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Abstract

In recent years, the use of renewable energies has been promoted in most of
developed countries due to the climate change threat. In this scenario, the
importance of geothermal installations has increased. This paper focuses on
a heat exchanger present on a geothermal installation. The main aim is to
achieve an accurate prediction system using the previous readings of some of
the sensors located along the heat exchanger. Different time series modeling
techniques were applied obtaining satisfactory results in the prediction of
the heat exchanger state during one year. This prediction is made one hour,
three hours and six hours in advance. Also, a strong correlation between
the sensor readings is concluded, offering the possibility to dispense some of
them.
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1. Introduction

In last decades, the world is facing fast changes in terms of economic
global instability, increase in competitiveness and climate change [1]. Under
these circumstances, the rising price of raw materials and a high fossil fuels
dependency, with the corresponding environment damage, led to an intensifi-
cation in the use of alternative energy resources [2|. The supply of renewable
energies is unlimited, and its use is relatively clean. For these reasons, during
last decades, many governments have promoted policies that encourage the
use of these kind of energies [3].

Usually, solar and wind are the most used alternative energies, and there-
fore, their technologies have experienced an intense development. However,
nowadays, the field of renewable energies have presented significant advances
in other disciplines such as geothermal or ocean energies [4]. These advances
are aimed at narrowing the implantation costs and increasing the efficiency.
Some researches are focused on developing new methods or optimizing ex-
isting ones in energy installations [5]. In some systems, different renewable
energies like geothermal and solar are combined to improve the efficiency [6].

This paper focuses on a geothermal energy installation. Geothermal is
defined as the energy stored in form of heat inside the earth under the ground
[7]. Different works estimate that the whole amount of heat flowing from
inside the earth is around 42 x 10 W [7]. Only the 2 % of this energy
comes from the crust, the 82 % comes from the mantle due to the decay of
radioactive isotopes of uranium, potassium and thorium and the remaining
percentage is generated at the core. Despite the vast amount of energy, its
use is limited to specific areas with proper geological conditions [§].

At the beginning of twenty first century, the use of geothermal energy
to produce electricity had an installed capacity of almost 9 MW, while its
use in non-electrical applications represented about 15 MW. The use of non-
electrical geothermal energy is extended in applications like heat pumps,
bathing, space heating, green houses, aquaculture and industrial processes
[7].

A heat pump is employed to provide thermal energy obtained from an
external source to a facility [9]. The external source can be hot or cold, lead-
ing the first one to higher efficiency. In geothermal heat pumps, the thermal
source is hot and the heat exchanger installation can be placed in horizon-
tal or vertical configurations [10, 11]. Vertical configuration leads to a more
efficient installation because at a significant depth, the ground temperature



tends to remain constant along the year. This means that ground temper-
ature is lower than air temperature in summer and is higher in winter. On
the other hand, horizontal configurations are placed near the ground surface
and therefore, the temperature varies significantly depending on the season
of the year. However, the high cost of vertical configuration boreholes usu-
ally forces to use the horizontal configuration, whose installation turns out
to be more economical [12]. With the aim of increasing the energy efficiency
in the horizontal configurations, the exchanger is commonly placed deeper
in the ground [13]. If a good performance is desired in the heat exchange,
the accurate performance of the geothermal installation is mandatory to be
known.

This work deals with a geothermal heat exchanger located on a biocli-
matic house. The installation operation is recorded during one year using
the temperature sensors along the exchanger.

Different works show the importance of predicting parameters like tem-
perature soil or thermal resistance of geothermal installation |6, 14]. This
paper proposes a method to model and predict the behavior of the geother-
mal heat exchanger using different time series techniques from the initial
dataset. To do that, two different training set variations have been tested:
the first one consisted of using only the previous month to predict the next
one, while the second one consisted of training with all data available up to a
certain point to predict the measures for the next month. Also, a comparison
between modeling with all the data and only with data from cases where the
heat pump is not turned off in a steady state is made.

Satisfactory results were obtained in general terms, and a good prediction
of the heat exchanger is achieved one, three and six hours in advance. Also,
it is concluded that there is a strong correlation between different sensors
located along the installation.

This paper is structured as follows. After the present introduction, the
case of study is briefly described. Then, the used techniques section is pre-
sented, followed by the experiments set up. Experiments and results are
shown in next section and finally, conclusions and future work are exposed.

2. Case of study

The present research describes a novel model that is able to predict the
behavior of a heat exchanger located in a geothermal installation. This in-
stallation is part of the Sotavento bioclimatic house, briefly described in the



next subsection.

2.1. Sotavento bioclimatic house

The bioclimatic house under study is the result of a project developed by
Sotavento Galicia Foundation, whose aim is to demonstrate the feasibility of
the different renewable sources and spread their use. This house is placed
in the facilities of the Sotavento Experimental Wind Farm, which is located
between the councils of Monfero (A Coruna) and Xermade (Lugo), in the
autonomous community of Galicia (Spain). Its geographical coordinates are
43° 21’ North, 7° 52’ West. It is located at a height of 640 m and is 30 km
away from the sea.

Different renewable energy sources supply the thermal and electrical in-
stallation of the bioclimatic house. The electrical energy is supplied by wind
generators and photovoltaic panels. Furthermore, when these sources are not
enough to cover the demand, the power grid also provides electrical energy
to the lighting and power systems of the house.

On the other hand, the thermal installation is in charge of the heating
system and the DHW (Domestic Hot Water). For this task, solar, geothermal
and biomass energies are exploited.

This installation has three main different parts: generation, consumption
and accumulation:

Generation. Three energy resources supply thermal energy to the in-
stallation:

e The solar thermal system consists of eight solar panels that absorb
energy from the solar radiation and uses it to heat the fluid flowing
inside them. This heated fluid is driven to the heat exchanger placed
in a water accumulator, where the water is stored at high temperature
for later use.

e The biomass system has a boiler with configurable power, from 7 kW
to 20 kW, with a yield of pellets of 90 %. This system supplies hot
water directly to an inertial accumulator at 63 °C.

e The geothermal system consists of a horizontal collector with five 100
meter loops. The exchanger is placed two meters under the ground. It
has a nominal heating power of 8.4 kW and a nominal electrical power
consumption of 1.9 kW. The warmth from the ground heats up a fluid
that warms the water driven directly to the inertial accumulator.
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Accumulation. The solar accumulator has a volume of 1000 liters. This
accumulator is connected in series with an inertial accumulator of 800 liters.
Furthermore, it receives energy from the geothermal system and the biomass
boiler. The use of inertial accumulators is commonly suggested in all heating
systems. Its main objective is to minimize the start-stop cycles of the unit.

Consumption. Installation of Domestic Hot Water (DHW) and under-
floor heating are supplied by an inertial accumulator. The DHW supplies
a bathroom and a kitchen. The system was dimensioned according to the
Spanish Technical Building Code (240 liters per day). The underfloor heat-
ing system is able to keep the house temperature between 18 °C' and 22 °C'.
For this purpose, the water temperature remains between 35 °C' and 40 °C'.

As explained in the Introduction section, this paper focuses on the geother-
mal installation, which is described in detail in the next subsection.

2.2. Geothermal system under study

The topology of the horizontal heat exchanger installation with the Heat
Pump is shown in Figure 1. Two main different circuits are connected to the
Heat Pump. The primary circuit consists of a geothermal exchanger that
supplies the heat from the ground to the Heat Pump. The second circuit
connects the inertial accumulator to the Heat Pump.
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Figure 1: Geothermal installation

The geothermal exchanger has five circuits. With the aim of monitoring
the ground temperature while the system is operating, different sensors are
located along the heat exchanger. These sensors are distributed in four loops.



The sensors layout of one of the five circuits is shown in Figure 2, being
the S401 the sensor that measures the ground temperature.

®

Figure 2: Geothermal exchanger sensors layout

2.3. Dataset obtaining and description

The set of temperatures measured at the geothermal heat exchanger were
recorded during one year. The measures consisted of 29 features that were
registered with a 10 minutes sample rate. With the aim of avoiding wrong
performance of the model, a preliminary inspection of the dataset was car-
ried out. It is found that three measurements in one day of the year are
duplicated. These values are considered not valid, so after discarding them,
the 52.645 initial samples were reduced to 52.639.

3. Regression Models Description

In this section we are summarizing the techniques used to predict the
heat exchanger pump behavior and perform a comparative study among all
of them.



3.1. ARIMA

A classical model for time analysis is ARIMA (autoregressive integrated
moving average) proposed by Box and Jenkins in 1970, with a more recent
review published in [15]. This is a quite well-known technique for time series
analysis. The model has been widely used in economy, especially in stock
markets forecasting, chain supply problems, prediction of electricity prices,
etc. Also, it has been used in temperature analysis and natural phenomena
prediction [16, 17|, among others.

ARIMA process is composed of three phases: a preliminary stage of data
preparation, a subsequent parameter estimation and model selection, and a
final model checking and forecasting stage. Data preparation involves trans-
formations and differencing. Data transformations (square roots or loga-
rithms) stabilize the variance in series in which variation changes with the
level. Next, the data must be differenced until there are no obvious pat-
terns such as trend or seasonality. Parameter estimation aims to find the
values of the ARIMA model coefficients which best fit to the data, while
model checking involves testing the previous assumptions. Once the model
has been selected, estimated and checked, it is usually a straightforward task
to compute forecasts: in our case, we apply the obtained model to the test
data and analyze the fitness of the prediction.

Typically an ARIMA model is denoted ARIM A(p,d, q) where: p is the
order of the autoregressive part, d is the order of the differencing and ¢ is
the order of the moving-average process. In our tests, we used the ARIMA
(0,0,1) also known as MA(1) or moving averages and the ARIMA (0,0,0)
also known as a random walk model, more used in monthly periods. Since
both obtained very similar results, only the first one will be referenced in the
experiments description.

3.2. Ridge Regression

Ridge Regression was proposed by Hoerl and Kennard [18|. Ridge regres-
sion addresses some of the problems of Ordinary Least Squares by imposing
a penalty on the size of coefficients. When multicollinearity occurs, least
squares estimates are unbiased, but their variances are large so they may be
far from the true value. By adding a degree of bias to the regression esti-
mates, ridge regression reduces the standard errors. It is hoped that the net
effect will be to give estimates that are more reliable.

The ridge coefficients minimize a penalized residual sum of squares: min,,|| X, —
y||2% + a|w||2%. Here, @ > 0 is a complexity parameter that controls the
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amount of shrinkage: the larger the value of a, the greater the amount of
shrinkage and thus, the coefficients become more robust to collinearity. It
has been used in problems related to temperature and time series [19] and
in building energy consumption [20]. In our case we have used a Python
implementation [21].

8.8. Decision Trees

Decision Tree is a well-known method used for both classification and
regression tasks. These family of models was first introduced by Stone in his
work [22].

Decision Trees have been use for weather and other atmospheric phe-
nomenon forecasting tasks [23], also for energy consumption [24, 25|. A full
description of these techniques can be found in [26].

In our case we have used a Python implementation [21], which uses a
variant called CART (Classification and Regression Trees). The algorithm
creates a multiway tree, finding for each node the categorical feature that
will yields the largest information gain for categorical targets. The CART
model supports numerical target variables, so it can be used in regression
tasks. It constructs binary trees using the feature and threshold that yields
the largest information gain at each node.

3.4. Multi-Layer Perceptron (MLP)

This well-known technique belongs to the supervised automated learning
techniques. Also used in classification and regression tasks, was introduced
in [27]. The concept of multi-layer perceptron is simple, it is a neural network
conformed by several layers, three at least.

Input layer: conformed by the nodes that introduce the data into the
neural network, receiving the input signals, but does not perform any process.

Hidden layers: this layers, also called intermediate layers do not have
contact with the input signals, the elements have different connections and
process the input data with activation functions. The result is transferred to
the output layer.

Output layer: represents the output solution.

In temperature analysis MLP has been used in works like [28] and in
studies related with building energy such as [29, 30]. In general terms, this
technique shows successfully results in a wide variety of applications [31, 32,
33]. In our case, we have used the Python implementation found in [21].



3.5. Time delay neural networks (TDNN)

These neural networks were first introduced in [34]|. The particularity of
these neural networks is that they include a temporal dimension. They are
part of the family of nonlinear auto-regressive neural networks. Time De-
lay Neural Networks architectures enable the networks to take into account
data from different instants in time. They are all modeled as a feed-forward
schema with only one hidden layer. In the input layer, we can select the
number of step delays that can be used over the series fed to train, config-
uring, therefore, the training with a certain step. The middle layer filters
the inputs before entering them into the output layer. The way in which
the output layer is connected back to the input layer is what determines the
variants of this model in the time series analysis. The TDNN works like other
neural networks, which are based in multiple interconnected layers similar to
those of the Perceptron, receiving information of the input layers, and trans-
miting it to the output layers. The main difference lies in the fact that these
neural networks have a delay component. In order to analyze patterns or
time-invariant structures, older activation and connection values of the input
layers have to be stored. This is performed by making a copy of the previous
values with all their outgoing connections in each time step, before updating
the original values. TDNN has been widely used in the field of word and
speech recognition. In the field of temperature or forecasting we have several
examples like: [35, 36]. In addition, we can find examples in building energy
consumption such as [37, 38]. In this work we have used the Matlab software
[39].

A more detailed description of the variants of the TDNN schema used are
presented in next subsection.

3.5.1. Non-Linear Input-Output (NIO)

It consists of a feed-forward network with a tapped delay line at the input.
This is called the focused time-delay neural network (FTDNN). This is part
of a general class of dynamic networks, called focused networks, in which the
dynamics appear only at the input layer of a static multilayer feed-forward
network. It is the simplest model and it is not one of the best performing,
since it seems clear that once you get the previous states of the dynamic
system these would be a valuable information to include also into the model
for predicting future states. An implementation can be found in Matlab’s
Neural Network Toolbox, which has also been used in [36]. A scheme of
NIO adapted from Matlab Neural Network ToolBox is presented in Figure 3,



x(t) yit) = fx(t-1),..., x(t-d})

y(t) = fix(t-1),..., x(t-d))

Figure 4: NAR Scheme adapted from Matlab Neural Network Toolbox

the first green square represents the input layer, the blue one the differente
hidden layers and the last green square the output layer.

3.5.2. Non-Linear Autoregressive (NAR)

In this case, only the series to be approximated is used in the network
training. The feed-forward network uses previous readings of the series in or-
der to predict the new ones and additionally, includes the outputs generated
in previous states as input of the following ones. This enables this archi-
tecture to maintain a certain “memory” of past states to better predict the
next. In order to provide enough dimensions for the network to improve its
characteristic parallel computing capabilities, the system uses a delay, which
means that it will feed the network with several past steps of the series.

3.5.83. Non-Linear Autoregressive with External Input (NARX)

This model takes elements from the previous two, with the exception that
in this case the network uses for its training both the previous samples of
the series to be predicted and previous generated outputs of the network;
along with other external attributes of the system that were sampled in the
same time instant as the ones in the analyzed series. This helps the network
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x(t)

y(t) = fx(t-1),..., x(t-d),
y(t-1),..., y(t-d))

Figure 5: NARX Scheme adapted from Matlab Neural Network Toolbox

to incorporate data that is not directly correlated with the modeled system,
but can have a clear influence on it. A more detailed explanation of NARX
can be found in [40] and more recently in [41].

NAR and NARX have been widely used in literature, much more than
NIO and it has been demonstrated that achieve better results like in [41, 42,
43, 38|.

4. Experimental Set up

The real case of study used for testing consists of temperature readings
for each of the sensors distributed along the described circuit plus the ground
temperature sensor. Readings were taken along a complete year (2012), with
a time frequency of the readings of 10 minutes. Therefore, the total amount
of data samples included 52.645 samples of 29 features. Few of them had
clearly identifiable errors and were discarded, so the final dataset had 52.639
samples.

An exploratory analysis of data was performed as an initial state of the
work. The readings of the sensors were first compared with a statistical
Pearson correlation coefficient to assess the correlation between measures: as
expected by the configuration of the heat pump and the sensors, S28 and S29
where very highly correlated (0.99) as were S30 and S31 among them (also
0.99). Both pairs of sensors were inversely correlated: S28 and S29 with S30
and S31 (-0.76 to -0.82), being one pair the input and one pair the output
of the heat pump. The rest of the sensors were also highly correlated among
them, being all sensors included in the same connected circuit.
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Figure 6: Cluster distribution obtained from LDA

Therefore, the remaining efforts were focused on studying the prediction
of the readings in a particular sensor in order to anticipate the state of the
system in a future time point, given the information of several previous states.

Also, a Linear Discriminat Analysis [44] was performed in the dataset,
using the month of the year as the output discriminant value. A clear cluster
structure can be obtained from this analysis, classifying correctly a 95.1 %
of the cases, so it seems interesting to split data used in experiments for
training and testing by months. The scatterplot of this initial analysis can
be found on Figure 6.

Two different batches of data were selected for performing the experi-
ments. In the first batch, the complete set of readings were used to train
different regression models. In the second batch, only the readings corre-
sponding to time instants where the pump was not turned off in a steady
state were considered. To do this, samples in which the temperature differ-
ence between sensors S28 and sensor S29 (considered as the output and input
sensors respectively) are equals or lower than 1 degree Celsius, were filtered
out. As a result, in the second batch of data, dataset was reduced to 6.735
samples.

The aim of this approach is to assess whether using all data is necessary to
build an accurate prediction system or fewer is enough. This would increase
computing efficiency by reducing storage and computational needs.
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The objective considered is to be able to predict the temperature regis-
tered on sensor S28, given different subsets of data selected from the dataset.
Other aim of the study is to determine if a system that predicts accurately
future behaviors of the heat exchanger can be developed by using a lower
number of sensors on it. Since all the sensors are distributed on a connected
system, there is a strong correlation between them. Therefore, there are few
dimensions that are really necessary to capture the system’s behavior, since
the rest are related to it. In our experiments only measures obtained from
S28 and S401 (ground temperature) have been used.

In order to compare models for regression in our case, we have selected
several types of models: statistical models such as Decision Tree or Ridge
Regression were used in a first stage, also including a more accurate model
such as the Multi-Layer Perceptron (MLP). The results of these are compared
with more advanced conexionist models on the family of the Time Dependent
Neural Networks (TDNN), which have been designed for this type of task in
particular. Several other statistical models (K-Nearest Neighbors, Support
Vector Machines) have been tested, but are not included in the results shown
as results were worse than those. Parameters have been adjusted by a random
search method.

5. Experiment Results

5.1. Error Measures

This section briefly introduces the concepts of Mean Square Error (MSE),
Mean Absolute Error (MAE), Median Absolute Error (MDAE) and Coeffi-
cient of Determination (R?). These parameters are used as quality measure
of the methods performance. We can find several examples in the literature
that use these errors to asses the performance of temperature and forecast
prediction and analysis, such as [45, 46, 47]. For a deep revision into fore-
casting errors we recommend [48].

Mean Square Error :

Supposing (X;) be the vector denoting values of n number of predic-
tions, and X; be a vector representing n number of true values, the
Mean Square Error is defined as: MSE = 237" | (X; — X;)?

Mean Absolute Error :
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Model Parameters
Ridge Regularization
Regression  strength (a): 975
autoregressive (p):
ARIMA 0
differencing (d): 0
moving-average
(q): 1
.. Max depth: 15
Decision .
Min samples Leaf:
Tree

45
Min samples Split:
40

(a) Statistical Regressors training param-

eters used in the experiments

Model

Parameters

Multi-
Layer
Perceptron

Activation:
rectified linear
unit function
Num hidden
layers: 1

Num neurons: 10

NAR

Num Delays: 6
Num hidden
Layers: 1

Num neurons: 10

NARX

Num Delays: 6
Num hidden
Layers: 1

Num neurons: 10

NIO

Num Delays: 6
Num hidden
Layers: 1

Num neurons: 10

(b) ANNS training parameters used in the

experiments

Table 1: Experimental Models Parameters
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The definition is similar to MSE, but in this case, the direction or sign
of the error is not taken into account.

With the same notation, that in MSE we can define MAE = L 57" | | X;—
X

Median Absolute Error :

It consists of substituting the mean in MAE by the median: MDAE =
median ) | X; — X

Coefficient of Determination :

R? is used to analyse how differences in one variable can be explained
by a difference in a second variable. In other words, is the proportion

of the variance in the dependent variable that is predictable from the

Z?:1(Xi_)_<)2

independent variables. R? =1 — X X2

5.2. Results

As a mean of comparison, a test has been completed using the same
readings of the S28 sensor to predict the value of the S28 in 3 different time
horizons in the future. That is assuming that, in 1 hour, 3 hours or 6 hours
time, the temperature will be the same as in the reference time instant. The
results are presented in terms of the well-known error measures calculated
for regression problems: Mean Absolute Error (MAE), Mean Square Error
(MSE), Median Absolute Error (MDAE) and Coefficient of Determination
(R?). These error results are included in Table 2. As expected, results are
not very satisfactory and can be improved greatly with the use of regression
models.

In the experiments, different regression models are compared when mod-
eling the future behavior of the system taking into account previous states
of the same system. For the statistical and MLP models, given an instant
in time, the current state of the ground temperature (S401), and the previ-
ous six measurements of sensor S28 are considered as inputs. The outputs
represent the predicted current value of S28; the predicted next value of S28
(corresponding to the following 10 minutes) and the predicted values of 528
in one, three and six hours. The NAR model has only two inputs and one
output. One input represents the current state of S28 and the other repre-
sents the number of step delays taken into account to predict the output,
which is the value of S28 after n minutes. Since TDNN techniques do not
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All Data Only when pump is working

Time
Horiz. MAE MSE MDAE R?> MAE MSE MDAE R?

1h 1.05  4.29 0.56 0.82 155 345 1.36  -0.15
3h 1.87 10.06 123 041 3.15 12.63 299 -4.27
6 h 245 14772 158 011 437 2482 391 -9.90

Table 2: Regression errors obtained when using the same S28 time series data to try to
predict the value of the series in different time horizons

528 [t+n)

528

NIO AND
NARX
MODELS

Figure 7: Model configuration depending on the technique applied

allow predicting more than one output, a different model is obtained for each
output prediction (one, three and six hours in advance). In addition to the
NAR inputs, NIO and NARX models use an external input corresponding
to sensor S401. Figure 7 summarizes the configuration of each model.

The dataset was in all experiments divided into 12 folds of samples con-
tiguous in time. To compare the effect of the amount of data used to train
a model in the final regression, two sets of experiments were considered. In
one set of experiments, the model is trained only with a given fold and tested
with the next one in time, and in the other set, the model was trained with
all data available until a given point in time and tested with the following
fold in time. This means that, both when training with all data samples or
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when doing so with samples where the heat pump was not turned off in a
steady state, the results shown are the mean of a 12-fold validation of the
model in the whole year.

Tests have been performed training the models with different time hori-
zons; that is, trying to predict the value in different time instants in the
future. Experiments have been completed training the models to predict the
temperature value of the system in 1 hour time, in 3 hours time and in 6
hours time, given the readings of the previous hour as an input to all models.

5.3, Training with all data

The results shown in Table 3 have been calculated over all the data avail-
able. Two different training variations have been tested: the first one con-
sisted of using only the previous month to predict the next one, while the
second one consisted of training with all data available up to a certain point
to predict the measures for the next month. As expected, the NIO model
values are clearly worse than the rest of the models and have not been in-
cluded in the tables, for space reasons. They have been nevertheless included
in Figure 8 for comparison purposes.

As an immediate conclusion, it is clear that the TDNN based models
outperform in all cases the rest of the standard regression ones. As a general
case, NAR model shows the best performance in almost all cases. That
means that the inclusion of the ground temperature, as an external data
source, in this case does not include any clearly valuable information to the
series prediction, since the main difference between NAR and NARX is the
inclusion of this external information. That seems to point to the idea that
the performance of the system depends more on the previous states of the
system than the external conditions, reinforcing the idea of the importance
of a good system modeling.

What is even more interesting is that while the performance of the other
models degrades when the distance in time to predict increases, TDNNs be-
have in a different way: NAR models maintain slightly the same performance
in the three cases and NARX models even improve in a clear way when the
time horizon becomes more distant.

It is interesting to note in the case of generalist regressors, when the algo-
rithm is trained with the accumulated of all data preceding the analyzed set,
the resulting error measures are very similar or even slightly worse than when
the models are trained only with the data included in the previous month.
This is expected, as the inclusion of training samples from very distant points
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Trained by month Trained with the accumulated

Time

Horiz. Model MAE MSE MDAE R?* MAE MSE MDAE R?

Ridge 0.61 1.26 023 096 0.70 1.49 0.38 0.94

ARIMA 1.00 3.83 037 08 1.36 6.75 0.56 0.76

DecTree 0.95  2.40 0.36 091 097 274 0.32 0.90

Lh MLP 0.70  1.57 0.25 094 087 198 0.41 0.93
NAR 0.18 0.25 0.06 0.99 0.23 0.30 0.11 0.99

NARX 1.60 6.34 0.78 0.77 0.36 0.36 0.26 0.99

Ridge 1.03  3.01 0.49 0.89 096 257 0.52 0.91
ARIMA 186 8.60 0.83 0.66 225 8.66 1.60 0.66
DecTree 191 10.62  0.81 0.62 1.73 9.44 0.59 0.66

sh MLP 1.18  3.23 0.61 088 125 3.16 0.77 0.89
NAR 0.20 0.27 0.06 0.99 0.22 0.26 0.10 0.99

NARX 1.02 3.22 0.43 088 0.23 0.30 0.15 0.99

Ridge 1 .86 0.68 0.79 152 5.86 0.87 0.79
ARIMA 17.67 14.34 18.12 049 3.20 15.05 2.60 0.47

oL DecTree 2.75 1791 1.31 0.36 232 1449 0.95 0.48

MLP 211 1040 1.81 0.63 191 9.13 1.01 0.67

NAR 0.18 0.29 0.06 0.99 0.28 0.53 0.09 0.98

NARX 0.74 1.81 0.30 093 052 0.63 0.30 0.98

Table 3: Error measures obtained for the studied regression models. Data represents the
mean measure obtained for the 12 cross-validation folds, measured on the complete dataset.
Data samples gathered both when the exchanger is functioning and not functioning are
used for the error calculation.
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in time along a complete year will probably lead towards overfitted models.
On the other hand, while this is true also for the NAR model, this situation
is reversed in the case of the NARX: using all data available helps this model
to consistently obtain lower errors. This is easily appreciated in Figure 8.

In this figure it is also noticeable some of the features of the problem
and the results obtained: i.e. in the readings of the summer months (June,
July, August), the exchanger is functioning very rarely, so the error in the
prediction decreases clearly in all models. When using the accumulation
of data to train the models, error usually decreases in the TDNN models,
while it remains almost the same for the rest of the models (which is higher
than the TDNN in both cases). This would suggest that a straightforward
direction to continue the study would be the use of data from different years
to study the effects of its inclusion in the training sets. As mentioned before,
the NIO models, which does not include in its architecture a feedback loop,
is the worst performing of the models.

This can be observed also when representing the values obtained from
each model along with the real value to predict, as are represented in Figure
9 and Figure 10.

Again, by inspecting Figure 9 and Figure 10, it seems that the inclusion of
the external variables, taking into account results only in a too close period
of time has the effect of overfitting in the NARX and in a lower degree,
the NAR. The use of data from the previous month predictions seems to
stay in a lower range, probably because none of the samples went above
that temperature. When considering data from several months before, the
network training enables it to generalize better. The opposite results happens
for the Ridge model: even when the regression is not as good in neither of
the comparisons, when using only data from one month seems to cause less
overfitting (the measures are a bit closer to the real value in this case). Less
advanced models seem to profit from a lower amount of data from closer
instants in time.

When the pump is not in operation for a time, the temperature of the
sensor 528 remains nearly constant. Since the complete dataset includes a
majority of readings in which the pump of the heat exchanger is in a repose
state, this situation can hinder the real error results we wanted to measure:
the prediction of the conditions of the heat pump when it is working. Given
that the temperature on S28 does not vary when the pump is off in a steady
state, a regression model would not be necessary in this case. After remov-
ing the data when the pump is off in a steady state, the second subset of
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Time horizon: 1H
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Figure 9: Example of the regression values obtained for each of the models, all of them
calculated for a time horizon of 1 hour. The first week of March 2012 is shown as an
illustrative example. Results when models are trained with data obtained from all previous
time instants (January-February 2012).
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Figure 10: Example of the regression values obtained for each of the models, all of them
calculated for a time horizon of 1 hour. The first week of March 2012 is shown as an
illustrative example. Results when models are trained with data obtained only from the
previous month (February 2012).
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data described in Section 4 is used to calculate error measures. In this re-
calculations of errors, the predictions used are the same as in Table 3; with
the only difference that the subset of the predictions made when the pump
is off in a steady state are filtered out.

The results obtained re-calculating errors over only the working samples
are shown in Table 4.

Analyzing Table 4 is easy to observe that, as expected, errors are clearly
higher for all models, as we are now discarding samples where the pump was
not functioning in a steady state and therefore the prediction was almost
identical to the input. Nevertheless, it is interesting to note that all the
remarks applied to the errors obtained from the whole dataset are present
in this results too: TDNN models are the best performing ones and the
difference in the time horizon only has a slight influence in the results.

5.4. Training only with data when working

Observing the results of section 5.3, specially those of Table 4, in which
calculating the error only in the time instants when there was activity in
the exchanger lead to higher error, one could wonder if this is an overfitting
effect caused by training with data that could be interpreted as noise, since
it conceals the data samples which are more interesting to predict. To check
if that is the case, the last experiment consisted of training again the models
with the same schema as the initial experiments (12 fold cross-validation and
including only one month or the accumulated of the year), but including in
each fold only the samples where the pump is not turned off in a steady state.

As expected, the use of a reduced dataset highly impacts the final re-
sults. This suggests that models would need to retrieve consistently equally
time-spaced measurements from the data. Apart from the fact that depend-
ing on the months, the exchanger is active along longer periods of time (and
therefore includes more data samples), the preservation of the temporal com-
ponent of the data evenly spaced is determinant for the results. The fact that
the readings of 1 hour are used as a complete input to predict a given time
instant, should be the reason. The models can detect if the pump has begun
to work in that period of time and adapt their prediction accordingly. In
case of selecting just the working cases, that information is lost, since the
model cannot identify if the functioning has begun or finished in given time
instants before.

The results obtained when models with this subset are shown in Table
5: As expected, all results include a clearly higher error than when the
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Trained by month Trained with the accumulated

Time

Horiz. Model MAE MSE MDAE R?> MAE MSE MDAE R?

Ridge 1.41  3.62 1.09 0.67 1.69 4.72 1.31 0.57

ARIMA 397 2421  3.22 0.17 384 2217 3.21 0.17

DecTree 2.00  6.30 1.70 043 193 590 1.48 0.46

Lh MLP 143 3.80 1.06 0.66 192 561 1.66 0.49
NAR 0.59 1.63 0.18 0.85 0.60 1.66 0.21 0.85

NARX 213 1117 094 -0.02 0.73 1.68 0.40 0.85

Ridge 212 6.45 2.02 0413 156 3.73 1.48 0.66
ARIMA 452 30.03 3.78 0.18 413 25.66  3.46 0.06
DecTree 3.26 1526 3.09 -0.39 2.60 9.69 241 0.12

sh MLP 212 713 1.76 035 1.77 4.67 1.70 0.57
NAR 0.59 1.55 0.23 0.86 0.62 1.62 0.25 0.85

NARX 1.2 3.34 0.79 069 0.69 1.59 0.37 0.85

Ridge 2.72° 10.06  2.77 0.08 244 8.17 2.45 0.25
ARIMA 398 2262 356 -1.06 3.40 1577 3.3 -0.43

oL DecTree 14.77 3550 14.74 0.14 429 26.54  3.86 0.13

MLP 3.18 1485 290 -035 294 11.78  2.85 0.07

NAR 0.63 1.78 0.23 0.84 0.56 1.51 0.19 0.86

NARX 1.06 2.85 0.63 0.74 0.79 1.78 0.42 0.84

Table 4: Error measures obtained for the studied regression models. Data represents
the mean measure obtained for the 12 cross-validation folds, measured on the complete
dataset. Only samples of dataset where the heat pump is working are used for the error
calculation.
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Trained by month Trained with the accumulated

Time

Horiz.  Model MAE MSE MDAE R? MAE MSE MDAE R?

Ridge 1.72  4.45 1.52 0.58 1.79 492 1.61 0.54

ARIMA - ; ; ; ; ; v ;

- DecTree 1.81 4.77 1.70 0.55 1.86 5.50 1.68 0.48

MLP 1.96  5.98 1.71 044 194 6.07 1.68 0.43

NAR 229 1047  1.67 0.02 216 9.09 1.53 0.14

NARX 289 1342 232 -0.26 251 1425 1.86 -0.33

Table 5: Error measures obtained for the studied regression models. Data represents the
mean measure obtained for the 12 cross-validation folds, measured only on samples of the
dataset where the heat pump is working, both for training and for testing.

models are trained with the whole dataset, even if we are only comparing
data samples when the pump is not stopped (as shown in Table 4). Since the
errors on time horizons 3 hour and 6 hours are equally higher than those in
the previous experiment, they have been left out of the table. The ARIMA
model could not be calculated with this configuration of the dataset, since it
needs evenly spaced in time data to be trained.

6. Conclusions and Future Work

The contribution presents a heat exchanger designed to help regulate the
temperature of a bio-climatic installation. The research presented focuses
its effort in proving that the behavior exhibited by this type of installation
can be accurately modeled for later purposes, such as energy consumption
expected in each of this bio-climatic homes to be able to achieve electrical
smart grid applications.

As result of the analysis, one of the first conclusions is that the modeling
of the system, can be achieved using very few of the sensors readings (two
would suffice), as long as they are logging the measurements with a reasonable
enough frequency: a 10 minutes frequency is used in our experiments. It
is advisable to collect data without regarding the functioning mode of the
installation, since the information captured in the transitions from one state
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to the other seem to be particularly important for the time series regression
in this application.

Several modeling experiments have been performed, obtaining as a result
an average prediction error of less than 1 degree Celsius as a mean along a
complete year. The systems perform well both in the cases of a functioning
and no functioning pump, being this transparent for the user: the system
does not need this information to adapt its behavior.

The best performing models have been Time Dependent Neural Networks
(TDNN), as they are designed precisely to capture and predict features at-
tending to their variations along periods of time, to be able to predict future
states by analyzing differences between previous states of the data.

Interesting directions to continue the work could include performing anomaly
detection analysis in the functioning of the installations using the sensors,
that would enable to prevent failures before they happen or correct undesir-
able performances in the system on the fly. Using data inputs form other
related sensors in the building and even using external sources of informa-
tion, such as meteorological data in order to combine data for more accurate
predictions would be another clear direction. This could lead to test the
regression capabilities of directly calculating the energy consumption of the
bio-climatic home given enough information collected from different systems
in previous time periods. This problem will be tackled in two different ways,
both by trying techniques for information fusion previous to the training of
the regression models and by training ensembles of regressors that can com-
bine their outputs to improve the accuracy of the predictions or enhance
them with additional information. Finally, the use of advanced prediction
models involving more complex architectures, such as the Long-Short Term
Memory (LSTM) Recurrent Neural Networks, which represents an evolution
on the TDNN models; or other deep learning paradigms will be considered.
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Highlights of “Geothermal heat exchanger energy prediction based on time series and
monitoring sensors optimization”

e The performance prediction of a geothermal heat exchanger can improve its
efficiency.

¢ From real measurements, the system is modelled with intelligent techniques.

¢ The models predict the state of the installation up to 6 hours in advance.

e Astrong correlation between different sensors is concluded.



