1 alloy, classified in ASTM B 124 standard [8]. 
Fatigue tests were performed on un-notched cylindrical specimens at three temperature levels: room (20 oC), 250 oC, 
300 oC. Experimental tests applied strain-controlled cycles with fully reversed (Rε=-1) triangular waveform and 
strain rate 0.01 s-1. Room temperature tests used a servo-hydraulic Instron-Schenck machine with nominal force 
±250 kN and mechanical grips. High temperature tests used an Instron machine with nominal force ±100 kN and 
water cooled grips, where specimens were induction heated (coil). In all tests, elongation of samples was measured 
by extensometers. Tests were interrupted before specimen complete failure. The number of cycles to failure Nf was 
conventionally defined when the maximal stress decreased by 80% from its initial value. Additional information 
about experimental testing can be found in [9]. 

3.2. Identification of material parameters 

Young’s modulus E and initial yield stress σy0 were identified first, as they allowed the elastic strain εel=σ/E and 
plastic strain εpl=ε−εel to be computed from the total strain ε and axial stress σ recorded in loading cycles. The 
Young’s modulus was determined on the straight upward portion of the first cycle. Subsequently, the initial yield 
stress σy0 was identified on the tensile portion of the first loading cycle, while the cyclic (saturated) yield stress σys 
was measured on the stabilized stress-strain cycle (approximately at half of the total number of cycles to failure). 

Table 1. Material parameters estimated from experimental data. 

Temp. 
[°C] 

E 
[MPa] 

y0 
[MPa] Kinematic model Isotropic model 

   C1 1 C2 2 C3 3 R∞ b 
20 119080 130 40240 2611 36700 2612 17330 342.1 -75.7 2.352 
200 106600 113 39740 1550 18060 1532 6503 302.7 -80.2 3.894 
300 103800 110 28600 1052 11850 599.8 1142 517.6 -76.6 5.293 

 
Parameters of plasticity models (kinematic and isotropic) were estimated separately and sequentially. In fact, the 

kinematic model stabilizes after a few cycles [2] and the change of maximum stress during cyclic loading is 
essentially controlled by the isotropic model. On the other hand, the isotropic model gives a negligible increment of 
maximum stress in the first cycle, due to the small value of accumulated plastic strain associated to a small speed of 
stabilization for the CuAg alloy (small b parameter, see Table 1). 

 

 

Fig. 1. Kinematic model calibrated on experimental data at room temperature.  
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Kinematic variables were determined by considering several stabilized cycles at different values of strain 
amplitude. For each stabilized cycle, the amplitude of back stress Xa=σa−σvs was calculated from the values of stress 
amplitude σa and the cyclic yield stress σvs estimated before. Fig. 1 displays an example for room temperature data. 
The lines represent the “best fitted” models with one, two or three pairs of kinematic parameters (Ci, γi) – the three-
pair model gave the lowest fitting error . 

 

  

  

  

Fig. 2. Comparison between experimental vs. simulated cycles: (a)-(c) same strain amplitude, different temperatures; (d)-(f) same temperature, 
different strain amplitudes. 

Fig. 2 compares the experimental cycles to numerically simulated cycles obtained by a kinematic model 
implementing the parameters (Ci, γi) identified before. The three-pair model always gives the best agreement to 
experiments, both for cycles at same strain amplitude and different temperature (room, 250 °C, 300 °C) and for 
cycles at same temperature and different strain amplitudes. Table 1 summarizes the parameters estimated at each 
temperature. 

Isotropic variables (R∞, b) were estimated next. Fig. 3(a) illustrates the evolution of the maximum stress σmax,i at 
each loading cycle N, for cycles at different values of total strain amplitude εa,tot. The decreasing trend confirms a 
softening behaviour for the CuAg alloy. The saturated stress R∞=σmax,1−σmax,s is the difference between the maximum 
stress in the first cycle, σmax,1,  and in the stabilized cycle, σmax,s. 
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Fig. 3. (a) Maximum stress vs. number of cycles; (b) “best fitting” of isotropic model. Room temperature data. 

The values σmax,i, σmax,1, σmax,s are then combined to plot, in Fig. 3(b), the left hand side of Eq. (8) against the 
number of cycles N, for different values of strain amplitude εa,tot. Fig. 3(b) points out a marked dependence on the 
strain amplitude, which actually contradicts the hypothesis behind the isotropic model. This dependence, also 
observed in [10] for a nickel-based superalloy, explains the poor fitting observed in Fig. 3(b). Parameter b was 
finally estimated by calibrating Eq. (8) to the experimental points in Fig. 3(b).  

Finally, Fig. 4 compares the experimental cycles to simulated cycles obtained by a combined kinematic and 
isotropic model, whose parameters (see Table 1) were estimated previously. Fig. 4 refers to 50 cycles at a strain 
amplitude εa,tot=0.5%, at room temperature. 

 

 

Fig. 4. Comparison between experiments and cycles simulated by a combined model. 

4. Low-cycle fatigue curves 

Experimental low-cycle fatigue data were used to estimate the Manson-Coffin equation [11]: 
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E fff

f
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     (9) 

where εa,tot is the total strain amplitude (sum of elastic εa,el and plastic εa,pl strain amplitudes), 2Nf is the number of 
reversals to failure, whereas other symbols are: σ'f = fatigue strength coefficient, ε'f = fatigue ductility coefficient, e, 
c =exponents. 

To calibrate the parameters of Eq. (9) on experimental data, a regression analysis has to be performed separately 
for the elastic and plastic strain contributions. To this purpose, a regression model y=A+Bx+δ is used, where 
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x=log(εa), y=log(2Nf) are the transformed variables (obviously, εa=εa,el and εa= εa,pl for elastic and plastic 
components), whereas δ is a Gaussian random variable with zero mean value and constant standard deviation s 
(“homoscedastic” model), which allows the regression model to quantify the statistical scatter of fatigue life 2Nf. 

 

  

Fig. 5. Low-cycles fatigue tests at room temperature and 300 °C: experiments, regression lines and “Universal Slopes Equation”. 

Linear regression analysis provides a set of expressions (e.g. see [11]) that permit the estimators 𝐴̂𝐴 , 𝐵̂𝐵 , 𝑠̂𝑠 , and 
therefore the “mean” strength curve 𝑦̂𝑦 = log(2𝑁̂𝑁𝑓𝑓) = 𝐴̂𝐴 + 𝐵̂𝐵𝑥𝑥, to be estimated from n experimental points (xi, yi), 
i=1,…,n. The parameters of the “mean” Manson-Coffin curve are then obtained directly by anti-transforming the 
regression estimators [12]:  
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where subscripts “el” and “pl” refer to the elastic and plastic components, respectively. The low-cycle fatigue curve 
in total strain amplitude is obtained by summing up the equations of elastic and plastic strain components. In Fig. 5, 
the “mean” low-cycle fatigue curve is compared with experimental tests at room temperature and 300 °C (elastic, 
plastic and total strain contributions are shown). 

4.1. Approximate low-cycle fatigue curves from monotonic tensile properties  

Low-cycle fatigue tests are generally costly and time-consuming. Simplified methods for estimating fatigue 
curves from monotonic tensile properties are particularly useful, especially in industry or at early design phases. A 
noteworthy example of simplified method is the “Universal Slopes Equation” (USE) proposed by Manson [11,13]: 
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where σuts is the tensile strength, D the ductility depending on percent necking Z%, whereas fixed slopes 0.12 and 
0.6 are assumed for all materials (note that the equation refers to strain range). Equation (11) represents a “mean” 
curve; its parameters must be estimated at the considered service temperature. Although originally calibrated on 
low-cycle fatigue data for ferrous and non-ferrous alloys (e.g. steel, silver, magnesium, titanium, aluminum), Eq. 
(11) is here applied to the CuAg alloy considered in this work. Fig. 5 compares the USE in Eq. (11) with the 
experimental data at room temperature and 300 °C. A very good agreement is observed at 300 °C (likewise at 250 
°C), whereas a slightly less satisfactory fitting concerns room temperature data (see Fig. 5(a)). 
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4.2. Statistical analysis and design curves  

The “mean” low-cycle fatigue curve 𝑦̂𝑦 = 𝐴̂𝐴 + 𝐵̂𝐵𝑥𝑥 is defined for a failure probability α=50%, which is too high to 
be accepted in design. A suitably higher safety margin (i.e. a much lower probability) has to be specified, so that a 
design curve (shifted on the left side of the “mean” curve) is obtained:  

skyy ˆˆˆ xn,β,α,d     (12) 

where kα,β,n,x is a statistical factor depending on the failure probability α and confidence level β (if required), on the 
sample size n (i.e. number of fatigue tests) and on the particular strain amplitude x=log(εa) at which life ŷd=log(2Nf,d) 
is computed. 

In the literature, several methods are available to evaluate the design curves (i.e. the value of kα,β,n,x and the 
percentile  𝑦̂𝑦d): i) deterministic method (“2 or 3 sigma”), ii) statistical method, which can be further divided into 
methods for evaluating the confidence interval, tolerance interval and prediction interval [14]. 

In the most general case in which kα,β,n,x explicitly depends on the amplitude x, the design curve has a 
“hyperbolic" shape (it is not a straight line). Approximate statistical methods are nevertheless available to evaluate a 
constant factor kα,β,n that is independent of x. In this case, the design curve is straight and shifted on the left side of 
the “mean”, according to the expression: 

  xBskAy ˆˆˆˆ nβ,α,d      (13) 

where Âα,β=Âkα,β,n·ŝ is a new constant that is function of failure probability α (survival probability is 1α) and 
confidence β. These approximate methods are particularly useful, as they permit the parameters σ'f, ε'f of the 
Manson-Coffin curves to be obtained according to the following quite simple expressions: 
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The slopes of the elastic and plastic strain components are equal to the exponents e, c resulting from the linear 
regression analysis (the design curve is indeed a straight line translated with respect to the regression line). In the 
next paragraphs particular attention is addressed on the approximate methods that give a constant value of k and 
therefore permit the Manson-Coffin design curve to be defined according to Eq. (14). 

4.2.1. Deterministic method (“2 or 3 sigma”)  
According to this approach, the regression estimators coincide with the “real” parameters: 𝐴̂𝐴 = 𝐴𝐴, 𝐵̂𝐵 = 𝐵𝐵, 𝑠̂𝑠 = 𝑠𝑠. 

The variable y is thus Gaussian with mean value 𝑦̂𝑦 and standard deviation s. By using the cumulative probability 
function Φ(z) for the standard Gaussian variable z, it is possible to evaluate  kdet=z1-α=Φ1(1α) for a given survival  
probability 1α. As an example, for a failure probability α=1% it follows: kdet= z0.99=2.3263. This approach is not 
conservative, as it neglects the statistical uncertainty of 𝐴̂𝐴, 𝐵𝐵 ̂ and 𝑠̂𝑠 [14]. 

4.2.2. One-side tolerance interval method  
A tolerance interval defines a region enclosing a percentage of the population of a given random variable. 

Calculating the tolerance interval is trivial for a Gaussian distribution with known mean value μ and standard 
deviation s. As an example, 95% of a Gaussian distribution falls within the two-side interval μ ±1.96s, where 
z0.975=Φ-1(0.975)=1.96. 

If the Gaussian variable y=log(2Nf) is considered, the value ŷd defined from the design curve Eq. (12) identifies a 
one-side interval y≤ŷd, which encloses a percentage α of the values y. For the variable y, however, the regression 
analysis only gives the estimators (and not the “true” values) of both the mean value 𝐴̂𝐴 + 𝐵̂𝐵𝑥𝑥  and the standard 
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deviation 𝑠̂𝑠. It follows that a statistical uncertainty is introduced, which does not allow the function Φ(z) to be used 
for evaluating factor k (as in the “deterministic method”). 

A different approach taking into account also the confidence β of the estimates is therefore necessary to evaluate 
k. The goal is to determine a value kα,β,n that defines the lower bound ŷd of the one-side tolerance interval y≤ŷd, 
which is expected to contain (with a predetermined confidence β) a percentage α of the values y. Factor kα,β,n 
depends on the failure probability α, on the confidence level β and on the size n of the statistical sample. For a 
Gaussian distribution, the values of kα,β,n are tabulated [14]. As an example, if n=7, α=1%, β=90%, it is kα,β,n=3.9720. 
The design curve ŷd=ŷkα,β,n·ŝ obtained by this method ensures that in the long run, 100β% of times, failures at ŷ≤ŷd 
occur with probability α. 

The tolerance interval method provides a constant kα,β,n along the whole amplitude interval x and it thus returns a 
straight design line. The method is, however, correct only if a single random variable is considered. In the regression 
case (two variables), the method is only approximate, as it neglects the statistical uncertainty of regression 
estimators [14]. 

If the tolerance interval method is applied to linear regression (“Owen’s method”), the kα,β,n,x factor also depends 
on the strain level x and the design curve is not straight any more. This approach raises some practical difficulties, 
yet. A possible approximation (“approximate Owen’s method”) consists in considering a value (kα,β,n)app constant on 
the whole x interval. It is therefore possible to define the design curve as the straight line ŷd=ŷ(kα,β,n)app·ŝ. Omitting 
the theoretical details (see [15]), the values of (kα,β,n)app are tabulated in [16] for different values of n, α and β (in [15] 
some values are not correct, yet). As an example, given n=7, α=1%, β =90%, it is (kα,β,n)app =4.3187. 

4.2.3. Prediction interval method 
A prediction interval defines a region where a future value of a random variable is likely to fall with a certain 

probability. In this case, the uncertainty of the future observation has to be added to that of estimators 𝐴̂𝐴, 𝐵̂𝐵, 𝑠̂𝑠. 
In the expression of the prediction interval (see [17]), kα,n,x is a “t-Student” random variable that depends on the 

failure probability α, on the strain amplitude x and on the sample size n. As a result, the design curve is not straight. 
In [17] an approximate method (called “equivalent prediction interval”, EPI) was proposed to evaluate a constant 
(kα,n)EPI factor. The method basically assumes that the Gaussian variable y has a constant standard deviation 
σ0=ŝ·gα,n, calculated by introducing a correction factor gα,n (which assesses the uncertainty of the estimators 𝐴̂𝐴, 𝐵̂𝐵, 𝑠̂𝑠). 
The following expressions (for 6≤n≤50, 0.01≤α≤0.15) were proposed in [17]: 

       7.132.3)(;)1(tanh56.1)(;ln)(exp
12.11)(

nα,  ng   (15) 

Once the value of σ0 is determined, the design curve is ŷEPI=ŷ(kdet·gα,n)ŝ. It is finally possible to define kEPI= 
kdet·gα,n, where kdet is the factor evaluated by the deterministic method (see Sec. 4.2.1). As an example, given n=7, 
α=1%, it is kEPI =3.8924. 

4.2.4. Results 
As an example, Fig. 6 plots the Manson-Coffin design curves (only plastic strain component) estimated by the 

previously proposed statistical methods applied to experimental data at 300 °C (n=7), for a failure probability α=1% 
and confidence β=90%. The analysis was also performed for the elastic part, although not shown here. Table 2 
summarizes the obtained values of the parameters σ'f, ε'f, e, c. The Manson-Coffin design curve in elastic εa,el, plastic 
εa,pl and total εa,tot strain amplitude is obtained by introducing in Eq.(9) the values of Table 2.  

For both elastic and plastic strain components, the tolerance interval method (“approximate Owen’s method”) 
provides the most conservative curve (i.e. that laying on the most left-side from the regression line), whereas both 
the one-side tolerance interval approach and the EPI approach provide overlapped lines, slightly shifted to the right. 
The deterministic method gives, instead, the less conservative design curve, i.e. that closest to the regression line. 
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Fig. 6. Design curves for data at 300 °C, referred to failure probability α=1% and confidence β=90%, expressed as a function of the amplitude of: 
(a) plastic strain; (b) total strain. 

Besides the low-cycle design curves, in design it is also of interest to know the strain amplitude (εa,tot)d for a 
prescribed number of reversals to failure (2Nf)d. The last column of Table 2 presents the design values of strain 
amplitude for (2Nf)d=2·105. As already observed, the assessment based on the tolerance interval method for the 
regression case (“approximate Owen’s method”) gives the most conservative value, 30% lower than the value from 
the “mean” (regression) line. 

Table 2. Parameters of Manson-Coffin equation (“mean” and design curve) for experimental data at 300 °C. 

Method k σ'f/E e ε'f c (εtot,a)d b 

linear regression  
 (=1%)a - 0.00244 -0.1125 0.57468 -0.6035 0.00122 

deterministic method 
(=1%) 2.3263 0.00227 -0.1125 0.38764 -0.6035 0.00099 

EPI 
(=1%, n=7) 3.8924 0.00217 -0.1125 0.29738 -0.6035 0.00088 

1D tolerance interval 
(=1%, =90%, n=7) 3.9720 0.00216 -0.1125 0.29340 -0.6035 0.00087 

1D tolerance interval (Owen)  
(=1%, =90%, n=7) 4.3187 0.00214 -0.1125 0.27667 -0.6035 0.00085 

a = failure probability; β=confidence; n=sample size 
b values referred to design life (2Nf)d=2·105 

 

5. Conclusions 

This work deals with an experimental characterization of a CuAg0.1 alloy used in thermo-mechanical 
applications. Results of low-cycle fatigue tests at three different temperatures (room temperature, 250 °C, 300 °C) 
were considered. The experimental cyclic response was used to identify the parameters of non-linear kinematic and 
isotropic plasticity models. The Chaboche model (three pairs of C, γ) has shown the best agreement with measured 
stabilized stress-strain cycles. The calibration of the non-linear isotropic model was then performed by considering 
the whole evolution of cycles, which showed a softening behavior. The statistical analysis of low-cycle fatigue data 
was finally performed to estimate the “mean” Manson-Coffin curve and also the design curves (at given failure 
probability and confidence) by approximate statistical methods that make use of simple analytical formula for 
evaluating curve parameters. Compared to the “mean” fatigue line, the design strain amplitude was shown to 
decrease up to 30%. 
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