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A B S T R A C T

We introduce two Convolutional Neural Network (CNN) classifiers optimized for inferring brain states from
magnetoencephalographic (MEG) measurements. Network design follows a generative model of the electro-
magnetic (EEG and MEG) brain signals allowing explorative analysis of neural sources informing classification.
The proposed networks outperform traditional classifiers as well as more complex neural networks when
decoding evoked and induced responses to different stimuli across subjects. Importantly, these models can suc-
cessfully generalize to new subjects in real-time classification enabling more efficient brain–computer interfaces
(BCI).
1. Introduction

Deep Neural Networks have revolutionized many domains such as
image recognition and natural language processing. To date, their
application in the analysis of electro- and magnetoencephalographic
(EEG and MEG) data has been limited by several domain-specific factors.

First of all, electromagnetic brain signals are characterized by very
low signal-to-noise ratio (SNR). Here, the term “noise” is understood
widely and includes external interference, physiological (e.g. cardiac or
oculomotor) artifacts as well as background brain activity unrelated to
the studied phenomena. SNR in single-trial EEG and MEG measurements
is typically assumed to be < 1 for evoked responses and � 1 for oscilla-
tory activity, which puts these data to stark contrast with those in
traditional applications of deep learning. Typical EEG/MEG analysis
employs a wide range of techniques to increase the SNR, e.g. spatial and
temporal filtering, averaging a large number of observations, source-
separation algorithms, and other complex feature extraction methods
(e.g. wavelet transform). Thus, efficient noise suppression is required for
high-accuracy classification of EEG/MEG signals.

Second, these data have a complex, high-dimensional spatiotemporal
structure. Modern EEG and MEG systems comprise several hundreds of
sensors capable of sampling brain activity with sub-millisecond temporal
resolution. In the case of MEG, these sensors may also measure different
components of the neuromagnetic field. On one hand, this multitude of
data points enables sophisticated analysis methods to extract finer details
of brain function. On the other hand, manual analysis and interpretation
of these data become increasingly complex and time-consuming.
v).

rm 30 March 2019; Accepted 25

vier Inc. This is an open access ar
Machine-learning algorithms can be of great help in such tasks but the
mere classification result is often not sufficient; ideally, the experimenter
should understand why the algorithm is able to classify the data, i.e., the
learned model should be interpretable in neurophysiological terms. A
model able to reliably identify those neural sources that contribute to the
discrimination between given experimental conditions could enable
efficient exploitative analysis of these complex data sets and ultimately
allow more complex experimental designs.

Finally, deep-learning models require large numbers of training
samples to perform optimally. In a typical EEG/MEG or BCI experiment,
however, time constraints and data acquisition costs limit the sample
sizes severely. Open datasets usually comprise data from a large number
of individuals, providing a promising strategy to overcome this limita-
tion, but in this case, the classifier needs to be robust to high inter-
individual variability stemming from differences in cortical anatomy,
mappings of function to structure and physiological state.

Taken together, these factors may easily lead to over-fitting (espe-
cially in more complex models) and poor interpretability of the findings.
To address these challenges, we propose a Convolutional Neural Network
(CNN) whose architecture is based on a generative model of non-invasive
electromagnetic measurements of the brain activity (Daunizeau and
Friston, 2007).

This network utilizes spatiotemporal structure in the MEG data to
extract informative components of the MEG signal from the noisy ob-
servations. Since the model structure reflects our understanding of the
data generation process, the extracted components can be interpreted in
terms of the underlying neural activity. Specifically, this model assumes
April 2019
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Fig. 1. Architecture of the two variants of the CNN.
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that the MEGmeasurements are generated by a linear (spatial) mixture of
a limited number of latent sources, which evolve non-linearly over time.
Each of these sources is characterized by a spatial distribution and a time
course, which are relatively stable within each individual but may vary
across individuals. For example, the spatial topography of a sensory
evoked response may vary across subjects due to small differences in
cortical anatomy but its latency can be relatively constant. Conversely,
the phase of an event-related (induced) oscillatory response may vary
considerably across trials while its spectral content and spatial distribu-
tion remain the same.

We demonstrate that utilizing a generative model makes the algo-
rithm robust to inter-individual differences in spatial, temporal and
spectral properties of the signal. Critically, such across-subject general-
ization makes it possible to train the model on pooled data from multiple
subjects and successfully apply it to new subjects. Here, we applied this
neural network to classify evoked responses to visual, auditory and so-
matosensory stimuli (5 classes; Experiment 1) and induced responses to
hand motor imagery (3 classes; Experiment 2). We verified the feasibility
of this approach by running the algorithm in real time brain–computer
interface (BCI) experiment (2 classes; Experiment 3). Finally, we tested
the algorithm on a large open MEG Cam-CAN dataset and provide the
code to demonstrate the reproducibility of the results (2 classes; Exper-
iment 4).

2. Methods

2.1. Generative latent state-space model for MEG signal

Magnetoencephalography (MEG) is a non-invasive, time-resolved
technique for measuring electric brain activity through themagnetic field
it generates (Hamalainen et al., 1993). The MEG signal is complementary
to that of electroencephalography (EEG), in which the potential distri-
bution caused by electric brain activity is measured using electrodes
placed on the scalp. MEG is considered to have higher spatial resolution
than EEG, as the EEG signal is distorted by the heterogeneous conduc-
tivity profile of head tissues to a much larger extent than the MEG signal
(see e.g. Baillet, 2017).

MEG data typically include 1) evoked responses (event-related fields;
ERF) that are phase-locked to specific sensory, cognitive or motor events,
and 2) induced modulations of ongoing oscillatory brain activity that is
not phase-locked to external events. MEG measurements are typically
contaminated by noise and interference originating from external sources
as well as by ongoing unrelated brain activity. Single-trial ERFs typically
have a signal-to-noise ratio (SNR) � 1.

An MEG measurement can be represented by an n� t data matrix X
containing measurements from n sensors (magnetometers or gradiome-
ters; typ. 200–300) at t time points sampled at a high temporal frequency
(typ. � 1000 Hz). These data have a complex spatiotemporal structure
because activation of a single neural source is picked up by several sen-
sors at different spatial locations and these signals exhibit temporal
correlations. Thus, simultaneously active neural sources result in a high
degree of linear spatial mixing as well as non-linear temporal de-
pendencies in themeasured data. Fortunately, dense spatial and temporal
sampling allow efficient source-separation by utilizing local spatiotem-
poral correlations (Cardoso, 1998). We argue that an effective approach
towards decoding brain states should take into account these properties
of the signal.

The proposed network architecture is broadly based on an extension
of a model describing the generation of MEG signal (Daunizeau and
Friston, 2007). The model is motivated by the assumption that a single
event-related MEG observation X 2 Rn�t is generated by a mixture of k
latent sources s such that at each time point t

xt ¼Cst þ ε (1)

where C is an n� k matrix describing the spatial mixing of the k
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underlying latent sources whose time courses s are the rows of a matrix S
and ε is additive Gaussian white observation noise. The number of such
latent sources is small relative to the number of MEG channels (i.e.,
k ≪ n). These k sources evolve in time in a structured way and may or
may not be statistically dependent. Importantly, we do not restrict the
definition of a latent source to neural activity as some of these sources
may correspond to e.g. ocular or muscular artifacts. In the simplest case,
the mapping from S to X is linear, and non-linearities in temporal dy-
namics of S can be locally approximated by a linear autoregressive (AR)
model A of order L. Given the fast temporal sampling of MEG, such local
linearity in the temporal domain is a reasonable assumption. Thus,

st ¼
XL

l¼1

Alst�l (2)

Assuming no interaction between the latent sources, Al becomes a
diagonal submatrix, where the k-th diagonal element of each of the L
submatrices form a L� th order univariate AR model of the temporal
dynamics of the k-th source. The coefficients of these AR models contain
information about spectral properties of the sources. Furthermore, if Al is
a full submatrix, its off-diagonal elements model the interactions be-
tween the latent sources, leading to A being a full L-th order Vector-
Autoregressive (VAR) model of k interacting sources.

2.2. Network architecture

The proposed classifier incorporates the assumptions of the genera-
tive model described above into the discriminative neural networkmodel
(see Fig 1). The first and the second layers of the network learn spatial
and temporal filters, which extract a compact representation of MEG
signal features contributing to the discrimination between the classes.
These features make use of spatial and temporal correlations in the data
to suppress noise and to obtain sufficient separation between the
simultaneously active neural sources. The l1 -regularized output layer
assigns non-zero weights only to features that are informative for each
class of the stimuli. Finally, the spatial and temporal filters are further
optimized by back-propagating errors from the output-layer nodes with
non-zero weights.

Input layer: Spatial de-mixing. The linear input layer trains a set of
spatial filters W with each column wk extracting a timecourse of k-th
latent source. These filters are related to the spatial activation patterns C
of the latent sources in the generative model (Eq. (1)) via

WTxt ¼ bst (3)

C ¼ ΣxWΣ�1bs (4)

where Σx is the spatial data covariance and Σ�1bs is the precision matrix of
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the latent time courses(Haufe et al., 2014).
The input layer can be viewed as a linear projection layer performing

dimensionality reduction in the spatial domain. The weights of the input
layer are applied to each time point in the MEG epoch by computing dot
product between W and the whole MEG epoch X. This layer implements
a set of spatial filters that project the channel data onto a k-dimensional
subspace. This layer has several functions: (1) it obtains a lower-
dimensional and spatially-decorrelated representation of the signal
time courses, (2) it learns and projects out irrelevant activity such as
physiological artifacts, and (3) it provides an interpretable linear map-
ping from model weights to the channels in the original signal space.
These weights can be used to extract spatial activation patterns (Haufe
et al., 2014), or topographic maps, corresponding to neural sources
informing the classifiers. Alternatively, this layer can be viewed as a
spatial convolution layer with ‘valid’ padding applied to all channels at
each time-point. Here, we prefer to refer to it as a linear projection layer
for ease of interpretation. Linear projections similar to those for the
function (2) above are typically used to suppress ocular and cardiac ar-
tifacts in MEG data. However, in contrast to e.g. independent component
analysis (ICA), the projection basis is defined by back-propagation
without introducing an explicit assumption of statistical independence.

Temporal convolution layer: Extraction of activation dynamics. This layer
operates on the time courses of the latent sources (corresponding to the
rows of S) and implements a filter, which extracts a temporal activation
pattern of the informative neural event (e.g. a peak of an evoked
response).

We used two variants of this layer. The simpler one (LF-CNN) applies
k separate 1-dimensional convolution filters of the l-th order to the time
courses of the k spatial components produced by the input layer. The
model assumes that these time courses do not interact and that they have
unique spectral fingerprints. This layer variant can be viewed as applying
linear finite-impulse-response filters (hence LF) that specifically capture
the informative features in time courses of each spatial component. Thus,
each spatial pattern from the input layer has a corresponding impulse-
response function learned by the temporal convolution layer. These
functions extract the frequency bands specific to each component.

The more complex variant allows estimating the interactions between
the spatial components and can be viewed as a vector autoregressive
model (VAR-CNN) of the component time courses. This structure is
implemented by applying k spatiotemporal convolution kernels of shape
l� k and it results in a larger set of trainable parameters (lk2) in this
layer.

For both variants of this layer, the convolution is followed by a non-
linearity using rectified linear units (ReLU) and a max-pooling layer with
a pooling factor of 2 and a stride of 2 applied to the time dimension.
Fig. 2. Interpretation of model
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Temporal max-pooling provides robustness against variation in the la-
tency of the informative responses across subjects.

Output layer: Imposing sparsity. The mapping from the temporal
convolution layer to the output is provided by a single, fully-connected
layer followed by a soft-max normalization. The total number of (flat-
tened) inputs to this layer ninputs ¼ k*t=p, where k is the number of latent
components, and t =p is a number of time points after pooling with a
factor of p. This final layer outputs a vector of logits with length equal to
the number of classes (m). Thus, the weight matrix of the final layer has
dimensions ninputs � m, with each column corresponding to the contri-
bution of all the features to a given class. Sparsity is imposed on the
weights of the output layer using l1 -norm regularization suppressing
most of the activity that is unrelated to the classification. Thus, as we
show in the next section, exploring the non-zero weights in the output
layer thus allows to identify the temporal and spatial patterns which
contribute to the discrimination.

2.3. Model inspection and parameter interpretation

Interpretation of the model parameters in terms of the underlying
neural activity is a desirable property. Our network design is based on a
generative model of MEG signal to allow such interpretation.

To identify spatial and temporal features that contribute to assign-
ment of a given sample to a particular class, we identified the nodes of the
final classification layer containing the maximum positive weights
(contributions) to each particular class. Because the weights of the final
layer contain information about the contribution of all the features
extracted by the previous layers to each class, we can map the index of
the feature that has a maximum contribution to a given class in the output
layer onto the shape of the temporal convolution layer. Thus, we can
identify the latent component(s) as well as the (approximate) timepoints
corresponding to this most informative feature. This information is then
used to extract the corresponding spatial filter from the input layer and
temporal convolutional filter from the hidden layer. Thus, a single
feature in the output layer maps to the information about the spatial
pattern, approximate latency and spectral properties of the latent
component (see Fig. 2). This argument, however, holds only for LF-CNN,
because the more complex VAR-CNN variant allows to capture non-linear
interactions between the latent sources and thus cannot be interpreted in
a straightforward way.

Spatial activation patterns and source estimates. Assuming statistical
independence between the latent components one can extract the cor-
responding activation pattern by multiplying the spatial filter by the
spatial covariance matrix of the data (Haufe et al., 2014). To relax the
independence assumption further, one can also consider multiplying the
parameters (LF-CNN only).
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resulting pattern by the precision matrix of the latent time courses that
can be obtained by inverting the covariance matrix of the data, projected
onto the latent component space with the spatial filters extracted during
the previous step. In this study, this latter step was omitted, because it is
unclear whether the spatial filters optimized to extract only the infor-
mative parts of the latent time course could be used to estimate the latent
precision matrix without distortion (Supplementary Fig. 1).

The obtained sensor-level spatial pattern can further be mapped onto
the individual source space using standard source estimation algorithms
(Fig. 3). To demonstrate this mapping we trained an LF-CNN model on
pooled data from Experiment 1 and updated it with a single training
epoch performed on the data of a single held-out subject. For each of the
5 classes of stimuli, we extracted the model parameters corresponding to
spatial filters of the single most informative component using the pro-
cedure described above. These patterns were compared to components
that had minimal or no contribution to any of the classes as defined by
the absolute sum of the corresponding weights in the output layer
(Fig. 4). We then estimated the neural sources of each informative
component by computing dynamic statistical parametric maps (dSPM)
(Dale et al., 2000) for sources constrained onto the individual cortical
surface and with orientations favoring the direction perpendicular to the
local cortical surface (loose orientation constraint 0.2) as implemented in
Fig. 3. Interpretation of informative LF-CNN model parameters in a representative s
the decoding of each class were extracted from the model and interpreted in terms of
(bottom). B. Spatial topographies(top), source estimates (middle) and peak latencies (
thresholded to 95% of the peak source activity.
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the MNE-Python software package (Gramfort et al., 2013a).
We then conducted a standard evoked-response analysis by averaging

the MEG responses within each class of stimuli. We compared the fea-
tures extracted from our model to the most prominent components of the
corresponding averaged evoked responses in terms of their latency and
spatial distribution and the corresponding source estimates. Source
estimation of the averaged evoked responses utilized noise covariance
estimated from a 300-ms pre-stimulus baseline whereas identity covari-
ance was used for activation patterns.

Investigating spectral properties of extracted latent components. Since
each temporal convolution filter in the hidden layer of the LF-CNN rep-
resents a univariate autoregressive model of the temporal dynamics of k-
th latent source, we can use the coefficients of this filter to obtain an
estimate of the power spectral density properties of the time course of
this latent source. To test whether this approach can be used to identify
oscillatory activity that is informative for classification we extracted the
spatial and spectral filters from the model trained on the data from
Experiment 2. Because we expected informative activity to be extended
over the whole 1.5 s time window, since event-related desynchronization
associated with motor imagery is not phase-locked to the stimulus onset,
we used a different approach to identify the most informative latent
component compared to the Experiment 1. Instead of identifying a single
ubject from Experiment 1. A. Components having the maximum contribution to
their spatial topographies (top), source estimates (middle) and latency estimates
bottom) of the corresponding evoked responses. Source estimates visualization is



Fig. 4. Identification of informative latent components in a single representative subject from Experiment 1. The weights of the contributions of the final layer to each
class are represented as a raster plot (top) with rows corresponding to the index of latent component and columns corresponding to (pooled) time points. Informative
components (middle) are found by identifying single features (indicated by red boxes) with maximum positive weight for each class. Non-informative components are
defined as having the minimal absolute sum of weights across all classes. Component topographies are scaled to interval [0,1] for comparability.
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feature in the output layer, corresponding to the highest activation at a
single time-point, we took the index of spatial component that had the
largest sum of weights over all time-points. We extracted spatial patterns
corresponding to two most informative latent components for each class.
We also estimated the frequency content of the component's time course
by computing power spectral density using the weights of the corre-
sponding temporal convolutional filters.
2.4. Implementation and training

Design choices and hyperparameters. The neural network was imple-
mented using the Tensorflow library (Abadi et al., 2016). The code is
publicly available at https://version.aalto.fi/gitlab/zubarei1/aalto
-megnet. Model development and hyperparameter tuning were per-
formed on the data of a single randomly-picked subject from Dataset 1.
The model was then applied to across-subject classification and other
experiments as is. Table 1 summarizes the tested values of tunable
hyperparameters.

Initialization and training. The initial values of the weight matrices
were drawn from a uniform distribution following the procedure intro-
duced by He et al. (2015).
Table 1
Tested and optimal hyperparameter values.

Parameter Tested Optimal

Number of latent sources 16,32,64 32
Temporal filter length 3,5,7,9,11 7
Learning rate 1⋅10�3, 3⋅10�4, 1⋅10�4 3⋅10�4
l1 -penalty 1⋅10�3, 3⋅10�4, 1⋅10�4 3⋅10�4
Pooling max max
Pooling factor 2,3,5 2
Drop-out coefficient 0.25, 0.50, 0.75, 0.90 0.50
Input layer link function identity, ReLU, ELU, tanh identity
Hidden layer link function identity, ReLU, ELU, tanh ReLU
Output nonlinearity sigmoid, softmax softmax
Number of dense hidden layers 1,2 1
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We initialized the bias variables to a constant value of 0.1. We used
the Adam optimization algorithm with a batch size of 100 and the
learning rate of 3:0 �10�4 to optimize multinomial cross-entropy between
the model predictions and true labels. Higher learning rates were also
used but they did not improve performance. We used an early-stopping
strategy to prevent over-fitting; for every 1000 iterations, we computed
the validation cost (multinomial cross-entropy) and stopped the itera-
tions immediately if the cost function value was increasing or decreasing
by less than 1:0 �10�5. The early-stopping criteria were typically met
within 20 000 iterations, corresponding to a maximum training time of
32min using a normal workstation CPU only.

Regularization. We examined several regularization approaches
including drop-out, l1 and l2 penalties on the model weights as well as the
pairwise combinations of drop-out and weight penalties. A combination
of drop-out regularization applied to the output layer and l1 penalty
applied to all weight variables resulted in the highest model performance
and was used with all datasets.

Performance evaluation. Since our main focus was on developing a
model that generalizes across subjects, we used the leave-one-subject-out
method to evaluate model performance. Thus, for a dataset ofm subjects,
the training (90% of all trials) and validation (10% of all trials) sets
comprised pooled data from randomly-selected m� 1 subjects. The
model was then applied to the data of the held-out subject, and the
following two scores were computed. As all our datasets comprised an
equal number of trials for each category, we used classification accuracy
as the performance metric. Initial test accuracy was defined as the pro-
portion of correct predictions on the held-out subject. Pseudo-real-time
accuracywas defined as themean prediction accuracy in a simulated real-
time design where the model predicted new observations in batches of 20
trials and was updated after each prediction. For the true real-time BCI
experiment (Experiment 3), the actual BCI accuracy (with and without
model updates) is reported.

2.5. Benchmark classifiers

RBF and linear SVMs. SVMs (Vapnik, 2000) are widely used in

https://version.aalto.fi/gitlab/zubarei1/aalto-megnet
https://version.aalto.fi/gitlab/zubarei1/aalto-megnet


I. Zubarev et al. NeuroImage 197 (2019) 425–434
classification of MEG data (e.g. Gramfort et al., 2013b; Westner et al.,
2018). We used incremental versions of linear and radial basis function
(RBF) -kernel Support Vector Machines (SVM) as benchmark classifiers.
Data preprocessing, scaling and classifier training procedure for these
methods were identical to the one reported for LF-CNN and VAR-CNN.
Data points from all channels/timepoints were concatenated forming a
single feature vector. No additional feature extraction methods were
used. We refer the reader to our previous study for comparing various
feature extraction methods in combination with linear classifiers for
across-subject classification of MEG data (Halme and Parkkonen, 2018).
Nystr€om RBF kernel approximation was used for incremental RBF-SVM
as implemented in the Scikit-Learn package(Pedregosa et al., 2011).
The SVM inverse regularization parameter C and the kernel lengthscale
parameter for RBF kernel γ were set by performing a search over a 2-d
grid of 5 logarithmically spaced values from 103 to 105 for C and from
10�2 to 10�7 for γ. The classifier that gave the highest validation set
accuracy was evaluated on the test set.

CNNs developed for EEG classification. We used two CNN models
developed for classification of EEG data. Shallow FBCSP-CNN (Schirr-
meister et al., 2017) is a model inspired by Filter-Bank Common Spatial
Pattern (FBCSP), a state-of-the-art method for extracting band-power
features in EEG/MEG. Its architecture comprises a 1-d
temporal-convolution input layer (40 filters) followed by a spatial-filter
layer (40 filters) and mean pooling. The outputs of the pooling layer
are then combined linearly to produce label predictions by applying the
softmax function. We used the Shallow FBCSP-CNN implementation
provided in the Braindecode library with default parameters, only
modifying temporal filters and pooling factors to match the sampling rate
of our data (125 Hz). We were not able to perform pseudo-real-time test
for FBCSP-CNN due to the differences in implementation.

EEGnet (Lawhern et al., 2018) is a compact model designed specif-
ically to optimize across-subject generalization. The model uses a com-
bination of 1-d depth-wise and separable convolution layers (a total of 4
layers) and has been shown to generalize well across subjects in a large
number of datasets. We implemented EEGNet-8 in Tensorflow following
the description provided in Lawhern et al. (2018) and tested it in a
simulated real-time set-up, similarly to VAR-CNN and LF-CNN.

Deep CNNs developed for image classification. As an example of general-
purpose deep convolutional network, we used VGG19 –a 19-layer con-
volutional network and winner of ImageNet Challenge 2014 (Simonyan
and Zisserman, 2015). The VGG19 architecture includes 5 blocks of
convolutional layers followed by three fully-connected layers. Each of the
5 blocks includes a stack of several (2, 2, 4, 4, and 4) convolutional layers
with (64, 128, 256, 512, and 512) 3 � 3 convolution kernels and a 2 � 2
max-pooling layer with stride 2. Due to the fact that the scaling of MEG
data was different from that of the ImageNet dataset, we have introduced
a batch-normalization layer after each block of convolutional layers to
mitigate the risk of exploding or vanishing gradients. The final layer uses
softmax non-linearity while all hidden layers are equipped with the ReLU
non-linearity. For further details on VGG19 implementation, see
Simonyan and Zisserman (2015).

3. Datasets

MEG recordings were acquired using an Elekta Neuromag Vectorview
(MEGIN/Elekta Oy, Helsinki, Finland) MEG system, which includes 306
sensors at 102 positions around the head; two orthogonal planar gradi-
ometers and a magnetometer at each position. Only data from the planar
gradiometers (204 channels) were used in this work. All experiments had
their respective approvals from Aalto University Committee on Research
Ethics.

All MEG data were sampled at 1000Hz, band-pass filtered to 1–45 Hz
and thereafter downsampled to 125 Hz, as higher bandwidth and sam-
pling rates did not significantly improve the performance while
increasing computational time. We used the same basic preprocessing
and scaling approaches for all four experiments. Each MEG epoch was
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scaled independently by subtracting the mean and dividing by the
standard deviation of the MEG signal in all channels during the pre-
stimulus interval (the �300 … 0-ms interval with the zero time corre-
sponding to the stimulus onset). This approach provided reasonable
scaling suitable for a real-time experiment while preserving the spatial
structure of the signal.

The MEG dataset of Experiment 1 was preprocessed using a state-of-
the-art off-line pipeline that is not applicable in a real-time BCI setting.
External magnetic interference was suppressed and head movements
compensated for using the temporally-extended signal-space separation
(tSSS) method implemented in the MaxFilter software (version 2.2;
MEGIN/Elekta Oy, Helsinki, Finland) (Taulu and Simola, 2006). There-
after, cardiac and ocular artifacts were projected out using the FastICA
algorithm as implemented in the MNE-Python software (Gramfort et al.,
2013a). Preprocessing the datasets from Experiments 2 and 3 was per-
formed exclusively using methods available for real-time processing. The
rationale for different preprocessing approaches was to progress from an
optimal MEG pipeline (Experiment 1) to a reduced one, comprising only
those methods that are available in a real-time setting (Experiment 2),
and finally to demonstrate a real BCI experiment (Experiment 3). Thus,
no external magnetic interference or other artefact suppression was
performed in Experiments 2 and 3, and the cardiac and oculomotor ar-
tifacts, typical for MEG measurements were present in these data. In
Experiment 4 data from Cam-CAN dataset were pre-processed using tSSS,
but no artifact correction was performed.

3.1. Experiment 1: classification of 5 types of sensory event-related fields

Dataset 1 comprised single-trial event-related-field (ERF) responses in
7 healthy human subjects (mean age¼ 30.1, 4 males, 3 females, 1 left-
handed) to 5 types of sensory stimuli; checkerboard patterns presented
in the right or left visual hemifield (Classes 1 and 2), 1-kHz 50-ms
auditory tones presented to the left or right ear (pooled into Class 3), and
transient transcutaneous electrical stimulation of the median nerve at the
left or right wrist (Classes 4 and 5). This dataset comprised 500-ms
segments of MEG measurements sampled at 1000Hz (500 samples
measured by 204 MEG channels) starting at the onset of each stimulus.
Total trial counts per subject were 1622� 322 (mean � SD).

3.2. Experiment 2: classification of event-related oscillatory activity in a 3-
class motor imagery task

Dataset 2 comprised MEG measurements of 17 healthy human sub-
jects who performed a motor imagery task (for details, see Halme and
Parkkonen, 2018), in which they imagined moving either their left or
right hand (without any actual movement) when a visual cue was pre-
sented. The data comprised 1500-ms segments of MEG measurements
sampled at 1000Hz (1500 samples measured by 204 MEG channels)
starting at the onset of the visual cue. Based on the measuredMEG signal,
we decoded whether the subject imagined moving his/her left or right
hand, or nothing at all (rest condition). Total trial counts per subject were
120� 5 (mean � SD).

3.3. Experiment 3: real-time motor imagery BCI

Here we applied the same experimental paradigm as in Experiment 2,
but with true real-time decoding and updating of the model. For this
experiment, a network trained using a subset of trials from 17 subjects
(Experiment 2) including only two classes (left vs. right motor imagery)
was integrated into a real-time motor imagery BCI. Two subjects per-
formed a task where they had to imagine moving the left or right hand
following the presentation of a visual cue (an arrow pointing to the left or
to the right). The VAR-CNN model which showed the highest perfor-
mance in Experiment 2 performed 2-class classification (left vs. right
hand motor imagery) in real time.

None of the subjects had used motor imagery-based BCIs before or



Table 3
Across-subject performance in a 3-class motor imagery task. Grand-average ac-
curacy scores (mean � SD) from leave-one-subject-out cross-validation. Highest-
performing model in each test is indicated in bold.

Model Validation (%) Initial test (%) Pseudo-real-time (%)

LF-CNN 84.3� 2.7 74.2� 6.5 78.0� 6.5
VAR-CNN 86.7± 7.4 76.3± 6.8 82.3± 6.1
Linear SVM 76.9� 3.0 68.2� 7.2 71.4� 7.3
RBF-SVM 80.3� 2.6 74.1� 8.4 73.6� 8,8
ShallowFBCSP-CNN 70.2� 4.1 60.2� 10.3 n.a.
EEGNet-8 80.8� 2.4 72.1� 5.8 80.9� 6.7
VGG19 71.4� 9.6 60.2� 6.8 57.4� 9.2
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were involved in the collection of the MEG data used to train the model,
i.e in Experiment 2. The experiment comprised three sessions. In the first
session, the classifier was applied without the online updates to estimate
the baseline performance. In sessions 2 and 3, the model parameters were
updated following each trial where the classifier decoded the subject's
intention correctly. The update was performed with a single back-
propagation step using the MEG data from this trial and the associated
label. Since our subjects had no prior experience with motor imagery
tasks we chose to avoid updating the classifier after trials where the
misclassification was due to the subject struggling to perform the mental
task (as opposed to classifier errors). Updating the decoder with these
erroneous trials would likely yield decreased decoding accuracy in sub-
sequent trials. For the same reason we constrained this experiment to
have only two classes. Trials in each session were presented in three
different pre-defined sequences (50 trials per session) such that the true
labels were available for real-time accuracy estimation and incremental
model optimization.

3.4. Experiment 4: classification of 2 types of sensory stimuli on an Cam-
CAN dataset

We used MEG data from 250 healthy subjects chosen (subjects:
110033–321594) from the open Cam-CAN data repository (Taylor et al.,
2017). The subjects performed a (passive) audio–visual task comprising
120 trials of unimodal stimuli (60 visual stimuli: bilateral/full-field cir-
cular checkerboards; 60 auditory stimuli: binaural tones at one of three
equiprobable frequencies), presented at a rate of approximately 1 per
second (for details, see Taylor et al., 2017). Similarly to Experiment 1,
planar gradiometer data were preprocessed with tSSS, scaled, and split
into 500-ms segments, starting at the onset of the (visual or auditory)
stimuli. No artefact suppression was performed. Due to a large number of
subjects, the model evaluation procedure differed from the one used in
Experiments 1 and 2. The training (90%) and validation (10%) sets
comprised pooled MEG data from 200 subjects (2 classes of stimuli, 60
trials per class). Each model was trained only once and then applied to
each of the 50 held-out subjects of the test set independently. Initial test
accuracy and pseudo-real-time accuracy were estimated on these held-out
subjects in the same way as in Experiments 1 and 2.

4. Results

4.1. Experiment 1

In this 5-class decoding of sensory ERFs, VAR-CNN outperformed
other models in terms of accuracy on a pooled validation set (95:8%�
0:7%), when applied to held-out subjects (85:9%� 7:4%), and in pseudo-
real time tests (94:2%� 2:8%). The results from LF-CNNwere the second
best, and RBF-SVM was the closest benchmark. Detailed statistical
comparisons between the performance of LF-CNN, VAR-CNN and the
benchmark classifiers in Experiment 1 are summarized in Supplementary
Table 2.

In the simulated real-time experiments, the CNN-based models
EEGNet-8, LF-CNN and VAR-CNN significantly improved their perfor-
Table 2
Across-subject performance in a 5-class sensory stimulation task. Grand-average
accuracy scores (mean � SD) from leave-one-subject-out cross-validation.
Highest-performing model in each test is indicated in bold.

Model Validation (%) Initial test (%) Pseudo-real-time (%)

LF-CNN 95.0� 0.8 83.1� 8.4 93.3� 3.6
VAR-CNN 95.8± 0.7 85.9± 7.4 94.2± 2.8
Linear SVM 93.3� 1.2 80.2� 9.7 87.0� 5.4
RBF-SVM 93.6� 1.7 82.7� 8.3 83.9� 8.4
ShallowFBCSP-CNN 85.3� 2.4 60.1� 11.7 n.a.
EEGNet-8 88.7� 2.0 76.8� 11.7 89.2� 5.0
VGG19 80.5� 3.3 70.1� 12.8 73.9� 10.5
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mance (þ 12:4, þ 10:2, and þ8:3 percent points, respectively compared
to the initial test accuracies. In case of SVM classifiers, this improvement
was considerably smaller (þ6:8 for Linear SVM, and þ1:2 percent points
for RBF-SVM). These results are summarized in Table 2.

4.2. Experiment 2

With the 3-class motor imagery dataset, VAR-CNN again gave the
highest classification accuracies when applied to pooled validation set
(86:7%� 7:4%), held-out subjects (76:3%� 6:8%) and pseudo-real-time
tests (82:3%� 6:1%). The closest benchmarks classifiers were RBF-SVM
for held-out subjects (74:1%� 8:4%), and EEGnet-8 for the validation set
(80:8%� 2:4%) and pseudo-real-time test (80:9%� 6:7%). Detailed
statistical comparisons between the performance of LF-CNN, VAR-CNN
and the benchmark classifiers in Experiment 2 are summarized in Sup-
plementary Table 3. Similarly to Experiment 1, EEGNet-8, LF-CNN and
VAR-CNN were able to significantly improve their performance in a
simulated real-time test using incremental updates (þ 8:9, þ 3:8, and þ
5:7 percent points, respectively) compared to the initial test accuracies.
The linear SVM classifier performance improved to a smaller extent
through pseudo-real-time updates (þ3:2 percent points), while the per-
formance of RBF-SVM did not improve at all (�0:5 percent points). These
results are summarized in Table 3.

4.3. Experiment 3

Results of the real-time application of VAR-CNN are summarized in
Table 4. Comparing the accuracies achieved by VAR-CNN with and
without stochastic updates clearly shows the significant increase in
performance. We note that since the subjects had no prior experience
with motor imagery BCIs, the improvement in performance after Session
1 may be partly attributed to their improved motor imagery skills.

4.4. Experiment 4

Table 5 summarizes the results obtained when classifying auditory vs
visual stimuli in a passive audio–visual task from the Cam-CAN dataset
(Taylor et al., 2017). Similarly to Experiments 1 and 2, LF-CNN and
VAR-CNN achieved roughly equal accuracies, outperforming benchmark
models on the validation set (LF-CNN: 94:9% and VAR-CNN: 95:6%) as
well as on the held-out subjects with (96:5% and 96:0%, respectively)
and without online updates (95:1% and 95:8%). Among the benchmark
models, RBF-SVM and EEGNet-8 achieved the highest performance. Re-
sults for ShallowFBCSP-CNN are not available for this dataset, because
Table 4
VAR-CNN classification accuracy in the real-time motor imagery BCI experiment.

Subject Run 1, no updates
(%)

Run 2, online updates
(%)

Run 3, online updates
(%)

s01 80.0 88.0 92.0
s02 62.0 90.0 82.0



Table 5
Across-subject performance on 2-class Cam-CAN dataset. Grand-average accu-
racy scores (mean � SD) estimated on a test set comprising 50 held-out subjects.
Highest-performing model in each test is indicated in bold.

Model Validation (%) Initial test (%) Pseudo-real-time (%)

LF-CNN 94.9 95.1� 4.2 96.5± 2.8
VAR-CNN 95.6 95.8± 4.0 96.0� 2.8
Linear SVM 91.6 92.1� 5.5 92.7� 7.6
RBF-SVM 93.1 93.9� 5.7 94.4� 7.3
ShallowFBCSP-CNN n.a. n.a. n.a.
EEGNet-8 93.8 93.0� 4.3 94.3� 3.9
VGG19 94.7 92.3� 5.0 93.2� 5.2
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the authors were not able to adapt its available implementation to the
increased memory requirements.
4.5. Interpretation of learned model parameters

Fig. 3 shows the activation patterns and the corresponding informa-
tive time-windows of the components with the maximum contribution to
the decoding of each class in the LF-CNN model, trained on the pooled
data from Experiment 1 and updated using the pseudo-real-time update
Fig. 5. Interpretation of informative LF-CNN model parameters in a representative su
and negative (blue) sum of weights over all time points for each class were extract
spectral estimates.

432
procedure described above on single held-out subject. For all of the five
classes, our model extracted spatial patterns whose source estimates
showed overall good correspondence to the locations and lateralizations
of the peaks of the evoked responses (Fig. 3).

Similarly, activation patterns extracted from the data of Experiment 2
following a similar training and updating procedure resulted in spatial
patterns focused over parietal as well as the more posterior occipital
sensors contralateral to the imagined movement. Interestingly, spectral
estimates of the most informative latent components resulted in density
estimates peaking at around 10 Hz corresponding to well-known
μ-rhythm desynchronization associated with motor imagery (Fig. 5).
Although anatomical information was not available for this dataset these
results suggest that apart from motor and pre-motor cortices more pos-
terior sources might also contribute to motor imagery.

We also estimated spatial properties of the latent components that had
the least overall contribution to any of the classes. Inspecting the weights
of the output (classification) layer (Fig. 4) further allowed us to identify 5
components which provided a minimum contribution to either class.
Although none of these components directly corresponded to known
signatures of e.g. oculomotor artifacts (due to applied artefact suppres-
sion), their overall limited contribution to either class may suggest that
these patterns were used for projecting the irrelevant activity out.
bject from Experiment 2. Latent components having the maximum positive (red)
ed from the model and interpreted in terms of their spatial topographies, and



I. Zubarev et al. NeuroImage 197 (2019) 425–434
5. Discussion

In this paper, we report two neural network models optimized for
across-subject classification of electromagnetic brain signals. These
models outperform traditional approaches as well as more complex deep
neural networks in terms of accuracy, across-subject generalization, and
simulated real-time performance. Arising from inter-individual vari-
ability in structural and functional cortical anatomy, across-subject
generalization has proved to be a challenging problem for machine-
learning methods applied to EEG and particularly to MEG data due to
its higher spatial resolution. To illustrate the severity of this problem, we
estimated the correlations between the spatial patterns extracted from
our model fine-tuned to individual subjects. Mean spatial correlation
coefficient between the most consistent components was r¼ 0.67 in
Experiment 1 (N ¼ 7) and r¼ 0.52 in Experiment 2 (N ¼ 17). One
advantage of our models is that they introduce reasonable assumptions
based on the signal generation model. These assumptions include e.g.
linear separability in the spatial domain, consistency of temporal or
spectral properties of the signal across trials etc. Thus, we would expect it
to be most sensitive to features common across subjects while allowing
for reasonable variability.

We further show that the relatively low complexity of our LF-CNN
architecture allows interpretation of the learned model parameters in
terms of the underlying neural activity (Fig. 2). Such interpretation can
prove to be a convenient tool for quickly exploring complex, high-
dimensional MEG and EEG datasets and ultimately allow extracting
more information from these rich data. Interpretation of discriminative
models can provide valuable insights into these data by e.g. allowing to
dissociate “most active” sources from those that contribute the most to
discrimination. One potential application of these methods could be
investigating neural sources contributing to BCI control. In the case of
VAR-CNN, however, such interpretation is not possible, because this
model allows complex interactions between the latent components,
destroying one-to-one correspondence between spatial and temporal
features.

Moreover, we propose a procedure where the classifier is initialized
from the data of other subjects and then updated online during the real-
time experiment. We demonstrate that using this approach our models
perform accurately on new subjects in a real-time BCI experiment,
allowing new subjects to efficiently use the system without separate
calibration. Importantly, this procedure allows to omit a dedicated BCI
calibration session, facilitating the use of BCIs in research and clinical
settings.

The results reported here show considerable improvement in per-
formance compared to our previous results in the across-subject decoding
of MEG. Using state-of-the-art feature extraction methods in combination
with linear classifiers Halme and Parkkonen (2018) achieved a classifi-
cation accuracy of 70.6%. Our best-performing model was able to classify
3 classes of stimuli on the same dataset with 76.3% accuracy. Further-
more, adding incremental updates to the classifier allowed us to achieve
even higher accuracy (82.3%) in a simulated real-time test. We
confirmed that the feasibility of the latter approach in a real-time BCI
experiment, achieving similarly high accuracy in Experiment 3.

Several studies report applying deep neural networks to single-trial
classification of non-invasive neurophysiological measurements, typi-
cally multichannel EEG data. Most successful models make use of the
spatiotemporal structure of EEG (Bashivan et al., 2015; Hajinoroozi et al.,
2016; Lawhern et al., 2018; Schirrmeister et al., 2017) including the
real-time applications (Burget et al., 2017; Fahimi et al., 2019). Bashivan
et al. (2015) exploit the spatiotemporal and spectral structure of EEG by
transforming the signals into a sequence of multidimensional spatio–-
spectral images using time–frequency and polar transforms to achieve
significant performance improvement in classifying cognitive load. By
contrast, we use a simpler linear projection in the spatial domain. Simi-
larly to our approach, Hajinoroozi et al. (2016) tested spatial ICA as a
preprocessing step followed by temporal 1-d convolution filters.
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However, such a combination did not result in a significant improvement
in model performance in that study, as compared to using EEG channel
data as the input. We argue that – when performed separately from the
classification – ICA decomposition may not be optimal due to the inde-
pendence assumption which may not hold for real EEG and MEG signals.
In our design, the analogous linear projection in the spatial domain was
obtained by back-propagation. When trained in conjunction with the
frequency filters in the temporal convolution layer, such projection re-
sults in a separable decomposition related to a combination of Linear
Discriminant Analysis (McLachlan, 1992), and Spatio–Spectral Decom-
position (Nikulin et al., 2011) used in EEG–MEG analysis.

Lawhern et al. (2018) introduced the EEGNet model as a compact,
interpretable CNN architecture that can be applied to different
EEG-based BCI paradigms (including both evoked and induced re-
sponses). EEGNet has also been shown to generalize well to held-out
subjects. Importantly, in our simulated real-time tests, EEGNet came
close to the accuracies of our models, demonstrating the advantages of
neural networks in combination with stochastic optimization.

Similarly to other models (e.g. Schirrmeister et al., 2017), Lawhern
et al. (2018) applied 1-d temporal convolutions to the raw EEG channel
data. Our results also indicate that models using 1-d convolutions are
better suited for classification of MEG data than the deeper image clas-
sification networks relying on 2-d convolutions. In contrast to previous
studies, we apply spatial decomposition first, followed by a temporal
depth-wise (LF-CNN) or spatiotemporal (VAR-CNN) convolution. The
motivation for this is three-fold: first, it allows effective spatial decor-
relation and dimensionality reduction; second, when nested into the CNN
architecture, it allows the network to learn and project out physiological
artifacts similarly to other linear projection methods; finally, it can
contribute to improved generalization across subjects by increasing
model robustness to inter-individual differences in spatial distributions
of the informative features. The latter argument is particularly important
for MEG, since its spatial resolution is considerably higher than that of
EEG, and even minor differences in source location or orientation may
change the signal patterns at the sensors and lead to different channels
being most sensitive to the brain activity of interest. This is the likely
reason why the CNNmodels optimized for EEG decoding did not perform
optimally in our study.

Our results demonstrate that with an adequate choice of hyper-
parameters, support vector machines may perform equally well as the
best-performing CNN models in off-line classification. We thus recom-
mend using SVMs as benchmark models in future studies. Our simulated
real-time tests, however, demonstrate that incremental versions of SVMs
do not gain as much in performance from the real-time updates as the
CNN-based models do. This result probably reflects the fact that incre-
mental SVMs rely on kernel approximations and thus their fine-tuning to
individual subjects is limited.

Thus, the proposed models outperformed the benchmark methods
and provided means to investigate spatial and temporal patterns that
contribute to discrimination between the stimuli. Inspecting these pat-
terns may prove a useful tool to obtain a fast preliminary estimate of the
neural activity informing the classification. Yet, the degree of corre-
spondence between the patterns informing the classification and the
actual neural activity is not clear and requires further systematic testing.

In this study, we restrict the interpretation of the model parameters to
the single most-informative latent component. However, it is expected
that several distinct components can contribute to a single class and
provide valuable information (as e.g. shown in Fig. 5). We suggest two
heuristic approaches to identify such informative components. Similarly,
we limit ourselves to the interpretation of the simpler variant (LF-CNN)
of the proposed networks due to its low complexity and predominantly
linear activation functions. A more comprehensive model investigation
would require a more systematic approach, suggested e.g. in Kindermans
et al. (2018) and Alber et al. (2018).

Finally, we show that the proposed models outperform other neural
networks designed for EEG classification when applied to MEG data.
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Given a large number of channels and a higher spatial resolution MEG
datasets may benefit from these designs. It remains to be seen, however,
how the proposed models can perform when applied to EEG data.

The proposed models can be efficiently used to optimize the existing
and to develop novel BCI paradigms. Moreover, inspecting the pa-
rameters of the LF-CNN model variant can be used for quick explorative
analysis of new experimental paradigms in cognitive neuroscience.
Finally, the proposed architectures can be used as building blocks of
the more complex models. For example, the proposed models can be
used for extracting MEG signal features for information fusion across
measurement modalities, or for more sophisticated experimental de-
signs (e.g. single-trial regression problems and inter-subject similarity
measures).

6. Conclusions

We have introduced a Convolutional Neural Network model opti-
mized for off- and online (real-time) classification of MEG data. Incor-
porating prior knowledge about the processes generating MEG
observations allowed us to substantially reduce model complexity while
preserving high accuracy and interpretability. We show that this model
successfully classifies evoked as well as oscillatory activity and general-
izes efficiently across subjects. When combined with incremental real-
time model updates, the time-consuming calibration sessions in MEG-
based brain–computer interfaces could be omitted provided that a suf-
ficient amount of training data from other subjects is available.
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