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Resistance spot welding (RSW) is frequently employed in current industrial occasions.
However, the process is multi-field coupled and highly nonlinear, and full of uncertainties
and disturbances. This paper presents recent primary advances and progress in process
analysis and quality control of the RSW operations. Online welding process analysis, and
relative online quality estimation for the welding products, are very important because
they can help to save energy and improve the efficiency during actual production. It should
deeply interpret the process characteristics, and then reasonable relations between
selected monitoring process variables, such as dynamic resistance or electrode displace-
ment, and quality criteria, such as nugget size or tensile-shear strength, can be established.
Apart from online process analysis using mathematical tools, using different kinds of aux-
iliary measuring signals from external sensors and intrinsic process variables to monitor
the process and obtain the quality information of the weld is presented and discussed.
Then various process control works are reviewed. Besides the various parameters opti-
mization methods, kinds of controllers, including feedback controllers, intelligent con-
trollers and comprehensive controllers which combined the online quality estimation
and control strategy application together, for obtaining welds with satisfactory quality,
are respectively discussed. It can be seen that the establishment of general models to
online process analysis, quality estimation and real time control system design for obtain-
ing welds with satisfactory quality still remains a big challenge in reality. This work can
provide references and enlightens for current academic researches or actual production
in RSW relative area.

� 2019 Elsevier Ltd. All rights reserved.
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1. Introduction

Resistance spot welding (RSW) is extensively employed in joining sheet metal components, such as in the manufacturing
of automobiles, trucks trailers, buses, recreational vehicles, office furniture and appliances, railway vehicles, airplane struc-
tures, aeronautical and space applications and many other products [1–5]. Especially in the automobile industry, over 90% of
assembly work in a car body is completed by RSW [6]. The automotive structural assemblies use groups of spot welds to
transfer load through the structure during a crash. Typically, a modern vehicle includes 2000–5000 spot welds [7]. These
are the main reasons that the RSW is employed extensively currently. The main advantage of the RSW is that the process
can be automated and robotized in high volume for high production rate operations. However, RSW process involves inter-
actions between electromagnetic, thermal, mechanical, fluid flow and metallurgical phenomena across faying interfaces and
so that is very complicated [8]. The process is difficult to properly control because the final weld quality is determined by
interaction between various operational parameters and mechanical/electrical characteristics of the machine and equipment
involved. In general, a modern automotive production line of high volume models produces approximately 7 million welds
per day [9]. Hence, to ensure the integrity of the welded structure and improve the efficiency of the welding production, the
recent advances of some important aspects during the RSW process, including online process analysis and monitoring, online
non-destructive weld quality estimation and control system design to guarantee the high quality, are considered in this
paper.

During the traditional RSW working process, two or more parent metal sheets are pressed together by electrode force,
which is usually controlled by air pressure in the pneumatic cylinder, or servo actuator. After the parent metal sheets are
fixed, external electrical energy is delivered into the welding system and the welding current goes through the parent metal
sheets, then heat energy is initially generated at the interface of the metal energy due to contaminations and surface asper-
ities, so that the interface has the largest resistances at the beginning of the process [10,11]. The amount of energy delivering
into the welding system follows the commonly used energy generation equation:
Q ¼
Z t2

t1

I2ðtÞRðtÞdt; ð1Þ
where Q denotes the energy delivered into the welding system in Joule, t1 and t2 respectively denote the beginning and ter-
minating time of the welding action, I(t) is the welding current, R(t) is the total resistance between two electrodes, in general
cases, the resistance of the welding load dominates the total resistance [12,13]. The heat energy makes the temperature of
the parent metal increase and some solid metal melts, and then the liquid metal appears initially from the interface of the
parent metal sheets. As more and more amount of energy delivered into the welding system, more solid is melted to form the
liquid nugget. It can be seen that the RSW process is a metal absorbing energy followed by melting and solidification. The
amount of heat depends on the applied welding current I(t), the material of the parent metal, which determines the resis-
tance R(t), and the welding time t. As the temperature changing during the process, phase transition occurs in the parent
metals. Hence, the resistance R(t) is a varying parameter, and called dynamic resistance, which can approximately denote
the resistance of the welding load because the effects of other components can be ignored generally. When the amount
Fig. 1. Schematic of the RSW process.
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the liquid nugget achieves a predetermined level, the external electrical energy delivery terminates, then the liquid nugget
solidifies and the original separated parent metal sheets are joined together. Fig. 1 shows the schematic of the process.

In Fig. 1, the welding current is generated from a special electrical source of the RSW system. Actually, because the weld-
ing loads are sheet metal, their resistances have very small values, and the value of welding current is so large. During the
process, the maximum value of the welding current depends on the capacity of the electrical system and the load resistance.

In addition to the above conventional RSW process, to meet the requirement of making welds on the auto-body floor, or
welds that are located in closed-section parts that ordinary RSW gun cannot access, or some other new structures which the
conventional RSW is not applicable, single-sided RSW has been developed to conduct the work [14,15]. Especially, it is fre-
quently used in integrating the hydroformed tubes without flanges into vehicle body structures [16]. Using this RSW scheme,
spot welds can be made using only single-sided access with or without a backing plate. Actual application of this modified
process exhibits many special characteristics. Previous works have explored its characteristics using numerical simulations
[16], actual experiments [17] or designed adaptive control algorithm [18]. As the single-sided RSWmachine is approximately
the same as the conventional RSW machine, it will not be separately discussed in following sections.

Moreover, the RSW process can be divided into small scale RSW and large scale RSW processes, according to different
thickness of the metal sheets. The thickness in the small scale RSW is usually less than 0.2–0.5 mm, while the large scale
RSW welds sheets of thickness greater than 0.6–0.8 mm. The small scale RSW was commonly used in the electronic compo-
nents and devices. Currently, there is fewer literature dealing with small scale RSW than that of large scale RSW [19,20].
Because of different contact areas between the RSW processes, the small scale RSW has some different characteristics when
compared to the traditional large scale RSW. For example, the magnitudes of electrode force, current density, heating rate
and peak temperatures between the two kinds of RSWmay be different [20–22]. However, because the two processes follow
the same fundamental mechanism, basic operations, measurement and control process, cooling way of the electrodes, and
other relative aspects, no further distinction will be discussed in this paper regarding large scale RSW and small scale RSW.

In general, there are two kinds of electrical source of RSW: single-phase AC power source and three-phase medium fre-
quency DC power source both commonly applied in industry. Both of two sources are prevalently employed in reality. As
they have different energy transmitting modes and can generate different effects during the process [23–25], they are used
in different occasions [26]. However, no matter which power source is used to determine how much energy is delivered into
the welding system, only one control parameter can be used during the process. This parameter is the firing angle of Silicon-
Controlled-Rectifier (SCR) for single-phase AC power source and the duty cycle of Pulse-Width-Modulation (PWM) wave for
three-phase medium frequency DC power source. Then the energy is delivered into the welding system through a step-down
welding transformer in both of two types. In other word, it is a single input and single out (SISO) system. In addition, since
the control actions in both types of power sources are conducted in the primary coil of the welding transformer, but the pro-
cesses of metal melting and liquid nugget formation and growth occur in the secondary coil of the welding transformer, it is
difficult to adjust the control action in real time according to the information of liquid nugget formation and growth. Because
of the existence of the step-down welding transformer, it is a low-voltage-high-current circuit in the secondary coil, any tiny
change in the secondary coil can induce a big fluctuation in the primary coil [27]. Moreover, there are a lot of uncertainties
and disturbances, such as surface roughness or contaminations [28], poor fit-up condition [29], electrode wear [30,31], axial
or angular misalignment [32,33], and so on. Even for the parent metal sheets from the same batch, the quality of the welds,
such as tensile-shear strength or nugget size, may have large variations when the same welding schedule is conducted.

To overcome the drawbacks of uncertainties and variation of the weld quality and obtain the welds with high quality, the
characteristics of RSW process should be thoroughly interpreted. Then corresponding measures can be taken to assure the
stability of the process and consistency of welds quality. Many previous works considered the problems. A lot of scholars
wanted to establish models to simulate the process, and then to explore the features and regular patterns. In addition, some
auxiliary measuring signals from various external sensors, such as digital camera, acoustic microscopy or infrared camera,
can also be introduced to monitor the process and relate the input variable and welding products. Also, some process vari-
ables were used to describe the process, in other works, they can be used to be sensors by means of mathematical tools.
Moreover, based on the different concerns, some scholars took efforts to optimize the control variables or design various cor-
responding controllers so as to improve the weld quality during the process.

In this paper, some recent contributions and primary advances of process analysis and quality control in RSW operation
will be reviewed. Section 2 will consider the online process analysis and online quality monitoring and estimation, which
includes the process analysis using mathematical tools, and the online quality estimation using different auxiliary measuring
signals from external sensors or intrinsic process variables obtained during the welding process. Section 3 will deal with the
process control. The section includes the parameter and control process optimization of the RSW, and different kinds of con-
trollers were presented to obtain the welds with satisfactory quality. The last section of this paper will be the concluding
remarks and suggestions for the future works.
2. Online process analysis and quality estimation of the system

The product of the RSW operation is the welds, and during the process solid metal sheets melt with the formation and
growth of a liquid nugget. Following of the withdrawal of the external energy, the liquid nugget solidifies and then the orig-
inal separated metal sheets are joined together. During the process, the melting phenomenon is completely enclosed
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between the parent metal sheets, as a result, observation and measurement are strictly constrained. However, using proper
methods to online observe the process and explore the variation of the metal sheets is very important in reality, because it
can not only guarantee obtaining welds with satisfactory quality, but also avoid expulsion occurring, which is because the
amount of liquid nugget is so large and the surrounding solid metal cannot hold it under the squeezing by the electrode
force, the liquid nugget spills. Hence, for the one and only purpose of assuring the quality of the weld, the principle goal
of RSW research has been to examine and control the process [34]. Traditionally, the tensile-shear strength of the weld
can sufficiently present the joining quality. It is the most common quality estimation criterion in the previous works. How-
ever, measuring the tensile-shear strength is destructive and time-consuming and costly, and the method can only be done
on a sample basis. In many works, nugget size, especially the nugget diameter, is also used as a quality estimator in realty,
because it is closely proportional to the tensile-shear strength [32,35,36], and nugget diameter is specified in the handbook
published by Resistance Welder Manufacturers’ Association as an indicator of weld quality. Hence, a correlation between
nugget size or nugget diameter and heat energy delivered into the welding system should be sought. The goal of online pro-
cess analysis and quality estimation is to explore the correlation and seek the effects of input variables on the quality of the
welding products. To achieve this goal, different tools and methods were employed.

To sufficiently understand the process and obtain the information of the weld, the review for previous works will focus on
three aspects: 1. using mathematical tools to establish models to simulate the process; 2. using auxiliary measuring signals
from external sensors to investigate the welding process; 3. using intrinsic process variables to monitor the process.
2.1. System modeling using mathematical tools

The modeling of welding process relates to the materials characteristics and internal changes of the parent metal sheets.
Due to the high nonlinearity of the process, using analytical method is very difficult. There was a very small number of works
about using mathematical or physical analytical tool to analyze the resistance spot welding. One contribution [37], which
was about expulsion exploration and prediction, established the analytical model to analyze how the expulsions occurred.
According to the force equilibrium equations and relative analyses, the effective electrode force was considered the most
important element to induce the expulsion. It can be observed that the analytical method is difficult to be employed to estab-
lish effective multi-field coupled models for RSW system and earn comprehensive achievements actually.

Finite element method (FEM) has frequently been employed to analyze the complex process, because it has more advan-
tages in solving problems with large deformations and can be used for many kinds of engineering problems, especially with
complex geometry and material combinations [38]. In addition, the results obtained from the FEM modeling could be useful
START
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Fig. 2. Flow chart of the FEM program [40].
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for clarification of the complicated nature of the interrelated electric, thermal, mechanical and physicochemical welding pro-
cess, and be expected to facilitate proper control and improvement of the welding system [39].

Recently, a lot of works employed FEM to simulate the RSW process. The following reviewing contributions focused on
various contributions using FEM calculating and analysis method. Generally, the RSW process can be considered as an
electrical-thermal-mechanical coupled process, hence, the most significant work using FEM to analyze the RSW process is
establishing appropriate models and then combining them so as to simulate the special process, based on the characteristics
of RSW process. Due to the symmetric nature of the electrode and the parent metal sheets, a half or a quarter of the physical
model was usually used to simplify the calculation. In order to quantitatively understand the effects of the different param-
eters, such as current density, welding time, sheet thickness and material, geometry or other conditions of electrodes, elec-
trode force and current shunting, contact resistance and the nugget size at different cycles, Eisazadeh et al. [40] employed a
commercial finite element code ANSYS to model the couplings between electrical and thermal phenomena and between the
thermal and mechanical phenomena. The power source used single-phase AC type. The flow chart is shown in Fig. 2 [40].

Based on Fig. 2, the subroutine defines the squeezing cycle as a single load step and divides the welding time into 23 load
steps. The APDL language was used to compute the nodal temperature distribution and updating of deformed geometrical
information. The model was a half of the actual physical model for two dimensional (2D) analysis. To verify the reliability
of the model, actual experiment, which used the same conditions with the FEM model, was conducted. Through measuring
the actual nugget size, the result showed that a good agreement between calculated results and measured data for the nug-
get size. For example, the thicknesses of the molten zone were respectively 2.12 mm and 2.23 mm for the calculated and
measured results. Also, the model can predict the temperature distribution and nugget size in the joint, and help to achieve
an optimum parameters setting. This work can predict the temperature distribution and spot nugget size in different cycles,
through adjusting the parameters, optimum setting of the welding parameters for the desired quality can be obtained.
Hence, it has a significant active meaning for the academic research and actual production.

In addition, to investigate the heat and mass transport laws in the weld nugget, and then to reveal their evolution during
the welding process, Li et al. [6] proposed a multi-physics coupled model to simulate the RSW process using a single-phase
AC power source. According to the axisymmetric characteristics of the RSW operation, a simplified model in this work
employed a 1/2 axisymmetric sub-model to analyze the electric characteristic, a 1/4 axisymmetric sub-model to do fluid
dynamics analysis, and a 1/4 3D wedge-shaped sub-model to accomplish the magnetic field analysis. Then an incrementally
coupled procedure was used in this work. The sequence was electrical analysis, 3D magnetic analysis and the fluid dynamic
analysis, and at the holding phase, only the only the fluid dynamic analysis was employed. The model comprehensively con-
sidered the coupling of electric, magnetic, thermal and flow fields, and used the temperature-dependent physical properties
and phase transformation to examine the RSW process. The commercial software ANSYS was employed. Combined calcula-
tions and relative analyses, the work obtained the relation between liquid metal moving features under the effect of mag-
netic field, and the heat transport pattern in different phases. The drawback was that because the induced magnetic field
could not be removed from the real weld nugget formation process, the experimental methods did not have the capability
to explore the difference of the welds with and without the induced magnetic field. Also, in their other contribution [41]
which employed approximately the same simplified method, a magnetic fluid dynamic model was proposed to investigate
the fluid flow and heat transfer behaviors in the liquid nugget. The model included a 2D asymmetrical electric-thermal-flow
Fig. 3. Metaphysics coupled model used in the work. (a) Schematic view of a RSW process, (b) 1/2 asymmetrical electric-thermal-flowmodel, (c) 3D wedge-
shaped magnetic field model [41].
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sub-model and a three dimensional (3D) wedge-shaped magnetic field sub-model, and comprehensively considered electric
field, magnetic field, thermal field and fluid flow. The model can be shown in Fig. 3 [41].

The model was a little more complex than that of the preceding work [6]. Through corresponding calculation, some sig-
nificant achievements had been gained, and the work showed that the effectiveness of Finite element model in simulating
the magnetic fluid dynamic behavior in RSW process and predict the nugget growth. The members in the same group also
provided a numerical analysis for single-sided RSW process used in sheet-to-tube joining [16], according to the simulation
using ANSYS, they concluded that the electrode force was crucial to the formation and shape of the nugget, under the special
conditions of the work, and modifying the electrode force during the process was a valid method for obtaining acceptable
nugget, with less welding control cycle and energy delivery. The work provided a guided method for optimizing the param-
eters and improving the quality of the ring nugget for this special application.

Moreover, there were many relative works employing FEM models to do relative analyses, Chigurupati et al. [42] devel-
oped a coupled model, which included the thermal, mechanical, electrical and metallurgical sub-models, and used DEFORMTM

to execute the simulation, and obtained that some critical process design variables, such as applied current, pressure, the
welding time and hold time, had strong imparts on the quality of the final product. Vural’s work [43] also employed a com-
bined thermal-electrical-mechanical simulation system to study the formation of the welding nugget and the effect of weld-
ing process parameter on nugget shape and size. To explore phase transfer process and variation characteristics of weld pool
of RSW for aluminum, Khan et al. [44] proposed a three-dimensional thermal model, and then obtained the effects of some
welding parameters, such as welding current, faying surface electrical contact resistance, and electrode-workpiece thermal
contact conductance, on the nugget and heat-affected-zone (HAZ) geometry. Also, the phase change morphology, including
melting and solidification rates and weld pool dynamics, and the relations between nugget growth and the welding current
and faying surface electrical contact resistance, were obtained. Nodeh et al. [45] employed an electro-thermo-mechanical
model to predict electrical potential, temperature, residual stress distribution and their effects on the heat transfer and nug-
get formation during the different stage of the RSW process, and then the result of the model was compared with the actual
measured residual stresses and observed a good agreement. The simulation results showed that the maximum tensile resid-
ual stresses were located at the weld center while they were reduced towards the nugget edge. In addition, Wei et al. [46]
employed a model to investigate the phase change effects on transport processes in RSW, the work accounted for electro-
magnetic force, heat generations at the electrode-workpiece interface and faying surface between workpieces, and dynamic
electrical resistance taking the sum of temperature-dependent bulk resistance of the workpieces and contact resistances at
the faying surface and electrode-workpiece interface. The characteristics of phase change in the course of heating, melting,
cooling and freezing were realistically and extensively studied by model computation, and the heat transfer rate, nugget
growth in different directions, thermal conductivity between different phases, melting and solidification rates and specific
heat ratio in phase change were also considered. In their other work [47], an approximate model and numerical procedures
were employed to explore the workpiece property effects on nugget microstructure. The work focused on the nugget
microstructure by studying the temperature gradient and solidification rate, and then some important conclusions which
were relative to nugget initiation, heat fluxes, solidification rate in all of directions, morphology parameters, cooling rate
were drawn.

Moreover, in addition to employ ANSYS and DEFORMTM to execute the numerical simulation, other software tools are also
used. To analyze and improve the structure design, some special elements in commercial Computer Aided Design (CAE) soft-
ware tools, such as CWELD [48], ACM2 [49] and CHEXA elements [50] were employed. However, they can only be used in
structure analysis instead of multi-field process analysis. As for process analysis, based on the principle of FEM, some pro-
fessional software tools, such as SYSWELD [51] and SORPAS� [52,53], which integrated some welding operation relative
functions, were also frequently used in reality. These integrated tools contained various electrode models, materials charac-
teristics of some commonly employed workpieces, special welding schedules and some other relative tools. The meshing and
quality evaluation tools may be included or excluded in the tools. Using these tools is more convenient because the designers
did not spend time on the basic model establishment. However, they followed the principle of FEM, and should obtain the
same results if the same model can be established by other software tools.

In this section, some typical previous works have been reviewed. It can be found that all of models used AC power source,
which might be that the RSW process with single-phase AC power source was commonly explored by scholars and engineers
previously. Because the medium frequency DC power source has a much steadier electrical delivery than of AC power source,
the contributions obtained by using AC power source can be easily used in that using medium frequency DC power source
[27]. In addition, because of the cylindrical symmetry of RSW system, 2D model was used widely in majority of previous
works only except [6,41,44], which used 3D models, due to the works [6,41] were to explore the characteristics of magnetic
field, while the work [44] focused on the vibration of molten pool. It meant that in general cases, 2Dmodel can denote major-
ity of variation characteristics of the RSW process. Also, majority of numerical simulation employed 1/2, even 1/4 models to
simplify the calculations because of its axisymmetric feature. Many preceding works employed thermal-electrical-
mechanical coupled models. Some works used fluid models to explore the special characteristics [6,41]. By means of various
numerical models, many important characteristics, such as temperature distribution, nugget size (width and thickness), fluid
flow or heat transfer behavior, effects of some important parameters on weld quality, and so on. It can be found that the
models had many common features, and followed the fixed rules.

In summary, according to review the previous works, FEM is a strong modeling tool to simulate the welding process and a
lot of remarkable achievements have been obtained in recent years. Many scholars used it to explore the characteristics of



Fig. 4. (a) Waveforms of the mains voltage and welding current [28], (b) An actual measured welding current.
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RSW process, and gained a lot of remarking achievements. Due to the complexity of the RSW process, integrated simulation
required multi-field coupled calculations, and by means of these tools, many characteristics can be obtained, though some
assumptions were made. However, the methods had some shortcomings in reality. Majority of contributions only focused on
characteristics research of welding process and the effects of different parameters on the nugget formation and quality.
Through examining the published contributions concerning FEM simulations, they have many assumptions, such as for
the RSW process with single-phase AC power source, majority of simulations used the successive sinusoidal welding cur-
rents or root-mean-square (RMS) current as the electric input. In fact, the actual welding current is not true successive sinu-
soidal pattern and there is an idle, when there no welding current passes through the parent metal sheets, between two
adjacent welding cycles [54], as shown in Fig. 4.

Fig. 4(a) shows the waveform of mains voltage and welding current during four successive control cycle or the RSW pro-
cess with single-phase AC power source. In this figure, a denotes the firing angle of the SCR, h denotes the conduction angle,
which is also the duration when the welding current passes the parent metal sheets. The electrode voltage and the welding
current have the same phase because the load only has the impedance. Fig. 4(b) is a welding current waveform collected
from an actual welding experiments. The figure clearly shows that though the voltage waveform of the AC power is sinu-
soidal, the waveforms of actual electrode voltage and welding current are not sinusoidal and not successive actually. In addi-
tion, though the works provided the governing equations according to physical characteristics, the equations cannot
sufficiently describe the phase change effect, which is very important during the welding process. Also, some important
characteristics parameters, such as thermal conductivity, specific heat, density and thermal diffusively as functions of tem-
perature and required in order to compute the temperature destitution, are not precisely provided for simulation in realty
[1]. Based on these deficiencies, though the previous contributions obtained some prominent findings by means of FEM or
other mathematical models after ingenious designs and obtained good agreements between simulation and experimental
results, and the achievements were useful to study the principle and mechanism of the welding process, the numerical sim-
ulation procedures cannot be consistent with the actual welding process. Due to the actual welding process includes many
disturbances and unexpected phenomena, such as mechanical or metallurgical uncertainties, or uncertainties in the surfaces
of parent metal, even from the same batch, and so on, it can be concluded that the simulations in current works can only be
an auxiliary mathematical analysis tool and is insufficient to use it to instruct the actual control operation and non-
destructive tests (NDT) or relative designs. In other words, these tools cannot effectively be employed in occasions of quality
inspection and control process design, and is expected to be improved in the future works.

2.2. Auxiliary measuring signals from external sensors

Recently, a lot of external auxiliary sensors were employed to online monitor the welding process and collect chosen data
to do further analysis, such as NDT. Direct measurement of tensile-shear strength and nugget size may cost more and have
low efficiency, so that other methods which may be more efficient are required for time and cost saving [55,56]. In general,
sensor monitoring is closely relative to the NDT and employed more in industrial production or academic research occasions.
Some works focused on the online process monitoring or detection, while other works considered the post-weld test. How-
ever, the contents in this part only consider the external sensors which worked independently and mounted externally, and
the signals focused on the auxiliary measuring signals, instead of intrinsic process variables, such as welding current and
electrode voltage, though they are also collected by means of corresponding sensors. The intrinsic process variables will
be mentioned in the next part.

The nugget formation and growth process relates to the metal melting and phase change. During the majority of RSW
process, a mixture of solid metal and liquid nugget exists between upper and lower electrodes, and the liquid nugget is usu-
ally confined with the two solid parts and not exposed, only except when expulsion occurring, which should be avoided dur-
ing the process. This characteristic was appealing for researchers and engineers to employ different external sensors to
monitor the process. Cho et al. [57] used a digital high speed camera, a specially designed electrode tip and illumination sys-
tem to visually monitor and observe the process of nugget formation, and then the results were compared with the dynamic
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resistance monitoring. The work can only obtain an approximate results and give clues to research the process. An approx-
imate similar work, which was conducted by Tan et al. [58], focused on the small scale RSW operation, and the workpieces
were Ni sheets. This work employed the scanning electron microscope (SEM) offline collected the photo of the weld in the
different welding time, and then corresponded to the dynamic resistance profiles in different stages. The work also showed
that the beginning time of solid metal melting and the time when the maximum nugget formed of small scale RSW of Ni
were different from those during large scale RSW of mild steel, due to the difference in electrode force and the resistivity
of the parent metal. Due to there was a large resistivity difference between solid Ni and liquid Ni at the melting temperature,
the solid to liquid phase change of Ni would subsequently increase the dynamic resistance during the nugget formation.
Though the work did not directly consider the welding process, the various photos can be combined to approximately
demonstrate the welding process. These works can examine the nugget formation mechanism and its relation to the process
parameters.

Apart from using camera or special microscope, other more direct sensors were also employed to investigate the nugget
formation and growth process. Karloff et al.’s work [59] presented an effective method of using acoustic reflections to mon-
itor the signature of a spot weld. In the work, a series of A-scans through the cross-section of the weld during the welding
process, which containedmany reflections resulting from the various interfaces of the layered weld structure, were captured.
Fig. 5 [59] shows the schematic of the work.

After plotted in gray scale and each A-scan was placed beside the next, the resulting B-scan image was formed and the
different parts between two electrodes can be clearly identified by means of acoustic reflection technology. The figures in
the work underwent special processing, such as identifying and removing interference, image enhancement of shifting
reflection, and so on. Finally, the solid-liquid metal interface can be accurately identified and located, and the depth of liquid
nugget penetration into the steel plates can be quiet accurately determined. The work can permit the accurate measurement
of the thickness of the weld and help to improve the quality control. Another work, which also used the similar sensor tech-
nology, was conducted by Chertov et al. [60], to make offline quality evaluation. The work used the scanning acoustic micro-
scopy (SAM) for the purpose of weld quality verification. In the work, a collimated ultrasonic beam was used to inspect the
object, and the plane waves that are generated by a piezoelectric crystal were focused by a special acoustic lens. The spec-
imen should be aligned along the plane perpendicular to the lens axis, and water was utilized as a couplant to allow the
acoustic waves to travel from the transducer to the specimen and back. A schematic of the investigation of a spot weld is
shown in Fig. 6 [60].

In Fig. 6, when the lens moved along the specimen, it emitted and received the waves at different positions above the
weld. The position A and C denoted the boundaries of the weld joint, or no-weld regions, and the position B denoted the
region of liquid nugget. Then the reflection may present different curves. After using microscopy examined the figures
and corresponding analyses, the nugget size and shape, can be investigated, and the cracks, voids, or other discontinuities
affecting the integrity of the weld, can also be discovered. It can be concluded that the SAM technology can not only be used
in online process monitoring, but also in offline weld quality estimation. Similarly, Liu et al. [61] employed the ultrasonic
echo signals to detect four types of stainless steel RSW specimens, which were failed weld, stick weld, defective weld with
gas pore and good weld, and analyzed the characteristics respectively in time domain, frequency domain and time-frequency
domain. Then the characteristics signals were automatically recognized and classified by back propagation (BP) neural net-
work, and the accuracy of the classification and identification of defects reaches more than 96%. Hence, it is an effective
method to serve the offline quality evaluation. Furthermore, other types of sound signals, such as acoustic emission and sonic
emission signals, can also be used to estimate the weld strength, detect the expulsion appearing, and predict the electrode
wearing in reported previous work [62], through establishing curve fitting relations between collected data of the signals and
the measuring physical targets.

Also, the infrared (IR) thermography was used for the NDT for the spot weld. Chen et al. [63,64] developed a NDT system
based on infrared thermography to evaluate the quality and integrity of the welds in automotive assembly structures. The
Fig. 5. (a) Source of reflected pulses in a weld, (b) Expected A-Scan through the cross section of the weld.
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Fig. 6. Schematic of using SAM to inspect a spot weld specimen.
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system can be used in both of real time inspection and post-weld inspection. It included an IR camera, a computer for image
acquisition and analysis, an induction heating device (for post-weld inspection), and a pre-established weld quality database.
The system required a special data processing algorithm to support the work. The schematic of the real-time and post-weld
inspections is shown in Fig. 7 [63].

For the real-time inspection in Fig. 7(a), because the welding heat was related to the welding quality, the IR camera mon-
itored the heat flow generated from the welding process. According to the schematic and the image in the work, the IR cam-
era did not need line of sight to observe the nugget and the original image was collected from a lateral view. Then the
corresponding IR image analysis algorithm can automatically and intelligently identify the real time ‘‘thermal signatures”
extracted from the images collected by the IR camera, and then compared with the data in the database and determined
the quality of weld instantaneously. On the other hand, for the post-weld inspection in Fig. 7(b), an additional induction
heating unit was required to locally heat the as-welded region, and the IR camera was positioned on the other side of the
weld to monitor the transmitted heat flow, which was different from that in the real-time inspection. Then through compar-
ing the processed post-weld ‘‘thermal signatures” to the quality database, the nugget information, including the diameter,
shape and thickness, can be quantitatively obtained. According to the results published in the work, the methods can obtain
the contour of the nugget, and the distance should refer to whether the IR camera can detect the heat in reality. Also, the
work presented the database establishing process, which included the offline destructive experiment and comparison
between weld attributes and thermal signatures. The final experimental results showed that the accuracy of both real-
time and post-weld inspection can achieve at ±0.5 mm, and the post-weld IR NDT can measure the nugget thickness with
accuracy at ±0.1 mm, also, the nugget shape can be positively identified. In addition, in their previous other work [65],
the correlation between weld quality and thermal signature of each weld can be established, and a finite element analysis
was developed to simulate the heat flow during inspection. The thermal model can provide insight into the effect of the nug-
get size and indentation depth on the peak temperature and heating rate. Hence, the method had sufficient theoretical sup-
port and the application followed the thermal analysis. Moreover, other recent popularly employed sensor, which was lead
zirconate titanate (PZT) transducer, was also used in NDT of post-weld of RSW production [66,67]. It used the principle of the
Fig. 7. Schematic of IR based weld NDT system: (a) real time system inspection, (b) post-weld inspection.



Fig. 8. Schematic principle of PZT-based quality estimation system [66].
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failure of the spot welded joints and opening between the faying faces at the joints reduced the amplitude of the stress wave
received by the PZT sensor. Fig. 8 [66] shows the schematic figure of the principle.

Using the principle, if the PZT sensor received an abnormal stress wave, it meant that the spot welded joints had bad qual-
ity, or the existence of opening deteriorated the contact quality. By means of FEM calculation, sensing system and digital
image correlation system, the effect of PZT-based NDT method had been effectively validated.

In addition to above technologies to use auxiliary measuring signals from external sensors, magnetic signals were also
employed to analyze the welding process and estimate the welding quality. Harada et al. [68] developed a RSW quality eval-
uation system using eddy current test (ECT). The measurement results from ECT can analyze the variation of internal struc-
ture of the spot welds, by means of the relations between frequency of current in induction coil, magnetic field strength and
nugget formation process. Then through actual tensile-shear test of the workpieces, a good correlation between measured
magnetic field strength and the tensile-shear load was found. Hence, the work indicates that the ECT can visualize the inter-
nal structure of the weld and do non-destructive test for the weld. Also, Tsukada et al. [69] employed the magnetic flux leak-
age to correlate the tensile-shear strength, which also showed that this magnetic signal can be expected to be a method for
online monitoring of the spot welds. Moreover, Tsukada et al. [70] combined techniques of magnetic flux penetration and
ECT for weld estimation and nondestructive test. In this work, the magnetic flux penetration through both upper and low
surfaces of the workpiece was measured at low frequency, and the correlation between the shear strength of the workpiece
and a calculated criterion which was derived from measured magnetic field intensity can be established. On the other hand,
the ECT was performed at each surface with multiple frequencies, and the nugget depth profile can be obtained by means of
the measured magnetic intensity map, according to analyze the features of the magnetic intensity map, the observed cross-
sectional microscopy and the characteristics of nugget formation. Hence, this combined technique was expected to be an
effective method for online monitoring the welding process and do NDT for the RSW products. Above three works have
the same corresponding author. Other reported work by Vértesy et al. [71] employed the magnetic hysteresis measurement
method for inspection of RSW and do NDT. Though a good correlation between the result of destructive characterization and
nondestructive magnetic descriptors was found, it also found that the signal was very weakly sensitive and still can be con-
sidered as a future possible practical application.

In summary, though there are many auxiliary measuring signals from external sensors employed to monitor the welding
process or NDT, the signals can only include some limited information, and the majority of the applications were post-weld
inspection or offline NDT, only few can be used in real time occasions. There are some drawbacks and limitations in their
applications. The first is that proper setting the sensors is difficult, for instance, using ultrasound transmission, the sensors
must be mounted on the metal sheets, which increases the cost and the complexity of the necessary equipment so as to limit
the mass usage, and frequently mounting the sensors for each metal sheet is so time consuming. The second is that the qual-
ity of the signals transmission is affected by the welding environment. There are a lot of noises existing in production, which
may seriously affect the accuracy of the signals, especially for sonic and sound signals, and the stress wave used in the PZT-
based NDT method. In addition, the dirt and fumes produced during the welding process may corrupt the infrared signals,
because it requires constant surface emission. Though some types of magnetic signals have been used in process analysis and
NDT for the welds, the experimental platform was so complicate that various errors may be included, the measuring and
analysis process included some uncertain elements, and the previous corresponding works only contained limited effective
validating results. Furthermore, all of these signals should be transformed into the weld information, in other words, the
results are indirect, which needs corresponding transformation algorithm and modeling to transform them. The design of
the algorithm and establishment of the model need many offline experimental data and experiences, which may exist the
limitation and not be able to apply in general cases, because the data and experiences may not be sufficiently general
and comprehensive. After reviewing some relative contributions, it can be concluded that though they can be effective tools
in some particular occasions and obtain useful information, their usages are limited in general occasions. Most of the appli-
cations can only be in laboratory and not able to be employed in mass industrial occasions. Some further improvements are
required to be taken in order to make the auxiliary measuring signals from external sensors effectively utilize in actual
production.



Fig. 9. Theoretical description of the signals, (a) Dynamic resistance; (b) Electrode displacement [74].
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2.3. Using intrinsic process variables to monitor the process

During the RSW process, many process variables can be obtained in real time, and then can be used for process analysis,
online quality monitoring and evaluation, as well as the online process and quality controls. Though they are also collected
by means of corresponding sensors, they directly reflect the internal variation of the RSW system and are different from the
signals mentioned in the preceding part.

In practice, dynamic resistance and electrode displacement are two of the most commonly used signals to research the
welding process, online evaluate or control the welding quality, because they can indirectly describe the internal character-
istics variations of the parent metal sheets and provide significant data for evaluating nugget quality [72]. The internal char-
acteristics variations include corresponding variation resulting from phase change, such as electrical resistivity, thermal
conductivity, specific heat, density or thermal diffusivity [73], and morphology variation. Fig. 9 [74] shows the theoretical
description of these two distinct and remarkable signals.

Fig. 9 shows the typical pattern of low carbon steel. Other special parent metal sheets, such as aluminum, may show dif-
ferent patterns. However, the low carbon steels have more stable physical characteristics and the curves can show a clearer
and evident feature. According to the theoretical descriptions of these two signals, they obey the district laws during the
RSW process. For the dynamic resistance, the initial value is very high because the resistance of various asperities, such
as contaminants or oxides, between parent metal sheets, which is the contact resistance, is very high at this stage. Then
as the electrode force squeezes the metal sheets, the asperities collapse and contact resistance sharply declines, which
induces the resistance fiercely drop. As is energy delivering into the system, the temperature of the solid metal increases,
which makes the resistance of metal sheets increase. As the temperature increases, solid metal melts and liquid nugget
forms, and the distance between two electrodes decreases resulting from the electrode force, then the total dynamic resis-
tance decrease. If the amount of liquid nugget is so large and the surrounding solid metal cannot hold it under the squeezing
by the electrode force, the liquid nugget may spill, and expulsion occurs. On the other hand, for the electrode displacement,
which is also the electrode indentation, the initial drop also results from electrode force bringing the metal sheets into clo-
sely contact and asperities collapse. Due to thermal expansion, the curve rises and then reaches its maximum value, then the
curve drops because of the softening of the metal sheets. Also, expulsion can make the curve drop significantly. It can be seen
that the two signals respectively have their unique characteristics during the process, which is the reason that they can be
used to reflect the internal variation of the parent metal sheets. Apart from the theoretical analyses, the experimental obser-
vation results also support the applications of the signals during the process [5,75,76].

For dynamic resistance, different stages of nugget formation and growth process show different characteristics, which is
useful to online estimate the nugget growth and weld quality [77]. There are two methods used commonly to obtain its val-
ues when single-phase AC RSW machine is used, the first is that using RMS value of electrode voltage divided by the RMS
value of welding current, the second is that using the peak value of electrode voltage divided by the welding current for each
control cycle. The first method required a lot of online data collecting and calculation, but the value has high accuracy and is
insensitive to the various noises, while the second method requires less calculation, however, only two collected data, which
is electrode voltage and welding current in the peak during each control cycle, was used to obtain each value of dynamic
resistance, so the reliability and accuracy of the result are easy to be assured. Traditional measurements obtained the value
in the secondary coil of the welding system. Cho et al. [78–80] thought that the traditional method may induce a lot of noises
during the process, and proposed a method which obtained the value in the primary coil of the system. After obtained the
dynamic resistance, the work [78] established a neural network for quality estimation. The input of the network selected
some points from the dynamic resistance curve, such as beta peak location Lbtp, which was related to the nugget growth
and mechanical collapse, the speed of increase of the dynamic resistance Rslope, which was related to the nugget growth rate,
the maximum dynamic resistance Rmax which was used to examine whether the heating is adequate for nugget generation,
and the standard deviation of the dynamic resistance Rstd which was used in order to examine the resistance variations. The
output of the network was the ultimate strength, which was obtained through the offline tensile-shear strength test. Two
hidden layers, each containing ten nodes, linked the input and output. The effectiveness of the method was testified by



Fig. 10. (a) The primary dynamic resistance pattern and feature extraction, (b) The neural network architecture.

Fig. 11. (a) Original dynamic resistance pattern, (b) Graphical dynamic resistance pattern [74].
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the actual calculations and measurements. Fig. 10 [78] shows the primary dynamic resistance pattern and feature extraction,
as well as the neutral network architecture.

The work [79] also used the same dynamic resistances calculation method, and then employed regression model through
multiple linear and nonlinear regression analyses to estimate weld quality. In the model, the tensile-shear strength and the
nugget diameter were selected as dependent variables, and ten estimation factors were used to determine the regression
equation. Following the regression analysis, a multilayer neural network can be used to estimate weld quality, and the final
experimental results showed that the neutral network had a high performance. The work [74,80] employed a Hopfield neural
network, which was comprised of single-layer feedback networks with symmetric weights. The dynamic resistance values
were collected, and then were normalized between 0 and 1 before the values were converted into a two dimensional pattern
vector. Then the normalized dynamic resistance is mapped into a 6 � 10 element bipolarized vector, and then used black and
white squares to denote the pattern. The original and graphical pattern of dynamic resistance is shown in Fig. 11 [74].

The Hopfield neural network stored five prototypes which were described by graphical dynamic resistance pattern, one
prototypes denoted one class. Each class denoted a range of weld strength. In the work, the parent metal was low carbon cold
rolled steel. For example, the weld strengths of class I were 1.17–1.25 kN, which was much lower than the strength criteria of
2.89 kN; while the weld strength of class III–V were 3.15–3.70 kN, showing adequate strength for any circumstances. Then
for any new collected graphical dynamic resistance pattern, applied them to the AI pattern recognition method to classify
into corresponding class. Using the classified pattern, real-time estimation of the weld quality was made possible. Also,
El-Banna et al. [81] employed an algorithmic framework based on a linear vector quantization (LVQ) neutral network for
online estimating the button size class based on a small number of dynamic resistance patterns for cold, normal and expul-
sion welds. In the work, they used Constant Current Control (CCC) method for medium frequency DC RSW machine, and a
self-proposed constant heat control (CHC) method for single-phase AC RSW machine. Two metal stacks were used: 2.00 mm



Fig. 12. Sample dynamic resistance profiles for cold, expulsion, and normal welds for (a) A CCC using Medium Frequency DC, (b) An AC constant heat
controller [81].
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gauge hot tip galvanized high strength low alloys (HSLA) steel, and 0.85 mm gauge electro-galvanized HSLA steel. Then for
each type of RSW machine, corresponding results can be shown in Fig. 12 [81].

It can be seen from Fig. 12 that for two types of RSW machines with different controllers, the neural network can classify
the welds into three catalogues: normal weld, cold weld and expulsion weld. However, the profiles were not easily distin-
guishable in reality. The dynamic resistance profiles of cold welds tend to be lower than the other profiles, while the profiles
of expulsion weld tend to have a sharp drop, especially towards to the end. Then the LVQ neural network was used to assist
the classification. The inputs of the neural network were some easily accessible dynamic resistance profiles, such as maxi-
mum, minimum, mean value, standard derivation of the collected data, slopes in different regions, RMS values, and so on.
The work showed using limited collected data can obtain promising classification results. Also, the effects when reducing
feature sets were employed were also reported. Combined the control strategy using RSW machines with different types
of power sources, the contributions in this work can provide reference in many aspects in RSW. In addition, Zhu et al.
[82] used a multi-pulse method to eliminate the contact resistances between two electrodes and workpieces and the errors
of resistance caused by temperature rising, and then the models of relation between brazing rate (the ratio of the effective
welding area and the area of welding gap) and the resistance, as well as the relation between brazing rate and the tensile-
shear strength can be established from a lot of experimental data. With two equations which described the two relations, the
welding quality could be estimated by brazing rate and tensile-shear strength based on calculated dynamic resistance.
Through comparing experiments between calculated and measured values, it was believed that the method was reliable.
An approximate work was conducted by Luo et al. [83]. The work showed that there was a high linear relationship between
Fig. 13. The neuro-fuzzy scheme [86].
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energy for nugget growth and mean dynamic resistance, and more prominent polynomial relationship between energy for
nugget growth and dynamic resistance heat. The dynamic resistance heat was an important evaluating indicator of the nug-
get growth. Then corresponding curve fitting equations between dynamic resistance heat and nugget diameter, and tensile-
shear strength were established, to achieve NDT of nugget quality features. Also, as a mathematical model for classification,
random forest (RF), was also used in weld quality classification based on dynamic resistance features and other welding
parameters. Xing et al. [84] collected some features from dynamic resistance profiles, such as value in the first decline point
Ra, value in the peak Rb, value in the end Rc, relative velocities for asperities or contaminates breakdown v1, local melting and
initiation of nugget formation v2, and nugget growth v3, and maximum absolute gradient in stage of nugget growth rmax,
standard deviation r, together with some other operational variables, a weld quality classification model based on RF
was obtained. The result showed that the methodology can improve the accuracy of the quality classification, which can
achieve 98.8%. The work also obtained that the four parameters of dynamic resistance profiles, which were v2, v3, Rc andrmax,
and the welding current, were the most important variables for quality classification. Also, for small scale RSW, Wan et al.
[85] employed some special features from dynamic resistance signals as the input of the neural network, and the nugget size
as the output, then a reliable welding quality system can be achieved. It meant that the dynamic resistance can be also used
in small scale RSW.

On the other hand, electrode displacement was also used in many previous works. Zhang et al. [86] employed the elec-
trode displacement and electrode velocity as the inputs, and the nugget diameter as the sole output, established a neuro-
fuzzy inference system to online monitor the weld quality of RSW operation, the neuro-fuzzy scheme was shown in
Fig. 13 [86].

The two inputs were codified into linguistic values by the set of Gaussian member functions, and the respective activation
degree to each rule can be calculated. Lastly, the inference mechanism weights each conclusion values, and the error
between the inferred output value and the respective desired value was used by the gradient-descent method to adjust each
rule conclusion. The final experiments showed that the 88% specimens were successfully inferred, and the errors was within
1.5%, which meant that the artificial intelligent can improve the welding academic research and actual production. Also, Lai
et al. [87] and Zhang et al. [88] used online measurement electrode indentation from servo encoder to accurately distinguish
welds which cannot meet the requirements of strength and diagnose welding failures. The works validated the electrode
indentation was separately relative to the welding quality, and can serve to the non-destructive quality test in the actual
production line. Zhang et al. [89] mapped the collected electrode displacement signals into a 15 � 25 element bipolarized
matrix by means of fuzzy theory. In the work, low carbon cool rolled steel place with 0.7 mm thickness was employed.
For 25 sample points, each value used the mean value and was processed by rigorous procedures, so as to assure the bipo-
larized matrix can denote a standard and normalized electrode displacement pattern. Fig. 14 [89] shows the mean value of
electrode displacement and corresponding pattern.

Then the genetic K-means algorithm (GKA), which was an iterative algorithm to find a partition that minimizes the
square-error (SE) between the assigned pattern and selected reference pattern, was utilized to realize the clustering analysis
and quality estimation of the welded spots. The final clustering analysis results validated that the electrode displacement
pattern matrix can provide adequate quality information of welded spots for machine learning and complicated program-
ming works could be avoided. Also, the same group developed another method which employed radar chart to analyze
the electrode displacement through noises reduction, then utilized the geometric features of the closed polygon to achieve
the welding quality evaluation [90]. In the work, decision tree was employed to classify the welded spots, even under some
abnormal welding conditions, the diagnostic procedures for welding quality was visible and intuitive and easily understood
and interpreted. A similar work was conducted by Gong et al. [91]. The work collected the electrode displacement and then
used the Bayesian Belief Network (BBN) to provide a quantitative model for weld quality classification. Shear strength was
used to classify the welds. Apart from providing a new weld quality classification method, the model can predict the expul-
sion limits for the materials studied, and the work also provided a generic probabilistic methodology to analyze other weld-
Fig. 14. (a) Mean electrode displacement waveform of each welding cycle; (b) Electrode displacement pattern.



Fig. 15. Chernoff faces template corresponding the different welding quality catalogues [92].
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ing parameters in various materials systems. In addition, a visual and interesting approach was developed by Zhang et al.
[92] using electrode displacement to assess the welding quality in non-destructive method. The work extracted the
multi-dimensional features from the electrode displacement signals. Then the features can be viewed as the facial variables
to draw the Chernoff faces, which required 17 variables, according to the rules of this type of drawing. The quality criterion
was tensile-shear strength, and can be classified into four catalogues: poor, good, excellent and expulsion. The corresponding
Chernoff faces were shown in Fig. 15 [92].

It can be observed that the results were visual and intuitive. The range of the drawing can be freely adjusted. Also, the
work can detect the shunting effect during the process. This work was a good alternative in the welding quality estimation.
Then, the group extended the contribution. In their recent published work [93], the original Chernoff face image was con-
verted into binary pattern matrix, which was approximate to the Fig. 14(b), and then the features matrices can be corre-
sponded to five welding quality levels and trained a Hopfield associative memory neural network. The five levels were
poor, qualified, good, excellent, and expulsion welds. Final test results showed the proposed classifier can present good per-
formance as expected. All of these previous contributions denoted that combining the commonly-employed mathematical
tools and electrode displacement, the weld quality can be detected or analyzed after relative efforts.

In addition to separately employ dynamic resistance and electrode displacement, other intrinsic process variables, such as
electrode force, or two or more intrinsic variables were also employed to obtain more convinced results. As one of the most
control parameters during the process, electrode force can affect the welding quality in a lot of aspects and was considered
by some previous works. For example, Park et al. [94] employed the electrode force pattern to do quality estimation. The
used quality criterion in the work were the tensile-shear strength and electrode indentation. They conducted experiments
under different welding conditions under different process parameters such as welding currents and electrode forces, then
the relations between force patterns and qualities could be determined. The experimental data was collected to train the
proposed neural network to evaluate welding qualities through the classification into standard patterns. In the work, LVQ
and BP neural networks were employed and presented good performance in the classification work. It is concluded that
the welding quality evaluation by means of electrode force patterns could be employed with satisfactory accuracy. Also,
as one main process variable during the process, welding power signal was employed to online evaluate the weld quality.
Zhang et al. [95] developed a method to acquire dynamic reactance signal, and then found that the morphological feature
of the reactance signal was closely related to the welding current and significantly influenced by some abnormal welding
conditions. The features can be extracted from the reactance signals, and then the weld nugget strength and diameter pre-
diction models based on the radial basis function (RBF) neural network were established using them. The effectiveness of the
methods was supported by the experimental results. Ju [96] used the five variables to establish the quality estimation model,
which were peak power, peak time, GI coating (uncoated or GI coated, where GI stood for pure zinc), electrode force and
power drop. The model was established by multinomial logistic regression. After examining the significance of the param-
eters, only three variables, which were peak power, GI coating and power drop, were used to establish the weld quality pre-
diction model. The experimental results showed that the overall accuracy can achieve 95% or higher. In the meanwhile, the
expulsion can also be detected by means of the signal of power drop. The work believed that welding power signal was bet-
ter than dynamic resistance because the signal is controllable and the amount of energy delivery can be directly expressed,
and it is not affected by the electrode force or other elements during the process. Moreover, electrode voltage can also be
used to establish a neural network for online quality estimation. Compared to the large scale RSW, the electrode displace-
ment is more difficult to measure because the magnitude is very small, on the other hand, the force signals are relatively
large and the measured noise was less susceptible [22]. Hence, force signal was commonly employed in corresponding oper-
ation in small scale RSW. Zhao et al. [21] employed a small scale RSW equipment with three-phase medium frequency DC
RSW operation, and conducted constant current control mode. The work used four factors extracted from the electrode volt-
age curve, and then established a model using neural network to correlate the factors and nugget diameter. The maximum
average forecast error of the trained network was about 0.15 mm for nugget diameter in the experimental verification, which
showed that the voltage curve was also reliable in online quality estimation and monitoring.

Also, some intrinsic parameters can be together employed to achieve the goal of online quality measurement and eval-
uation. Li et al. [97] used a single-phase AC RSW machine and simultaneously employed some parameters, such as electrode
force, electrode displacement, dynamic resistance, welding current using RMS values, initial force and welding time, to make
up a multi-layered feed-forward neural network to establish a model. The parameters were collected from 170 samples
under various conditions, such as 3.0–4.0 kN electrode force, 6.9–13.4 kA welding current, 3–36 welding cycles (times)
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and 6.4–7.2 mm contact diameter, and dynamic resistance during each control cycle calculated from tip voltage and welding
current at the current peak. The final results showed that the estimation errors of nugget diameter were less than 10%. In
addition, Chen et al. [98] proposed an information acquisition and evaluation method based on online monitoring of the
weld quality for titanium alloys. The parameters included the welding current, electrode voltage, electrode pressure and
electrode displacement signals. Based on the signals characteristics from online observations and analyses, the system
can detect the defects including splash and incomplete fusion of the welded spots. In addition, they analyzed the relation
between pressure waveform data and the splashed welded spot, and the relation between dynamic resistance variation
and incomplete fusion phenomenon. The relations between different parameter variations and the defects can provide clues
for online quality assessment. However, only simple and rough judgments can be obtained in the work. An approximate
work was conducted by Deng et al. [99]. The work used three variables, which were welding current, electrode force and
electrode displacement, to establish an evaluating model of nugget size using fuzzy mathematics. The model can help the
welders explore why the nugget size was substandard. In addition, Wan et al. [100] used two types of neural networks to
online predict the weld quality of small scale RSW process. The first type used the electrode force, welding current, welding
time and four features extracted from electrode voltage and dynamic resistance as the inputs, and the value of failure load as
the only one output to establish a BP neural network. However, the structure was so complex and the quality can only be
determined after obtaining the specific failure load magnitude. Then the second type used the electrode voltage signals as
the inputs and the different levels of the failure load as the outputs, and the probabilistic neural network (PNN) to establish
a model. Both of the two neutral networks presented high accuracy in the experiments. They had conclusion that the first
neural network model was more suitable for specific estimation of failure load magnitude, while the second model was more
appropriate to be used in quality classification. Hence, combination of two models may provide a better solution of online
quality estimation. It is a typical work for online quality estimation for small scale RSW.

In addition, recently some frontier analyses based on the machine learning and pattern recognition have been used in
RSW related areas, especially in the quality estimation or classification using various intrinsic process variables, due to
the RSW system is an obvious multi-input-single-output (MISO) system which meets the requirements of those tools. Apart
from various neural network tools, decision tree and RF, other methods, such as elastic nets, support vector machines (SVM)
and boosting techniques, were also be employed. Martín et al. [101] used the welding current, welding time and electrode
force as the inputs, while the tensile shear load bearing capacity (TSLBC) as the output, and the regression calculation tech-
nique utilized the quadratic regress expansion with elastic net regularization. The result showed that it can be used as an
amensable tool to serve the RSW related researches. Also, to estimate various classification methods, Pereda et al. [102] com-
pared several classifiers including pruned tree, boosting, RF, SVM radial, SVM linear, logistic regression, and so on. The input
variables for training the models were welding current, welding time, electrode material, treatment (applied to electrode
material), and electrode force, which was only a constant variable. The output was the classification of the nugget. According
to the comparison and corresponding analyses, it could be concluded that there is no a dominant classifier for every possible
pair specificity/sensitivity. A method or tool can perform better than others depending on the industrial context that deter-
mines the difference cost of a prediction error. In this work, the SVM using radial kernel, boosting, random forest techniques
can obtain the best performance.

Expulsion is a negative phenomenon which can seriously affect the weld quality during the welding process and a lot of
previous works concerned it. This phenomenon occurs at the internal of the workpieces and many process signals have cor-
respondingly significant changes, hence, intrinsic signals were always employed to online detect it. To online detect the
expulsion, Podržaj et al. [103] collected the dynamic resistance, filtered values of electrode force, amplitude of the electrode
force variation and electrode displacement, and then employed the LVQ neural network to detect the expulsion for the cases
of different mild steels and zinc-coated steels being welded. Then the work concluded that the LVQ network could detect the
expulsion with the highest possible accuracy when only the welding force variation signal detected by a piezoelectric sensor,
was employed. The work also pointed out the electrode force signal was the most important indicator of the expulsion occur-
rence, when compared to other signals. Also, the same group also studied the expulsion by means of examining the welding
current shape [104], and concluded that higher peak values of the welding current were much more likely to induce expul-
sion under the condition that the welding currents had the same RMS values. The similar conclusion can also be appropriate
in small scale RSW research [105], the work showed that though monitoring one or more of the variables can give an indi-
cation of whether the expulsion occurs, the force signal appears to be the most sensitive when compared to the voltage and
displacement signals under this circumstance. Moreover, Zhang et al. [106] proposed various models to explore the mech-
anism of expulsion occurring. The models were established based on experimental data, and the expulsion probabilities were
presented as a function of electrode force, welding current and welding time. Through statistical analyses, the expulsion lim-
its under different parameters conditions can be obtained. It concluded that the most influential parameters in determining
expulsion was welding current for the steel and aluminum alloys, and following is the electrode force, the least influential
parameter is the welding time. Apart from the experimental observation, Senkara et al. [37] explored the mechanism of
expulsion occurring, and pointed out that it could be described by the interaction between forces from the liquid nugget
and its surrounding solid containment. The effective electrode force, which was usually a portion of the total applied/nom-
inal electrode force, was used to evaluate the expulsion, and the value could be calculated in the work. Also, the work pro-
vided a guideline for the electrode force selection. It can be seen that for expulsion, the current researches were not just
about online detecting them using numerical models, but also the mechanism explorations were conducted by some
scholars.
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Apart from employing auxiliary measuring signals from external sensors or intrinsic process variables to do online pro-
cess analysis and quality estimation, some scholars employed multi-sensor, which combined the both of two types of signals
together to obtain more abundant information. Chien et al. [107] presented an investigation of various sensors system for
RSW, and the signals were analyzed and correlated with nugget formation and growth. The system included a fiber-optic
displacement sensor, an acoustic emission sensor, a force transducer, and the current and voltage measurement, which were
simultaneously monitor the welding process. Then the signals were analyzed to correlate to the different stages of weld for-
mation. The work obtained that the electrode force could clearly show a decreased trend upon the onset of melting, and this
trend can be used as an indication of weld formation. Also, other characteristics of electrode force can also be related to the
weld quality. Finally, the work concluded that monitoring the force signal can enable the welding quality. In addition, Cullen
et al. [108] also developed a sensor cluster to monitor the RSW, which included a current sensor, a voltage sensor, a photo-
electric infrared diode and a weld ultrasonic system. All the data from these sensors was recorded using a PC through cor-
responding acquisition system. Then a multilayer perceptron feed forward, BP neural network was employed. The input of
the neural network included current (I), voltage (V), dynamic resistance (R), infrared (IR), force (F) and ultrasonic (US), while
the output was weld nugget size. Through adjusting several parameters of the network, including the number of hidden lay-
ers, the number of neurons and transfer function, the correlation between predicted result and actual results can be
improved. At last the optimum network structure can be chosen and the nugget size prediction can achieve a high accuracy.
This type of work can be considered as a combination of the works using one or few sensors, they used the same principle to
relate the collected data and mathematical tools. More information was employed, and more accuracy of model could be
established. However, the models were more complex than that of others using few data, which can induce the generality
relatively lower.

In summary, the nugget formation and growth occurs at the interface between workpieces, and is hard to directly mon-
itor and analyze. A lot of scholars employed various methods to analyze the process, estimate or classify the welded spots for
nondestructive test or other objectives. Apart from preceding part which reviewed the auxiliary measuring signals from
external sensors, this part focuses on the intrinsic signals, which can be collected during the RSW production process.
The variation of signals is closely relative to the nugget formation and growth, so they can be employed to reflect the internal
physical variation of the metal sheets. Dynamic resistance and electrode displacement were the most commonly-employed
signals, and other signals, such as electrode force, were also be used. There is a difference in between large scale RSW and
small scale RSW, which is that the electrode displacement signal was used few in small scale RSW because the magnitude of
the signal was very small and difficult to collect, and the force signal was used more under this circumstance. Kinds of neural
networks, regression methods or curve fittings were usually employed to establish the model using kinds of signals. How-
ever, each method required a lot of preliminary data to train the reference model, and some criterions were proposed based
on the welding or mathematical knowledge. The model, which was obtained based on the collected data, was determined
under the special welding conditions and productions environments. Then the new testing data was processed and the
results can be obtained. Majority of works cannot provide general methods and had their limitations in reality, also, some
methods involved sophisticated data collection and particular modeling process, which seriously limited the generality of
the methods. Combining various signals and sensors, the methods can provide approaches for majority of actual require-
ments. It is easy to find the common points from the previous works, no matter which sensors or mathematical tools were
employed, the variations followed relatively fixed rule which can be employed to test new collecting data for weld samples.
However, it was difficult to conclude whether the approaches can be extended to general applications, because the explo-
ration of the rules lacked enough physical support, and relied on the preliminary training data which had their limitation
in reality. In addition, many mathematical tools were employed in quality estimation and NDT, not only the traditional
BP and LVQ neural networks, but also the recent RF and SVM, and other relative tools, they provided convenient modeling
method to relate the various input variables and selected output variables. It is hard to conclude that which tool was the
most suitable for RSW application because the performance is determined by data coupling strategies, variables selection,
and other relative conditions. According to review previous works, the BP neural network is the most commonly-
employed tools to predict the nugget size, while the LVQ is the most frequently used classifier. Though recently the SVM
and relative frontier analysis tools presented good performance, their mass application is still limited. Though the previous
works provided valuable contributions in academic researches and practical application, the relative works in this aspect are
required to be more considered, and much simpler as well as more general methods are expected to be obtained and then
serve the production in the future.
3. Welding process control

To obtain welds with satisfactory quality, at the same time the energy loss is as less as possible, appropriate control
actions should be taken during the process. Be different from the online process analysis and quality estimation, online weld-
ing process control should concern both of quality and process optimizations. The control strategy must be designed based
on the characteristics of nugget formation and growth, and the goal should be obtaining welds with satisfactory quality. In
this work, we considered using internal and intrinsic conditions to achieve good welding quality through employing appro-
priate control strategies. We found that some works employed external tools to improve the welding quality, under some
special conditions, such as using external magnetically assisted method [109,110]. However, those methods are not included
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in this paper because the works of this paper focused on using different control strategies to adjust the energy delivery
modes, so as to obtain the welds with satisfactory quality and high energy efficiency during the process, instead of employ-
ing other extrinsic tools to assist the quality improvement. In early works, some scholars focused on the control parameters
optimization, and explored how the specific welding parameters affected the weld quality. Lately, other scholars combined
the quality estimation and control strategy design, and then proposed proper control strategies to achieve satisfactory goals.

3.1. Parameters optimization

During the process, welding current, welding time and electrode force are three variables which determine the welding
process and weld quality. The conventional welding schedule are composed of these three variables. There is no difference
between RSW machines using single-phase AC power source and three-phase medium frequency DC RSW power source in
welding schedule design, only except the description of welding time. Traditionally, in single-phase AC RSW operation, the
welding time is described by welding cycle, while in that of three-phase medium frequency DC RSW, because the welding
current is successive and no idle exists, the welding time is usually described by direct counted by milliseconds.

Apart from the welding time, welding current and electrode force have their special ranges to achieve acceptable welding
process and weld quality, which are called as welding lobe [111,112]. The welding lobe should be confirmed by actual expe-
riences and experiments. Too small value of welding current may induce cold weld, while excessive welding current may
induce expulsion, and may not avoid internal porosity or cracking of the nugget after welding completion. On the other hand,
too small value of electrode force may easily induce expulsion, while large value of electrode force may reduce the efficiency
of heat energy and produce small weld, because of no sufficient contact resistance and consequently heat generation
[113,114]. Currently, though the different workpieces sizes can affect the efficiency of energy absorption and nugget growth
rate [115], almost all of the control systems dealt with the workpieces with the same sizes, in other words, the effect of dif-
ferent workpieces sizes was few considered in previous works.

In previous works, some scholars wanted to obtain a steady welding process together with welds with satisfactory quality
by means of optimizing the operational parameters. Kasih et al. [116] used two types of low carbon steels and made corre-
sponding experiments and analyses, and then obtained optimum ranges of welding current and welding time, based on
welding quality, which was described by nugget diameter and corresponding tensile-shear load. The work revealed that both
of welding current and welding time had great influences on the quality of the spot welded joints. Similarly, Zhang et al.
[117] explored the effects of RSW parameters on microstructures and mechanical properties on dissimilar material joints.
In the work, a three-phase medium frequency DC RSW machine, was employed, so the welding time was counted by mil-
liseconds instead of welding cycle, and constant current control was used. The workpieces used in the work were galvanized
high strength steel and aluminum alloy. Because the workpieces were dissimilar, some particular phenomena appeared.
According to change the nugget diameters and interfacial layer structure, welding current and welding time had obvious
effects on the tensile-shear load of the spot welded joints. Based on the experiments and analyses, an optimum range of
welding current and welding time which can obtain the maximum value of nugget diameter can be provided. Also, the inter-
facial intermetallic compound layer has higher nanohardness than that of aluminum alloy nugget and galvanized steel. Wan
et al. [118] established a model to explore the effect of welding current on RSW process, the workpieces were DP600 steel.
The experiments were conducted with the welding current between 6 kA and 12 kA, and FEM tool was also employed to pre-
dict the nugget size. The final results showed that the welding current had slight effect on the micro-properties of the spot
welds, according to the microstructure examination. However, the nugget size and shape were highly dependent on the
welding current. Also, the expulsion phenomenon was also considered in the work. It occurred at 12 kA and unsatisfactory
partial interfacial failure can be detected. An approximate work was conducted by Vignesh et al. [119]. The workpieces were
two types of dissimilar stainless steels. According to examine the microstructures and other analyses, it was concluded that
the welding current majorly indicated the tensile-shear strength, followed by the welding time, while the least effective fac-
tor was the electrode tip diameter. After using Taguchi’s L27 orthogonal array design to select an optimum schedule, the final
result showed that the weld nugget consisted of ferrite and austenite and there was no precipitate of detrimental phases in
the weldment, which showed a satisfactory quality. The majority of previous works used constant welding current during
the process, however, to employ more effective welding current, Md et al. [120] examined the effects of different reference
welding currents on increasing of nugget diameter, and then proposed an adaptive reference welding current compensation
function to achieve an optimumwelding schedule. In addition, the effects of different welding times on the quality were also
be considered. Aslanlar et al. [121] investigated the effects of welding time on the tensile-peel and tensile-shear strengths of
welding joints in RSW operations. According to the experiments, the optimum combination of welding time and welding
current which can achieve the maximum strengths were obtained after several experiments using various combinations.
A similar work was also found in work [2]. In addition, through evaluation by peeling tests, cross-tension tests and weld lobe
with various welding currents and welding times, Lin et al. [122] obtained an optimal welding time. Also, the work proposed
that using two-step RSW scheme, which introduced an additional pre-heat stage, could result in a larger nugget than that of
traditional one-step scheme, and then the actual experiments supported the statement.

In majority of previous works, electrode force was a constant during the process. This is because the majority of electrode
forces are controlled by a pressure differential of the two air pressure gauges, which is hard to online adjust during the weld-
ing process. However, the characteristics of electrode force were also monitored and investigated in previous works. Sun
et al. [123] divided the electrode force into three types: squeeze force, welding force and forging force. To online change
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the electrode force, an electrical servo gun was employed in the work. For three types of forces, higher squeeze force was
required to ensure the closely contact of sheet metal before welding, while lower squeeze welding force can lead to higher
electrical resistance of sheet metal, and the highest forging force can reduce solidification defects like cracks and porosity.
Hence, the electrode force during the process was better to be a varying value instead of a constant one. According to usage
of the design of experiment (DOE) approach, optimum parameters of the forces can be confirmed by experiments and cor-
responding analyses. The final results showed that a varying electrode force can improve the weld quality, and also evidently
enlarging the weldability lobe. Apart from this work, Venugopal et al. [124] also explored the effect of the time-varying elec-
trode force on the nugget size in three-phase medium frequency DC RSW system. The work was based on the numerical sim-
ulation using a professional RSW simulation software, which was SORPAS, and actual experiments. The simulation presented
the effects of constant electrode force and time-varying electrode force on the increasing of the nugget size. Using specific
welding condition and parent metal sheets, the relation between increasing of electrode force and growths of nugget size
was nonlinear, when a constant electrode force was employed during each process. When a time-varying electrode force
was employed, the changes of time of force in percentage significantly affected the nugget size, under the condition that
the same welding current and welding time were used. Apart from just adjusting one parameter, two parameters, which
were welding current and electrode force, can be adjusted according to the online detection results during one welding pro-
cess. Ji et al. [125] used three-phase medium frequency DC RSW machine to explore the effects of electrode displacement
and electrode force on the RSW process of aluminum alloy 5182. Apart from that the two parameters were proportional
to the welding current, they both presented important characteristics during the nugget formation and growth process, such
as their increasing rates were proportional to the welding current, and can detect when expulsion occurring. Then based on
the characteristics, two possible strategies for quality control, which employed different values of welding current, were
designed. In the strategy, the welding current was firstly set according to changes of electrode displacement or force, then
kept it constant until the force reaches the peak or the total displacement reaches an experimentally predetermined value.
Both strategies would produce nugget with satisfactory sizes.

Above works denoted that three significant parameters can seriously affect the welding process and nugget formation and
growth. Moreover, other welding operational conditions were also considered during the welding process, such as machine
stiffness, friction and moving mass [126,127]. The works can conclude that the machine stiffness had a positive influence on
expulsion prevention and welding quality, so that it is recommended, while the machine friction and contact error had neg-
ative effect on welding quality, and machine moving mass and touch behavior had no influence on weld quality. Dennison
et al. [128] examined the RSW operations and corresponding robotic equipment, and then focused on the optimization of the
mechanical and control systems for the RSW process, especially referred to the existed robotic spot welding system. During
the process control of a robot RSW system, some system characteristics influenced the process duration, such as weld con-
troller latency, gun close time and gun open time. Two aspects should be considered for the process optimization. The first
was the process improvements via modifications to mechanical system design including the mechanical and electrical sys-
tem design and corresponding optimizations, while the second was the closed loop control methodologies including the
online monitoring of the electrical parameters and corresponding analyses, as well as the results from some external aux-
iliary sensors. The robots were employed to conduct the optimization process, and then an optimum control strategy was
produced a further 5% improvement in the process cycle time. This work was based on the robotic RSW system and consid-
ered the mechanical, electrical and control elements, and then used comprehensive methods to optimize the welding pro-
cess. Though the final results were obtained from a series of experiments, it can be a general method for optimizing the
robotic RSW system and possible extended to other RSW process.

In summary, though RSW system is so complex, the commonly adjustable parameters were only welding current, elec-
trode force and welding time. Three parameters have significant influences for the welding quality. Table 1 shows their influ-
ences on the welding process or weld quality, and the corresponding commonly-used optimization measures, according to
review previous works.

It can be seen that the optimization measures of welding current and welding time always were taken together. The
design of welding schedule is trying to find an optimum combination of three parameters for a special welding process,
and the goal is obtaining welds with larger nugget size or higher tensile-shear strength, in the meanwhile, some negative
phenomena, such as expulsion, splash, cold or undersize weld, must be avoided. This part only considers the optimization
of the control parameters for achieving an optimumwelding quality. According to review previous works, because the weld-
ing current is the main parameter which can determine the amount of energy delivering into the system, as well as its value
Table 1
Influences on the welding process and weld quality, and optimization measures of the three main variables.

Variables Influences on the Optimization Measures

Welding Current Nugget size and shape; Expulsion occurring; Tensile-shear
strength, micro-properties of the weld

Using numerical analyses and experimental to seek an
optimum combination for one specific process

Welding Time Tensile-peel and tensile-shear strengths of welding joints
Electrode Force Energy efficiency; Expulsion occurring; solidification

features of the spot weld
Varying instead of constant value during the process
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can be easier adjusted than that of others, it is considered by a lot of previous works. Also, recent works considered using
varying electrode force by means of electrical servo gun and found that it can improve the welding process and weld quality.
Many combinations were derived from actual experiments and corresponding comparisons. In this section, the majority of
schedules were a fixed combination during the whole welding process, or preliminarily set a varying mode. Hence, the con-
trol optimization process was offline and the online adjustments were not included, which had limitations because there
were various disturbances and uncertainties during the RSW process. Though the works can provide references for other
welding schedule designs and control process optimizations, these reported methods were not general and should be
improved to further achieve online control to obtain welds with satisfactory quality. In the next section, the works which
dealt with the real time control operation collaborating with online quality estimation will be considered.
3.2. Control process optimization

Apart from the control parameters optimization for the RSW process, some control actions were conducted by combining
the online quality estimation results. In these works, different control strategies were employed and presented different
effects related to the weld quality, based on the application of mathematical tools, control system designs and quality esti-
mations of the RSW process.

The external energy is delivered into the welding system through two types of power sources, and some previous works
only considered the process control for the power sources without the optimization for weld quality. The works focused on
the characteristics of electrical structures and provided solutions to achieve stable welding process and expected control
strategy for energy delivery. For example, in our previous work [54], constant current control strategy was properly realized
in single-phase AC RSW machine, whose electrical system is highly nonlinear and time-varying. The work was based on the
mathematical modeling of the electrical structure and can be easily extended to other control strategy, such as constant
power control in our other work [129]. Also, in the three-phase medium frequency DC RSW machine, the magnetic satura-
tion in the iron core of the welding transformer may induce disastrous negative phenomena. Klopčič et al. [130,131] ana-
lyzed the electrical structure and proposed a new advanced hysteresis control method to control the actual output
welding current, and reduce the current spikes and eliminate the magnetic saturation. These works benefited the current
RSW operations. Though they were relative to the control process optimization, the operations only concerned energy deliv-
ery part rather than the quality information, they are not seriously considered and reviewed in detail in this section.

The simplest control mode for the RSW operation was open-loop controller. The parameter setting and process control
followed a predetermined welding schedule, which was obtained from offline experiments or experiences. However, the
method cannot consider the quality estimation results because the operational parameters were preliminary fixed, and
no any feedback information and adjustment can be used during the process. Then to combine the online quality estimation
result, close-loop control should be employed together. The most commonly-used close-loop controller was Proportional–
Integral–Derivative (PID) Controller. Cho et al. [132] and Chang et al. [133] developed two similar feedback controllers to
achieve good quality. Single-phase AC type machines were used in both works. The controllers were based on a micropro-
cessor, and adjusted the energy input to make the actual electrode movement track a preliminary desired curve, which was
obtained offline and denoted the welds with satisfactory quality could be obtained. The P controller and PI controller were
respectively employed in these two works. The characteristics of final products approached the desired characteristics very
much, so the preliminary goals were achieved under the circumstances of the experiments. Also, Haefner et al. [134] devel-
oped a real time adaptive controller using the same basic idea. Single-phase AC RSWmachine was also used in this work. An
integrated PID controller was used, and the gain was obtained using advanced Smith-Predictor, which could continuously
modify the gain by the linear least squared estimator to follow the actual process gain variation during the welding process.
The preliminary electrode displacement curve, which denoted the welds having desired quality, was an ideal condition for
controller adjustment. Finally, through adjusting the gains of the PID controller, the actual energy delivery was changed to
make the actual electrode displacement curve approach the preliminary ideal one. Fig. 16 showed the control scheme of this
kind of controllers.

These feedback controllers can achieve the goal which obtained welds with satisfactory quality, under the specific weld-
ing conditions. However, it has more limitations. Firstly, it may not be able to obtain general desired curve of the reference
model, which was the electrode displacement moving trajectory in above works, no matter using numerical calculation or
actual experimental method. Numerical calculation has some limitations, which were the same as why the FEM cannot pre-
cisely describe the RSW process, as mentioned in preceding section. For an actual experimental process, because the system
Fig. 16. Control scheme of close-loop feedback controller.



190 K. Zhou, P. Yao /Mechanical Systems and Signal Processing 124 (2019) 170–198
was so complex, the desired curve obtained from one series of experiments cannot be generally employed in other occasions.
In addition, the electrode movement was affected by electrode force, or other relative mechanical and electrical conditions.
Similarly, as another process variable which was commonly employed to describe the process characteristics, dynamic resis-
tance was also considered as desired control condition in previous work [135]. However, establishing a precise and reliable
model to seek a desired dynamic resistance curve may be even more difficult than that obtaining a desired electrode dis-
placement, because the dynamic resistance related to more elements and more sensitive to kinds of noises affecting the par-
ent sheet metals than those of electrode displacement, and the phase change can affect dynamic resistance more than that of
electrode displacement. Hence, based on the same reason, it was harder to establish a corresponding general relation
between varying dynamic resistance and varying energy delivery.

As the significantly developing of artificial intelligent (AI) controller and high technology of computer application, intel-
ligent control methods were also widely employed in RSW process control. Firstly, fuzzy logic controller was used more fre-
quently in practical mechanical systems, also in RSW system control. Araki et al. [136] proposed a model reference fuzzy
adaptive control (MRFAC) system for RSW process control, which was a nonlinear and time-varying system for realizing
online control and improving output performance. The input of the system was a voltage signal to firing SCR of the
single-phase AC RSW machine, while the output was the welding energy. The goal of the control action was obtaining
expected output performances, which were expected nugget and reduced energy loss. An adaptive welding energy reference
model, which was established based on expected welding information, such as characteristics of different welding stages,
welding current and so on, provided online feedback information to the fuzzy logic controller, which could adjust the gain
and output new voltage input signal for the next control cycle. The simulation showed that the actual output could converge
to the desired demands. This work only considered how to use fuzzy controller in RSW process control, and focused on the
characteristics of different welding stage instead of quality control for RSW operation. However, the reference model might
not be sufficiently reliable, and the work was not an integrated actual welding operation and no weld quality information
appeared in the work. Hence, the work can only be an important reference for the further works. Another typical application
of the fuzzy logic control was developed by Chen et al. [137], and the authors were also the members of the group who con-
ducted the preceding work. Based on the dynamic resistance calculation and input energy, they can calculate the nugget size
using FEM, and a welding current model reference in different welding stages, which was based on characteristics of
dynamic resistance, could be established. The nugget size in this work included both of the penetration and distance, which
were width and height. The error of the welding current was the input of the proposed fuzzy logic controller, while the out-
put was the input of the RSW machine, which was also a voltage signal firing SCR. According to FEM calculation of nugget
size based on the actual welding dynamic resistance and welding current, the proposed method could obtain bigger nugget
size than that of constant current control. In these two works, fuzzy logic control was used to calculate the input of RSW
system based on the output of the machine. Also, fuzzy logic control was a powerful tool to deal with a lot of input infor-
mation and make a decision for control system. Khoo et al. [138] employed a two-stage RSW machine and selected four
important variables, which were welding currents in two stages, welding time and electrode pressure, as the inputs, and
the outer diameter of the HAZ as the output, to establish a prototype fuzzy RSW system. The rule-base contained 125 heuris-
tic control rules derived from experiences, literatures reviews and through actual experiments, to relate the necessary
actions to obtain welds with good quality. The system had the ability to imitate the decision-making process of a specialist
and to provide simultaneous control of more parameters. Hence, it is possible to achieve good welding quality even the ini-
tial parameters setting was not perfect, because the prototype system can provide a bi-directional adjustment of outer diam-
eter of the HAZ which was like the specialists’ behaviors, and prevent the machine from operating under undesirable
conditions. Recently, to increase the cost effectiveness in the production, Podržaj et al. [139] employed the fuzzy logic to
detect the expulsion occurring. The variations of three important variables, which were dynamic resistance, electrode dis-
placement and welding force, could be inputs the fuzzy logic, and the expulsion was the output, and each varying range
is between 0 and 1. If the output was changed to 1, the welding process should be stopped immediately so that the electrode
can be protected and the energy can be saved. Compared to the preceding works, the last work did not focus on the welding
quality and process control. It was just an actual application of fuzzy logic in online expulsion detection.

Apart from fuzzy logic control, neural network was also employed in RSW control action. In many cases, it was combined
with fuzzy logic to generate expected results in RSW relative works. An intelligent control system was developed by Messler
et al. [140]. In the work, neural network was used to describe the electrode displacement as a function of percentage max-
imum heat input and welding time. It used a lot of actual experimental data and trained the network offline using BP algo-
rithm. The data was collected under normal welding condition with different percentages of heat input. Then a fuzzy logic
was used to adjust the actual heat input based on the electrode displacement and velocity. The control actions began from
the third control cycle because the effect of surface roughness or contaminations dominated the first two cycles, and then the
fuzzy rules were adjusted based on the difference between actual and desired electrode displacements, together with the
difference between actual and desired electrode velocities at the comparison point in the first zone, while in the second zone,
the fuzzy rules were adjusted only based on the difference between actual and desired electrode displacements. The desired
values came from experimental and theoretical deduction based on the electrode movement characteristics. The border of
the two zones was confirmed in preliminary stage. This combined controller can compensate for variations and errors, and
improve the welding quality during the RSW process, according to the simulation of three anomalies that frequently
occurred during the process, which were worn electrode, poor fit-up and contamination. Also, Zhang et al. [141] proposed
a neuro-fuzzy algorithm to control the weld quality, through adjusting the welding current, when the part fit-up fault
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existed. The proposed inference system had two input variables, which were electrode displacement and electrode velocity,
while the welding current was the output variable. The desired value of the input also came from preliminary deduction, as
the same as the preceding work. The errors between desired and actual values of the two input variables were codified into
linguistic values by special membership functions, and then the activation degrees to each rule can be calculated. At last, the
inference mechanism weighted each conclusion values. The error signals were used by the gradient-descent method to
adjust each rule conclusion. Fig. 17 [141] showed the structure.

The final experimental results showed that when the proposed system was applied, the actual electrode displacement
was very close to the desired electrode displacement, when compared to that without the proposed system, which meant
that the proposed neuro-fuzzy systemwas able to compensate for the quality variation caused by part fit-up fault conditions.

According to above works using AI control methods for RSW operations, it can be concluded that the applications of intel-
ligent controllers in practical RSW operations are remaining limited. Because the RSW system is so complex, and a lot of ele-
ments affect the welding quality, it is hard to cover all the elements by means of AI modeling. Firstly, as the same as the usual
feedback control, intelligent control needs a preliminary desired reference condition, electrode displacement and dynamic
resistance were commonly used as the conditions, however, it was hard to obtain a general reference model to instruct
the energy delivery. In majority of previous works, the desired curves were only proper under some specific conditions. Sec-
ondly, the fuzzy logic and neural network are based on former experimental data or experts’ experiences, which are not gen-
eral and ideal actually. In addition, RSW system has a lot of special features during the process, so that the fuzzy logic
requires a lot of fuzzy set to cover all the elements. Also, precisely setting each linguistic value is difficult because the vari-
ation range cannot be precisely confirmed. Moreover, making up the fuzzy logic set require a lot of rules. Too many rules may
decrease the generality and increase the complexity of the method, while too less rules many decrease robustness of the sys-
tem, which is a dilemma actually. While neural network requires a lot of data for preliminary training to establish a map,
however, the data may not cover all of conditions which will occur in reality, and the data may be obtained in one condition
and may not ideally cater to other conditions. For example, the map between dynamic resistance or electrode displacement
and input energy can be established according to a lot of actual experimental data, however, the variation of the two vari-
Table 2
Characteristics and shortcomings of the controllers.

Controller Characteristics Shortcomings

Open-loop
control

Followed a predetermined welding schedule No quality information, no online adjust

Close-loop
control
(PID)

Tracked a predetermined reference condition Ideal and general reference cannot be obtained

Fuzzy logic
control

Adjusted the energy delivery to follow a reference model
established by quality information

The models might not be reliable; Precisely setting each linguistic
value was difficult; Fuzzy logic set required a lot of rules

Adjusted the input according to experts’ experiences Using fuzzy set to cover all the elements was difficult
Neuro-fuzzy

Control
Neural network established the relation between input and
output, while fuzzy logic adjusted the energy delivery

The results were experimental condition dependent and might not
be general in actual application



192 K. Zhou, P. Yao /Mechanical Systems and Signal Processing 124 (2019) 170–198
ables are affected by a lot of elements, in addition to the input energy, such as mechanical, electromagnetic or thermal ele-
ments, so the map may not be normally worked in other welding operations because the effects of the affecting elements
may be diverse. In other words, they are experimental condition dependent and may not be general in actual application.
Furthermore, the difference between parent metal sheets may be very large, the experiences, models or other types of ref-
erences obtained from previous collected data may not be available for the new parent metal sheets. In addition, the meth-
ods directly adjusted the energy input, no matter in types of the firing voltage of SCR, or the duty cycle of the PWM, were
based on the preceding system output. Once one sudden disturbance came, it may induce the energy delivery in next control
cycle significantly vibrate, which may lead to system cannot be convergent, and the threshold setting may be not able to
adequately deal with the sudden change of the system, under some special conditions. Hence, it was expected to use other
advanced control system design for this process. To clearly present the characteristics of the different controller, combining
the preceding open-loop and close-loop controllers, Table 2 shows the characteristics and shortcomings of above four
controllers.

To obtain reliable and precise control, the energy delivery control and the online quality estimation can be coupled in
recent works. A significant work using this mode was conducted by El-Banna et al. [142]. The work simultaneously employed
constant current controller and the online quality estimator. A medium frequency DC RSW machine was used to operate the
welding action. In the work, an intelligent control algorithm replaced the conventional ‘‘stepper” type constant current con-
trol scheme. The welding current remained constant, which was realized by a fuzzy control algorithm. The control action in
the primary coil of the welding transformer was continuously adjusted based on two online intelligent sensors. The first was
a LVQ neural network responsible for quality estimation, while the second was an online expulsion detection sensor based
on dynamic resistance online monitoring. The online nugget quality estimation sensor, which used a two layers LVQ artificial
neural network, was employed to classify the welds as three types: normal weld, expulsion weld and cold weld. The expul-
sion detection sensor was to detect the dynamic resistance variation, if sudden drop appeared in the dynamic resistance
curve, it meant that the expulsion occurred. The control action of the welding current employed a fuzzy logic controller
to modify the changes of the output current to achieve intelligent current adjustment to compensate the effects of electrode
degradation, and the results of quality estimation and expulsion detection were utilized by the controller. The overall control
scheme of the work was shown in Fig. 18 [142].

In the work, the online quality estimation, expulsion detection and realization of control strategy were properly com-
bined. The work was a remarkable improvement when compared to previous works. Though the neural network was
employed, it was just a weld classification sensor, and the expulsion detection also used general characteristics of RSW pro-
cess. The fuzzy logic algorithm was used to achieve constant current control, and the algorithm did not fully rely on the
results of online quality estimation and expulsion detection. The discipline was much general than that of previous other
works. In other word, this type of work was the most suitable method when compared to other works, especially which
employed the AI tools.
Fig. 18. Control scheme in the work.
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In the preceding reviews, though the control systems were designed based on the effects of quality monitoring, two parts
are dependent each other. In other words, if energy delivery followed a predetermined mode, such as constant current, con-
stant energy or parameters optimization modes, the online quality estimation cannot instruct the control system design. On
the other hand, if the online quality estimation was employed to generate control strategy for instructing the energy deliv-
ery, the energy delivery must abandon its intrinsic mode and follow it. In addition, if the feedback control mode was
employed, the feedback signals must affect the predetermined energy delivery mode or quality estimation algorithm.

To achieve an appropriate control, the energy delivery and the online quality estimation should be absolutely separated,
in other words, the energy delivery was independent and not affected by quality estimation result during the whole process,
while the online quality estimation was just a sensor and provided the quality information to the system.

In our previous work [13,143], we designed a similar system to conduct the process control of RSW system. In this work,
we employed a constant current controller, which was designed fully based on the electrical characteristics of single-phase
AC RSW machine and can guarantee the value of the welding current approximately constant during the whole process. An
online nugget diameter estimator was used to provide diameter value after each control cycle, based on a model which was
established offline. The model in the work was based on the metallurgical experiment, while the process analysis based on
dynamic resistance characteristics and mathematical deduction, and the results were verified by a series of experiments. The
online dynamic resistance measurement in this work employed a new processing method, which used the historical infor-
mation to eliminate the noises and errors, and obtained the values with very high frequency, at the same time the accuracy
was similar to that of the calculation by RMS values of electrode voltage and welding current. The form of the quality esti-
mator was mathematical equations based on the data curve fitting between energy absorbed by the workpieces and nugget
diameter, and coefficients of equations were obtained based on the experiments under different welding currents. The over-
all control scheme was shown in Fig. 19 [143].

In the work, the actual welding time of the system was determined by the result provided by the online nugget quality
estimator. If the output of the estimator achieved the predetermined value, the process terminated, otherwise, the external
energy continued to be delivered into the system. The energy was calculated using welding current and dynamic resistance
following Eq. (1). The work properly combined online quality estimation and constant current control. However, the two
parts were independent with each other. The result of online quality estimator did not affect the action of constant current
control, it only supplied the estimated nugget diameter values after each control cycle, in other words, a terminating signal
of the action. In addition, the detection of expulsion which was based on the fierce and abnormal change of dynamic resis-
tance was also added to terminate the operation when expulsion occurred. Hence, the systemwas adequately safe during the
process. The final experimental results showed that the error of the nugget diameter control can be limited to less than
0.1 mm.

According to review above control methods for RSW operation, the RSW system has only one input, such as percentage of
energy input, or welding current, or other employed parameters, which were realized by adjusting the firing angle of SCR in
single-phase AC RSW machine or duty ratio of PWM wave in three-phase medium frequency DC RSW machine. All of the
system operations and strategies must relate the input and the preliminary confirmed goal, which might be the nugget
diameter, welds classified results or others in general cases. A lot of nonlinearities, uncertainties, or mechanical elements
affect the welding quality, hence, precisely establishing the model of the relation between input and output is difficult. This
reason is the same as why no proper or general method to be proposed to online analyze RSW process or do NDT. In addition,
because the welding time is so limited, control actions cannot be conducted in many times. In this section, firstly, the works
which focused on optimizing the process parameters have been reviewed. These works analyzed the welding process and
explored how the parameters affected the nugget formation and growth process, then used offline methods to optimize
the process. However, the optimization cannot enough deal with the complexities and nonlinearity in real time, its applica-
tions were so limited. Secondly, the works which used the feedback control to improve the welding quality were reviewed.
The works combined the characteristics of RSW process and nugget formation and growth, and many commonly employed
control strategies were employed in reality. The control strategies included the traditional PID control and recent AI control
methods. The methods were based on a lot of offline training and experiences, and some methods were so complex and
required a lot of inputs, which limited the generality and university of the methods. In addition, the control actions gener-
ated from the control models may induce the system instability, because the quality estimation was accomplished and the
Fig. 19. Overall control scheme in the work.
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control decision was made in the secondary coil of the transformer, while the control action was conducted in the primary
coil, a tiny change in the second coil may induce large changes in the primary coil because the welding transformer was step-
down. Hence, relying on the decision made in the secondary coil to adjust the energy delivery in the primary coil may be
difficult and can induce a lot of errors. Then two works, which combined online quality estimation and confirmed control
strategy were presented for respectively three-phase medium frequency DC RSW machine and single-phase AC RSW
machine. The constant current control strategies were conducted in both of two works, in the first work, though it used
the results of online quality estimation, the current control strategy was confirmed and cannot be changed by the results;
while in the second work, the results of online process analysis and quality estimation were just a sensor to determine when
to terminate the energy delivery. However, preliminary knowledge or offline data training are still required under current
circumstance. The designs were more general than those of previous works and can assure the stability of the control process
and obtaining welding products with high quality, though there are some drawbacks existing in these two works. It can be
seen that the real time control system design for RSW operation is still a big challenge issue in current academic research and
practical industrial application.
4. Conclusion

The recent advances of process analysis and quality control in RSW area have been reviewed in this paper. Online process
analysis and non-destructive quality estimation are very important in RSW application because it can help to understand the
process, and then take corresponding measures to reduce energy loss, improve the energy efficiency and weld quality, and
reduce the costs of the production. It is derived from the exploration of the characteristics of RSW process, especially involv-
ing the nugget formation and growth features. Firstly, a lot of scholars employed mathematical analysis tools to interpret the
RSW process and obtained some significant achievements. Though various models were presented, majority of models were
based on the same principle and used the similar methods. That is, axisymmetric and thermal-electrical-mechanical models
were employed to calculate the process, and display the important characteristics, such as temperature or current density
distributions, magnetic variation, as well as the effects of process parameters on the nugget formation and growth process.
However, under current circumstances, because the governing equation cannot sufficiently and exactly describe the phase
change process, some important characteristics parameters cannot be precisely obtained. Also, some operational conditions,
such as welding current in single-phase AC RSW machine, used approximate assumptions, the mathematical tools, mainly
the FEM, had some limitations actually and cannot be precisely describe the process. Also, external monitoring tools, which
included the digital high-speed camera, SEM, acoustic reflection, IR camera, PZT-based sensor, magnetic signals and so on,
were employed. Though kinds of auxiliary measuring signals collected by majority of sensors can include enough informa-
tion of the welds by means of preliminary models or data processing algorithms, some limitations cannot be avoided. Proper
setting the sensors is so difficult, and the quality of the signals transmission is affected by various welding environment. Also,
some experimental platforms are so complicate and many uncertainties elements exist in the measuring and analysis pro-
cess. In addition, the information directly obtained from the sensors should be related to the characteristics of RSW process
and nugget formation and growth, which require a lot of experimental data and offline training works. Moreover, the intrin-
sic process variables were also frequently employed to reflect the welding quality. Dynamic resistance, electrode displace-
ment, which were the most commonly employed intrinsic variables, together with other variables, such as electrode force,
electrode velocity, and so on, were combined various mathematical tools, such as kinds of neural networks or other data fit-
ting methods to reflect the characteristics of RSW process. Though some remarkable achievements have been gained, the
methods which used a lot of offline experiences and complex modeling methods lacks enough generality and could only
be applied in limited occasions. In other words, it is difficult to extend the methods to general applications, no matter in pro-
cess analysis or non-destructive quality estimation.

The goal of welding process control is obtaining welds with satisfactory quality by means of proper control actions. At the
same time, the energy loss should be less and efficiency should be high. RSW control process is different from other common
control systems. The process is absolutely unidirectional, because if the energy is delivered into the system, it cannot be
removed. Also, the control action can be conducted in limited points, especially in the systems which employ the single-
phase AC power source, so the accuracy of the system control is difficulty to be assured. Previous works employed various
strategies and methods to achieve the goal. Firstly, some previous works focused on the operational parameters optimiza-
tion. Apart from optimizing process variables to avoid negative phenomena, a lot of optimized parameters combinations,
which were various welding lobe, were confirmed according to theoretical analyses or corresponding actual experiments.
In addition, the works explored the effects of different parameters on welding quality, and then made corresponding adjust-
ments or optimizations. Then to realize the feedback control, advanced control methods, such as PID tracking control, fuzzy
logic control, and neuro-fuzzy control, were incorporated in the RSW operation, and gained some achievements. However,
because the desired control goal was derived from or collected by limited experimental data, and offline data trainings were
required. Each welding process involves a lot of special elements, the actual welding condition may not be the same as that
when the offline data collection and training are conducted. In other words, the methods lack generality and has limitations
in actual applications. Also, the control action for energy delivery in the primary coil of the welding transformer is affected by
the predetermined control goal in the secondary coil of the transformer, which may deteriorate the stability of the system
operation. Then two comprehensive control designs, which properly combined the online quality estimation and control
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strategies application, were presented. The works referred to respectively medium frequency DC RSW machine and single-
phase AC RSW machine. Under the circumstances, two parts were effectively combined and could achieve more general
design for the RSW control operation. The control action employed fixed control strategy and can guarantee the steady of
energy delivery during the process, while the online quality estimation was used to optimize the performance of control
strategy, or provided a signal of terminating the welding process.

According to review previous works in RSW related area, it is easily noticed that the amount of previous works dealing
with online quality estimation or NDT including expulsion monitoring is extreme more than that of papers in other aspects
of RSW related works, it may because the online quality estimation can be realized by means of different sensors or math-
ematical tools. As for other aspects, such as electrical structure and corresponding operations, materials characteristics anal-
ysis and control system design, the relative contributions were fewer. It may because that separately researching the
electrical structure, process optimization or control system design were more difficult to obtain new significant achieve-
ments. However, based on above reviewing works, to achieve the goal of obtaining welds with satisfactory quality, different
aspects should be comprehensively combined. For example, a general quality estimation or control system requires a stable
energy delivery, which is provided by electrical structure. However, the variation of load resistance affects the consistency of
energy delivery, and the knowledge is closely related to the metal melting and material characteristics variation. On the
other hand, the quality estimation method requires materials characteristics, energy delivery features together with the
application of reliable mathematical analyzing tools.

Because the RSW system is multi-field coupled and so complex, nonlinear and full of uncertainties, no matter in online
process analysis and non-destructive quality estimation, or process control for obtaining products with high quality, there
are some challenges in actual application. The general models which can eliminate the noises and disturbances have not
been appeared so far. The majority of previous works were based on special working conditions or experimental conditions,
or required many offline trainings or experts’ experiences. In addition, because the surface differences between parent metal
sheets are so large, and the welding condition also have differences, the reference models derived from previous experimen-
tal data have big limitations. Hence, it is expected that the important aspects for RSW researches will remain an active
research items for a long time, especially in the general model of process analysis, quality estimation including NDT and
online control system design. The future work should combine the characteristics of nugget formation and growth, as well
as the operational features of RSW process, and consider the different parent metal size on the nugget formation and growth,
and then establish general models which can avoid disturbances and cater to majority of occasions. Then the effective and
general control system for stable RSW process and obtaining welds with satisfactory quality can be developed. This work can
provide references and enlightens no matter in academic researches or actual production of RSW relative works.
Acknowledgements

This project is supported by Natural Science Foundation of China, China (Grant Nos.: 51605103, 51805099), the Founda-
tion for Public Welfare Research and Capacity Building Project of Guangdong Province, China (2015A010104010), and
Science and Technology Planning Project of Guangdong Province, China (2017B090914005).
References

[1] J. Robert, W. Messler, M. Jou, Review of control systems for resistance spot welding: past and current practices and emerging trends, Sci. Technol.
Weld. Join. 1 (1) (1996) 1–9.

[2] N. Akkas, Welding time effect on tensile-shear loading in resistance spot welding of SPA-H weathering steel sheets used in railway vehicle, Acta Phys.
Pol. A 131 (1) (2017) 52–54.

[3] Ó. Martín, P. Tiedra, M. San-Juan, Combined effect of resistance spot welding and precipitation hardening on tensile shear load bearing capacity of
A286 superalloy, Mater. Sci. Eng., A 688 (2017) 309–314.

[4] J. Bi, J. Song, Q. Wei, Y. Zhang, Y. Li, Z. Luo, Characteristics of shunting in resistance spot welding for dissimilar unequal-thickness aluminum alloys
under large thickness ratio, Mater. Des. 101 (2016) 226–235.

[5] D. Stavrov, H.E.N. Bersee, Resistance welding of thermoplastic composites – an overview, Compos. A: Appl. Sci. Manuf. 36 (1) (2005) 39–54.
[6] Y. Li, Z. Lin, Q. Shen, X. Lai, Numerical analysis of transport phenomena in resistance spot welding process, J. Manuf. Sci. Eng. Trans. ASME 133 (3)

(2011).
[7] M. Pouranvari, S.P.H. Marashi, Critical review of automotive steels spot welding: process, structure and properties, Sci. Technol. Weld. Join. 18 (5)

(2013) 361–403.
[8] Z. Wan, H.-P. Wang, M. Wang, B.E. Carlson, D.R. Sigler, Numerical simulation of resistance spot welding of Al to zinc-coated steel with improved

representation of contact interactions, Int. J. Heat Mass Transf. 101 (2016) 749–763.
[9] N.T. Williams, J.D. Parker, Review of resistance spot welding of steel sheets part 1 modelling and control of weld nugget formation, Int. Mater. Rev. 49

(2) (2004) 45–75.
[10] D.W. Dickinson, J.E. Franklin, A. Stanya, Characterization of spot welding behavior by dynamic electrical parameter monitoring, Weld. J. 59 (6) (1980)

170s–176s.
[11] P.S. Wei, C.Y. Ho, Axisymmetric nugget growth during resistance spot welding, J. Heat Transf. 112 (1990) 309–316.
[12] J. Kaars, P. Mayr, K. Koppe, Generalized dynamic transition resistance in spot welding of aluminized 22MnB5, Mater. Des. 106 (2016) 139–145.
[13] K. Zhou, Development of an Online Quality Control System for Resistance Spot Welding (Ph.D), Mechanical Engineering, Hong Kong University of

Science and Technology, Hong Kong, 2013.
[14] Y. Cho, I.S. Chang, H.B. Lee, Single-sided resistance spot welding for auto body assembly, Weld. J. 85 (8) (2006) 26–29.
[15] M. Matsushita, R. Ikeda, K. Oi, Development of a new program control setting of welding current and electrode force for single-side resistance spot

welding, Weld. World 59 (4) (2015) 533–543.
[16] C.P. Liang, Z.Q. Lin, G.L. Chen, Y.B. Li, Numerical analysis of single sided spot welding process used in sheet to tube joining, Sci. Technol. Weld. Join. 11

(5) (2006) 609–617.

http://refhub.elsevier.com/S0888-3270(19)30057-3/h0005
http://refhub.elsevier.com/S0888-3270(19)30057-3/h0005
http://refhub.elsevier.com/S0888-3270(19)30057-3/h0010
http://refhub.elsevier.com/S0888-3270(19)30057-3/h0010
http://refhub.elsevier.com/S0888-3270(19)30057-3/h0015
http://refhub.elsevier.com/S0888-3270(19)30057-3/h0015
http://refhub.elsevier.com/S0888-3270(19)30057-3/h0020
http://refhub.elsevier.com/S0888-3270(19)30057-3/h0020
http://refhub.elsevier.com/S0888-3270(19)30057-3/h0025
http://refhub.elsevier.com/S0888-3270(19)30057-3/h0030
http://refhub.elsevier.com/S0888-3270(19)30057-3/h0030
http://refhub.elsevier.com/S0888-3270(19)30057-3/h0035
http://refhub.elsevier.com/S0888-3270(19)30057-3/h0035
http://refhub.elsevier.com/S0888-3270(19)30057-3/h0040
http://refhub.elsevier.com/S0888-3270(19)30057-3/h0040
http://refhub.elsevier.com/S0888-3270(19)30057-3/h0045
http://refhub.elsevier.com/S0888-3270(19)30057-3/h0045
http://refhub.elsevier.com/S0888-3270(19)30057-3/h0050
http://refhub.elsevier.com/S0888-3270(19)30057-3/h0050
http://refhub.elsevier.com/S0888-3270(19)30057-3/h0055
http://refhub.elsevier.com/S0888-3270(19)30057-3/h0060
http://refhub.elsevier.com/S0888-3270(19)30057-3/h0065
http://refhub.elsevier.com/S0888-3270(19)30057-3/h0065
http://refhub.elsevier.com/S0888-3270(19)30057-3/h0065
http://refhub.elsevier.com/S0888-3270(19)30057-3/h0070
http://refhub.elsevier.com/S0888-3270(19)30057-3/h0075
http://refhub.elsevier.com/S0888-3270(19)30057-3/h0075
http://refhub.elsevier.com/S0888-3270(19)30057-3/h0080
http://refhub.elsevier.com/S0888-3270(19)30057-3/h0080


196 K. Zhou, P. Yao /Mechanical Systems and Signal Processing 124 (2019) 170–198
[17] M. Matsushita, R. Ikeda, K. Oi, Development of in-process welding current and electrode force control process for single-side resistance spot welding,
JFE Tech. Rep. 20 (2015) 92–98.

[18] Y. Cho, I.S. Chang, H.B. Lee, Advanced resistance spot welding technologies: new machine, adaptive control and FEM simulation, Mater. Sci. Forum
580–582 (2008) 367–370.

[19] B.H. Chang, Y. Zhou, Numerical study on the effect of electrode force in small-scale resistance spot welding, J. Mater. Process. Technol. 139 (1–3)
(2003) 635–641.

[20] B.H. Chang, M.V. Li, Y. Zhou, Comparative study of small scale and ’large scale’ resistance spot welding, Sci. Technol. Weld. Join. 6 (5) (2001) 273–280.
[21] D. Zhao, Y. Wang, Z. Lin, S. Sheng, Quality monitoring research of small scale resistance spot welding based on voltage signal, ISIJ Int. 53 (2) (2013)

240–244.
[22] J. Chen, D.F. Farson, K. Ely, T. Frech, Modeling small-scale resistance spot welding machine dynamics for process control, Int. J. Adv. Manuf. Technol. 27

(7–8) (2006) 672–676.
[23] W. Li, D. Cerjanec, G.A. Grzadzinski, A comparative study of single-phase AC and multiphase DC resistance spot welding, J. Manuf. Sci. Eng. Trans.

ASME 127 (3) (2005) 583–589.
[24] S.C.A. Alfaro, J.E. Vargas, M.A. Wolff, L.O. Vilarinho, Comparison between AC and MF-DC resistance spot welding by using high speed filming, J.

Achievements Mater. Manuf. Eng. 24 (1) (2007).
[25] J. Yu, New methods of resistance spot welding using reference waveforms of welding power, Int. J. Precis. Eng. Manuf. 17 (10) (2016) 1313–1321.
[26] W. Li, E. Feng, D. Cerjanec, G.A. Grzadzinski, Energy Consumption in AC and MFDC Resistance Spot Welding, The Proceedings of the Sheet Metal

Welding Conference XI, Sterling Heights, 2004.
[27] K. Zhou, P. Yao, Review of application of the electrical structure in resistance spot welding, IEEE Access 5 (2017) 25741–25749.
[28] K. Zhou, P. Yao, Simulation of a uniform energy control strategy of single-phase AC resistance spot welding, Int. J. Adv. Manuf. Technol. 94 (5–8)

(2018) 1771–1779.
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