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HIGHLIGHTS 

 The proposed strategy extracts associations automatically from successful records. 

 The proposed strategy incorporate the associations to generate new F and Cr 

values. 

 The process of adaption for F and Cr introduces no extra control parameters. 

 We propose a novel method to adapt F and Cr for Differential Evolution 

algorithms. 

 Experiments show that the strategy could enhance performances to some extent. 
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Abstract 

It is a very challenging and important task to adaptively adjust the scale factor F and the 

crossover rate Cr for Differential Evolutionary (DE) algorithms. Most recent adaptive 

techniques were designed to generate parameters randomly based on successful trial values 

during the previous evolving process, lacking explicit guidelines to generate appropriate 

values. This paper proposes a novel parameter adaption strategy, which could incorporate 

promising F and Cr pairs extracted by using Association Rule Mining (ARM) into DE 

algorithms. First, all successful F and Cr values generated by their original methods are 

recorded during the whole evolution, resulting in an increasing dataset. Second, we discretize 

the dataset and extract the most frequent itemset of parameters by using a modified version of 

the widely used Apriori algorithm. Third, a greedy operator is developed to generate new 

parameters in the next generation by comparing the presented ARM-based and 

original-method-based fitness values. The presented technique provides an additional pair of 

F and Cr values to be evaluated, without replacing existing strategies for the control 

parameters. The main contribution of this paper is that we propose a novel way, which utilizes 

information generated during the evolutionary process, to enhance exploration capabilities by 

adjusting control parameters. Experimental results demonstrate that the proposed ARM-based 

parameter adaptive strategy is able to enhance performances of some state-of-the-art DE 

variants. Further, this methodology might be helpful for other control parameters of 

Evolutionary Algorithms (EA). 
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1. Introduction 

Since 1995, Differential Evolution (DE) algorithm and its variants have become very 

popular in evolutionary computing community (Storn and Price, 1997). DE family also has 

been successfully and widely used to solve many real-world engineering problems on diverse 

domains (Arce, et al., 2018; Baig, et al., 2017; Buba and Lee, 2018; Cui, et al., 2018; Das, et 

al., 2016; Das and Suganthan, 2011; Hu, et al., 2018; Mlakar, et al., 2017; Muangkote, et al., 

2017; Neri and Tirronen, 2010; Tsakiridis, et al., 2017). The performance of DE algorithm 

mainly depends on the evolutionary operators and the control parameters which are usually 

the scaling factor F and the crossover rate Cr (Cui, et al., 2016). Selecting the most 

appropriate parameter values is a task, which requires adjusting processes by trial-and-error. 

Therefore, it is also a time-consuming task. Meanwhile, it also depends on given optimization 

problems. This approach is not suitable when pre-knowledge is needed, nor the problem 

would be optimized in an automated environment (Mallipeddi, et al., 2011). Thus, it is very 

important to adaptively and automatically tune F and Cr by using potential helpful 

information during the whole evolution process. 

Since the last decade, a good number of articles which have focused on adapting two main 

control parameters, usually the scale factor F and the crossover rate Cr, have emerged. A DE 

variant with an adaptive parameter control was proposed in (Elsayed, et al., 2013). The 

authors designed two candidates sets, which store F and Cr values selected from the 

top10-40% individuals. First, a counter is used and initialized to zero for each of the 

combinations of F and Cr. A trial vector is generated by randomly selecting a pair of the F 

and Cr from the sets. If the trial vector has better fitness value, the counter automatically is 

incremented by 1. After some generations the top 50% of valuable combinations of F and Cr 

are selected, their counters are reset to zero and the rest are discarded. Later, this work has 

been improved (Sarker, et al., 2014). Meanwhile, an improved version of Self-adaptive 

Differential Evolution (JADE) named Success History based DE (SHADE) was proposed in 

(Tanabe, et al., 2013). Instead of generating the F and Cr values by using random number 

generators that obey different probability distributions, the researchers have used successful 

memory records which store F and Cr values in the last past generations. Further, new F and 

Cr pairs are generated by directly sampling the parameter space close to the successful 

memory records. An individual dependent adaptation scheme was proposed by using a 

two-stage process (Yu, et al., 2014). In the first stage, the authors evaluate the population to 

determine whether the population is explorative or exploitative. Based on the population state, 

F and Cr are adapted. In the second stage, the fitness value and the distance of each individual 

from the best one are utilized to estimate and change the population settings for each 

individual. Six adaptive schemes based on sinusoidal functions were developed to 
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non-linearly renew F and Cr values along with their changing directions (Draa, et al., 2015). 

In these designs, F and Cr values could be obtained by using scaled/shifted sine expressions 

or classic constants, such as F = 0.5 and Cr = 0.9. That is to say, the authors present a hybrid 

parameter adaption method which mixes adaptive and fixed schemes. Distributed DE 

sub-populations and three updating schemes were introduced in (De Falco, et al., 2014). 

Meanwhile, there is a migration policy among the sub-populations. While adapting F and Cr, 

the algorithm also introduced a new parameter T. Some scholars have proposed a scheme to 

adapt F and Cr values in DE by using a Gaussian adaptation method, which is a stochastic 

process using a Gaussian distribution to a region in some promising search domains (De 

Falco, et al., 2014). Recently, some researchers recommended that the most suitable control 

parameter pairs and corresponding trial vectors generation could be obtained by observing 

fitness values at individual level (Tang, et al., 2015). The authors provided F and Cr 

expressions that use maximum, minimum and the difference between minimum and second 

minimum fitness values in the current generation for each individual. More interesting 

parameter adaptation mechanisms could be seen in various DE variants, such as MPDE (Yu 

and Zhang, 2011), SaMDE (Pedrosa Silva, et al., 2011), FiADE (Ghosh, et al., 2011), 

MDE-pBX (Islam, et al., 2012), TLBSaDE (Biswas, et al., 2013), MDE (Zou, et al., 2013) 

and ADE (Bujok, et al., 2014). In summary, for adapting F and Cr, the above methods have a 

few drawbacks that could be categorized into two types: (1) Most parameter adaptions have 

exquisite and complicated structures that are difficult to be developed by researchers. (2) 

Numerous of F and Cr adaptions also introduce new control parameters. Based on the 

observations, we will introduce a novel Association Rule Mining (ARM) based parameter 

adaptive strategy for DE algorithms to overcome the above shortcomings. 

ARM was first developed to mine large collections of basket data type transactions. Due to 

its effectiveness, ARM has been widely applied in different domains to mine frequent patterns 

in various datasets. To make the scope of this paper more focused, we assume that readers 

have known some basic concepts of ARM. More definitions and details could be seen in 

numerous published articles (Cohen, et al., 2001; Djenouri and Comuzzi, 2017; Doostan and 

Chowdhury, 2017; Harikumar and Dilipkumar, 2016; Patill, et al., 2016; Sheng, et al., 2018; 

Tung, et al., 2003; Yang, et al., 2009; Zaki, 2000). Some literatures that combined ARM and 

Evolution Algorithm (EA) have been published. For instance, there are some articles that use 

EAs to optimize ARM. MODENAR (Alatas, et al., 2008), genetic-fuzzy data mining (Hong, 

et al., 2008), MOPNAR (Martin, et al., 2014) and Particle Swarm Optimization with Apriori 

(PSO-Apriori) (Djenouri and Comuzzi, 2017) are good examples. Also, recent reviews on 

multi-objective EAs for data mining could be seen in (Mukhopadhyay, et al., 2014a; 

Mukhopadhyay, et al., 2014b). However, very few literatures have used knowledge-based 

methods, such as Machine Learning (ML) or ARM, to improve performances of EAs by 

adapting parameters. That drives us to apply ARM method for the parameter adaption of DE 
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algorithms even EAs. Therefore, in this paper, we apply the ARM-based parameter adaptive 

strategy which could extract and incorporate the most successful F and Cr couples into 

existing parameters adaptive methods to enhance the exploration capability. As a result, F and 

Cr values might be adapted automatically, resulting in better performances of DEs. This novel 

methodology has three advantages: (1) The proposed strategy could extract association rules 

automatically from successful F and Cr records along with evolution and incorporate the 

association rules to generate new F and Cr values. That means an easy application of F and 

Cr adaption for DE algorithms. (2) The process of adaption for F and Cr introduces no extra 

control parameters. (3) The proposed strategy could choose a better F and Cr couple from 

ARM-based and original-method-based values to enhance exploration capabilities of DE 

algorithms. That means, ARM-based parameter adaptive strategy does not replace existing 

strategies for the control parameters, but rather provides an additional pair of F and Cr values 

to be evaluated. The main contribution of this paper is that, we propose a different 

methodology to adapt F and Cr for DE algorithms by using the ARM-based strategy which 

could mine potentially outstanding F and Cr values from successful records so far. Moreover, 

we should discuss the main difference between the proposed ARM-based F and Cr adaptive 

strategy and other adaptive or self-adaptive methods for DE variants. In other methods, F and 

Cr are usually adapted based on previous successful memories separately. These methods do 

not consider the impact of the combination of F and Cr, resulting in a less efficient 

parameters adaption. In our proposed ARM-based method, successful F and Cr are stored in 

pair. Then, we use Apriori algorithm to mine the most promising combinations of F and Cr to 

generate new trial vectors. More details could be seen in Section 3. 

The remainder of this paper is structured as follows: In the next section, related work on F 

and Cr adaption of DEs and Apriori algorithm are introduced. In Section 3, the ARM-based 

parameter adaptive strategy is proposed. In Section 4, comprehensive experimental results on 

IEEE Congress on Evolutionary Computation CEC2005 benchmark functions are shown and 

discussed. In Section 5, we apply the proposed ARM-based method for six state-of-the-art DE 

variants on CEC2011 real-world problems and compare the performances. Finally, the 

contributions of this paper are summarized and future work is outlined in Section 6. 

2. Related work 

In this part, some background materials are introduced. First, SaDE is chosen as an 

example to exhibit adaptive adjustment for F and Cr. Next, we will give a review on adaptive 

techniques of F and Cr in some other published papers. Last, in order to provide explicit 

recommend to adaptively generate F and Cr on any optimization problem, the widely used 

Apriori algorithm will be introduced. 

2.1 Parameter-adaptive DE algorithm 
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There are many DE algorithms which designed versatile F and Cr adaption strategies to 

improve exploration and exploitation capability. In this paper, SaDE(Qin, et al., 2009) is 

selected as a paradigm due to its highly cited times. Later, we will embed the proposed 

ARM-based parameters adaptive strategy into SaDE and other state-of-the-art DE variants. 

Before that, the main description of SaDE is given as below. More details could be seen in the 

original paper (Qin, et al., 2009).  

 Mutation 

After initialization, for each target vector Xi,G, lth mutation strategy is selected by using 

roulette wheel selection from the candidate strategy pool that contains four mutation 

strategies, such as DE/rand/1/bin, DE/rand-to-best/2/bin, DE/rand/2/bin and 

DE/current-to-rand/1, where l = 1, 2, 3, 4. All these mutation strategies are listed as below. 

One mutation strategy is selected according to the probability, pl,G, learning from its success 

rate in generating improved solutions within a certain number of previous generations.  

DE/rand/1/bin: 

 
1 2 3, , , ,i G r G r G r GF   V X X X  (1) 

DE/rand-to-best/2/bin: 

     
1 2 3 4, , , , , , , ,i G i G best G i G r G r G r G r GF F F         V X X X X X X X  (2) 

DE/rand/2/bin: 

   
1 2 3 4 5, , , , , ,i G r G r G r G r G r GF F      V X X X X X  (3) 

DE/current-to-rand/1: 

   
1 2 3, , , , , ,i G i G r G i G r G r GK F      U X X X X X  (4) 

where the indices r1, r2, r3, r4, r5 are mutually exclusive randomly generated integers, that are 

also different from i, within the range from 1 to NP. The indices are randomly generated once 

for each mutant vector. Xbest,G is the best individual with the best fitness value so far. In 

mutation operator, the parameter F is approximated by a normal distribution with mean value 

0.5 and standard deviation 0.3, denoted by normrnd(0.5, 0.3) in Algorithm 1. A set of F 

values are randomly sampled from such normal distribution and applied to each target vector 

in the current population. 

 Crossover 
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After the mutation phase, crossover operation is applied to each pair of the target vector 

Xi,G and its corresponding mutant vector Vi,G to generate a trial vector Ui,G. In the basic 

version, the binomial crossover is employed as follows: 

,

,

,

, if or
1,2, ,

, otherwise

j

i G j randj

i G j

i G

v rand Cr j j
u j D

x

  
 


 (5) 

where, jrand is a randomly chosen integer within the range [1, D]. randj is uniformly 

distributed random numbers independently generated within [0, 1]. j = jrand is developed to 

ensure that the trial vector will be different from its corresponding target vector by at least 

one dimension. Note that, target vector Xi,G, which is mutated by using DE/current-to-rand/1, 

will not enter crossover phase. Cr obeys a normal distribution with mean value Crm and 

standard deviation std = 0.1, denoted by normrnd(Crm, 0.1). To adapt Cr, memories that store 

those Cr values with respect to the lth strategy that has generated trial vectors successfully 

entering the next generation within the previous LP generations. At each generation after LP 

generations, the median value stored in memories will be calculated to overwrite Crml. Then, 

Cr values can be generated according to normrnd(Crml, 0.1) when applying the lth strategy.  

 Selection 

Before selection operation, the objective function values of all trial vectors are evaluated. 

After that, a selection operation is performed. f(Ui,G) and f(Xi,G) are objective function values 

of trial vector and its corresponding target vector at generation G, respectively. The selection 

operation can be expressed as follows: 

, , ,

, 1

,

, if ( ) ( )

, otherwise

i G i G i G

i G

i G

f f



 


U U X
X

X
 (6) 

The beyond three basic operations are repeated iteration by iteration till the specified 

termination criteria are met. The algorithmic description is shown as Algorithm 1. In order to 

make Algorithm 1 more readable, high-level pseudo code is given. More details on the 

adaption of selected probability could be seen in the original paper (Qin, et al., 2009). At the 

generation G, after evaluating all the generated trial vectors, the numbers of trial vectors 

generated by the lth strategy that can successfully enter the next generation and be discarded 

in the next generation, are stored as Success and Failure Memory. After the initial LP 

generations, the probabilities of choosing different strategies will be updated at each 

subsequent generation based on the Success and Failure Memory. 

Algorithm 1. The main structure of SaDE algorithm. 
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1 Uniformly randomly initialize each individual within the searching range; 

2 Calculate the fitness values of the initial population; 

3 Set generation number G = 1; set population size as NP; set function evaluations as Fes = 

NP; set maximum function evaluations as Max_Fes; set learning period LP = NP; initial 

median value of Cr (Crml) and strategy probability pl,G (l = 1, …, L, L is the number of 

available strategies, L = 4); Clear Success and Failure Memory; 

4 while Fes ≤ Max_Fes  

5     if G > LP 

6         Update pl,G based on lth strategy performance in last LP generations; 

7         Update Success and Failure Memory; 

8     end 

9     for i = 1 : NP 

10         % Mutation strategy adaption 

11         Select one strategy l for Xi,G by using roulette wheel selection according to pl,G; 

12         % Mutation 

13         Fi = normrnd(0.5, 0.3); 

14         Generate mutation vector Vi,G according to corresponding strategy l and Fi; 

15         % Crossover 

16         Calculate lth crossover rate for Vi,G using Crml = median(Cr_memoryl); 

17         Cri = normrnd(Crml, 0.1); 

18         Generate trial vector Ui,G according to corresponding strategy l and Cri; 

19         Calculate the fitness value of Ui,G; 

20         Fes = Fes + 1; 

21         % Selection 

22         if f(Ui,G) < f(Xi,G) 

23             Xi,G+1 = Ui,G; 
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24             Add Cri into Cr_memoryl; 

25         end 

26         Add successful and failure information of lth mutation strategy into Success 

and Failure Memory, respectively; 

27     end 

28     G = G + 1; 

29 end 

 

From the above pseudo code, F and Cr are random numbers that obey normal distribution. 

There is a drawback for such an adaption: such parameter-adaptive method may not generate 

the most appropriate combinations within a few generations. We are trying to illustrate this by 

using a simplified example shown in Fig. 1. We assume that F and Cr values will be 

generated iteration by iteration. At ith iteration, the F and Cr couple circled with blue dash 

line represents the best combination so far. It is the most promising parameter setting that F is 

bigger than 0.8 and Cr is smaller than 0.2 currently. In the next iteration, F and Cr should be 

generated near such values. However, according to F = normrnd(0.5, 0.3) and Cr = 

normrnd(Crml, 0.1) in SaDE, the new parameter values may be far from the best one. That is, 

it may spend many Fes to generate a promising trial vector with such F and Cr, resulting in a 

less efficient evolution process. Many other adaptive DE variants have the same drawback. 

Consider that, we will introduce a novel parameters adaptive strategy based on ARM to speed 

up F and Cr tuning procedure. Section 3 presents more details. 

0.35

0.58 0.41

0.72 0.38

0.39 0.32

0.49 0.30

...

0.83

F

0.37

1

2

3

4

...

i

i+1

Cr

...

0.18
Best F and Cr 

combination so far

F=normrnd(0.5,0.3) Cr=median(Crm,0.1)  

Fig. 1. A simplified example of F and Cr generation of SaDE. 

2.2 Previous work on adaption of F and Cr 
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There are three control parameters F, Cr, and NP for classic DE algorithm. Numerical 

values of the three parameters should be chosen according to different problems and evolving 

stages. In this paper, we leave NP, which highly replies on the complexity of a given problem, 

as a fixed and pre-defined parameter. As claimed in SaDE (Qin, et al., 2009), “the population 

size does not need to be fine-tuned and just a few typical values can be tried according to the 

pre-estimated complexity of the given problem”.  

For the other two parameters, F and Cr are related to convergence speed and different 

characteristics, respectively. Storn and Price (Storn and Price, 1997) recommended that F is 

taken between 0.4 and 1 and Cr is set to 0.1 or 0.9. Note that, different F and Cr couples are 

responsible for different searching behaviors. For example, F = 1 and Cr = 0.9 can provide 

good exploration capability in searching space, while F = 0.5 and Cr = 0.1 could result in 

satisfying exploitation capability. A parameter study (Gamperle, et al., 2002) for DE 

suggested that F equals 0.6 and Cr ranges from 0.3 to 0.9. In another research literature 

(Ronkkonen, et al., 2005), F was suggested to be ranged within 0.4 and 0.95 with an initial 

value of 0.5. Meanwhile, Cr lies in [0, 0.2] for separable functions, while in [0.9, 1] when the 

functions are parameter-dependent and multi-modal. It was also recommended that DE with 

the settings F ≥ 0.6 and Cr ≥ 0.6 performs well on convergence in most cases (Zielinski, et 

al., 2006). Although these advice are beneficial, they may cause confusions for researchers 

and engineers when they deal with real engineering problems with unknown characteristics. 

Consequently, it seems that fixed parameters settings lack of universality, and could not adapt 

for different functions and evolving stages (Fan and Yan, 2016).  

Some researchers have developed some adaptive techniques to avoid tuning F and Cr 

manually. A self-adaptive Pareto DE algorithm was proposed to generate F and Cr by using 

random number generator which obeys Gaussian distribution (Abbass, 2002). A fuzzy 

adaptive DE was presented to adjust F and Cr by using fuzzy logic controllers (Liu and 

Lampinen, 2005). A mutation strategy with an optional external archive was used in JADE 

(Zhang and Sanderson, 2009), and F and Cr are tuned according to their previous successful 

records. A self-adaptive DE algorithm (Omran, et al., 2005), wherein F is adaptive and Cr is a 

random number with a normal distribution, was introduced. In SaDE (Qin, et al., 2009), F is 

generated from a normal distribution N(0.5, 0.3) and Cr is a median value of previous 

successful memory. In FiADE (Ghosh, et al., 2011), the adaption of F and Cr is based on the 

fitness values of individuals. In jDE (Brest, et al., 2006), both F and Cr are adapted at 

individual level. New F is generated randomly within the range of [0.1, 1] with a probability 

τ1, and new Cr is generated randomly within the range of [0, 1] with a probability τ2. 

Although experimental results of these algorithms have demonstrated their better 

performances on some test functions, most adaptive techniques automatically generate new F 

and Cr by using random number generator or calculated values based on previous successful 
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archives. That means, the potentially effective associations of F and Cr hiding in previous 

successful combinations have been rarely noticed. If we can mine and utilize the F and Cr 

couples that have better fitness values during iterations, many tedious trials for pairs of F and 

Cr may be avoided, resulting in a more effective searching process. Next, we will introduce a 

widely used Apriori algorithm in ARM. How to use Apriori algorithm in parameters adaption 

for DE could be seen in Section 3 in details. 

2.3 Apriori algorithm 

One of the most widely applied ARM algorithms is Apriori algorithm proposed in the early 

1990s. This algorithm could generate high dimensional frequent itemset (length k) from low 

dimensional frequent itemset (length k-1) over database. Finding frequent itemsets is a very 

important difficult task due to its combinatorial explosion. Once frequent itemsets are 

obtained, it is straightforward to generate association rules with larger confidence (Wu, et al., 

2008).  

The pseudo code for the algorithm is given below for a database. Min_sup means a 

threshold of support value. Lk is the candidate set for level k. At each step, the algorithm is 

assumed to generate the candidate sets from the large itemsets of the preceding level, heeding 

the downward closure lemma. Here is an example shown as Fig. 2. We will use Apriori to 

determine the frequent k-itemset of this database. To do this, we will say that an itemset is 

frequent if it appears in at least 3 transactions of the database: Min_sup = 3/7. The first step of 

Apriori is to count up the number of occurrences of each member item separately. By 

scanning the database for the first time, we obtain the 1-itemset in Fig. 2. All the itemsets of 

size 1 have a support of at least 3/7, so they are all frequent. The next step is to generate a list 

of all pairs of the frequent items. The pairs {1,2}, {2,3}, {2,4}, and {3,4} all meet or exceed 

the minimum support of 3/7, so they are frequent. The pairs {1,3} and {1,4} are not. Now, 

because {1,3} and {1,4} are not frequent, any larger set which contains {1,3} or {1,4} cannot 

be frequent. In this way, we can prune sets: {1,3} or {1,4}. We will now look for frequent 

triples in the database, but we can already exclude all the triples that contain one of these two 

pairs. In the example, there are no frequent triplets. The itemset {2,3,4} is below the minimal 

threshold, and the other two triplets {1,2,3} and {1,2,4} are excluded because they are 

supersets of pairs that are already below the threshold. We have thus determined the frequent 

sets of items in the database, and illustrated how some items are not counted because one of 

their subsets was already known to be below the threshold. 

In this paper, we set k = 2. If we have the successful F and Cr couple records (transactions 

database), the most promising F and Cr intervals (most frequent itemsets) could be found by 

using Apriori algorithm. We use this methodology to adapt F and Cr for DE algorithms. More 

details will be seen in Section 3. 
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Itemsets

{1,2,3,4}

{1,2,4}

{1,2}

{2,3}

{3,4}

database of 

transactions

{2,3,4}

{2,4}

1-Itemset

{1}

{2}

{3}

{4}

Min_sup=3/7

support

3/7

6/7

4/7

5/7

2-Itemset

{1,2}

{1,3}

{1,4}

{2,3}

support

3/7

1/7

2/7

3/7

{2,4} 4/7

{3,4} 3/7

Not frequent

Prune

3-Itemset

{2,3,4}

support

2/7 The most frequent 

2-itemset
{1,2,3} 1/7

{1,2,4} 1/7

Generate 

Candidate 

2-itemset

Generate Candidate 

3-itemset

Join

Join

Generate 

1-itemset

 

Fig. 2. An example of how Apriori algorithm works. 

The pseudo code of Apriori algorithm for frequent k-itemset is given below. In order to 

make the Apriori algorithm more readable, we try to use high-level pseudo code instead of 

low-level pseudo code. More details could be seen in (Wu, et al., 2008). 

Algorithm 2. The pseudo code of Apriori algorithm. 

 

Input: Binary dataset Db, minimum threshold support Min_sup 

Output: Frequent k-itemsets Lk ,k = 1, 2, …  

1 L1 = ∅; k = 1; 

2 Calculate 1-itemsets L1 having support ≥ Min_sup from Db 

3 k = 2; 

4 while Lk-1 ≠ ∅  

5     Ck = ∅; 

6     % Join step 
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7     Generate candidate Itmp of k-itemset by joining each item in Lk-1; 

8     for each item in Itmp 

9         if length(item) == k & support(item) ≥ Min_sup 

10             Add item into Ck; 

11         end 

12     end 

13     % Prune step 

14     Delete repeated k-itemset in Ck ; 

15     Prune each k-itemset in Ck which contains any infrequent itemset of length k-1; 

16     Add Ck into Lk; 

17     k = k + 1; 

18 end 

19 return Lk 

 

Note that, there are few limitations of Apriori algorithm. This algorithm needs many scans 

of the database, resulting in spending a very long time to obtain frequent itemsets when the 

database is large. In this paper, Apriori algorithm will be used to find association rules based 

on successful records that would be a small size dataset during iterations. Besides, we only 

need F and Cr association rules, i.e., frequent 2-itemset. Thus, the extra CPU time caused by 

Apriori algorithm is acceptable. Section 4.5 gives a short analysis. Another drawback of 

Apriori algorithm is that many trivial rules are derived and it will be hard to extract the most 

interesting rules. In this paper, we will only choose the generated association rule with the 

biggest support value. 

3. ARM-based parameter adaptive strategy 

In order to achieve satisfying performances for adaptive DEs, a trial-and-error scheme is 

usually used to tune control parameter values. This mechanism would cost many function 

evaluations (Fes). Meanwhile, in most state-of-the-art adaptive DE variants, previous 

successful parameter values, which may contain potentially useful information and 

knowledge, were often underutilized. Based on these observations, we incorporate ARM into 

adaptive DEs to generate explicit promising parameter pairs to speed up the evolution. The 
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main procedures of the proposed mechanism will be listed as follows. SaDE is taken as an 

example to represent adaptive DE algorithms. Meanwhile, for easy understanding, some 

variables and descriptions are summarized in the following table. 

Table 1 

Variables and illustrations in the ARM-based parameter adaptive strategy. 

Variables names Abbreviation Descriptions 

Original dataset Do A real number two-column matrix, which is used to store every F and Cr 

combination when the corresponding better trial vector Ui is generated. 

Binary dataset Db A binary ten-column matrix, which is a discretized matrix of Do according 

to different intervals. 

F and Cr most 

frequent itemset 

L2 An itemset contains two numbers, which represent different F and Cr 

distributing intervals. 

Step 1. Record every successful F and Cr into original dataset Do. At every iteration, if a 

better trial vector Ui,G is generated, the corresponding F and Cr combination for Ui,G will be 

added into a two-column dataset, which is named as Do. On the contrary, if the trial vector 

Ui,G is worse, the corresponding parameters pair is discarded. F is defined as a scale factor 

which usually lies between 0 and 1 (Das and Suganthan, 2011). Cr is denoted as crossover 

rate in the range [0, 1) (Das, et al., 2014). Thus, Do is a real number two-column matrix, 

whose length will increase once a better trial vector is obtained. Do is added with new F and 

Cr value if a better fitness value is found for each vector, as shown in line 42 and 45 of 

Algorithm 4. Fig. 3 shows the diagram of saving successful F and Cr into original dataset Do. 

Selection

f(Ui,G) < f(Xi,G)

Mutation

Xi,G

F

Vi,G

Crossover

Cr

Ui,G Xi,G+1

0.53 0.94

0.75 0.72

0.39 0.08

Do

Successful F and 

Cr combination is 

added into Do

0.61 0.18

0.53 0.94

0.75 0.72

0.39 0.08

Do

0.61 0.18
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Fig. 3. Diagram of saving a successful F and Cr combination into Do. 

Step 2. Discretize Do. Before ARM, Do should be pre-processed into a binary matrix, which 

is named as Db. In section 2.2, we have reviewed that different combinations of F and Cr may 

result in distinctive searching behaviors. For instance, F = 1 and Cr = 0.9 is mainly to 

maintain population diversity, while F = 0.8 and Cr = 0.2 is for encouraging the exploitation 

capability (Wang, et al., 2011). Thus, in this paper, the two parameters could be categorized 

into five different intervals ((0, 0.1), [0.1, 0.4), [0.4, 0.6), [0.6, 0.9), [0.9, 1]) to represent 

distinctive behaviors. Consequently, F and Cr are discretized into five different intervals ((0, 

0.1), [0.1, 0.4), [0.4, 0.6), [0.6, 0.9), [0.9, 1]) according to their values. Thus, Db is a 

ten-column binary matrix, whose first 5 columns and last 5 columns represent F and Cr, 

respectively. Fig. 4 gives an example to display the discretization process. 

0.53 0.94

0.75 0.72

0.39 0.08

Do

F Cr

...
...

0.61 0.18

0 0

0 0

0 1

Db

F∈[0,0.1) F∈[0.1,0.4)

...
...

0 0

1 0

0 1

0 0

F∈[0.4,0.6) F∈[0.6,0.9)

...
...

0 1

0 0

0 0

0 1

F∈[0.9,1] Cr∈[0,0.1)

...
...

0 0

0 0

0 0

0 0

Cr∈[0.1,0.4) Cr∈[0.4,0.6)

...
...

1 0

0 1

1 0

0 0

Cr∈[0.6,0.9) Cr∈[0.9,1]

...
...

0 0

Fig. 4. Discretization diagram of converting Do to Db. 

Step 3. Find the most frequent 2-itemset by using Apriori algorithm. Based on the original 

Apriori algorithm for frequent k-itemset, we develop a modified Apriori-2 algorithm which 

could obtain the most successful combination of F and Cr so far. Here, k is set to 2 since we 

only need association rule of F and Cr. In this paper, the most successful combination of F 

and Cr represents the most frequent 2-itemset of Db by using the Apriori-2 algorithm. In other 

words, in Db, the rows, which repeat the most times, represent the most frequent F and Cr 

intervals. That is, the most successful combination of F and Cr. Fig. 5 gives an example. 

There is a Db with 5 rows. By using the Apriori-2 algorithm, the most successful F and Cr 

pair (F∈[0.6,0.9), Cr∈[0.6,0.9)) is outputted.  
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0 0

0 0

0 1

Db

F∈[0,0.1) F∈[0.1,0.4)

0 0

1 0

0 1

0 0

F∈[0.4,0.6) F∈[0.6,0.9)

0 1

0 0

0 0

0 1

F∈[0.9,1] Cr∈[0,0.1)

0 0

0 0

0 0

0 0

Cr∈[0.1,0.4) Cr∈[0.4,0.6)

1 0

0 1

1 0

0 0

Cr∈[0.6,0.9) Cr∈[0.9,1]

0 0

0 0 0 1 0 0 0 0 1 0

Apriori-2 algorithm

F∈[0.4,0.6),Cr∈[0.9,1] 1/5=0.2

F∈[0.6,0.9),Cr∈[0.6,0.9) 2/5=0.4

F∈[0.1,0.4),Cr∈[0,0.1) 1/5=0.2

2-itemset Support

F∈[0.6,0.9),Cr∈[0.1,0.4) 1/5=0.2

Output the most 

successful F and Cr

 

Fig. 5. Diagram of the process for generating the most successful F and Cr. 

Meanwhile, the Apriori-2 algorithm will only be implemented at every Learning Period 

(LP) generations. In this paper, LP is set to population size (NP). Based on our previous 

experimental results, the performance of ARM-based strategy is not sensitive to how 

frequently we execute the Apriori-2 algorithm. For frequent 2-itemset, the Apriori-2 

algorithm will generate neither repeated itemset nor the itemset which contains any infrequent 

sub itemset. Therefore, delete and prune operations are omitted. Details of the Apriori-2 

algorithm is described as follows. 

Algorithm 3. The pseudo code of Apriori-2 algorithm for F and Cr. 

 

Input: Binary dataset Db discretized from Do, minimum threshold support Min_sup 

Output: Most Frequent 2-itemset L2 for F and Cr 

1 L1 = ∅;  

2 Calculate 1-itemsets L1 having support ≥ Min_sup from Db 

3 L2 = ∅; 

4 Generate non-repeated candidate Itmp of 2-itemset by joining each item in 1-itemset L1; 

5 for each item in Itmp 
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6     if support(item) ≥ Min_sup 

7         Add item into C2; 

8     end 

9 end 

10 return the itemset in L2 with biggest support value. 

 

Step 4. Generate new values based on the above association rule. From Apriori-2 

algorithm, we could obtain two-column numbers, which represent different F and Cr 

distributing intervals. For example, if L2 = [3, 9] is returned, it means the most frequent 

association rule of F and Cr distribution domain is that F ∈ [0.4, 0.6) and Cr ∈ [0.6, 0.9). 

Meanwhile, recommended upper and lower limits, which are named as Fu, Fl, Cru and Crl, 

respectively, are outputted. Based on these explicit association rule of F and Cr intervals, new 

F and Cr could be generated as follows: 

( ) (7)

( ) (8)

ARM l u l

ARM l u l

F F rand F F

Cr Cr rand Cr Cr

   

   
 

where, FARM and CrARM mean F and Cr values generated by using the ARM-based method, 

rand is uniformly distributed random numbers independently generated within [0, 1].  

Step 5. Select better candidate parameters by using a greedy operator. In order to keep good 

searching capabilities of state-of-the-art DE variants, this paper proposes a greedy operator by 

mixing ARM-based parameters adaptive strategy and original methods together. At each 

iteration, two trial vectors Ui and Ui_ARM, representing each trial vectors generated by original 

and ARM-based parameters adaptive strategy, respectively, are both evaluated. Then, the trial 

vector with better fitness value will be chosen to try to replace Xi in selection operation. This 

greedy selection operator could be described as follows: 

, , _ , , ,

, 1 _ , _ , , _ , ,

,

, if ( ) ( )& ( ) ( )

, elseif ( ) ( )& ( ) ( )

, otherwise

i G i G i ARM G i G i G

i G i ARM G i ARM G i G i ARM G i G

i G

f f f f

f f f f

  


  



U U U U X

X U U U U X

X

 (9) 

In this modified selection operator, we evaluate both two trail vectors with different F and 

Cr values. This design would twice the number of function evaluations, reducing the number 

of generations to half. Similar situation occurs in CoDE, which compared three trial vectors 

with three control parameter settings. Experimental results of both CoDE and ARM-based 
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DEs suggested that overall performances with such a design were better than competitors. It 

may attest to the fact that the proposed ARM-based strategy enhances the exploration 

capabilities of DE algorithms, which were probably stuck in local optima. Section 4.2 gives 

experimental results and statistical analysis. 

Moreover, it is necessary to explain further why we design this greedy operator. Generally 

speaking, we are trying to present a parameter-adjusting method for adaptive DE variants 

without deteriorating performances of the original algorithms. First, the chosen 

state-of-the-art algorithms have been widely used and highly cited. It is unwise to abandon 

these well-designed and proven original parameter adaptions. Second, this presented 

prior-knowledge-based method assumes that previous successful combinations of parameters 

will be effective in the future. Nevertheless, different evolutionary stages with different 

fitness landscapes may require different combinations of parameters. Successful combinations 

of parameters in history might not result in better solutions in the future. Therefore, the 

authors believe that it is necessary to retain the original parameter-adjusting methods to adapt 

to unknown fitness landscapes. Third, experimental results demonstrate that it is effective to 

improve performances of DE algorithms by embedding the proposed ARM-based strategy to 

some extent. For example, SaDE-ARM outperforms SaDE on 9 test functions for D = 30. 

SaDE-ARM is significantly better than SaDE on 8 test functions for D = 50. More details 

could be seen in Section 4.2. Overall, the authors believe that it may be reasonable to develop 

such a greedy operator.  

In summary, we incorporate the Apriori-2 algorithm into SaDE to show how to adapt F and 

Cr using mined association rules. The pseudo code of the modified algorithm, which is named 

as SaDE-ARM, is listed below. 

Algorithm 4. The pseudo code of SaDE-ARM algorithm. 

 

1 Uniformly randomly initialize each individual within the searching range; 

2 Calculate the fitness values of the initial population; 

3 Set generation number G = 1; set population size as NP; set function evaluations as Fes = 

NP; set maximum function evaluations as Max_Fes; set learning period LP = NP; initial 

median value of Cr (Crml) and strategy probability pl,G (l = 1, …, L, L is the number of 

available strategies, L = 4); Clear Success and Failure Memory; 

4 Do = ∅; Db = ∅; L2 = ∅; set minimum support as Min_sup; 

5 while Fes ≤ Max_Fes  
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6     if G > LP 

7         Update pl,G based on lth strategy performance in last LP generations; 

8         Update Success and Failure Memory; 

9     end 

10     if mod(G, NP) == 0 & Do ≠ ∅ 

11         Discretize Do into Db; 

12         L2 = Apriori-2 (Db, 0.05); 

13         if L2 ≠ ∅  

14             Output corresponding Fu, Fl, Cru and Crl; 

15         end 

16     end 

17     for i = 1 : NP 

18         % Mutation strategy adaption 

19         Select one strategy l for Xi,G by using roulette wheel selection according to pl,G; 

20         % Mutation 

21         Fi = normrnd(0.5, 0.3); 

22         Generate mutation vector Vi,G according to corresponding strategy l and Fi; 

23         if L2 ≠ ∅  

24             Generate Fi_ARM and Cri_ARM according to Eq. 7-8; 

25             Generate Vi_ARM,G according to corresponding strategy l and Fi_ARM; 

26         end 

27         % Crossover 

28         Calculate lth crossover rate for Vi,G using Crml = median(Cr_memoryl); 

29         Cri = normrnd(Crml, 0.1); 

30         Generate trial vector Ui,G according to corresponding strategy l and Cri; 
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31         Calculate the fitness value of Ui,G; 

32         Fes = Fes + 1; 

33         if L2 ≠ ∅ 

34             Generate Ui_ARM,G according to corresponding strategy l and Cri_ARM; 

35             Calculate the fitness value of Ui_ARM,G; 

36             Fes = Fes + 1; 

37         end 

38         % Selection 

39         if f(Ui,G) < f(Ui_ARM,G) & f(Ui,G) < f(Xi,G) 

40             Xi,G+1 = Ui,G; 

41             Add Cri into Cr_memoryl; 

42             Add successful F and Cr into Do; 

43         else if f(Ui_ARM,G) < f(Ui,G) & f(Ui_ARM,G) < f(Xi,G) 

44             Xi_ARM,G+1 = Ui,G; 

45             Add successful F and Cr into Do; 

46         end 

47         Add successful and failure information of lth mutation strategy into Success 

and Failure Memory, respectively; 

48     end 

49     G = G + 1; 

50 end 

 

Note that, this proposed ARM-based parameter adaptive methodology could be applied for 

any DE variant with adaptive or self-adaptive mechanism, which generates new F and Cr by 

trial or similar scheme. That is to say, this new technique is suitable to the algorithms that 

could renew control parameters in a relatively large range randomly to some extent. Thus, 

some DE algorithms with fixed parameters settings, such as conventional DE (Storn and 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Price, 1997) and CoDE (Wang, et al., 2011), are not recommended to implement this method. 

Besides, it does not introduce new control parameter by setting every NP generations to mine 

association rules of F and Cr values. Based on our previous experimental results, the 

performance of ARM-based strategy is not sensitive to how frequently we execute Apriori-2 

algorithm. Thus, this operation is similar to the dealing of LP in SaDE. 

Also, there is another issue we should discuss. That is, the main difference between the 

proposed ARM-based F and Cr adaptive strategy and other F and Cr adaptive or self-adaptive 

methods for DE variants. In other methods, F and Cr are usually adapted based on previous 

successful memories separately. For example, in JADE, F is renewed by using a random 

number generator obeys Cauchy distribution whose location parameter is calculated based on 

previous successful F sets. While, Cr is renewed by using a random number generator obeys 

Normal distribution whose mean value is calculated based on previous successful Cr sets. F 

and Cr are generated separately. This method has not been considered the impact of the 

combination of F and Cr, resulting in a less efficient parameters adaption. In our proposed 

ARM-based method, successful F and Cr are stored in a pair into Do. Then, we use Apriori 

algorithm to mine the most promising combinations of F and Cr to generate new trial vectors. 

Simply speaking, we are trying to get the set of discrete (F, Cr) with the maximum successes 

every NP generation. The basis for this approach is that historically better combinations of 

parameters may be more helpful in generating new parameters in the future. We need a 

full-developed algorithm to find the most frequent combinations of parameters from the 

successful records. The authors believe that the Apriori algorithm is the most appropriate 

method to solve this issue. That is the reason why we chose the Apriori algorithm rather than 

other methods.  

4. Experimental results on benchmark functions 

In this section, the authors are going to conduct comprehensive experiments to test the 

performance of the proposed ARM-based parameters-adaptive method. We select benchmark 

functions presented in CEC2005 as the test suite. More details about definitions of benchmark 

problems can be found via http://www3.ntu.edu.sg/home/epnsugan/. The computational 

configurations are listed as following: 

 OS: Win 7. 

 CPU: Intel i5 @2.60 GHz. 

 RAM: 8G. 

 Platform: Matlab 2012b. 

4.1 Compared algorithms and simulation setup 
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In order to fairly compare the results between the ARM-based DE algorithm and its 

corresponding original DE algorithm, we use the following six state-of-the-art algorithms 

shown in Tab. 2 with their recommended setup in their original literatures. All peer methods 

could adapt their F and Cr values during evolution.  

Table 2 

Parameter settings of involved DE variants. 

Algorithm Setup 

SaDE (Qin, et al., 2009) F = Norm(0.5, 0.3), Cr = Norm(Crmk, 0.1), LP = 50 

JADE (Zhang and Sanderson, 2009) c = 0.1, p = 0.05, μF = 0.5, μCR = 0.5 

jDE (Brest, et al., 2006) Fl = 0.1, Fu = 0.9, τ1 = τ2 = 0.1 

AS-JADE (Gong, et al., 2011) c = 0.1, p = 0.05, μF = 0.5, μCR = 0.5, α = 0.3, β = 0.8 

MDE_pBX (Islam, et al., 2012) q = 0.15, Fi = Cauchy(Fm, 0.1), Cri = Gaussian(Crm, 0.1) 

rank-jDE (Gong and Cai, 2013) Fl = 0.1, Fu = 0.9, τ1 = τ2 = 0.1 

All benchmark functions are tested in 30 and 50 dimensions. The population size has been 

kept equal to 100 irrespective of the problem dimension. The maximum of function 

evaluations (Max_Fes) is set to 10000D. Calculated the results of different algorithms on each 

function are averaged over 50 independent runs. In addition, minimum support that is named 

as Min_sup is a user-defined parameter. According to our previous experimental results, if 

Min_sup is set too large such as 0.4 on some test functions, there will be no 2-itemset (F and 

Cr pair) mined and the proposed ARM-based method will never be used. Thus, Min_sup is 

set to 0.05 to guarantee at least one F and Cr combination to be chosen. Nevertheless, if the 

test function is too difficult to find any better fitness value, original adaptive DE variants will 

fail, so do modified ones with the ARM-based strategy. All of the DE variants start evolving 

from the same initial population in each run so that any difference in their performances may 

be attributed to their internal search operators only. 

4.2 Effect on peer DE algorithms 

In this section, we incorporate the ARM-based parameter adaptive strategy into some 

advanced DE algorithms. The error values of all DE variants are reported in Tab. 3 to 4 on 

CEC05 functions for D = 30 and D = 50, respectively. All results are averaged over 50 

independent runs. In order to compare the significance between the two algorithms, the 

Wilcoxon rank sum test at 0.05 level is used (Derrac, et al., 2011; Garcia, et al., 2010). The 

Wilcoxon rank sum test results regarding algorithm1 vs. algorithm2 are shown as „+‟, „–‟, „≈‟, 
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when algorithm1 is significantly better than, significantly worse than and significantly equal 

to algorithm2, respectively. In this paper, we use Wilcoxon rank sum test regarding DE 

algorithm with ARM-based strategy vs. original algorithm. Best results are shown in 

boldface. 

Table 3 

Compared results of peer DE algorithms and the corresponding method with ARM-based operator for D=30. 

 SaDE  SaDE-ARM JADE  JADE-ARM jDE  jDE-ARM 

f1 6.43E-30 

±2.79E-30 

+ 2.80E-33 

±2.09E-33 

1.58E-54 

±9.36E-54 

+ 2.27E-57 

±9.28E-57 

3.52E-29 

±4.32E-29 

+ 8.93E-31 

±1.43E-31 

f2 1.35E-17 

±9.01E-17 

+ 3.36E-21 

±2.07E-21 

4.46E-28 

±1.59E-28 

+ 2.19E-28 

±1.17E-28 

1.05E-05 

±1.45E-05 

+ 1.44E-06 

±2.38E-06 

f3 4.51E+04 

±3.24E+04 

≈ 4.93E+04 

±4.68E+04 

8.18E+03 

±5.47E+03 

≈ 7.56E+03 

±6.79E+03 

1.76E+05 

±1.02E+05 

+ 8.11E+04 

±3.28E+04 

f4 6.35E-01 

±1.94E+00 

+ 3.39E-02 

±8.33E-01 

7.18E-16 

±2.56E-15 

+ 5.59E-16 

±1.57E-15 

2.94E-01 

±5.62E-01 

– 3.04E-01 

±6.80E-01 

f5 1.57E+03 

±4.00E+02 

+ 1.19E+03 

±4.18E+02 

9.76E-02 

±2.77E-01 

+ 4.55E-02 

±1.89E-01 

1.10E+03 

±4.34E+02 

≈ 1.13E+03 

±5.07E+02 

f6 2.01E+00 

±1.93E+00 

≈ 2.10E+00 

±2.11E+00 

8.33E+00 

±2.27E+01 

+ 7.95E-01 

±3.53E+00 

2.49E+01 

±2.44E+01 

≈ 2.54E+01 

±1.08E+00 

f7 1.57E-02 

±1.51E-02 

– 1.88E-02 

±2.95E-02 

9.44E-03 

±8.80E-03 

+ 6.12E-03 

±7.21E-03 

1.38E-02 

±9.49E-03 

+ 9.94E-03 

±8.34E-03 

f8 2.09E+01 

±7.11E-02 

≈ 2.09E+01 

±7.51E-02 

2.09E+01 

±1.43E-01 

≈ 2.09E+01 

±1.43E-01 

2.09E+01 

±4.93E-02 

≈ 2.09E+01 

±4.98E-02 

f9 2.37E-15 

±1.36E-14 

+ 3.55E-16 

±3.54E-15 

5.72E-22 

±8.43E-22 

+ 3.92E-23 

±1.26E-23 

3.52E-29 

±4.62E-29 

+ 3.82E-30 

±1.76E-30 

f10 5.18E+01 

±6.27E+00 

+ 4.64E+01 

±4.59E+00 

2.56E+01 

±4.99E+00 

+ 2.39E+01 

±4.35E+00 

5.86E+01 

±1.07E+01 

+ 4.82E+01 

±9.19E+00 

f11 2.95E+01 

±5.25E+00 

≈ 2.77E+01 

±4.32E+00 

2.68E+01 

±1.05E+00 

≈ 2.73E+01 

±1.74E+00 

2.81E+01 

±1.82E+00 

≈ 2.77E+01 

±2.52E+00 

f12 2.20E+03 

±1.81E+03 

+ 1.63E+03 

±1.82E+03 

7.23E+03 

±3.96E+03 

+ 4.23E+03 

±3.59E+03 

1.08E+04 

±7.72E+03 

+ 1.89E+03 

±1.84E+03 

f13 2.40E+00 

±1.97E-01 

≈ 2.41E+00 

±2.01E-01 

1.44E+00 

±1.03E-01 

≈ 1.49E+00 

±1.18E-01 

1.60E+00 

±1.55E-01 

≈ 1.56E+00 

±2.73E-01 
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f14 1.29E+01 

±1.87E-01 

≈ 1.29E+01 

±1.90E-01 

1.24E+01 

±3.37E-01 

≈ 1.21E+01 

±3.34E-01 

1.31E+01 

±2.08E-01 

≈ 1.38E+01 

±2.48E-01 

f15 3.17E+02 

±5.28E+01 

≈ 3.01E+02 

±4.80E+01 

3.65E+02 

±8.77E+01 

≈ 3.64E+02 

±9.98E+01 

3.43E+02 

±1.18E+02 

≈ 3.63E+02 

±5.45E+01 

f16 7.64E+01 

±3.10E+01 

+ 6.91E+01 

±2.99E+01 

7.84E+01 

±8.66E+01 

≈ 8.81E+01 

±1.07E+02 

7.58E+01 

±8.85E+00 

+ 6.01E+01 

±9.02E+00 

f17 1.34E+02 

±5.50E+01 

≈ 1.33E+02 

±5.76E+01 

1.23E+02 

±9.61E+01 

≈ 1.07E+02 

±8.68E+01 

1.23E+02 

±1.47E+01 

+ 1.05E+02 

±3.23E+01 

f18 8.77E+02 

±4.44E+01 

≈ 8.75E+02 

±4.02E+01 

8.85E+02 

±3.80E+01 

≈ 9.03E+02 

±2.55E+01 

9.07E+02 

±1.34E+00 

≈ 9.08E+02 

±2.01E+00 

f19 8.66E+02 

±5.32E+01 

≈ 8.77E+02 

±5.26E+01 

8.98E+02 

±3.85E+01 

≈ 9.09E+02 

±2.29E+01 

9.06E+02 

±1.71E+00 

≈ 9.07E+02 

±1.80E+00 

f20 7.58E+02 

±4.36E+01 

– 8.95E+02 

±4.77E+01 

8.89E+02 

±3.94E+01 

≈ 8.87E+02 

±3.68E+01 

9.09E+02 

±1.58E+00 

≈ 9.08E+02 

±1.78E+00 

f21 5.05E+02 

±4.42E+01 

≈ 5.05E+02 

±4.42E+01 

5.00E+02 

±0.00E+00 

≈ 5.00E+02 

±0.00E+00 

5.00E+02 

±0.00E+00 

≈ 5.00E+02 

±0.00E+00 

f22 9.19E+02 

±1.32E+01 

+ 9.09E+02 

±1.26E+02 

8.99E+02 

±1.37E+01 

+ 8.88E+02 

±1.41E+01 

9.05E+02 

±1.02E+01 

+ 8.87E+02 

±1.16E+01 

f23 5.34E+02 

±1.19E-03 

≈ 5.34E+02 

±3.30E-03 

5.34E+02 

±1.29E-04 

≈ 5.34E+02 

±2.88E-03 

5.34E+02 

±2.17E-04 

≈ 5.34E+02 

±1.21E-03 

f24 2.00E+02 

±0.00E+00 

≈ 2.00E+02 

±0.00E+00 

2.00E+02 

±0.00E+00 

≈ 2.00E+02 

±0.00E+00 

2.00E+02 

±0.00E+00 

≈ 2.00E+02 

±0.00E+00 

f25 2.10E+02 

±3.34E-01 

≈ 2.09E+02 

±2.91E-01 

2.09E+02 

±1.22E-01 

≈ 2.09E+02 

±1.02E-01 

2.10E+02 

±3.29E-01 

≈ 2.09E+02 

±2.88E-01 

w/t/l 9/14/2  − 10/15/0  − 10/14/1  − 

 AS-JADE  AS-JADE-AR

M 

MDE_pB

X 

 MDE_pBX-AR

M 

rank-jDE  rank-jDE-AR

M 

f1 2.62E-20 

±5.34E-2

0 

+ 6.37E-21 

±1.90E-21 

1.29E-62 

±1.85E-61 

+ 4.17E-64 

±1.99E-64 

8.95E-59 

±4.17E-5

9 

≈ 9.07E-59 

±2.99E-59 

f2 4.78E-27 

±1.15E-2

6 

+ 9.23E-28 

±1.88E-28 

1.81E-26 

±2.27E-2

6 

≈ 1.99E-26 

±2.63E-26 

1.44E-11 

±2.05E-1

1 

+ 2.40E-12 

±1.35E-12 

f3 4.79E+04 

±2.90E+0

4 

≈ 4.38E+04 

±2.32E+04 

2.77E+03 

±1.99E+0

3 

− 3.50E+03 

±2.58E+03 

8.11E+04 

±3.83E+0

4 

≈ 8.09E+04 

±5.46E+04 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

f4 6.97E-16 

±2.88E-1

5 

+ 4.72E-18 

±1.34E-18 

6.86E-08 

±6.08E-0

8 

≈ 6.94E-08 

±4.13E-08 

7.98E-04 

±1.56E-0

3 

+ 4.35E-04 

±1.79E-03 

f5 2.14E+02 

±1.94E+0

2 

− 4.10E+02 

±2.64E+02 

2.57E+02 

±1.19E+0

2 

+ 1.13E+02 

±1.54E+02 

1.12E+03 

±5.48E+0

2 

≈ 1.36E+03 

±5.35E+02 

f6 6.27E+01 

±5.05E+0

1 

≈ 6.37E+01 

±2.24E+01 

3.70E-01 

±1.98E+0

0 

≈ 3.56E-01 

±8.45E-01 

5.74E-01 

±2.31E+0

0 

+ 3.44E-01 

±2.13E+00 

f7 2.15E+02 

±8.50E+0

1 

≈ 2.22E+02 

±7.06E+01 

6.72E-03 

±9.07E-03 

+ 2.51E-03 

±5.66E-03 

9.67E-03 

±4.57E-0

3 

+ 7.49E-03 

±2.73E-03 

f8 2.09E+01 

±5.18E-0

2 

≈ 2.09E+01 

±5.95E-02 

2.00E+01 

±6.85E-07 

≈ 2.00E+01 

±9.16E-07 

2.09E+01 

±4.94E-0

2 

≈ 2.09E+01 

±4.99E-02 

f9 1.96E+01 

±3.22E+0

0 

≈ 1.93E+01 

±3.01E+00 

1.49E-09 

±3.46E-10 

+ 4.06E-10 

±9.14E-09 

3.56E-30 

±3.55E-3

0 

≈ 3.62E-30 

±3.81E-30 

f10 1.49E+02 

±4.14E+0

1 

+ 1.08E+02 

±3.45E+01 

1.90E+01 

±8.58E-01 

≈ 1.84E+01 

±7.37E-01 

4.81E+01 

±9.41E+0

0 

+ 4.31E+01 

±8.49E+00 

f11 2.45E+01 

±1.35E+0

1 

≈ 3.13E+01 

±2.00E+01 

1.90E+01 

±6.15E+0

0 

+ 1.32E+01 

±3.22E+00 

2.76E+01 

±2.55E+0

0 

+ 2.19E+01 

±1.13E+00 

f12 5.63E+03 

±6.58E+0

3 

≈ 6.08E+03 

±6.26E+03 

1.93E+03 

±8.83E+0

2 

≈ 2.05E+03 

±8.45E+02 

1.56E+03 

±2.02E+0

3 

≈ 1.70E+03 

±2.23E+03 

f13 1.19E+01 

±2.05E+0

0 

+ 1.03E+01 

±2.02E+00 

1.51E+00 

±5.60E-02 

≈ 1.46E+00 

±9.85E-02 

1.65E+00 

±1.75E-0

1 

≈ 1.55E+00 

±1.35E-01 

f14 1.36E+01 

±3.10E-0

1 

+ 1.12E+01 

±2.99E-01 

1.29E+01 

±3.20E-0

1 

≈ 1.34E+01 

±3.09E-01 

1.40E+01 

±2.03E-0

1 

≈ 1.51E+01 

±1.62E-01 

f15 3.45E+02 

±8.42E+0

1 

≈ 3.43E+02 

±8.66E+01 

2.53E+02 

±9.42E+0

1 

≈ 2.47E+02 

±8.76E+01 

3.88E+02 

±5.33E+0

1 

≈ 3.79E+02 

±4.18E+01 

f16 1.54E+02 

±1.31E+0

2 

+ 1.17E+02 

±1.18E+02 

5.27E+01 

±3.52E+0

0 

≈ 5.17E+01 

±3.40E+00 

6.19E+01 

±9.20E+0

0 

+ 4.73E+01 

±5.99E+00 

f17 2.25E+02 

±1.01E+0

≈ 2.22E+02 8.28E+01 

±3.47E+0

≈ 8.25E+01 1.03E+02 

±3.60E+0

≈ 1.17E+02 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2 ±1.03E+02 1 ±3.45E+01 1 ±3.73E+01 

f18 8.68E+02 

±5.69E+0

1 

≈ 8.73E+02 

±5.13E+01 

7.35E+02 

±1.07E-0

1 

≈ 8.35E+02 

±1.18E-01 

9.08E+02 

±4.64E+0

0 

≈ 9.00E+02 

±4.34E+00 

f19 8.69E+02 

±5.44E+0

1 

≈ 8.80E+02 

±4.07E+01 

8.25E+02 

±1.90E-0

1 

≈ 8.28E+02 

±1.36E-01 

9.08E+02 

±1.97E+0

0 

≈ 9.09E+02 

±2.00E+00 

f20 8.74E+02 

±5.32E+0

1 

≈ 8.90E+02 

±4.94E+01 

6.42E+02 

±2.17E-01 

≈ 6.38E+02 

±1.86E-01 

9.08E+02 

±1.78E+0

0 

≈ 8.99E+02 

±1.69E+00 

f21 5.37E+02 

±7.10E+0

1 

≈ 5.28E+02 

±8.16E+01 

5.00E+02 

±0.00E+0

0 

≈ 5.00E+02 

±0.00E+00 

5.00E+02 

±0.00E+0

0 

≈ 5.00E+02 

±0.00E+00 

f22 9.32E+02 

±1.57E+0

1 

≈ 9.22E+02 

±1.26E+01 

5.21E+02 

±4.55E-01 

+ 5.00E+02 

±3.90E-01 

8.89E+02 

±1.22E+0

1 

≈ 8.97E+02 

±1.33E+01 

f23 5.84E+02 

±2.92E+0

2 

+ 5.57E+02 

±2.81E+02 

5.16E+02 

±2.64E-04 

≈ 5.08E+02 

±2.68E-04 

5.34E+02 

±1.21E-0

3 

≈ 5.34E+02 

±1.21E-03 

f24 2.00E+02 

±0.00E+0

0 

≈ 2.00E+02 

±0.00E+00 

2.00E+02 

±0.00E+0

0 

≈ 2.00E+02 

±0.00E+00 

2.00E+02 

±0.00E+0

0 

≈ 2.00E+02 

±0.00E+00 

f25 2.95E+02 

±2.36E+0

2 

≈ 3.00E+02 

±2.47E+02 

2.62E+02 

±2.58E+0

0 

≈ 2.71E+02 

±3.90E+00 

2.09E+02 

±2.88E-0

1 

≈ 2.10E+02 

±2.97E-01 

w/t/

l 

8/16/1  − 6/18/1  − 7/18/0  − 

Table 4 

Compared results of peer DE algorithms and the corresponding method with ARM-based operator for D=50. 

 SaDE  SaDE-ARM JADE  JADE-ARM jDE  jDE-ARM 

f1 1.72E-11 

±2.35E-12 

+ 4.54E-13 

±6.93E-13 

7.51E-14 

±3.68E-14 

+ 2.27E-15 

±4.08E-15 

3.44E-09 

±4.15E-09 

+ 2.27E-11 

±4.15E-11 

f2 2.35E-10 

±3.39E-10 

+ 7.61E-13 

±3.31E-14 

5.31E-04 

±2.03E-04 

≈ 5.10E-04 

±3.17E-04 

9.09E-02 

±7.89E-02 

+ 6.53E-02 

±2.38E-02 

f3 1.58E+05 

±6.27E+04 

≈ 1.77E+05 

±5.24E+04 

1.54E+04 

±5.49E+03 

≈ 1.47E+04 

±4.58E+03 

5.83E+05 

±3.94E+05 

+ 2.85E+05 

±3.89E+05 

f4 1.07E+03 + 8.57E+02 1.93E+00 + 9.11E-01 7.90E+02 ≈ 8.08E+02 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

±1.16E+03 ±7.04E+02 ±5.05E+00 ±2.64E+00 ±7.39E+02 ±9.07E+02 

f5 4.41E+03 

±9.26E+02 

≈ 4.10E+03 

±9.27E+02 

1.68E+03 

±4.23E+02 

≈ 1.78E+03 

±5.73E+02 

3.33E+03 

±6.23E+02 

≈ 3.63E+03 

±4.96E+02 

f6 5.48E+00 

±2.03E+00 

+ 2.55E+00 

±1.70E+00 

2.17E+00 

±6.76E+00 

+ 1.05E+00 

±5.24E+00 

3.70E+01 

±9.62E+00 

+ 1.55E+01 

±8.46E+00 

f7 8.70E+03 

±1.59E+02 

≈ 8.86E+03 

±1.74E+02 

3.45E+03 

±3.94E+03 

≈ 4.41E+03 

±2.47E+03 

4.15E+03 

±7.29E+03 

≈ 4.34E+03 

±8.85E+03 

f8 2.11E+01 

±4.23E-02 

≈ 2.11E+01 

±3.53E-02 

2.11E+01 

±3.74E-02 

≈ 2.11E+01 

±4.16E-02 

2.11E+01 

±4.05E-02 

≈ 2.11E+01 

±4.79E-02 

f9 1.18E+02 

±1.66E+01 

+ 9.71E+01 

±5.57E+00 

5.31E-04 

±1.76E-06 

+ 1.08E-04 

±5.28E-06 

1.16E+02 

±1.09E+01 

+ 6.19E+01 

±6.14E+00 

f10 1.32E+02 

±1.45E+01 

≈ 1.19E+02 

±1.22E+00 

6.15E+01 

±8.97E+00 

+ 4.98E+01 

±7.02E+00 

1.00E+02 

±1.31E+01 

≈ 9.88E+01 

±1.25E+01 

f11 5.39E+01 

±3.27E+00 

≈ 5.21E+01 

±3.45E+00 

5.36E+02 

±2.68E+01 

≈ 5.37E+02 

±2.52E+01 

5.22E+01 

±2.14E+00 

≈ 5.14E+01 

±2.32E+00 

f12 1.06E+04 

±9.78E+03 

+ 8.82E+03 

±8.90E+03 

1.77E+04 

±2.33E+04 

+ 1.39E+04 

±1.90E+04 

3.98E+04 

±2.17E+04 

+ 6.69E+03 

±9.57E+03 

f13 4.89E+00 

±5.30E-01 

≈ 4.97E+00 

±5.80E-01 

2.50E+00 

±3.96E-01 

≈ 2.74E+00 

±1.42E-01 

2.91E+00 

±2.13E-01 

≈ 2.90E+00 

±2.03E-01 

f14 2.36E+01 

±2.28E-01 

≈ 2.44E+01 

±2.20E-01 

2.16E+01 

±4.72E-01 

≈ 2.17E+01 

±4.15E-01 

2.26E+01 

±3.93E-01 

≈ 2.26E+01 

±3.99E-01 

f15 3.57E+02 

±7.14E+01 

≈ 3.38E+02 

±7.01E+01 

3.05E+02 

±9.33E+01 

≈ 3.15E+02 

±9.36E+01 

3.43E+02 

±9.02E+01 

≈ 3.44E+02 

±9.25E+01 

f16 8.60E+01 

±9.82E+00 

+ 7.57E+01 

±9.57E+00 

6.34E+01 

±3.79E+01 

+ 5.55E+01 

±3.73E+01 

8.56E+01 

±7.92E+00 

+ 6.58E+01 

±6.38E+00 

f17 1.68E+02 

±1.60E+01 

≈ 1.77E+02 

±2.05E+01 

1.13E+02 

±4.94E+01 

+ 1.05E+02 

±3.78E+01 

1.72E+02 

±1.73E+01 

≈ 1.62E+02 

±1.42E+01 

f18 8.87E+02 

±6.06E+01 

≈ 8.64E+02 

±5.92E+01 

9.31E+02 

±3.70E+01 

≈ 9.33E+02 

±3.83E+01 

9.09E+02 

±3.34E+00 

− 9.45E+02 

±4.02E+00 

f19 9.53E+02 

±3.48E+01 

≈ 9.58E+02 

±3.58E+01 

9.37E+02 

±1.05E+01 

≈ 9.34E+02 

±1.07E+01 

9.23E+02 

±1.17E+00 

≈ 9.33E+02 

±1.74E+00 

f20 9.43E+02 

±3.90E+01 

≈ 9.47E+02 

±2.43E+01 

9.28E+02 

±1.16E+01 

≈ 9.32E+02 

±1.20E+01 

9.28E+02 

±3.85E+00 

≈ 9.30E+02 

±3.87E+00 

f21 5.49E+02 + 5.29E+02 5.18E+02 ≈ 5.18E+02 5.00E+02 ≈ 5.00E+02 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

±1.75E+02 ±2.04E+02 ±7.63E+01 ±7.63E+01 ±0.00E+00 ±0.00E+00 

f22 9.67E+02 

±7.80E+00 

≈ 9.74E+02 

±8.46E+00 

9.42E+02 

±1.29E+01 

≈ 9.40E+02 

±5.97E+01 

9.47E+02 

±1.29E+01 

≈ 9.38E+02 

±1.24E+01 

f23 5.75E+02 

±1.26E+02 

≈ 5.68E+02 

±1.22E+02 

5.47E+02 

±6.97E+01 

≈ 5.45E+02 

±6.80E+01 

5.39E+02 

±4.05E-03 

− 5.74E+02 

±1.09E+01 

f24 2.00E+02 

±0.00E+00 

≈ 2.00E+02 

±0.00E+00 

2.00E+02 

±0.00E+00 

≈ 2.00E+02 

±0.00E+00 

2.00E+02 

±0.00E+00 

≈ 2.00E+02 

±0.00E+00 

f25 2.16E+02 

±6.17E-01 

≈ 2.20E+02 

±5.91E-01 

2.14E+02 

±5.58E-01 

≈ 2.14E+02 

±5.95E-01 

2.14E+02 

±4.19E-01 

≈ 2.14E+02 

±4.25E-01 

w/t/l 8/17/0  − 8/17/0  − 7/16/2  − 

 AS-JADE  AS-JADE-AR

M 

MDE_pB

X 

 MDE_pBX-AR

M 

rank-jDE  rank-jDE-AR

M 

f1 6.79E-10 

±9.64E-1

1 

+ 2.27E-11 

±3.21E-11 

4.03E-32 

±8.35E-2

0 

≈ 4.27E-32 

±8.29E-20 

4.54E-13 

±6.61E-1

3 

≈ 3.15E-13 

±6.56E-13 

f2 1.42E-10 

±3.87E-1

0 

+ 7.69E-11 

±3.88E-11 

4.46E-06 

±8.16E-11 

+ 1.11E-07 

±2.91E-10 

3.64E-05 

±3.97E-0

5 

+ 9.99E-04 

±2.88E-05 

f3 2.55E+05 

±8.77E+0

4 

+ 1.82E+05 

±7.49E+04 

3.38E+04 

±2.43E+0

4 

≈ 3.55E+04 

±3.86E+04 

3.15E+05 

±1.42E+0

5 

≈ 3.17E+05 

±1.89E+05 

f4 7.89E-03 

±1.65E-0

2 

+ 7.54E-03 

±1.41E-02 

1.75E+02 

±2.57E-06 

+ 1.14E+02 

±3.03E-06 

2.87E+02 

±4.12E+0

2 

+ 2.31E+02 

±4.07E+02 

f5 2.59E+03 

±5.01E+0

2 

+ 2.14E+03 

±3.94E+02 

2.58E+03 

±1.44E+0

2 

+ 1.36E+03 

±1.32E+02 

3.67E+03 

±5.13E+0

2 

+ 2.29E+03 

±3.03E+02 

f6 2.71E+03 

±2.18E+0

3 

+ 6.13E+02 

±7.68E+02 

7.57E-01 

±1.12E+0

0 

+ 4.58E-01 

±1.01E+00 

7.56E+00 

±1.53E+0

1 

+ 4.54E+00 

±1.25E+01 

f7 6.14E+02 

±2.66E+0

2 

− 8.65E+02 

±3.12E+02 

6.35E+03 

±2.12E+0

0 

≈ 6.48E+03 

±3.52E+00 

4.82E+03 

±2.18E+0

3 

+ 4.14E+03 

±2.08E+03 

f8 2.11E+01 

±3.78E-0

2 

≈ 2.11E+01 

±4.54E-02 

2.02E+01 

±2.70E-0

2 

− 2.11E+01 

±3.94E-02 

2.12E+01 

±4.26E-0

2 

≈ 2.11E+01 

±4.92E-02 

f9 1.66E+02 

±1.39E+0

1 

≈ 1.64E+02 

±1.49E+01 

1.47E+02 

±1.43E+0

1 

≈ 1.42E+02 

±1.55E+01 

1.16E+02 

±1.95E+0

1 

− 1.87E+02 

±9.09E+00 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

f10 3.46E+02 

±5.24E+0

1 

+ 2.15E+02 

±4.83E+01 

3.18E+01 

±1.82E+0

1 

≈ 1.98E+01 

±1.33E+01 

7.66E+01 

±1.52E+0

1 

≈ 7.58E+01 

±1.40E+01 

f11 7.02E+01 

±1.22E+0

0 

≈ 7.07E+01 

±1.47E+00 

4.28E+01 

±1.50E+0

0 

+ 2.29E+01 

±1.07E+00 

5.31E+01 

±2.97E+0

0 

+ 3.50E+01 

±2.27E+00 

f12 4.24E+04 

±3.36E+0

4 

+ 3.06E+04 

±3.04E+04 

1.79E+04 

±8.02E+0

3 

+ 1.24E+04 

±5.58E+03 

6.02E+03 

±3.87E+0

3 

+ 3.72E+03 

±3.53E+03 

f13 2.22E+01 

±4.91E+0

0 

≈ 2.26E+01 

±5.81E+00 

2.23E+01 

±1.52E+0

0 

≈ 2.28E+02 

±1.62E+00 

2.81E+00 

±3.65E-0

1 

≈ 3.00E+00 

±4.89E-01 

f14 2.24E+01 

±2.28E-0

1 

≈ 2.23E+01 

±2.92E-01 

2.20E+01 

±2.01E-0

1 

≈ 2.24E+01 

±3.33E-01 

2.26E+01 

±4.54E-0

2 

≈ 2.26E+01 

±3.74E-02 

f15 3.09E+02 

±8.95E+0

1 

− 3.36E+02 

±9.52E+01 

3.70E+02 

±6.95E+0

1 

+ 2.50E+02 

±3.16E+01 

3.12E+02 

±9.13E+0

1 

+ 2.11E+02 

±6.32E+01 

f16 2.64E+02 

±3.64E+0

1 

≈ 2.65E+02 

±3.41E+01 

1.58E+02 

±3.88E+0

1 

≈ 1.60E+02 

±4.05E+01 

6.83E+01 

±1.74E+0

1 

≈ 6.69E+01 

±3.45E+01 

f17 2.54E+02 

±6.29E+0

1 

− 2.81E+02 

±7.74E+01 

1.02E+02 

±1.24E+0

1 

≈ 1.10E+02 

±1.40E+01 

1.43E+02 

±2.94E+0

1 

≈ 1.53E+02 

±4.20E+01 

f18 9.21E+02 

±4.60E+0

1 

≈ 9.15E+02 

±3.69E+01 

8.40E+02 

±8.17E+0

1 

+ 6.59E+02 

±5.72E+01 

9.33E+02 

±4.38E+0

0 

≈ 9.21E+02 

±5.37E+00 

f19 9.27E+02 

±2.87E+0

1 

≈ 9.27E+02 

±2.93E+01 

9.46E+02 

±2.43E+0

1 

≈ 9.37E+02 

±1.78E+01 

9.32E+02 

±4.51E+0

0 

≈ 9.39E+02 

±5.16E+00 

f20 9.28E+02 

±4.07E+0

1 

≈ 9.20E+02 

±3.47E+01 

9.04E+02 

±2.76E+0

1 

≈ 9.18E+02 

±2.82E+01 

9.25E+02 

±8.03E+0

0 

− 9.35E+02 

±8.92E+00 

f21 5.28E+02 

±9.09E+0

1 

≈ 5.23E+02 

±9.35E+01 

5.00E+02 

±0.00E+0

0 

≈ 5.04E+02 

±4.56E-03 

5.00E+02 

±0.00E+0

0 

≈ 5.00E+02 

±0.00E+00 

f22 9.79E+02 

±1.91E+0

1 

≈ 9.76E+02 

±1.82E+01 

9.18E+02 

±9.01E+0

0 

+ 8.86E+02 

±7.82E+00 

9.43E+02 

±6.12E+0

1 

≈ 9.35E+02 

±6.32E+01 

f23 6.44E+02 

±1.74E+0

+ 5.80E+02 5.00E+00 

±0.00E+0

≈ 5.00E+00 5.38E+02 

±8.29E-0

≈ 5.20E+02 
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2 ±1.60E+02 0 ±0.00E+00 3 ±8.05E-03 

f24 2.10E+02 

±6.83E+0

0 

+ 2.02E+02 

±6.36E+00 

2.00E+02 

±0.00E+0

0 

≈ 2.00E+02 

±0.00E+00 

2.00E+02 

±0.00E+0

0 

≈ 2.00E+02 

±0.00E+00 

f25 8.85E+02 

±2.97E+0

2 

+ 7.44E+02 

±3.68E+02 

9.56E+02 

±6.76E+0

0 

≈ 9.66E+02 

±6.83E+00 

2.14E+02 

±8.29E-0

1 

≈ 2.14E+02 

±9.11E-01 

w/t/

l 

11/11/3  − 9/15/1  − 8/15/2  − 

In order to demonstrate the effectiveness of the proposed ARM-based F and Cr adaptive 

strategy, we insert the proposed strategy into some famous DE variants, resulting in satisfying 

performances. For fair comparison, all parameters are kept the same as used in their original 

literatures as shown in Tab. 3. DE algorithms with the ARM-based strategy beat the 

corresponding algorithms on 6 to 10 benchmark functions. Meanwhile, few methods with 

ARM-based strategy deteriorate the performances on very few test functions. For example, 

SaDE-ARM outperforms SaDE on 9 test functions (f1, f2, f4, f5, f9, f10, f12, f16, f22), and 

SaDE-ARM is defeated on 2 test functions (f7, f20). On the other problems (14 out of 25 

cases), there is no significant difference between SaDE-ARM and SaDE. Furthermore, for 

unimodal functions (f1-f5), SaDE-ARM beats SaDE in most cases (f1, f2, f4, f5). For multimodal 

functions (f6-f14), SaDE-ARM is significantly better that SaDE on 3 test functions (f9, f10, f12). 

Meanwhile, SaDE-ARM is significantly worse that SaDE on f7. For composition functions 

(f15-f25), there are no significant differences between the two algorithms in most cases. Other 

algorithms also show similar performances. Thus, we may conclude that, the proposed 

ARM-based strategy could keep searching capabilities of original DE variants in most cases, 

and improve performances on some optimization problems. Tab. 4 indicates similar 

demonstration with Tab. 3 for D = 50. In general, the proposed ARM-based parameter 

adaptive strategy may improve performances of the original algorithms to some extent.  

Moreover, it may be necessary to illustrate two issues. One is the frequency in which 

ARM-based trial vectors are selected over the generated trial vectors using the initial 

approach. The other one is when these selections occur. Generally speaking, both of them 

depend on the optimization problems. For some simple uni-modal functions, we observed that 

the ARM-based trail vectors were chosen with higher frequency. While, for some 

complicated multi-modal functions, it seemed that the ARM-based trail vectors were chosen 

with lower frequency. In addition, these selections occurred mainly at early stage in fast 

stagnant situation, and throughout the evolution in continuous exploration situation, 

respectively. Thus, it seems that timings when these selections occur vary with different 

optimization problems. 

4.3 Influence of population size 
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In the previous section, we investigated performances of some advanced DE algorithms 

with ARM-based F and Cr adaptive strategy on CEC05 test functions. As we claimed before, 

this methodology could be used for adapting any control parameter in DE, such as probability 

of each candidate mutation strategy and population size. In order to make the scope of this 

paper focused, we try to study the influence of population size on the proposed strategy in this 

part, leaving adaption of population size as a significant work in the future. Here, we choose 

JADE-ARM as the representative with different population sizes (50, 100, 150, 200) (Gong 

and Cai, 2013; Yi, et al., 2016; Zheng, et al., 2017). Over 50 independent runs are conducted 

on CEC05 test functions for D = 30. Like the previous experiment, Max_Fes is set to 10000D. 

The experimental results are displayed in Tab. 5. The boldfaces indicate the best results that 

are achieved among the population size settings. Moreover, in order to show the overall 

rankings of JADE-ARM with different population sizes, Friedman test (Derrac, et al., 2011; 

Garcia, et al., 2010) is conducted at α = 0.05 in Matlab environment. The p-values and 

average rankings for all functions are shown in Tab. 5.  

Table 5 

Compared results and Friedman test of JADE-ARM with different population sizes for D=30. 

 NP = 50 NP = 100 NP = 150 NP = 200 p-value 

f1 2.13E-45±2.79E-45 2.27E-57±9.28E-57 1.58E-57±8.36E-57 5.66E-58±4.17E-58 1.56E-07 

f2 5.35E-28±301E-28 2.19E-28±1.17E-28 1.46E-29±3.59E-29 3.19E-30±8.17E-30 0.0019 

f3 8.51E+03±6.24E+03 7.56E+03±6.79E+03 3.18E+03±2.47E+03 1.56E+02±7.79E+02 0.0004 

f4 1.35E-04±3.94E-04 5.59E-16±1.57E-15 9.18E-21±2.56E-20 5.79E-25±2.57E-24 1.94E-10 

f5 7.57E-01±1.00E+00 4.55E-02±1.89E-01 1.76E-06±5.77E-06 3.55E-07±1.89E-07 6.18E-09 

f6 1.11E+00±2.13E+00 7.95E-01±3.53E+00 8.93E-01±4.27E+00 9.95E-01±4.53E+00 0.0055 

f7 1.49E-02±1.01E-02 6.12E-03±7.21E-03 8.44E-03±7.80E-03 7.12E-03±7.21E-03 0.0078 

f8 2.09E+01±1.11E-02 2.09E+01±1.43E-01 2.09E+01±3.07E-01 2.09E+01±4.93E-01 0.6815 

f9 3.37E-15±7.36E-14 3.92E-23±1.26E-23 8.72E-25±5.43E-25 2.39E-27±2.16E-27 2.77E-06 

f10 6.18E+01±6.27E+00 2.39E+01±4.35E+00 2.65E+01±5.01E+00 2.49E+01±4.53E+00 0.0026 

f11 2.95E+01±5.25E+00 2.73E+01±1.74E+00 2.68E+01±1.05E+00 2.82E+01±1.64E+00 0.0578 

f12 5.20E+03±3.81E+03 4.23E+03±3.59E+03 2.93E+03±2.96E+03 2.23E+03±1.59E+03 0.0020 

f13 1.20E+00±1.97E-01 1.49E+00±1.18E-01 2.44E+00±2.03E-01 2.49E+00±2.18E-01 0.0169 

f14 1.31E+01±1.77E-01 1.21E+01±3.34E-01 1.24E+01±3.44E-01 1.24E+01±3.42E-01 0.0509 

f15 3.16E+02±4.28E+01 3.64E+02±9.98E+01 3.67E+02±7.77E+01 3.84E+02±8.98E+01 0.0081 

f16 1.64E+02±1.10E+02 8.81E+01±1.07E+02 1.84E+02±9.66E+02 1.31E+02±5.07E+02 0.0003 

f17 2.34E+02±8.50E+01 1.07E+02±8.68E+01 3.23E+02±8.61E+01 4.07E+02±9.68E+01 0.0348 
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f18 9.07E+02±3.44E+01 9.03E+02±2.55E+01 9.05E+02±2.80E+01 9.05E+02±2.75E+01 0.3855 

f19 9.16E+02±5.32E+01 9.09E+02±2.29E+01 9.09E+02±2.85E+01 9.09E+02±2.22E+01 0.2219 

f20 8.90E+02±3.76E+01 8.87E+02±3.68E+01 8.89E+02±3.64E+01 8.88E+02±3.69E+01 0.3452 

f21 5.13E+02±4.42E+01 5.00E+02±0.00E+00 5.00E+02±9.71E-14 5.00E+02±8.12E-14 0.0447 

f22 9.19E+02±1.32E+01 8.88E+02±1.41E+01 8.99E+02±1.37E+01 8.90E+02±1.41E+01 0.4778 

f23 5.34E+02±1.19E-03 5.34E+02±2.88E-03 5.34E+02±1.29E-04 5.34E+02±2.88E-03 0.7591 

f24 2.00E+02±0.00E+00 2.00E+02±0.00E+00 2.00E+02±0.00E+00 2.00E+02±0.00E+00 0.7743 

f25 2.10E+02±3.34E-01 2.09E+02±1.02E-01 2.09E+02±1.22E-01 2.09E+02±1.02E-01 0.4162 

Average 

ranking 

7.08 4.52 5.42 4.94  

From Tab. 5 we can see, for unimodal functions JADE-ARM with NP = 200 performs 

better than other settings on all unimodal functions (f1, f2, f3, f4, f5). While, for multimodal and 

hybrid composition functions JADE-ARM with NP = 100 could achieve the most promising 

results among the settings in 5 out of 20 cases (f6, f7, f10, f16, f17). Also, JADE-ARM obtains 

the best average ranking. Nevertheless, from the p-values of Friedman tests on all test 

functions, we would generally say that there are no significant differences among all the four 

population size settings. It seems that the proposed ARM-based parameter adaptive strategy is 

not sensitive to population size. Therefore, in this paper, it is acceptable that population size is 

set to 100.  

4.4 Influence of different discretized ranges for F and Cr 

DE algorithms with different couples of F and Cr may result in distinctive searching 

behaviors. In this paper, the two parameters are categorized into five different intervals ((0, 

0.1), [0.1, 0.4), [0.4, 0.6), [0.6, 0.9), [0.9, 1]). Why do we use such discretized ranges of F and 

Cr for the proposed ARM-based strategy? It is necessary to investigate the influence of 

different discretized ranges for F and Cr. In this part, we choose jDE-ARM as the paradigm 

to execute compared experiments. Different parameters settings that may obtain better results 

and their corresponding names are listed in Tab. 6. 

Table 6 

Parameter settings of jDE-ARMs. 

Algorithm F Cr 

jDE-ARM-1 (0, 0.1), [0.1, 0.2), [0.2, 0.3), [0.3, 0.4), [0.4, 

0.5), [0.5, 0.6), [0.6, 0.7), [0.7, 0.8), [0.8, 0.9), 

[0.9, 1] 

(0, 0.1), [0.1, 0.2), [0.2, 0.3), [0.3, 0.4), [0.4, 

0.5), [0.5, 0.6), [0.6, 0.7), [0.7, 0.8), [0.8, 0.9), 

[0.9, 1] 
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jDE-ARM-2 (0, 0.5), [0.5, 1] (0, 0.5), [0.5, 1] 

jDE-ARM-3 (0, 0.4), [0.4, 0.6), [0.6, 1] (0, 0.4), [0.4, 0.6), [0.6, 1] 

jDE-ARM-4 (0, 0.1), [0.1, 0.9), [0.9, 1] (0, 0.1), [0.1, 0.9), [0.9, 1] 

jDE-ARM (0, 0.1), [0.1, 0.4), [0.4, 0.6), [0.6, 0.9), [0.9, 1] (0, 0.1), [0.1, 0.4), [0.4, 0.6), [0.6, 0.9), [0.9, 1] 

Over 50 independent runs are conducted on CEC05 test functions for D = 30. Like the 

previous experiment, Max_FEs is set to 10000D. Population size is set to 100. The 

experimental results are displayed in Tab. 7. The boldface indicates the best results that are 

achieved among different settings. Moreover, In order to compare the significance between 

two algorithms, the Wilcoxon rank sum test at 0.05 level is used (Derrac, et al., 2011; Garcia, 

et al., 2010). 

Table 7 

Compared results of jDE-ARM with different F and Cr discretized ranges for D=30. 

 jDE-ARM-1  jDE-ARM-2  jDE-ARM-3  jDE-ARM-4  jDE-ARM 

f1 5.43E-27 

±8.79E-27 

+ 7.84E-25 

±3.66E-25 

+ 7.19E-26 

±4.53E-26 

+ 8.77E-31 

±1.28E-31 

≈ 8.93E-31 

±1.43E-31 

f2 6.27E-07 

±5.86E-07 

– 1.68E-04 

±9.45E-04 

+ 2.86E-05 

±4.77E-05 

+ 4.89E-04 

±1.22E-04 

+ 1.44E-06 

±2.38E-06 

f3 1.08E+05 

±6.01E+05 

+ 5.77E+05 

±4.23E+05 

+ 3.09E+06 

±4.75E+06 

+ 6.68E+05 

±8.20E+05 

+ 8.11E+04 

±3.28E+04 

f4 8.53E+00 

±4.94E+00 

+ 1.85E+00 

±3.35E+00 

+ 4.18E-01 

±7.56E-01 

≈ 4.06E+01 

±9.85E+01 

+ 3.04E-01 

±6.80E-01 

f5 1.27E+03 

±4.00E+02 

≈ 1.94E+04 

±9.08E+04 

+ 5.51E+04 

±8.06E+04 

+ 2.55E+04 

±6.89E+04 

+ 1.13E+03 

±5.07E+02 

f6 7.71E+01 

±3.93E+01 

+ 8.19E+01 

±1.88E+01 

+ 9.03E+01 

±1.27E+01 

+ 5.97E+02 

±3.55E+02 

+ 2.54E+01 

±1.08E+00 

f7 4.96E-02 

±8.02E-02 

+ 7.53E-02 

±1.95E-02 

+ 4.66E-01 

±7.70E-01 

+ 2.66E-02 

±7.21E-02 

+ 9.94E-03 

±8.34E-03 

f8 2.09E+01 

±6.11E-02 

≈ 2.09E+01 

±6.51E-02 

≈ 2.09E+01 

±5.43E-01 

≈ 2.09E+01 

±4.43E-01 

≈ 2.09E+01 

±4.98E-02 

f9 5.37E-25 

±6.36E-24 

+ 3.65E-30 

±1.54E-30 

≈ 5.72E-22 

±8.43E-22 

+ 3.92E-30 

±1.96E-30 

≈ 3.82E-30 

±1.76E-30 

f10 2.18E+02 + 1.64E+02 + 8.56E+01 + 7.39E+01 + 4.82E+01 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

±2.27E+02 ±1.59E+02 ±4.99E+01 ±4.35E+01 ±9.19E+00 

f11 2.91E+01 

±1.25E+00 

≈ 2.77E+01 

±1.34E+00 

≈ 2.69E+01 

±1.15E+00 

≈ 2.70E+01 

±1.72E+00 

≈ 2.77E+01 

±2.52E+00 

f12 6.20E+03 

±3.81E+03 

+ 5.63E+03 

±4.82E+03 

+ 7.23E+03 

±3.96E+03 

+ 4.23E+03 

±3.59E+03 

+ 1.89E+03 

±1.84E+03 

f13 1.50E+00 

±1.97E-01 

≈ 1.51E+00 

±2.01E-01 

≈ 1.54E+00 

±1.03E-01 

≈ 1.49E+00 

±1.18E-01 

≈ 1.56E+00 

±2.73E-01 

f14 2.39E+01 

±2.97E-01 

≈ 6.29E+01 

±9.90E-01 

+ 7.24E+01 

±5.37E-01 

+ 3.21E+01 

±5.34E-01 

+ 1.38E+01 

±2.48E-01 

f15 3.57E+02 

±5.08E+01 

≈ 1.01E+02 

±4.80E+01 

– 1.65E+02 

±3.77E+01 

– 3.69E+02 

±8.98E+01 

≈ 3.63E+02 

±5.45E+01 

f16 8.64E+01 

±2.10E+01 

+ 9.91E+01 

±2.99E+01 

+ 9.84E+01 

±3.66E+01 

+ 8.81E+01 

±5.07E+01 

+ 6.01E+01 

±9.02E+00 

f17 3.34E+02 

±7.50E+01 

+ 4.33E+02 

±8.76E+01 

+ 3.23E+02 

±7.61E+01 

+ 4.07E+02 

±6.68E+01 

+ 1.05E+02 

±3.23E+01 

f18 9.04E+02 

±4.44E+01 

≈ 9.04E+02 

±4.02E+01 

≈ 9.06E+02 

±3.80E+01 

≈ 9.03E+02 

±2.55E+01 

≈ 9.08E+02 

±2.01E+00 

f19 9.08E+02 

±4.32E+01 

≈ 9.09E+02 

±5.26E+01 

≈ 9.08E+02 

±4.85E+01 

≈ 9.09E+02 

±4.29E+01 

≈ 9.07E+02 

±1.80E+00 

f20 9.08E+02 

±7.36E+01 

≈ 9.08E+02 

±8.77E+01 

≈ 9.08E+02 

±7.94E+01 

≈ 9.08E+02 

±8.68E+01 

≈ 9.08E+02 

±1.78E+01 

f21 5.05E+02 

±1.22E+01 

≈ 5.05E+02 

±2.42E+01 

≈ 5.00E+02 

±0.00E+00 

≈ 5.00E+02 

±0.00E+00 

≈ 5.00E+02 

±0.00E+00 

f22 9.59E+02 

±1.32E+01 

+ 9.69E+02 

±1.26E+02 

+ 9.99E+02 

±1.37E+01 

+ 9.88E+02 

±1.41E+01 

+ 8.87E+02 

±1.16E+01 

f23 5.34E+02 

±1.29E-03 

≈ 5.34E+02 

±3.20E-03 

≈ 5.34E+02 

±1.39E-04 

≈ 5.34E+02 

±2.08E-03 

≈ 5.34E+02 

±1.21E-03 

f24 2.00E+02 

±0.00E+00 

≈ 2.00E+02 

±0.00E+00 

≈ 2.00E+02 

±0.00E+00 

≈ 2.00E+02 

±0.00E+00 

≈ 2.00E+02 

±0.00E+00 

f25 2.10E+02 

±2.34E-01 

≈ 2.09E+02 

±2.61E-01 

≈ 2.09E+02 

±2.03E-01 

≈ 2.09E+02 

±2.14E-01 

≈ 2.09E+02 

±2.88E-01 

w/t/l 11/13/1  13/11/1  13/11/1  12/13/0  − 

Compared with other F and Cr discretized ranges, jDE-ARM with the proposed five 

intervals could beat other compositions on almost half of total benchmark functions. 
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Meanwhile, there are no significant differences among different F and Cr settings on other 

half of test functions. On very few test functions, jDE-ARM with the proposed discretization 

performs worse than other three algorithms. In general, the proposed discretized intervals 

might be acceptable for ARM-based F and Cr adaptive strategy in this paper. 

4.5 Analysis of extra time cost 

For the proposed ARM-based parameter adaptive strategy, it may be a major drawback that 

Apriori-2 algorithm requires many scans of dataset, resulting in extra CPU time cost. While, 

in this paper, the authors believe that the additional time cost might be negligible. There are 

two reasons: (1) The Apriori algorithm is very time consuming because it requires repeated 

scans of the database during the generation of frequent itemsets. The database is usually very 

large. In this paper, as the population evolves, the new successful combinations of parameters 

will be less and less due to convergence and stagnation, resulting in a relatively small dataset. 

Moreover, according to our previous experiments, dataset that stores successful F and Cr 

values increase fast in early stage, while almost keeps its size in later stage. Thus, the Apriori 

algorithm only increases negligible CPU time. (2) It is widely known that most of time cost is 

associated with the calculation of the fitness value, and not with the calculations/selections of 

the control parameters. That is to say, the presented ARM-based strategy does not increase 

calculation time in general. 

5. Experimental results on real-world problems 

In this part, we try to evaluate the performances of ARM-based strategy on over 15 

real-world optimization problems, which come from CEC2011 problems. These problems can 

be used to evaluate the performance of different stochastic optimization algorithms, such as 

some state-of-the-art DE variants with our proposed ARM-based parameter adaptive strategy. 

All the problem definitions and evaluation criteria of CEC2011 could be found by visiting 

http://www3.ntu.edu.sg/home/epnsugan/. In order to fairly compare the results between 

ARM-based and its corresponding original DE variant, we use the same state-of-the-art 

algorithms shown in Section 4.2 with their recommended setup in the original literatures. The 

population size has been kept equal to 100. Max_Fes is set to 50000. Calculated the results of 

different algorithms on each function are averaged over 25 independent runs. In order to 

compare the significance between two algorithms, the Wilcoxon rank sum test at 0.05 level is 

used. The average errors and variances are reported in Tab. 8. Best results are shown in 

boldface. 

Table 8 

Compared results of DE algorithms and the corresponding methods with ARM-based strategy on CEC11 problems. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 SaDE  SaDE-ARM JADE  JADE-ARM jDE  jDE-ARM 

T01FM 1.02E+00 

±2.06E+00 

≈ 1.10E+00 

±3.06E+00 

1.77E+00 

±3.54E+00 

≈ 1.56E+00 

±3.11E+00 

1.47E+00 

±2.32E+00 

+ 9.87E-01 

±2.43E+00 

T02L-J -1.45E+01 

±1.11E+00 

≈ -1.36E+01 

±1.07E+00 

-2.46E+01 

±1.29E+00 

≈ -1.99E+01 

±3.54E+00 

-1.04E+01 

±3.47E+00 

+ -2.56E+01 

±2.38E+00 

T03BCB -1.15E-05 

±0.00E+00 

≈ -1.15E-05 

±0.00E+00 

-1.15E-05 

±0.00E+00 

≈ -1.15E-05 

±0.00E+00 

-1.15E-05 

±0.00E+00 

≈ -1.15E-05 

±0.00E+00 

T04STR 1.48E+01 

±8.34E+00 

≈ 1.47E+01 

±8.33E+00 

1.39E+01 

±8.56E+00 

+ 1.21E+01 

±6.57E+00 

1.47E+01 

±8.33E+00 

– 2.02E+01 

±9.73E+00 

T05Si(B) -3.01E+01 

±1.35E+00 

≈ -3.06E+01 

±1.44E+00 

-3.12E+01 

±9.88E-01 

+ -3.46E+01 

±1.40E+00 

-3.09E+01 

±9.79E-01 

+ -4.10E+01 

±1.00E+00 

T06Si© -2.31E+01 

±1.63E+00 

+ -3.10E+01 

±2.11E+00 

-2.76E+01 

±1.27E+00 

+ -3.19E+01 

±2.25E+00 

-2.30E+01 

±2.94E+00 

+ -2.94E+01 

±2.38E+00 

T07SPRP 1.44E+00 

±1.42E-01 

– 1.88E+00 

±3.95E-01 

1.27E+00 

±1.08E-01 

+ 6.32E-01 

±7.21E-01 

8.11E-01 

±2.49E-01 

+ 5.94E-01 

±3.34E-01 

T08TNEP 2.20E+02 

±0.00E+00 

≈ 2.20E+02 

±0.00E+00 

2.20E+02 

±0.00E+00 

≈ 2.20E+02 

±0.00E+00 

2.20E+02 

±0.00E+00 

≈ 2.20E+02 

±0.00E+00 

T09LSTP 2.37E+04 

±1.16E+04 

+ 5.68E+03 

±8.16E+03 

4.72E+03 

±8.34E+03 

+ 1.92E+03 

±7.63E+03 

4.57E+03 

±7.33E+03 

+ 1.79E+03 

±5.69E+03 

T10CAAD -2.15E+01 

±6.27E-01 

≈ -2.14E+01 

±3.27E-01 

-2.15E+01 

±1.09E-01 

≈ -2.16E+01 

±3.75E-01 

-2.15E+01 

±4.47E-01 

≈ -2.15E+01 

±7.03E-01 

T11.1DED 5.83E+04 

±1.29E+04 

+ 2.77E+04 

±1.47E+04 

5.32E+04 

±1.04E+04 

+ 2.63E+04 

±2.59E+04 

5.25E+04 

±1.82E+04 

+ 2.11E+04 

±3.25E+04 

T11.3ELD 1.54E+04 

±1.81E+00 

≈ 1.54E+04 

±1.82E+03 

1.54E+04 

±3.96E+00 

≈ 1.54E+04 

±3.59E+00 

1.54E+04 

±7.72E-01 

≈ 1.54E+04 

±1.84E+00 

T11.8HS 9.43E+05 

±5.58E+03 

≈ 9.44E+05 

±4.01E+03 

9.45E+05 

±6.03E+03 

≈ 9.45E+05 

±5.67E+03 

9.44E+05 

±3.55E+03 

≈ 9.43E+05 

±4.73E+03 

T12(me) 2.09E+01 

±1.87E+00 

+ 1.38E+01 

±1.70E+00 

1.88E+01 

±1.37E+00 

≈ 1.88E+01 

±1.34E+00 

1.61E+01 

±2.08E+00 

≈ 1.58E+01 

±2.49E+00 

T13(Ca) 2.17E+01 

±2.28E+00 

+ 1.41E+01 

±2.80E+00 

1.96E+01 

±3.77E+00 

+ 1.54E+01 

±2.98E+00 

1.63E+01 

±3.18E+00 

+ 1.02E+01 

±2.45E+00 

w/t/l 5/9/1  − 7/8/0  − 8/6/1  − 

 AS-JADE  AS-JADE-

ARM 

MDE_pB

X 

 MDE_pBX

-ARM 

rank-jDE  rank-jDE-A

RM 
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T01FM 3.79E+00 

±5.57E+00 

≈ 3.82E+00 

±5.66E+00 

3.51E+00 

±2.14E+00 

≈ 3.44E+00 

±2.08E+00 

1.33E+00 

±2.22E+00 

≈ 1.27E+00 

±2.002E+00 

T02L-J -1.27E+01 

±1.95E+00 

≈ -1.40E+01 

±2.03E+00 

-1.11E+01 

±2.17E+00 

− -0.37E+01 

±3.87E+00 

-1.14E+01 

±2.88E+00 

≈ -1.35E+01 

±3.64E+00 

T03BCB -1.15E-05 

±0.00E+00 

≈ -1.15E-05 

±0.00E+00 

-1.15E-05 

±0.00E+00 

≈ -1.15E-05 

±0.00E+00 

-1.15E-05 

±0.00E+00 

≈ -1.15E-05 

±0.00E+00 

T04STR 1.47E+01 

±1.69E+00 

≈ 1.47E+01 

±1.73E+00 

1.47E+01 

±5.83E+00 

≈ 1.47E+01 

±6.71E+00 

1.54E+01 

±6.56E+00 

≈ 1.60E+01 

±5.77E+00 

T05Si(B) -3.04E+01 

±1.94E+00 

− -3.31E+01 

±2.54E+00 

-2.41E+01 

±1.09E+00 

+ -3.11E+01 

±9.92E-01 

-3.13E+01 

±1.11E+00 

+ -3.09E+01 

±1.08E+00 

T06Si© 

 

-2.18E+01 

±1.95E+00 

+ -2.65E+01 

±3.15E+00 

-2.06E+01 

±2.95E+00 

+ -2.76E+01 

±2.45E+00 

-2.30E+01 

±3.03E+00 

+ -2.73E+01 

±4.11E+00 

T07SPRP 1.55E+00 

±1.20E-01 

+ 1.02E+00 

±3.06E-01 

1.22E+00 

±2.07E-01 

≈ 1.41E+00 

±3.66E-01 

9.22E-01 

±3.49E-01 

+ 5.39E-01 

±2.34E-01 

T08TNEP 2.20E+02 

±0.00E+00 

≈ 2.20E+02 

±0.00E+00 

2.20E+02 

±0.00E+00 

≈ 2.20E+02 

±0.00E+00 

2.20E+02 

±0.00E+00 

≈ 2.20E+02 

±0.00E+00 

T09LSTP 2.88E+03 

±6.22E+03 

+ 1.03E+03 

±3.01E+03 

2.49E+03 

±4.46E+03 

+ 1.06E+03 

±4.14E+03 

5.71E+03 

±6.03E+03 

+ 3.62E+03 

±5.89E+03 

T10CAA

D 

-2.15E+01 

±2.66E-01 

≈ -2.14E+01 

±7.19E-01 

-2.15E+01 

±5.05E-01 

≈ -2.15E+01 

±6.77E-01 

-2.15E+01 

±3.66E-01 

≈ -2.16E+01 

±4.27E-01 

T11.1DE

D 

5.76E+04 

±3.54E+04 

+ 1.99E+04 

±2.00E+04 

3.21E+05 

±1.25E+05 

+ 8.77E+04 

±1.32E+05 

5.25E+04 

±1.39E+04 

+ 9.87E+03 

±5.77E+03 

T11.3ELD 1.54E+04 

±6.58E-01 

≈ 1.54E+04 

±8.55E-01 

1.54E+04 

±8.83E-01 

≈ 1.54E+04 

±9.45E-01 

1.54E+04 

±2.02E+00 

≈ 1.54E+04 

±2.23E+00 

T11.8HS 9.43E+05 

±5.05E+03 

≈ 9.44E+05 

±6.02E+03 

9.44E+05 

±5.60E+03 

≈ 9.44E+05 

±7.85E+03 

9.44E+05 

±3.75E+03 

≈ 9.43E+05 

±3.35E+03 

T12(me) 1.88E+01 

±3.36E+00 

≈ 1.88E+01 

±2.74E+00 

1.83E+01 

±3.20E+00 

≈ 1.77E+01 

±3.09E+00 

1.67E+01 

±2.40E+00 

≈ 1.74E+01 

±3.51E+00 

T13(Ca) 1.61E+01 

±3.42E+00 

+ 1.11E+01 

±2.66E+00 

1.61E+01 

±7.42E+00 

+ 1.07E+01 

±5.76E+00 

1.67E+01 

±4.99E+00 

≈ 1.09E+01 

±4.67E+00 

w/t/l 5/9/1  − 5/9/1  − 5/10/0  − 

From the compared results we can see, SaDE-ARM, AS-JADE-ARM and 

MDE_pBX-ARM could beat their corresponding original DE on 5 out of 15 problems, while 

they are defeated on only one problem. It seems that ARM-based parameter adaptive strategy 
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is more suitable for jDE that other DE variants due to up to 8 winning problems. Meanwhile, 

we can see similar results for JADE-ARM and MDE_pBX-ARM. In general, the proposed 

ARM-based strategy might improve the performances of various DE algorithms on real-world 

problems to some extent. At least, it does not deteriorate the original searching capabilities of 

DE algorithms. 

6. Conclusions and future work 

In this paper, we propose a novel F and Cr adaption strategy that uses ARM methodology 

for DE variants. First, all successful F and Cr couples are recorded into a dataset along with 

evolution. Then, a modified Apriori algorithm is used to mine the most promising association 

pattern every NP generations. Further, we design a greedy operator to selection better solution 

by comparing trial vectors with new ARM-based and original methods. Comprehensive 

experimental results demonstrate that the proposed F and Cr adaption strategy could improve 

the overall performances of some state-of-the-art DE variants to some extent. 

The main contribution of this paper is that, to adapt F and Cr values, we present a 

knowledge-based methodology which could extract explicit effective F and Cr couple 

associations for improving the performance of DE algorithms. The new strategy could 

automatically mine and generate appropriate F and Cr values that are suitable for various 

optimization problems and different evolving stages. Besides, we do not introduce any extra 

control parameter that would significantly influence the performance of the proposed strategy. 

Also, the authors believe that such ARM-based methodology could be applied for more 

control parameters of DE algorithms, such as selecting probability of mutation strategy and 

NP. While, we have to say that, it is a parameter adaption method which is only suitable for 

DE variants that could generate F and Cr randomly in relative large range.  

In the future, we try to expand the application of this ARM-based strategy to more control 

parameters of versatile DE methods, even other EAs, such as PSO and GA. Meanwhile, it is 

attractive to apply such ARM-based strategy for various DE algorithms on real engineering 

problems, such as parameters identification of PMSM on shipboard and PI parameters 

optimization of PMSM controllers on shipboard. 
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