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A B S T R A C T

Background: Quality control (QC) policies are usually designed using power curves. This type of analysis reasons
from a cause (a shift in the assay results) to an effect (a signal from the QC monitoring process). End users face a
different problem: they must reason from an effect (QC signal) to a cause. It would be helpful to have metrics
that evaluated QC policies from an end-user perspective.
Methods: We developed a simple dichotomous model based on classification of assay errors. Errors are classified
as important or unimportant based on a critical shift size, defined as Sc. Using this scheme, we show how QC
policies can be analyzed using common accuracy metrics such as sensitivity, specificity, positive predictive value
(PPV), and negative predictive value (NPV). We explore the impact of design choices (QC limits, number of
repeats) on these performance measures in a number of different contexts.
Results: PPV varies widely (1% to 100%) depending on context. NPV also varies (40% to 100%) but is less
sensitive to context than PPV. There are many contexts in which QC policies have low predictive values. In such
cases, performance (PPV, NPV) can be improved by adjusting the QC limits or the number of repeats at each QC
event.
Conclusion: The effectiveness of QC can be improved by considering the context in which the QC policy will be
applied. Using simple assumptions, common accuracy metrics can be used to evaluate QC policy performance.

1. Introduction

Laboratories are under increasing pressure to improve performance.
Quality control (QC) ensures the reliability of results and is therefore a
key component of laboratory performance. Laboratories direct con-
siderable resources to QC and assay improvement and, given the im-
portance of QC, it would be useful to have metrics to evaluate the
performance of a QC plan. Unfortunately, few metrics are available.

The performance of a QC plan is generally analyzed in terms of the
number of events before false rejection and the number of events before
error detection [1]. These quantities are also known as the average run
length (ARL) and time to signal (TTS) [2]. Run lengths are determined
by the statistical power of a QC plan. Statistical power is the probability
that a QC plan will produce a signal (i.e., rule violation) when a change
in the process occurs (e.g., a shift in the mean) [2–4]. QC plans with
greater statistical power are considered superior. Such analyses fail to
consider the magnitude of the error and all errors are considered equal.
In reality, this assumption is unlikely to be true because larger errors
may have more potential for harm (and may be costlier) than smaller

errors. A more accurate model might place more weight on larger er-
rors. In particular, power curve analysis only considers an event a false
rejection when the QC monitoring system produces a signal and there
has been no shift in the mean. This practice overstates the specificity of
the QC plan because there may be inconsequential events (i.e., small
shifts), which can be safely ignored. Responding to such events wastes
resources. A more realistic model might classify errors into categories
(e.g., important/unimportant) and use this information to evaluate the
performance of a QC plan.

The design of QC plans is rarely considered from a user perspective.
The typical design perspective is, “Given a shift of a given size, what is
the probability of detecting the change if I use a particular QC plan?”
The reasoning is from cause to effect. The end-user perspective is dif-
ferent. The end user is confronted with a QC result and asks, “Given this
signal, what is the probability that a significant problem has occurred?
Is it worth the time to troubleshoot?” Conversely, “Given no signal,
what is the probability that no change has occurred?” End users need to
reason from an effect (a signal from QC monitoring) to a cause.

A QC monitoring plan can be viewed as a statistical test that
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determines whether a significant change in operations has occurred
(e.g., shift in the mean) [5]. Although metrics based on power curves
(ARL and TTS) provide useful information, they are based on assump-
tions regarding the underlying state of the process. Because QC can be
viewed as a diagnostic test, it would be helpful to evaluate QC strategies
using common measures of accuracy such as sensitivity, specificity,
positive predictive value (PPV), and negative predictive value (NPV)
because these terms are familiar to laboratory personnel. Predictive
values would be particularly useful because they address the questions
that end users face when presented with QC results.

Westgard and Groth showed how QC monitoring can be viewed as a
diagnostic test [5]. Using a simple model, they showed how the pre-
dictive values of QC depend on the prevalence of errors. In their model,
Westgard and Groth assumed values for the probability of error de-
tection, Ped, and false rejection, Pfr. While their model is correct, the
estimates of predictive values depend on Ped and Pfr and they did not
attempt to estimate these statistics. The objective of this study is to
extend the work of Westgard and Groth by studying the impact of error
distributions on the predictive values. To that end, we provide a model
that predicts impact of error distributions on the performance of QC
plans.

2. Theoretical development

2.1. Background

Our goal is to develop a probability model that can be used to
compare various QC plans. A probability model is created by describing
all possible outcomes and defining events. An event is a set of outcomes.
Probabilities are then assigned to the events. (Set notation is described
in Appendix A. A list of variables is provided in Appendix B).

2.2. Model

We consider QC monitoring at a single level (i.e., 1 concentration)
in a batch process. We wish to determine whether a shift in the mean
has occurred in the current batch. (We recognize that QC is usually
performed at multiple concentrations. The method we describe could be
independently applied at each concentration). We define a QC event as
an occasion in which N measurements (N ≥1) are performed at a
particular time (t= 1, 2, …). Let Xi, t designate the ith measurement at
time t. We assume the individual QC results, Xi, t, are normally dis-
tributed with mean, μ, and SD, σ. The system has a baseline mean μ= μ0
when the system is in statistical control. Each QC event is associated
with a sample average, =X X .t N i it

1 We will assume the system is
monitored using a k x QC limit (QC fails if Xt > k x ). The number k
represents the control limit in terms of SD units. Typical values of k are
2 or 3 SDs. The monitoring system can be viewed as a test for out-of-
control events. We will define a QC rule violation event, T, as|Xt|>
k x . The event Tc (T complement),|Xt|< k x occurs when there is no
violation of the QC rule. A QC plan, π(N,k), is a particular choice of QC
limit, k, and number of repeat samples, N, taken at each QC event.

We are interested in the ability of various QC plans to detect shifts in
the mean of the process. We assume that such shifts are sporadic. Let S
designate the magnitude of the shift (S≥ 0) expressed as a multiple of
the SD, σ. We will refer to such events as “upset” events. After such an
event, the mean of the distribution is given by μ= μ0+ Sσ. Each QC
event is associated with a random variable, S≥0. We define
E={S : S > 0 as the event that a positive (S > 0) shift occurred (Ec is
the event that a shift of size zero occurred). The magnitude of positive
shifts is described by a distribution, g(S|E), which could take various

forms. Thus, shifts are determined by two components: 1) the prob-
ability that a shift will occur, P(E)= p and 2) the size of the shift given
that a shift occurred, g(S|E). For example, suppose that p= .01, and the
g (S|E) is a uniform distribution with range (0,5]. Given these inputs, a
shift event would occur in one out of every 100 QC events. When such
an event occurs, the size of the shift would be randomly selected from
the interval (0,5]. Overall, this model allows for random occurring shift
events with random shift sizes. This is a flexible model that can be used
to study a wide range of upset patterns by varying the upset rate, p, and
the pattern of shift sizes, g (S|E) (Fig. 1).

We are only interested in detecting “important” shifts because some
shifts are inconsequential and can be ignored. Small shifts are unlikely
to compromise the reliability of results and troubleshooting such events
is unlikely to be productive. We wish to avoid the effort and expense
that is associated with investigating QC failure events. We will desig-
nate a critical shift size, Sc, that separates important shifts from in-
consequential shifts (Fig. 2). Shifts above Sc are considered important
and shifts below Sc are considered unimportant. We wish to compute

Fig. 1. Model for Shifts. At each QC event, there is a chance, p, that there will
be a shift in the mean of the results. If a shift occurs, the size of the shift, S, is
determined by the probability distribution, g(S). This is a flexible model in
which the event rate, p, and the distribution of shift sizes can be varied by
choosing different event rates and shift distributions. Upper panel: decision tree
showing possible outcomes at each QC event. The lower panel shows the shift
distribution from 100 QC measurement events in which the event rate is p= .1
and the shift distribution is uniform (minimum=0, maximum=5). The Figs.
shows that random shifts with sizes between 0 and 5 occur at about 10% of the
time points.
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the probability of detecting important shifts with a given QC plan.
By categorizing shifts into two categories, a QC result can be viewed

as a diagnostic test that provides information about the underlying
shift. Ideally, rule violations would occur when an important shift

occurred (true positive result), and no rule violation would occur when
an unimportant shift occurred (true negative result). Categorizing shifts
into two categories enables us to apply all the usual accuracy metrics
(sensitivity, specificity, predictive values) to evaluate the performance
of a QC plan (Table 1, Fig. 3). The accuracy of a QC plan means the
ability of a QC plan to discriminate between important and unim-
portant events. The ability to discriminate between such events could
be useful, and accuracy metrics could be used to evaluate the perfor-
mance of a QC plan. The mathematic derivation of the accuracy metrics
is provided in Appendix C.

3. Methods

The probability model was implemented in Microsoft Excel. We
used the probability model to determine the impact of various QC plans
on performance measures such as the sensitivity, specificity, PPV, and
NPV. We investigated three distributions of shifts g(S|E): 1) uniform
(0 < S < 5), 2) exponential (λ=1), and 3) triangular
(minimum=0, mode=2, maximum=4). These distributions are
presented in Fig. 4. The uniform distribution was used to model a
context where shifts of any size are equally likely. (The uniform dis-
tribution is a “noninformative” distribution and is often used to model
situations where there is little knowledge of the underlying behavior.)
The exponential distribution was used to model a context where small
shifts are more likely than large shifts. A triangular distribution
(min=0, mode=2, max=4) was used to model a context where
shifts tend to be clustered around a mean. We selected four levels for
the event rate: p ϵ {0.001, 0.01, 0.1, 1.0}, which represent different
levels of control. For example, p= .001 would represent a well-con-
trolled process that rarely experiences instability. We set Sc ϵ {1, 1.5, 2,
2.5, 3, 3.5}. We set N ϵ {1, 2, 3, 4} and k ∊ {2,3}. We varied these
factors to produce 576 scenarios (6 levels for Sc, 4 levels for p, and 4
levels for N, 3 levels for g(S|E), and 2 levels for k). We calculated the
performance characteristics (sensitivity, specificity, PPV, NPV) for each
scenario. We illustrate the method with example calculations for two
assays, thyroid stimulating hormone (TSH) and methotrexate (MTX).

Overall, our model is designed to show how a QC plan (a selection
of k and N) performs in a particular context (g(S|E), p, Sc). Our model
extends the work of Westgard [5]. Westgard determined the predictive
values (NPV, PPV) after assuming values for the probability of error
detection and false rejection (Ped, Pfr). Westgard's work was a useful
insight that connected diagnostic test metrics (PPV, NPV) to QC; how-
ever, by assuming values for Ped and Pfr, Westgard's model fails to make
a connection between assay parameters (k, N, g(S|E), Sc, p) and QC
performance. Our model provides a direct connection between assay
parameters (context) and QC performance. (Fig. 5) The context is de-
fined by the critical shift size, the frequency of upsets, p, and the dis-
tribution of shifts, g(S|E). A QC plan is defined by the QC limits, k, and
the number of repeats, N. We develop metrics to evaluate QC plan
performance in different contexts.

4. Results

We will focus on results for the uniform distribution and a QC limit
of k= 2 (i.e., 2σ). As described below, results for other shift distribu-
tions (exponential, triangular) and QC policies (i.e., k= 3) were qua-
litatively similar. Results for all 576 scenarios are provided in an Excel
file which is provided as Supplementary Table 1 in the Supplementary
materials.

The predictive values varied widely across the different scenarios
(Fig. 6). For example, the PPV varied from<1% to nearly 100%. The
PPV decreased as the critical shift size, Sc, increased. The PPV increased
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Fig. 2. Description of Model. The critical shift, Sc, is a decision point that se-
parates important shifts from unimportant shifts. The control limit, kσ, is shown
as the solid line. A result greater than the control limit causes a rule violation
(run failure). The Figs. show the distribution of results for three different shifts.
A false-positive result occurs when the shift (mean of the distribution) is less
than critical shift but the QC result is greater than the control limit (panel B). A
false-negative result occurs when the shift (mean of the distribution) is greater
than critical shift but the QC result is less than the control limit (panel C).

Table 1
Scheme for evaluating accuracy of QC rules.

QC rule violation Shift size, S

Important (S > Sc) Unimportant (S < Sc)

Yes True positive False positive
No False negative True negative

Shifts occur in the mean of the assay results. The shifts are classified as im-
portant or unimportant relative to a critical shift size, Sc. A shift is considered
important if it is greater than Sc. The quality control (QC) plan is designed to
detect important shifts and ignore unimportant shifts. The QC result can be
viewed as a diagnostic test to reveal the underlying shift. A true positive occurs
when a QC rule is violated and an important shift in the mean occurs.
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with the number of repeats, N. The PPV was most sensitive to N when
the critical shift size was low and the probability of a shift event, p, was
low. The PPV increased with the probability of a shift event. PPV in-
creased as the ratio k/Sc increased (Supplementary Table 1).

The NPV increased as the critical shift size, Sc, increased (Fig. 6).
The NPV increased with the number of repeats, N, and was most sen-
sitive to N when the critical shift size was low and the probability of a
shift event, p, was low. The NPV decreased with the probability of a

shift event. In general, the NPV was less sensitive than the PPV to
changes in the inputs. NPV decreased as the ratio k/Sc increased.

The relationships between the predictive values (PPV and NPV) and
the input parameters (N, Sc) were not strongly dependent on the dis-
tribution of shifts, g(S|E). The results for the exponential and triangular
distribution were qualitatively similar to the results for the uniform
distribution (see Supplementary Figs. 1 and 2).

In general, the sensitivity and specificity were less sensitive than the

Fig. 3. Impact of Critical Shift Size and Statistical Power on Accuracy of Quality Control (QC). The sloping curves are power curves, Φ, for two different QC policies,
π1and π2. The QC policies may differ by the number of repeats taken or the QC rules applied. TN= true negative, FN= false negative, TP= true positive, FP= false
positive. Shifts above the critical shift size are considered important, and shifts below the critical shift size are considered unimportant. The QC system is designed to
detect shifts in the output distribution. A true positive occurs when there is an important shift and the QC rule fails. A false positive occurs when there is an
unimportant shift and the QC rule fails. The length of a line from Φ to 1 and zero to Φ indicate the probabilities of the associated events. The shift size is expressed as
multiples of the SD.
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predictive values to changes in inputs (Fig. 7). Sensitivity increased and
specificity decreased with the critical shift size, Sc. Sensitivity was re-
latively insensitive to the event rate p.

5. Example calculations

We performed example calculations for 2 assays, thyroid stimu-
lating hormone (TSH) and methotrexate (MTX). We assumed an event
rate, p, of 0.01 and that shift sizes, g(S), were uniformly distributed
between 0 and 5 SDs. We used Westgard's definition of a critical shift
[6]. We also assumed that the lowest acceptable capability level was
3.0. The observed capabilities (sigma) were 6.2 and 4.7 for TSH and
MTX, respectively. The corresponding critical shift sizes were 3.2 (TSH)
and 1.7 (MTX). Using a 1–3 s control rule, the sensitivity, specificity,
PPV, and NPV were 0.83, 0.99, 0.45, and 1.00 for TSH and 0.59, 1.00,
0.59, and 1.00 for MTX (Table 2).

6. Discussion

A measurement process is subject to random events that affect the
accuracy of the results. Some of these events are small and unimportant.
Others are significant. Ideally, a QC plan would alert operators to sig-
nificant events and ignore unimportant events. A QC strategy that could
reliably distinguish important shifts from trivial shifts would save time
and money. We developed a simple model that places process shifts into
two such categories: important and unimportant. These categories are
created by defining a critical shift size, Sc, which depends on the assay
and medical decision points. This scheme enabled us to apply standard
metrics such as sensitivity, specificity, and predictive values that pro-
vide insights into QC system performance.

Westgard introduced the idea of a critical shift which is used in the
construction of an operations specification (OPSpec) chart [6]. West-
gard's definition of a critical shift is based on process capability and is
the largest shift in the mean that could be tolerated without producing
an unacceptable level of results exceeding the total allowable error.
Roughly, the Westgard method defines a critical shit as one that will
cause 5% of patient specimens to have measurement error that exceeds
a clinically significant limit (e.g. TEA) [7]. This definition focuses on
compliance. Our definition is consistent with Westgard's but is more
flexible. In our scheme, the critical shift size can be varied depending on
the purpose of the QC plan and on medical risk. For example, if one
were concerned with compliance, one could adopt Westgard's defini-
tion; however, the rate of unacceptable results (i.e. those exceeding
TEA) should vary depending on the assay. For some assays a 5% rate of
results exceeding TEA may be acceptable because errors have low risk
(e.g. diagnoses are made on the basis of multiple tests). In some cases,
diagnoses are made on the basis of a single test (e.g. genetic tests for a
cancer mutation that directs chemotherapy) and the criteria should be
much more stringent. Alternatively, if one were focusing on process
improvement, one might select a different critical shift size. Also, our
method is not confined to assay results and can be applied to any
process that is monitored using statistical process control.

In the traditional power curve analysis, the probability of false re-
jection occurs only when no shift as occurred (i.e. S= 0). In our model,
we define a region of unimportant shifts defined as shifts which are
smaller than the critical shift size (i.e. S < Sc). Our model includes the
traditional power curve analysis as a special case by setting Sc to a very
small number.

Prior research on QC strategies reasons from cause to effect. For
example, given an event (e.g., a shift), one can calculate the likelihood
of detecting the event (statistical power). Through a simple application
of Bayes Theorem, our model provides a way to reason from effect to
cause. For example, given a rule violation, our model can calculate the
probability that an important event occurred or that an unimportant
event occurred. This type of information supports the types of decisions
that operators actually face. An operator does not ask, “Given a shift,
what is the probability that I will detect it”? Rather, they respond to
signals generated by the QC monitoring system and ask, “Given a
signal, what is the probability that it is correct?” “Given a QC signal, is
it worth my time to troubleshoot?” Or, “Given no signal, am I confident
that the assay is providing reliable results?” Our model provides insight
into QC performance from the end-user perspective.

Our results show that the effectiveness (PPV, NPV) of a QC plan
depends on the frequency of events and on the types of upsets that are
most likely to occur. Any prior information about the pattern of out-of-
control behavior could be used to improve the effectiveness of QC.
Unfortunately, little is known about out-of-control behavior (i.e., event
frequency and the distribution of shift sizes). However, even rough
approximations might be sufficient to improve the effectiveness of QC
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and might be a fruitful area of further research.
Our example calculations show that three sigma limits had rea-

sonable accuracy and predictive values. The specificity and NPV were
close to 100% for both assays. The positive predictive values were close
to 50%. This is because of the low prevalence (p= .01) of shift events.
In practice, this means that rule violations would be generated by im-
portant shifts only about 50% of the time. The PPV could be improved
by adjusting the control limits upward (e.g., k= 4).

We studied the impact of using multiple repeats (N > 1) at a QC
level. In other industries, QC is generally monitored with X bar charts
which plot the average of multiple samples at each time point. In
clinical chemistry, the most common practice is to monitor an assay
with a single QC sample at each level (N= 1). Taking multiple samples
increases statistical power but increases cost. We are not aware of any
formal economic analysis of QC practice in clinical chemistry but we
suspect that the general practice of N=1 is based on economic con-
siderations. We examined scenarios with N > 1 to explore the poten-
tial costs and benefits of increasing N. Increasing N reduces the width of
control limits because the SD decreases with the square root of N.

We also explored a wide range of critical shift sizes. While some of
these may be impractical (e.g., Sc > 2) the choice of Sc depends on the
decision context (compliance vs process improvement) and would be
driven by the relative costs of false negatives and false positives. A high
value of Sc (e.g. Sc > 2) might be practical for a very capable process.
For example, a shift of 2 sigma might not be important in a six sigma
process. A recent study reported many assays with capability that ex-
ceeded six sigma [8].

Our model examines the ability of a QC plan to detect a discrete
change in state (a shift in the mean) at a specific point in time.
However, this is not the only type of change that occur. For example,
drifts are a common source of error. Our model detects whether the
mean has exceeded the critical shift level at any particular point in
time. In time, our method would detect a shift due to a trend. It would
ignore the small shifts at the beginning of the trend because they are

unimportant. Using our model for detection of trends is a potential area
of future research.

To our knowledge, the impact of out-of-control behavior has not
been considered in prior work. Our results show that the predictive
values are highly dependent on the event rate, p. This makes intuitive
sense. If the event rate is low (for example, 0.001), then a rule violation
is most likely a false positive. On the other hand, if the event rate is
high, a rule violation is much more likely to be a true positive. A well-
controlled process would have a low event rate and, in those circum-
stances, the QC policy (choice of N, and k) should be adjusted to reduce
false alarms.

Our model suggests that QC plans should be designed according to
the upset patterns that are expected to occur. Given the lack of
knowledge regarding upset behavior, it is reasonable to ask whether our
model can provide any practical insights. In the absence of any
knowledge, one might assume that a uniform distribution of shift sizes
provides a reasonable approximation of the state of knowledge. One
might be able to obtain a rough estimate of the event rate from rule
violations. These could be used to calculate PPVs and NPVs. Given these
inputs, our model could be used to explore the impact of various QC
policies on performance. Thus, even in the absence of specific knowl-
edge of upset behavior, our model can provide some broad guidance
(albeit approximate) for adjusting QC limits if one is able to provide a
critical shift size. The critical shift size need not be exact. It was ne-
cessary to make some assumptions about unknown quantities that, for
sake of argument, we regarded to be reasonable.

Our model is limited by the need to make assumptions regarding
upset behavior; however, traditional QC plan design requires similar
assumptions. As in our model, traditional QC design involves a trade-off
between the cost of false positive and false negative results to adjust the
QC limits. Researchers have incorporated costs into QC design but these
methods are complex and are rarely used in practice. Thus, QC is often
based on implicit assumptions regarding the relative costs of false ne-
gatives and false positives, as well as the frequency and magnitudes of

Fig. 5. Comparison of Predictive Models. The Westgard model starts by assuming the probability of error detection and false rejection (Ped, Pfr). The model in this
paper relates these statistics (Ped, Pfr) to attributes of the assay (context) and to decision variables (k, N) that are controlled by the laboratory.
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those events. For example, a 1–3 s rule implies that a false-positive
result bears higher costs than a false-negative result. Our model uses a
simple dichotomous cost scheme (important, unimportant) which is
relatively easy to apply. In addition, traditional QC design ignores the
frequency and magnitude of events. Clearly, these are important fac-
tors. Our model makes these assumptions explicit and enables analysts
to explore the impact of these assumptions on QC performance.

Our model extends the work of Westgard and Groth [5]. Their
model began by assuming values for the probability of error detection
and false rejection. Our model derives these quantities based on prop-
erties of a QC plan and the context in which it operates. Thus, our
model provides a direct connection between basic properties of an assay

and QC plan performance.
Future research could be directed at finding methods to estimate

upset behavior. Our model uses two parameters to describe upsets: (1)
the frequency of upsets, p and (2) the magnitude of the event. This is a
very flexible model but there may be better approaches. Also, work on
setting the critical shift size could be useful. We have observed that, in
practice, operators implicitly employ such rules. For example, a 4–1 s or
10× violation is often considered a warning rather than a criterion for
rejection. The 4–1 s and 10× rules identify relatively small shifts, and
the fact that these signals are often ignored implies that shifts of this
magnitude are relatively unimportant. Our model also suggests the
possibility of optimizing QC limits based on the relative costs of false
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positives (cost of troubleshooting when a trivial error has occurred) and
false negatives (failing to detect an important change in the assay). We
pursue this in a related study. Future research might determine whether
our approach could be extended to examine other error patterns (e.g.
trends) and to study optimal intervals for QC. One could extend our
model to determine performance characteristics such as the expected
number of QC events between false rejections, expected length of time
between false rejections, and the expected number of QC events to
detect an out-of-control state. Finally, research on statistical methods to

estimate the prevalence and the distribution of the magnitude of errors
might be fruitful areas for future research.

In conclusion, we have shown that context affects QC performance
and that QC performance could be improved if context were considered
in the design of QC policies. We presented a simple model that con-
siders context and allows one to apply common accuracy metrics to
evaluate QC performance. In particular, we present metrics (PPV, NPV)
that evaluate performance from an end-user perspective. These metrics
could enable analysts to improve the effectiveness of QC plans.
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Appendix A. Set theory notation

• A∩B is the intersection of two sets and contains the elements that are common to A and B.
• A∪B is the union of two sets and contains the elements in A or B.
• Ac is the complement of A. Ac contains all the elements that are not in A.
• Set membership. For discrete sets, the members are simply listed. For example, A= {1,4,6}. Continuous sets are described using set builder
notation which shows the condition which must be satisfied for set membership. For example, A= {S: 0 < S < 10} says that A is composed of
all numbers S such that S is between 0 and 10. Continuous sets can also be expressed as interval. For example, x ϵ [0,10) says that x is a number
between 0 and 10.

Appendix B. List of symbols

Symbol Symbol type Description

A Event An important shift has occurred (i.e., S > Sc)
Ac Event Same as U.
B Event An unimportant positive shift has occurred (i.e., 0 < S < Sc)
E Event A positive shift has occurred (i.e., S > 0)
Ec Event Complement of E. Event where S=0.
T Event QC rule is violated. For example, >X kt x
Tc Event QC rule is not violated ( <X kt x ).
U Event An unimportant shift has occurred (i.e., 0 ≤S < Sc). U differs from B because U includes shifts of zero.
g(S|E) Probability distribution This is the probability distribution of S given that event E has occurred (S > 0).
P(A) Probability A probability is associated with an event. This is the probability that event A occurs.
P(U|T) Conditional probability This is the probability of event U occurring given that event T has occurred.
k Input parameter Size of the QC limit, k x .
μ Variable The mean of the QC result distribution, Xit. μ= μ0+ S.
μ0 Variable The baseline mean of the QC result distribution (i.e., when S= 0).
n Input The number of QC measurements (repeats) taken at each QC event
S Random variable Shift size
sc Input parameter The critical shift level. This separates important shifts (S > Sc) from unimportant shifts (S < Sc).
σ Input parameter The SD of the QC result distribution, Xit.
Xit Random variable The ith QC observation at time t.
Xt Random variable The average of the n QC measurements taken at time t.

Appendix C. Derivation of accuracy statistics

We now develop a mathematical model that will allow us to calculate accuracy measures. Let A designate the event that an important shift
(S≥ Sc > 0) occurred, and let B designate the event that an unimportant shift (0 < S < Sc) occurred:

=A S E{S: S }c (1)

= <B S S S E{ : }c (2)

Note that B only includes positive shifts and does not include shifts of size 0. Clearly, shifts of size 0 are unimportant. Therefore, we define a set of
unimportant events, U, which includes both the set of shifts of size 0 and inconsequential positive shifts:

= =B E AU c c (3)

Given these definitions, we can define performance measures as follows:
A true positive is an event in which a significant shift has occurred and the QC system provides an out-of-control signal:

Table 2
Example calculations.

Assay Thyroid stimulating hormone (mIU/L) Methotrexate (μmol/L)

Mean 25.8 0.88
SD 1.1 0.038
Number of repeats (N) 1 1
Control limit, k 3 3
Event frequency, p .01 .01
Distribution of shifts Uniform (0.5) Uniform (0.5)
Bias 3.3% 5.0%
Total allowable error, TAE 30% 25%
Capability (sigma) 6.2 4.7
Critical shift, Sc 3.2 1.7
Sensitivity 0.83 0.59
Specificity 0.99 1.00
Positive predictive value 0.45 0.59
Negative predictive value 1.00 1.00
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=TP T A( ) (4)

A true negative is an event in which a nonsignificant event occurs and the QC system does not provide an out-of-control signal:

=TN T U( )c (5)

A false positive is an event in which a nonsignificant event occurs and the QC system generates an out-of-control signal:

=FP T U( ) (6)

A false negative is an event in which a significant event occurs and the QC system does not generate an out-of-control signal.

=FN T A( )c (7)

In general, these events are conditional on the sampling policy, π= (k, N), and the SD of the QC values, σx.
Probability model: We wish to calculate performance statistics as a function of a QC plan, π. To form a probability model, we calculate prob-

abilities for each of the events defined in the previous section. The probabilities are interpreted as the frequency of occurrence over a large number of
QC events. We also calculate performance measures such as the sensitivity, P(T|A); specificity, P(Tc|U); positive predictive value, P(A|T); and
negative predictive value, P(U|Tc). The probability of an important shift given that a positive shift (S > 0) occurred is given by:

= > =P A E P S S E g S E dS( | ) ( | ) ( | )c Sc (8)

Given P(A|E), other related probabilities are easily calculated:

=P B E P A E( | ) 1 ( | ) (9)

=P B P B E P E( ) ( | ) ( ) (10)

=P A P A E P E( ) ( | ) ( ) (11)

Given P(A), the probability of an unimportant shift (i.e., 0≤ S < Sc) can be calculated.

= = + = +P U P A P B P E P B P E( ) ( ) ( ) ( ) ( ) (1 ( ))c c (12)

The events, A, B, and Ec are disjoint and partition event T (Fig. 2). Therefore, the probability of a QC rule violation is given by:

= + +P T P T A P T B P T E( ) ( ) ( ) ( )c (13)

These components are the probability of the joint occurrence of a QC rule violation (T) and an important positive shift, P(T ∩A), the probability
of the joint occurrence of a QC rule violation (T) and an unimportant positive shirt, P(T ∩ B), and the probability of the joint occurrence of a QC rule
violation (T) and no shift. These probabilities are calculated as follows:

= = > = +P T A P A P A P X k µ µ S g S E P E dS( ) (T | ) ( ) ( | ) ( | ) ( )
s t x 0
c (14)

= = > = +P T B P T B P B P X k µ µ S g S E P E dS( ) ( | ) ( ) ( | ) ( | ) ( )
s

t x0 0
c

(15)

= > =P T E P E P X k µ µ( ) (1 ( )) ( | )c
t x 0 (16)

= +P T U P T B P T E( ) ( ) ( )c (17)

The function, > = +P X k µ µ S( )t x 0 , is the power curve for the QC plan. We assume that QC events have a Bernoulli distribution with parameter
p.

The sensitivity (probability of error detection, Ped) can be computed from eqs. (4) and (7):

= = =( | ) ( )/ ( )Sn P P T A P T A P Aed (18)

The specificity is given by

= =( | ) ( )/ ( )Sp P T U 1 P T U P Uc (19)

because P(Tc|U)+ P(T|U)=1. The probability of false rejection, Pfr, is 1 – Sp.
The events A (important shift) and U (unimportant shift) partition the sample space. Therefore,

=( | ) ( | )P A T 1 P U T (20)

P(A|T) is the probability of a significant shift given a QC failure. This is the PPV of the QC policy. Similarly, applying Bayes Theorem:

= =PPV P A T P T A P A P T( | ) ( | ) ( )/ ( )c c (21)

Events A and U partition the sample space. Therefore,

= =NPV P U T P A T( | ) 1 ( | )c c (22)

P(U|Tc) is the probability that an unimportant shift occurred and the process is in control. This is the NPV of the QC policy. The quantities Sn, Sp,
PPV, and NPV are the key performance parameters of the QC system.

The performance of a QC plan, π, depends on the sampling plan and on the size of the critical shift, Sc (Fig. 3). In our model, the QC plan is
defined by the QC limits, k x , and the number of repeat samples, N, taken at each QC event. The QC strategy and the imprecision of the assay
determine the shape of the power curve.
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Appendix D. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.cca.2019.04.053.
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