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a b s t r a c t 

Interactive image segmentation is a topic of many studies in image processing. In a conventional ap- 

proach, a user marks some pixels of the object(s) of interest and background, and an algorithm propa- 

gates these labels to the rest of the image. This paper presents a new graph-based method for interac- 

tive segmentation with two stages. In the first stage, nodes representing pixels are connected to their 

k -nearest neighbors to build a complex network with the small-world property to propagate the labels 

quickly. In the second stage, a regular network in a grid format is used to refine the segmentation on 

the object borders. Despite its simplicity, the proposed method can perform the task with high accuracy. 

Computer simulations are performed using some real-world images to show its effectiveness in both two- 

classes and multi-classes problems. It is also applied to all the images from the Microsoft GrabCut dataset 

for comparison, and the segmentation accuracy is comparable to those achieved by some state-of-the-art 

methods, while it is faster than them. In particular, it outperforms some recent approaches when the 

user input is composed only by a few “scribbles” draw over the objects. Its computational complexity is 

only linear on the image size at the best-case scenario and linearithmic in the worst case. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Image segmentation is the process of dividing an image in

parts, identifying objects or other relevant information ( Shapiro

& Stockman, 2001 ). It is one of the most difficult tasks in image

processing ( Gonzalez & Woods, 2008 ). Fully automatic segmenta-

tion is still very challenging and difficult to accomplish. Many au-

tomatic approaches are domain-dependant, usually applied in the

medical field ( Avendi, Kheradvar, & Jafarkhani, 2016; Bozkurt, Kse,

& Sar, 2018; Christ et al., 2016; Martinez-Muoz, Ruiz-Fernandez,

& Galiana-Merino, 2016; Moeskops et al., 2016; Patino-Correa,

Pogrebnyak, Martinez-Castro, & Felipe-Riveron, 2014 ). Therefore in-

teractive image segmentation, in which a user supplies some infor-

mation regarding the objects of interest, is experiencing increas-

ing interest in the last decades ( Artan, 2011; Blake, Rother, Brown,

Perez, & Torr, 2004; Boykov & Jolly, 2001; Breve, Quiles, & Zhao,

2015a,b; Ding & Yilmaz, 2010; Ding, Yilmaz, & Yan, 2012; Dong,

Shen, Shao, & Gool, 2016; Ducournau & Bretto, 2014; Grady, 2006;

Li, Bioucas-Dias, & Plaza, 2010; Liew, Wei, Xiong, Ong, & Feng,

2017; Lin, Dai, Jia, He, & Sun, 2016; Oh, Ham, & Sohn, 2017; Price,

Morse, & Cohen, 2010; Rother, Kolmogorov, & Blake, 2004; Wang,

Zuluaga et al., 2018; Wang, Ji et al., 2018; Wang, Ji, Sun, Chen, &

Jing, 2016; Wang, Sun, Ji, Chen, & Fu, 2016 ). 
E-mail address: fabricio.breve@unesp.br 
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The user interaction may take place in different ways, depend-

ng on the choice of the method, including loosely tracing the de-

ired boundaries ( Blake et al., 2004; Wang, Agrawala, & Cohen,

007 ), marking parts of the object(s) of interest and/or background

 Boykov & Jolly, 2001; Breve et al., 2015a,b; Grady, 2006; Li, Sun,

ang, & Shum, 2004; Price et al., 2010 ), loosely placing a bound-

ng box around the objects of interest ( Lempitsky, Kohli, Rother,

 Sharp, 2009; Pham, Takahashi, & Naemura, 2010; Rother et al.,

004 ), among others. In all scenarios, the goal is to allow the user

o select the desired objects with minimal effort ( Price et al., 2010 ).

This paper focuses on the second type of approach, in which

he user “scribbles” some lines on the object(s) of interest and the

ackground. The “scribbles” are then used as seeds to guide the

terative segmentation process. That is a popular approach because

t requires only a quicker and less precise input from the user. They

an loosely mark broader interior regions instead of finely tracing

ear borders ( Price et al., 2010 ). 

Graph-cuts is one of the most popular approaches to seeded

egmentation, with numerous methods proposed ( Blake et al.,

004; Boykov & Funka-Lea, 2006; Boykov & Jolly, 2001; Price et al.,

010; Rother et al., 2004; Vicente, Kolmogorov, & Rother, 2008 ). In

raph theory, a cut is a partition of the vertices of a graph into

wo disjoint subsets ( Narkhede, 2013 ). These methods combine ex-

licit edge-finding and region-modeling components, modeled as

n optimization problem of minimizing a cut in a weighted graph

artitioning foreground and background seeds ( Price et al., 2010 ). 

https://doi.org/10.1016/j.eswa.2019.01.031
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2019.01.031&domain=pdf
mailto:fabricio.breve@unesp.br
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Table 1 

List of features extracted from each image to be segmented. 

# Feature description 

1 Pixel row location 

2 Pixel column location 

3 Red (R) component of the pixel 

4 Green (G) component of the pixel 

5 Blue (B) component of the pixel 

6 Value (V) component of the pixel from a RGB to HSV transform 

7 Excess Red Index (ExR) of the pixel 

8 Excess Green Index (ExG) of the pixel 

9 Excess Blue Index (ExB) of the pixel 
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Other approaches rely on graph-based machine learning ( Breve

t al., 2015a,b; Dong et al., 2016; Duchenne, Audibert, Keriven,

once, & Segonne, 2008; Ducournau & Bretto, 2014; Grady, 2006;

h et al., 2017; Wang, Wang, & Li, 2007; Wang, Ji et al., 2018;

ang, Ji et al., 2016; Wang, Sun et al., 2016 ), where the image is

odeled as an affinity graph, where edges encode similarity be-

ween neighboring pixels. The segmentation problem may be mod-

led as an energy function minimization, where the target function

s smooth concerning the underlying graph structure ( Ducournau

 Bretto, 2014 ). Some deep-learning approaches were also recently

roposed ( Liew et al., 2017; Lin et al., 2016; Wang, Zuluaga et al.,

018 ). 

The emergence of graph-based techniques is also due to the de-

elopment of complex networks theory. In the last decades, the

etwork research moved from small graphs to the study of statis-

ical properties of large-scale graphs. It was discovered that a reg-

lar network diameter might be drastically reduced by randomly

hanging a few edges while preserving its local structure, mea-

ured by clustering coefficient ( Watts & Strogatz, 1998 ). The result-

ng networks are called small-world networks and they represent

ome real networks, like social and linguistics networks. Small-

orld networks have tightly interconnected clusters of nodes and

 shortest mean path length that is similar to a random graph with

he same number of nodes and edges ( Humphries & Gurney, 2008 ).

This paper introduces a new graph-based method for interac-

ive segmentation. It is simpler than many other methods. It does

ot incorporate any specific edge-finding or region-modeling com-

onents. There is also no explicit optimization process. The graphs

re merely used to propagate the labels from the “scribbles” to un-

abeled pixels iteratively, directly through the weighted edges. The

ethod has two consecutive stages. In the first stage, a k -nearest

eighbor ( k -NN) graph is built based on the similarity among all

ixels on a reduced version of the input image, with each node

epresenting a pixel (a group of pixels of the original image). In

he second stage, the full-size image is used, a new graph is built

ith each node representing a single pixel, which is connected

nly to the nodes representing the 8 adjacent pixels in the image.

he propagation occurs only to the nodes that were not confidently

abeled during the first stage. 

The propagation approach has some similarities with that pro-

osed by Wang, Wang et al. (2007) . However, the graph construc-

ion is fundamentally different, as in the first stage nodes are not

onnected in a grid, but rather based on the color components

nd location of the pixels they represent. In this sense, the label

ropagation is faster, as the graph usually presents the small-world

roperty of complex networks ( Watts & Strogatz, 1998 ). 

The graph construction phase share some similarities with that

roposed by Breve (2017) . However, that approach uses undirected

nd unweighted graphs while the current study uses weighted di-

raphs. The propagation approach is also completely different. That

odel uses particles walking through the graph to propagate la-

el information, in a nature-inspired approach of competition and

ooperation for territory. The proposed method approach is much

aster, as the label information spreads directly through the graph.

inally, the particles model is stochastic and this proposed model

s deterministic. 

In spite of its simplicity, the proposed method can perform in-

eractive image segmentation with high accuracy. It was applied to

he 50 images from the Microsoft GrabCut dataset ( Rother et al.,

004 ) and the mean error rate achieved is comparable to those

btained by some state-of-the-art methods. Moreover, its computa-

ional complexity order is only linear, O ( n ), where n is the amount

f the pixels in the image in the best case scenario, and linearith-

ic, O ( n log n ), in the worst case. It can also be applied to multi-

lass problems at no extra cost. 
s
The remaining of this paper is organized as follows.

ection 2 describes the proposed model. Section 3 presents

ome computer simulations to show the viability of the method.

ection 4 discuss the time and storage complexity of the algo-

ithm and the small-world property of its networks. In Section 5 ,

he method is applied to the Microsoft GrabCut dataset and its

esults are compared to those achieved by some state-of-the-art

lgorithms. Some parameter analysis are also conducted in this

ection. Finally, the conclusions are drawn on Section 6 . 

. Model description 

The proposed algorithm is divided into two stages. In the first

tage, the input image is reduced to one ninth of its original size

sing bicubic interpolation, and a network is built with each node

epresenting a pixel in the downsized image. The edges among

hem are built by connecting each node to its k -nearest neighbors,

n a complex arrangement, which considers both the pixel location

nd color. Then, label information is propagated iteratively through

his network. Usually, most pixels are labeled with confidence in

his stage. 

In the second stage, the full input image is used. Again, each

ode represents a single pixel. However, this time, the connec-

ions are made only from the pixels not confidently labeled in the

rst stage to the nodes representing the adjacent pixels in the im-

ge, in a grid arrangement, which considers only pixel location. La-

el information propagates iteratively again, only to the unlabeled

odes. Therefore, the remaining pixels are labeled at this stage. 

In both networks, the same set of pixel features, considering

oth color and location, are extracted to define the edge weights.

he whole procedure is detailed in the following subsections. 

.1. The first stage 

In the first stage, the input image is resized to one ninth of

ts original size (one third in each dimension) using bicubic inter-

olation. Then, the set of pixels of the resized image are reorga-

ized as X = { x 1 , x 2 , . . . , x L , x L +1 , . . . , x N } , such that X L = { x i } L i =1 
is

he labeled pixel subset and X U = { x i } N i = L +1 
is the unlabeled pix-

ls set. L = { 1 , . . . , C} is the set containing the labels. y : X → L is

he function associating each x i ∈ χ to its label y ( x i ). The proposed

odel estimates y ( x i ) for each unlabeled pixel x i ∈ X U . 

The labels are extracted from an image with the user input

“scribbles”), in which a different color represents each class, and

nother color is used for the unlabeled pixels. In the first stage,

his image is also resized to one ninth of its original size, but using

he nearest-neighbor interpolation; otherwise, new colors would

e introduced and mistakenly interpreted as new classes. 

.1.1. Graph generation 

For each pixel x i , a set of nine features are extracted. They are

hown in Table 1 . 
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Table 2 

Preliminary study on a larger feature set with 9 images from the GrabCut dataset and weights optimized using a Genetic Algorithm. 

Image / Feature dog 21077 124084 271008 208001 llama doll person7 sheep teddy Mean 

Row 0.99 0.96 0.99 0.44 0.98 0.23 0.97 0.79 0.94 0.44 0.77 ( ± 0.29) 

Col 0.80 0.72 0.67 0.91 0.97 1.00 0.34 0.99 0.83 0.39 0.76 ( ± 0.24) 

R 0.63 0.03 0.06 0.91 0.45 0.45 0.56 0.58 0.88 0.28 0.48 ( ± 0.30) 

G 0.35 0.49 0.25 0.96 0.30 0.28 0.31 0.10 0.54 0.67 0.42 ( ± 0.25) 

B 0.96 0.45 0.18 0.36 0.54 0.46 0.26 0.19 0.80 0.39 0.46 ( ± 0.25) 

H 0.03 0.04 0.08 0.37 0.07 0.74 0.03 0.15 0.11 0.14 0.17 ( ± 0.22) 

S 0.74 0.10 0.06 0.09 0.10 0.30 0.21 0.07 0.10 0.92 0.27 ( ± 0.31) 

V 0.65 0.28 0.71 0.94 0.80 0.24 0.18 0.61 0.74 0.29 0.54 ( ± 0.27) 

ExR 0.96 0.21 0.06 0.85 0.84 0.79 0.13 0.38 0.12 0.47 0.48 ( ± 0.35) 

ExB 0.72 0.36 0.64 0.70 0.42 0.47 0.16 0.83 0.35 0.98 0.56 ( ± 0.25) 

ExG 0.75 0.10 0.07 0.22 0.19 0.04 0.78 0.29 0.24 0.32 0.30 ( ± 0.26) 

MR 0.11 0.38 0.03 0.35 0.13 0.21 0.78 0.34 0.81 0.22 0.34 ( ± 0.27) 

MG 0.13 0.23 0.79 0.30 0.76 0.47 0.70 0.18 0.61 0.93 0.51 ( ± 0.29) 

MB 0.49 0.31 0.33 0.42 0.45 0.24 0.15 0.29 0.77 0.80 0.42 ( ± 0.21) 

SDR 0.01 0.12 0.06 0.11 0.08 0.38 0.02 0.27 0.20 0.22 0.15 ( ± 0.12) 

SDG 0.01 0.08 0.09 0.03 0.09 0.38 0.21 0.02 0.27 0.06 0.12 ( ± 0.12) 

SDB 0.00 0.05 0.05 0.04 0.22 0.22 0.06 0.40 0.13 0.01 0.12 ( ± 0.13) 

MH 0.58 0.04 0.16 0.91 0.15 0.92 0.03 0.27 0.14 0.86 0.40 ( ± 0.37) 

MS 0.65 0.31 0.04 0.06 0.21 0.21 0.36 0.89 0.41 0.67 0.38 ( ± 0.28) 

MV 0.02 0.95 0.04 0.35 0.55 0.78 0.66 0.57 0.80 0.25 0.50 ( ± 0.32) 

SDH 0.17 0.41 0.19 0.39 0.48 0.32 0.07 0.31 0.38 0.08 0.28 ( ± 0.14) 

SDS 0.03 0.41 0.22 0.15 0.18 0.23 0.13 0.50 0.51 0.02 0.24 ( ± 0.18) 

SDV 0.61 0.21 0.07 0.10 0.13 0.31 0.03 0.10 0.38 0.24 0.22 ( ± 0.18) 
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The V component (6) is obtained from the RGB components

using the method described by Smith (1978) . ExR, ExG, and ExB

(7 to 9) indexes are obtained from the RGB components as

described in the “Image Segmentation Data Set”1 ( Dheeru &

Karra Taniskidou, 2017 ): 

ExR = (2 R − (G + B )) (1)

ExG = (2 G − (R + B )) (2)

ExB = (2 B − (G + R )) (3)

The Excess Green Index (ExG) and some of its derivatives are

commonly employed on segmentation of agricultural images

( Guijarro et al., 2011 ). These indexes are useful for identifying the

amount of a color component concerning the others. In this pa-

per, they are used because they decrease the distance among pixels

representing the same segment which may have different amounts

of incident light. 

This set of features was chosen based on some earlier exper-

iments with a preliminary version of the algorithm which had a

single stage and no image resize step. It was applied to a subset of

9 images from the GrabCut dataset, with a set of 23 features, in-

cluding H and S components obtained with the method described

by Smith (1978) , and mean (M) and standard deviation (SD) of RGB

and HSV components on a 3 × 3 window around the pixel. All fea-

tures were normalized to have zero mean and unit variance. After

that, each feature had a weight to be used in the calculation of

the distance among pixels. The weights of the 23 features were

optimized using the Genetic Algorithm from the MATLAB Global

Optimization Toolbox, with its default parameters and a fitness

function to minimize the error rate, given by the number of mis-

labeled pixels in relation to all unlabeled pixels. Based on the re-

sults shown in Table 2 , H and S features were discarded because

of their low relevance in most images. The Mean and Standard de-

viation based features were discarded because the current version

of the algorithm works on the resized image, so each pixel is al-

ready roughly an average of a 3 × 3 window around the pixel. The

remaining features are those presented in Table 1 . 
1 Available at http://archive.ics.uci.edu/ml/datasets/image+segmentation . 

v  

s  

T  
In the proposed method, the 9 features from Table 1 are nor-

alized to have zero mean and unit variance. After that, the com-

onents may be scaled by a vector of weights λ to emphasize/de-

mphasize each feature during the graph generation. However, for

implicity, in all experiments on this paper, only two set of weights

ere used as λ. They will be later referenced as: 

1 = [1 . 0 1 . 0 1 . 0 1 . 0 1 . 0 1 . 0 1 . 0 1 . 0 1 . 0] 

2 = [1 . 0 1 . 0 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5] 
(4)

hus, λ1 means all features have the same weight, and λ2 means

he two location features have more weight than the seven color

eatures. While there are many other possible weight combina-

ions, there is not a reliable method to set them a priori, without

elying on the segmentation results. 

A directed and weighted graph is created representing the im-

ge. It is defined as G = (V , E ) , where V = { v 1 , v 2 , . . . , v n } is the set

f n nodes, and E is the set of m edges ( v i , v j ). Each node v i corre-

ponds to a pixel x i . There is an edge between v i and v j only if v i
s unlabeled ( x i ∈ X U ) and v j is among the k -nearest neighbors of

 i , considering the Euclidean distance between x i and x j features.

long with development, it was noticed that k = 10 provides rea-

onable results in most images, as long as representative seeds are

rovided. But this parameter may be fine-tuned for each specific

mage to achieve better segmentation results. 

For each edge ( v i , v j ) ∈ E , there is a corresponding weight W i, j ,

hich is defined using a Gaussian kernel: 

 i, j = exp 

−d(x i , x j ) 
2 

2 σ 2 
(5)

here d ( x i , x j ) is the Euclidean distance between x i and x j . Along

evelopment, it was noticed that σ is not a very sensitive parame-

er. Therefore, σ = 0 . 5 is fixed for all computer simulations in this

aper. 

.1.2. Label propagation 

For each node v i , a domination vector v ω 
i 
(t ) = { v ω 1 

i 
(t) ,

 

ω 2 
i 

(t) , . . . , v ω C 
i 

(t) } is created. Each element v ω c 
i 

(t) ∈ [0 , 1] corre-

ponds to the domination level from the class c over the node v i .

he sum of the domination vector in each node is always constant:

http://archive.ics.uci.edu/ml/datasets/image+segmentation


F. Breve / Expert Systems With Applications 123 (2019) 18–33 21 

∑
 

b  

c  

e  

a  

t

v

 

e  

i  

e  

l

v

w  

i  

b  

b

 

v  

g  

s  

t  

v

 

i  

c  

n

∀  

w  

t

2

 

s  

e  

i

c  

8  

e  

j  

b  

a

 

s  

s  

c  

t

y  

w

2

 

a

〈  

f  

i  

ω  

u

2

 

A

3

 

m  

a  

t  

L  

r  

t  

i  

w  

t  

i  

g  

s  

g  

t  

b  

m  

t  

f  

m  

o  

p

 

e  

t  

t  
C 
 

c=1 

v ω c 
i 

= 1 (6) 

Nodes corresponding to labeled pixels are fully dominated

y their corresponding class, and their domination vectors never

hange. On the other hand, nodes corresponding to unlabeled pix-

ls have variable domination vectors. They are initially set in bal-

nce among all classes. Thus, for each node v i , each element v ω c 
i 

of

he domination vector v ω 
i 

is set as follows: 

 

ω c 
i 

(0) = 

{ 

1 if x i is labeled and y (x i ) = c 
0 if x i is labeled and y (x i ) � = c 
1 
C 

if x i is unlabeled 

(7) 

Then, the iterative label propagation process takes place. At

ach iteration t , each unlabeled node gets contributions from all

ts neighbors to calculate its new domination levels. Therefore, for

ach unlabeled node v i , the domination levels are updated as fol-

ows: 

 

ω 
i (t + 1 ) = 

∑ 

j∈ N(v i ) W i, j v 
ω 
j 
(t ) ∑ 

j∈ N(v i ) W i, j 

(8) 

here N ( v i ) is the set of v i neighbors. In this sense, the new dom-

nation vector v ω 
i 

is the weighted arithmetic mean of all its neigh-

ors domination vectors, no matter if they are labeled or unla-

eled. 

The iterative process stops when the domination vectors con-

erge. At this point, v ω 
i 

is re-organized to form a bi-dimensional

rid, with each vector element in the same position of its corre-

ponding pixel in the resized image. Then, the grid is enlarged to

he size of the original input image, using bilinear interpolation, so

 

ω 
i 

has a vector for each pixel of the original input image. 

When the first stage finishes, most pixels are completely dom-

nated by a single class. The exceptions are usually the pixels in

lasses borders. Thus, for every node v i , if there is a highly domi-

ant class, that class is assigned to the corresponding pixel: 

 v ω c 
i 

= 1 , y (x i ) = c (9)

here y ( x i ) is the class assigned to x i . Otherwise, the pixel is left

o be labeled in the second stage. 

.2. The second stage 

In the second stage, nodes that were not labeled in the first

tage continue to receive contributions from their neighbors. How-

ver, in the second stage a new graph is built, in which every pixel

n the input image becomes a node (no resizing), and each node v i 
orresponding to an unlabeled pixel ( x i ∈ X U ) is connected to the

 nodes v j representing the adjacent pixels in the original image,

xcept for pixels in the image borders, which have only 3 or 5 ad-

acent pixels. So, in the second phase, neighbors are defined only

y location, but the edge weights are still defined by Eq. (5) , using

ll the nine features. 

Notice that the domination vectors v ω 
i 

are not reset before the

econd stage. The iterative label propagation process in the second

tage also uses Eq. (8) , and it stops when the domination vectors

onverge. At this point, all the still unlabeled pixels are labeled af-

er the class that dominated their corresponding node: 

 (x i ) = arg max 
c 

v ω c 
i 

(10)

here y ( x i ) is the class assigned to x i . 

.3. Stop criterion 

In both stages, the convergence is measured through the aver-

ge maximum domination level, which is defined as follows: 

 v ω m 
i 

〉 , m = arg max 
c 

v ω c 
i 

(11)
or all v i representing unlabeled nodes. 〈 v ω m 
i 

〉 is checked every 10

terative steps and the iterations stop when the increase is below

 between two consecutive checkpoints. In this paper, ω = 10 −4 is

sed in all computer simulations. 

.4. The algorithm 

Overall, the proposed algorithm can be outlined as shown in

lgorithm 1 . 

Algorithm 1: The proposed method algorithm. 

1 Downsize the input image with bicubic interpolation, as 

described in Subsection 2.1; 

2 Build a directed k -NN digraph for the downsized image, as 

described in Subsection 2.1.1; 

3 Define the edge weights using Eq. (5); 

4 Set nodes’ domination levels by using Eq. (7); 

5 repeat 

6 for each unlabeled node do 

7 Update node domination levels by using Eq. (8); 

8 until convergence of the domination levels ; 

9 Label unlabeled pixel where there is a highly dominant class 

using Eq. (9); 

10 Enlarge the domination levels matrix with bilinear 

interpolation, as described in Subsection 2.1.2; 

11 Build a directed graph for the original input image, using a 

grid arrangement, as described in Subsections 2.2 and 2.1.1; 

12 Define the edge weights using Eq. (5); 

13 repeat 

14 for each unlabeled node do 

15 Update node domination levels by using Eq. (8); 

16 until convergence of the domination levels ; 

17 Label remaining unlabeled pixels using Eq. (10); 

. Computer simulations 

In this section, some experimental results using the proposed

odel are presented to show its efficacy in the interactive im-

ge segmentation task. First, five real-world images were selected

o show that the algorithm can split foreground and background.

ater, other two real-world images were selected to show the algo-

ithm results segmenting multiple objects at once. For all images,

he parameters are set to their default values, except for k and λ. k

s tested with some values in the interval [1 250] and λ is tested

ith λ1 and λ2 . Then, the values that produced the best segmen-

ation results are used for each image. Fig. 1 shows: (a) the five

mages selected to show the segmentation in background and fore-

round; (b) the “scribbles” that represent the user input, which is

hown in different colors for background and foreground, over the

ray-scale image; and (c) the segmentation results achieved using

he proposed method, shown as the foreground extracted from the

ackground. Fig. 2 shows: (a) the two images selected to show the

ulti-class segmentation capabilities of the proposed method; (b)

he “scribbles” representing the user input, which are shown in dif-

erent colors for each object and the background; and (c) the seg-

entation results achieved using the proposed method, with each

bject shown separately. Table 3 shows the image sizes and the

arameters λ and k used for each of them. 

Notice that the algorithm receives the “scribbles” in a differ-

nt image or layer than the image to be segmented. It considers

hat each color represents a different segment to be discovered, so

he user seeds must be in different colors for each segment. The
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Fig. 1. Foreground and background segmentation by the proposed method: (a) the real-world images to be segmented, (b) the “scribbles” provided by the user, and (c) the 

segmentation results. 

Table 3 

Image sizes and parameters used in the 

segmentation task. 

Image Size λ k 

Dog 576 × 432 λ1 120 

Ball 800 × 600 λ1 15 

Flower 800 × 600 λ1 109 

Bird 800 × 600 λ2 8 

Couple 800 × 600 λ2 14 

Cartridges 800 × 600 λ2 11 

Care Bears 512 × 384 λ2 15 
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images to be segmented were added in black-and-white as back-

ground to the “scribbles” in Figs. 1 and 2 for illustrative purposes

only. 
By visually analyzing the segmentation results, one can notice

hat the proposed method was able to interactively segment dif-

erent kinds of real-world images, with few mistakes. 

. Computational time and storage complexity 

In this section, time and storage complexity order analysis of

he algorithm presented in Section 2.4 are provided. 

.1. Computational time complexity 

At the beginning of the Algorithm 1 , step 1 consists in resizing

he input image with bicubic interpolation. This step has complex-

ty order O ( n ), where n is the number of pixels in the image. Step

 consists in building a k -NN graph. It is possible to find nearest

eighbors in logarithmic time using k -d trees ( Friedman, Bentley,

 Finkel, 1977 ). Therefore, this step computational complexity is
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Fig. 2. Multi-class segmentation by the proposed method: (a) the real-world images to be segmented, (b) the “scribbles” provided by the user, and (c) the segmentation 

results. 
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 ( n log n ). Step 3 calculates edges weights. This step depends on

he number of edges. Each node has k edges; therefore, the com-

utational complexity is O ( nk ). Step 4 is the initialization of the

odes domination levels, and it depends on the number of nodes

nd classes. Therefore, its computational complexity is O ( nc ). These

rst steps are dominated by step 2, which is the network construc-

ion as k and c are usually much smaller than n . 

Then we have the loops from steps 5 to 8. The instruction on

tep 8 consists in updating the domination levels on a node. Since

ach node takes contributions from its neighbors, the computa-

ional complexity order is O ( k ). The inner loop executes step 7 for

ll unlabeled nodes. Most nodes are unlabeled; therefore the inner

oop complexity order is O ( nk ). The outer loop is executed until

he algorithm converges. The convergence depends on the network

ize and connectivity, which are related to n and k . Therefore, a set

f experiments is performed, first with increasing image sizes and

xed k , and later with fixed image size and increasing k , to dis-

over how they impact the number of outer loop executions. These

ill be presented and discussed later. 
l  
Step 9 consists of checking domination levels and labeling some

odes. Step 10 increases the domination levels matrix using bi-

inear interpolation. Both these steps have complexity order O ( nc ),

ue to the domination levels matrix size. In step 11, another graph

s built, but only adjacent nodes are connected, and to exactly 8

ther nodes (except for nodes representing image border pixels),

o this step has complexity order O ( n ). Step 12 is similar to Step

, but this time the average node degree is nearly constant, so the

omplexity order is O ( n ). 

From step 13 to 16, there is another pair of loops. Step 15 runs

n constant time O (1), since all nodes (except those representing

mage border pixels) have the same degree (8) no matter the im-

ge size. The inner loops execute step 15 for each unlabeled node.

n most cases, there is only a small amount of unlabeled nodes at

his point. The outer loop also depends on how many nodes are

till unlabeled in the second stage and also on the network con-

ectivity. In the typical scenario, there are few unlabeled nodes,

nd they form isolated subgraphs. Though it is difficult to calcu-

ate the exact computational complexity of the second stage, it is

ower than O ( n log n ) in any typical case. The set of experiments
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Fig. 3. Number of iterations (left) and time (right) required to the convergence, with images with 10% to 100% of their original size and k = 10 . (a) “Dog” image. (b) “Bird”

image. Each point in time traces is the average of 100 realizations. The error bars represent standard deviation. 

Table 4 

Amount of iterations on each algorithm phase, execution times, and error rates on the “Dog” image 

with 10% to 100% of its original size and k = 10 . Each configuration is executed 100 times to get the 

mean and standard deviation of the execution times. 

Image size Width Height Tot. pixels Ph. 1 Ph. 2 Time (s) Error rate 

10% 183 137 25,071 410 120 0.25 ( ± 0.02) 0.0018 

20% 258 194 50,052 520 130 0.55 ( ± 0.03) 0.0021 

30% 316 237 74,892 720 110 0.86 ( ± 0.04) 0.0022 

40% 365 274 100,010 740 30 0.99 ( ± 0.05) 0.0041 

50% 408 306 124,848 860 20 1.22 ( ± 0.05) 0.0021 

60% 447 335 149,745 970 20 1.58 ( ± 0.07) 0.0038 

70% 482 362 174,484 950 10 1.85 ( ± 0.08) 0.0038 

80% 516 387 199,692 1050 10 2.13 ( ± 0.10) 0.0018 

90% 547 410 224,270 1090 10 2.51 ( ± 0.13) 0.0036 

100% 576 432 248,832 980 10 2.65 ( ± 0.16) 0.0017 
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also measures the number of outer loop iterations in the second

stage, as n and k increases. 

Finally, step 17 is similar to step 9. It also has complexity order

O ( nc ). 

Fig. 3 and Tables 4 and 5 show the number of iterations of the

outer loops of the first and second stages, and time required to

convergence when the proposed method is applied to two images

from Fig. 1 : “Dog” and “Bird” (which are in the first and the fourth

row, respectively). Each image and their respective “scribbles” im-

ages are resized to 10% , 20% , . . . , 100% of their original size, while

k = 10 is kept fixed. By analyzing the graphics, it is possible to re-

alize that as the image size increases, the execution time increase

is close to linear ( O ( n )). While the first stage inner loop increases

linearly on n , the outer loop does not increase significantly, which

is expected due to the small-world property of complex networks

that keep the nodes grouped in clusters, so the label spreading rate

does not change much. The second stage requires only a few iter-
tions of the outer loop, only 10 in most cases, which is the mini-

um value since the convergence check is performed every 10 it-

ration. Tables 4 and 5 also show the error rate in each scenario,

hich is the number of mislabeled pixels in relation to all the pix-

ls labeled by the algorithm. Notice that the algorithm labels all

he image pixels, except those already covered by the “scribbles”. 

Fig. 4 and Tables 6 and 7 show the number of iterations of the

uter loops of the first and second stages, and time required to

onvergence when the proposed method is applied to the same

wo images from Fig. 1 : “Dog” and “Bird”. However, this time the

mages are not resized and the out-degree of the nodes has in-

reasing sizes ( k = { 10 , 20 , . . . , 250 } ). By analyzing the graphics, it

s possible to realize that as k increases, the number of iterations

f the first stage outer loop decreases. This is expected, since the

etwork connectivity is increasing, and thus the labels have higher

pread at each iteration. On the other hand, the execution time in-

reases because the first stage inner loop execution time is higher
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Table 5 

Amount of iterations on each algorithm phase, execution times, and error rates on the “Bird” image 

with 10% to 100% of its original size and k = 10 . Each configuration is executed 100 times to get the 

mean and standard deviation of the execution times. 

Image size Width Height Tot. pixels Ph. 1 Ph. 2 Time (s) Error rate 

10% 253 190 48,070 870 10 0.49 ( ± 0.07) 0.0031 

20% 358 269 96,302 950 10 1.04 ( ± 0.13) 0.0012 

30% 439 329 144,431 1030 10 1.67 ( ± 0.23) 0.0 0 08 

40% 506 380 192,280 1080 10 2.28 ( ± 0.34) 0.0 0 04 

50% 566 425 240,550 1230 10 3.04 ( ± 0.40) 0.0 0 03 

60% 620 465 288,300 1240 10 3.96 ( ± 0.67) 0.0 0 04 

70% 670 502 336,340 1280 10 5.30 ( ± 0.69) 0.0 0 05 

80% 716 537 384,492 1530 10 6.70 ( ± 1.00) 0.0 0 02 

90% 759 570 432,630 1430 10 8.38 ( ± 1.12) 0.0 0 04 

100% 800 600 480,0 0 0 1500 10 10.26 ( ± 1.32) 0.0 0 02 

Fig. 4. Number of iterations (left) and time (right) required to the convergence, with images in their original size and k = 10 to k = 250 . (a) “Dog” image. (b) “Bird” image. 

Each point in time traces is the average of 100 realizations. The error bars represent standard deviation. 
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s k increases. However, this increase is only logarithmic ( O (log n )).

ables 6 and 7 also show the error rate in each scenario, which is

alculated as previously described. 

It is worth noting that in real-world problems, c and k do not

ncrease proportionally to n as image sizes increases. The amount

f classes c is unrelated to the image size, and the optimal value of

 depends on many factors, like the image structure, labeled pix-

ls, objects position, and others, but even in similar images it does

ot need to increase linearly on n to keep similar network connec-

ivity, as the small-world property of complex networks applies.

herefore, the average time complexity in the first stage is usually

ower than O ( n log n ). 

In this sense, step 2 would dominate the execution time. How-

ver, although step 2 has the highest computational complexity,

ts execution time is faster than the first stage loop in all the ex-

eriments presented in this paper. It will undoubtedly dominate

he execution time for huge images, but in the typical scenario,

t  
he execution time is still dominated by the first stage (steps 5

o 8). 

The second stage execution time is usually negligible. It is very

ast when compared to the first stage and step 2. 

In summary, steps 5 to 8 run at linear time O ( n ) in the best

cenario (fixed k ) and linearithmic time O ( n log n ) in the worst sce-

ario. So, the first stage dominates the execution time in images

f moderate size. Only in huge images, step 2 would dominate the

xecution time, and it runs in linearithmic time O ( n log n ). There-

ore, in most real-world scenarios a time complexity from O ( n ) to

 ( n log n ) is expected. 

.2. Storage complexity 

Regarding the memory requirements and storage complexity,

he proposed algorithm uses the following data structures: the re-

ized image, the features table, the neighbors table, the weights

able, the domination vectors, and the labeled output image. The
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Table 6 

Amount of iterations on each algorithm phase, execution 

times, and error rates on the “Dog” image with its original 

size and k = 10 to k = 250 . Each configuration is executed 

100 times to get the mean and standard deviation of the 

execution times. 

k Ph. 1 Ph. 2 Time (s) Error rate 

10 980 10 3.00 ( ± 0.39) 0.0017 

20 690 10 4.92 ( ± 0.46) 0.0012 

30 510 10 5.53 ( ± 0.44) 0.0 0 06 

40 400 10 5.69 ( ± 0.47) 0.0 0 06 

50 320 10 5.61 ( ± 0.51) 0.0 0 06 

60 280 10 5.71 ( ± 0.38) 0.0 0 06 

70 250 10 5.87 ( ± 0.41) 0.0 0 05 

80 240 10 6.23 ( ± 0.51) 0.0 0 05 

90 230 10 6.54 ( ± 0.55) 0.0 0 05 

100 210 10 6.55 ( ± 0.54) 0.0 0 05 

110 190 10 6.61 ( ± 0.63) 0.0 0 05 

120 180 10 6.76 ( ± 0.53) 0.0 0 05 

130 170 10 6.90 ( ± 0.55) 0.0 0 05 

140 160 10 6.95 ( ± 0.62) 0.0 0 05 

150 150 10 6.96 ( ± 0.56) 0.0 0 05 

160 140 10 7.02 ( ± 0.59) 0.0 0 05 

170 140 10 7.36 ( ± 0.61) 0.0 0 05 

180 130 10 7.30 ( ± 0.64) 0.0 0 05 

190 130 10 7.60 ( ± 0.72) 0.0 0 05 

200 130 10 7.92 ( ± 0.70) 0.0 0 05 

210 120 10 7.78 ( ± 0.65) 0.0 0 05 

220 120 10 8.17 ( ± 0.83) 0.0 0 05 

230 120 10 8.43 ( ± 0.83) 0.0 0 05 

240 120 10 8.72 ( ± 0.99) 0.0 0 05 

250 110 10 8.39 ( ± 0.65) 0.0 0 05 

Table 7 

Amount of iterations on each algorithm phase, execution 

times, and error rates on the “Bird” image with its original 

size and k = 10 to k = 250 . Each configuration is executed 

100 times to get the mean and standard deviation of the ex- 

ecution times. 

k Ph. 1 Ph. 2 Time (s) Error rate 

10 800 10 7.84 ( ± 1.57) 0.0023 

20 540 10 9.32 ( ± 1.44) 0.0014 

30 450 10 10.46 ( ± 1.54) 0.0015 

40 400 10 11.37 ( ± 1.04) 0.0016 

50 370 10 12.46 ( ± 1.15) 0.0017 

60 340 10 13.25 ( ± 1.20) 0.0020 

70 320 10 14.21 ( ± 1.95) 0.0022 

80 310 10 15.26 ( ± 1.32) 0.0023 

90 300 10 16.19 ( ± 1.52) 0.0024 

100 290 10 16.99 ( ± 1.36) 0.0024 

110 280 10 17.84 ( ± 1.67) 0.0025 

120 270 10 18.45 ( ± 1.43) 0.0025 

130 260 10 19.18 ( ± 1.54) 0.0025 

140 260 10 20.19 ( ± 2.17) 0.0025 

150 250 10 20.81 ( ± 2.11) 0.0026 

160 250 10 22.15 ( ± 2.68) 0.0026 

170 240 10 22.67 ( ± 2.64) 0.0026 

180 240 10 23.62 ( ± 2.48) 0.0026 

190 240 10 24.71 ( ± 2.18) 0.0026 

200 230 10 24.99 ( ± 2.57) 0.0026 

210 230 10 26.15 ( ± 2.80) 0.0026 

220 230 10 27.18 ( ± 2.76) 0.0026 

230 230 10 28.68 ( ± 3.39) 0.0026 

240 220 10 28.89 ( ± 3.72) 0.0026 

250 220 10 29.97 ( ± 2.99) 0.0027 
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resized image size is n 
9 . The features table is built from the in-

put image (or the resized image), and it is used to build the graph.

There are 9 features, so the features table size is n in the first stage

(which works with the resized image) and 9 n on the second stage.

In the first stage, the neighbors table holds the k -nearest neighbors

of each node, so its size is kn 
9 . In the second stage, each neigh-

bor has only 8 neighbors or less, so the neighbors table size is 8 n .
he weights table has the same size as the neighbors table in both

tages. The domination vectors hold the pertinence of each node

o each class, so its size is cn 
9 in the first stage, and cn in the sec-

nd stage. Finally, the labeled output image size is n . As explained

efore, in real-world problems, c and k do not increase proportion-

lly to n . So, we may expect that all data structures grow linearly

n n and the storage complexity is O ( n ). 

.3. Large-scale networks 

The proposed method was also tested on large images to eval-

ate its behavior on large-scale networks. The source picture of

he “Dog” image from Fig. 1 is used in these experiments. It is a

6 megapixels JPEG image (4608 × 3456 pixels). 

In the first experiment, the picture is resized up to 10 times its

ize, using bicubic interpolation, to simulate a 159 megapixels pic-

ure. After the enlargement, some Poisson noise is added using the

imnoise” function from the MATLAB Image Processing Toolbox to

imulate the noise from a camera sensor. Otherwise, the enlarged

mages would look like a set of flat tiles. The same enlargement

s applied to the “scribbles” image, but using the nearest-neighbor

nterpolation to avoid the introduction of new colors which would

e mistakenly interpreted as new classes. Fig. 5 and Table 8 show

he number of iterations of the outer loops of the first and sec-

nd stages, and time required to convergence when the proposed

ethod is applied. Table 8 additionally shows the error rate in

ach scenario. 

In the second experiment, the 16 megapixels picture is used

ithout modification, but the out-degree of the nodes has increas-

ng sizes ( k = { 10 , 20 , . . . , 250 } ). Fig. 6 and Table 9 show the num-

er of iterations of the outer loops of the first and second stages,

nd time required to convergence when the proposed method is

pplied. Table 9 additionally shows the error rate in each scenario.

By analyzing these results, the same patterns seem on the ex-

eriments with smaller images is observed. As the network in-

reases, the amount of first phase iterations also increases and the

xecution time increases almost linearly. As the connectivity in-

reases, the amount of first phase iterations decreases and the ex-

cution time increases logarithmically. 

.4. Small-world-ness 

The proposed method efficiency highly relies on the small-world

roperty of the networks it generates in its first phase. In particu-

ar, when the edges are created to the k -nearest neighbors of each

ode, the clustering coefficient is usually high, so the label infor-

ation is quickly spread to the neighborhood. 

To verify if the small-world property is present on a network,

umphries and Gurney (2008) proposed a measure called small-

orld-ness . The small-world-ness S of a given graph may be calcu-

ated as follows: 

 = 

C 

C rand 

L rand 

L 
(12)

here C and L are the clustering coefficient and the mean short-

st path length of the network, respectively, and C rand and L rand 

re the clustering coefficient and the mean shortest path length

bserved in random equivalent networks, i.e., networks with the

ame amount of nodes and edges. S > 1 indicates the presence of

he small-world property. 

Unfortunately, S is undefined for disconnected networks, be-

ause in those scenarios L diverges to infinity. To overcome this

rawback, Zanin (2015) proposed an alternative formulation to

ompute small-world-ness , which uses the average efficiency of the

etwork instead of the shortest path length since efficiency is de-

ned even for disconnected networks. The efficiency E of a graph
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Fig. 5. (a) Number of iterations and (b) time required to the convergence with the “Dog” image with 16 megapixels to 159 megapixels and k = 10 . Each point in (b) is the 

average of 7 realizations. The error bars represent standard deviation. 

Table 8 

Amount of iterations on each algorithm phase, execution times, and error rates on the “Dog” image with 

16 megapixels to 159 megapixels and k = 10 . Each configuration is executed 7 times to get the mean and 

standard deviation of the execution times. 

Image size Width Height Tot. pixels Ph. 1 Ph. 2 Time (s) Error rate 

16 MP 4608 3456 15,925,248 1420 10 445.38 ( ± 16.21) 0.0132 

32 MP 6517 4888 31,855,096 1570 10 870.52 ( ± 64.50) 0.0140 

48 MP 7982 5986 47,780,252 1680 10 1,526.19 ( ± 126.27) 0.0140 

64 MP 9216 6912 63,700,992 1800 10 2,430.29 ( ± 159.01) 0.0134 

80 MP 10304 7728 79,629,312 1890 10 3,261.71 ( ± 201.10) 0.0135 

95 MP 11288 8466 95,564,208 1990 10 3,931.04 ( ± 205.11) 0.0137 

111 MP 12192 9144 111,4 83,64 8 2080 10 5,268.22 ( ± 252.83) 0.0138 

127 MP 13034 9776 127,420,384 2150 10 6,387.76 ( ± 365.23) 0.0154 

143 MP 13824 10368 143,327,232 2240 10 7,324.84 ( ± 454.97) 0.0157 

159 MP 14572 10929 159,257,388 2300 10 9,001.67 ( ± 380.48) 0.0159 

Fig. 6. (a) Number of iterations and (b) time required to the convergence with the “Dog” image with 16 megapixels and k = 10 to k = 250 . Each point in (b) is the average 

of 10 realizations. The error bars represent standard deviation. 
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 is calculated as follows: 

(G ) = 

1 

n (n − 1) 

∑ 

i � = j∈ G 

1 

d i j 

(13) 

here n is the total of nodes in the network and d ij denotes the

ength of the shortest path between a node i and another node j . 

The new efficiency-based small-world-ness S E is then defined as

ollows: 

 

E = 

C 

C rand 

E 

E rand 

(14) 

here C and E are the clustering coefficient and the average ef-

ciency of the network, respectively, and C rand and E rand are the

lustering coefficient and the average efficiency observed in ran-

om equivalent networks. S E > 1 indicates the presence of the

mall-world property. 
Notice that disconnected networks are not a problem for the

roposed method. An unlabeled node only needs a path to a la-

eled node to get label information. Even if an unlabeled node

oes not have a path to a labeled node, it still gets its label in

he second stage. Therefore, the efficiency-based small-world-ness

s used in this paper. 

Table 10 shows the measures of small-world-ness , clustering co-

fficient and efficiency for the networks built during the proposed

ethod first phase for the “Dog” image with 10% to 100% of its

riginal size and k = 10 . Table 11 shows the same measures for

he networks built during the proposed method first phase for the

Dog” image with its original size and k = 10 to k = 250 . In both

ases, the mean clustering coefficient and the mean average effi-

iency of 20 random networks with the same amount of nodes and

dges are also shown for comparison. 
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Table 9 

Amount of iterations on each algorithm phase, execution times, 

and error rates on the “Dog” image with 16 megapixels and k = 10 

to k = 250 . Each configuration is executed 9 times to get the mean 

and standard deviation of the execution times. 

k Ph. 1 Ph. 2 Time (s) Error rate 

10 3310 10 797.06 ( ± 45.72) 0.0098 

20 3730 10 1,485.54 ( ± 71.60) 0.0115 

30 3130 10 1,882.20 ( ± 70.04) 0.0120 

40 2640 10 2,110.70 ( ± 116.52) 0.0123 

50 2380 10 2,376.00 ( ± 127.28) 0.0125 

60 2170 10 2,607.85 ( ± 133.23) 0.0125 

70 1990 10 2,779.26 ( ± 170.00) 0.0126 

80 1830 10 2,897.11 ( ± 141.70) 0.0127 

90 1700 10 2,994.93 ( ± 107.31) 0.0126 

100 1600 10 3,081.27 ( ± 131.31) 0.0126 

110 1530 10 3,388.25 ( ± 172.80) 0.0127 

120 1470 10 3,662.71 ( ± 161.67) 0.0127 

130 1420 10 3,828.58 ( ± 126.99) 0.0128 

140 1380 10 4,141.11 ( ± 256.80) 0.0128 

150 1340 10 4,307.77 ( ± 140.86) 0.0129 

160 1310 10 4,715.17 ( ± 229.51) 0.0129 

170 1290 10 4,986.44 ( ± 210.99) 0.0130 

180 1260 10 5,323.27 ( ± 262.29) 0.0130 

190 1240 10 5,717.48 ( ± 317.35) 0.0131 

200 1220 10 5,878.81 ( ± 257.88) 0.0118 

210 1200 10 6,047.86 ( ± 166.69) 0.0113 

220 1180 10 6,385.12 ( ± 142.22) 0.0113 

230 1160 10 6,739.01 ( ± 333.90) 0.0112 

240 1150 10 7,176.41 ( ± 328.65) 0.0112 

250 1130 10 7,285.81 ( ± 138.61) 0.0113 

Table 10 

Small-world-ness, clustering coefficient, and the average efficiency of 

the networks built during the first phase of the proposed method 

for the “Dog” image with 10% to 100% of its original size and k = 10 . 

The mean clustering coefficient and mean average efficiency of 20 

random network with the same amount of nodes and edges are also 

shown for comparison. 

Image size S E C E C rand E rand 

10% 38.03 0.4301 0.0898 0.0036 0.2816 

20% 62.65 0.3923 0.0740 0.0018 0.2591 

30% 127.09 0.3851 0.0685 0.0 0 09 0.2234 

40% 240.52 0.3739 0.0628 0.0 0 05 0.1874 

50% 418.88 0.3718 0.0603 0.0 0 03 0.1610 

60% 694.56 0.3683 0.0592 0.0 0 02 0.1374 

70% 1045.17 0.3648 0.0567 0.0 0 02 0.1169 

80% 1506.40 0.3625 0.0559 0.0 0 01 0.0993 

90% 2382.55 0.3606 0.0555 0.0 0 01 0.0827 

100% 3943.10 0.3595 0.0544 0.0 0 01 0.0694 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 11 

Small-world-ness, clustering coefficient, and the average effi- 

ciency of the networks built during the proposed method first 

phase for the “Dog” image with its original size and k = 10 to 

k = 250 . The mean clustering coefficient and mean average ef- 

ficiency of 20 random network with the same amount of nodes 

and edges are also shown for comparison. 

k S E C E C rand E rand 

10 2599.98 0.3595 0.0544 0.0 0 01 0.0695 

20 4490.24 0.3858 0.0780 0.0 0 01 0.0694 

30 6446.55 0.3976 0.0935 0.0 0 01 0.0694 

40 6570.85 0.4061 0.1044 0.0 0 01 0.0696 

50 8705.99 0.4128 0.1134 0.0 0 01 0.0696 

60 8098.44 0.4178 0.1208 0.0 0 01 0.0694 

70 8161.99 0.4219 0.1272 0.0 0 01 0.0695 

80 7588.72 0.4255 0.1331 0.0 0 01 0.0696 

90 10167.96 0.4288 0.1385 0.0 0 01 0.0695 

100 10150.12 0.4319 0.1433 0.0 0 01 0.0694 

110 8386.42 0.4348 0.1475 0.0 0 01 0.0694 

120 9803.54 0.4375 0.1516 0.0 0 01 0.0694 

130 12145.72 0.4401 0.1556 0.0 0 01 0.0695 

140 10484.87 0.4426 0.1592 0.0 0 01 0.0696 

150 13139.53 0.4450 0.1627 0.0 0 01 0.0696 

160 12865.17 0.4471 0.1659 0.0 0 01 0.0694 

170 10555.00 0.4491 0.1689 0.0 0 01 0.0695 

180 11310.11 0.4510 0.1718 0.0 0 01 0.0696 

190 12677.64 0.4529 0.1747 0.0 0 01 0.0695 

200 14342.62 0.4547 0.1774 0.0 0 01 0.0694 

210 13331.34 0.4565 0.1801 0.0 0 01 0.0694 

220 15375.38 0.4583 0.1826 0.0 0 01 0.0697 

230 14912.54 0.4600 0.1851 0.0 0 01 0.0696 

240 15552.47 0.4618 0.1875 0.0 0 01 0.0695 

250 12742.60 0.4635 0.1899 0.0 0 01 0.0694 
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By analysing Tables 10 and 11 , one can notice that all the net-

works have high small-world-ness levels, clearly showing that they

have the small-world property. In particular, the clustering coeffi-

cients are much higher than those of an equivalent random net-

work. 

5. Benchmark 

Figs. 1 and 2 show segmentation examples on real-world im-

ages, where the user input is limited to a set of “scribbles” on the

main object(s) and the background. The results are qualitatively

good as they mostly agree with perceptual boundaries. 

For quantitative results, the proposed method is applied to the

50 images of the Microsoft GrabCut dataset ( Rother et al., 2004 ).

Though there are some other data sets available with ground truth

segmentation results, this one is, to the best of my knowledge,

the only one where seed regions are provided. It is also the only

database which was widely used in other papers; therefore it is

possible to present a quantitative comparison with state-of-the-art

methods. Their original seed regions are not presented as “scrib-
les”. Instead, they present a large number of labeled pixels and

 narrow band around the contour of objects to be segmented. In

pite of that, the proposed method can be applied to it without

ny modification or extra cost. 

Table 12 presents a comparison of the average error rates ob-

ained on the GrabCut dataset ( Rother et al., 2004 ) by the pro-

osed method and other interactive image segmentation methods.

he proposed method was first applied to the whole dataset with

ts default parameters ( k = 10 , λ = λ1 , ω = 10 −4 ). In this way, it

chieved an error rate of 4.15%. Later, the parameter k was opti-

ized for each image, and an error rate of 3.21% was achieved. 

Fig. 7 shows some examples of images from the Microsoft

rabCut dataset and the corresponding segmentation results. The

rst column shows the input images. The second column show

trimaps” providing seed regions. Black (0) represents the back-

round, ignored by the algorithm; dark gray (64) is the labeled

ackground; light gray (128) is the unlabeled region, which labels

re estimated by the proposed method; and white (255) is the la-

eled foreground, which generates the foreground class particles.

he error rates in Table 12 are computed as the ratio of the num-

er of incorrectly classified pixels to the total amount of unlabeled

ixels. Third and fourth columns show the segmentation results

btained by the proposed method with its default parameters and

ith k optimized for each image, respectively. 

.1. Execution times 

The algorithm was implemented in MATLAB. The loops in both

tages were implemented in C (MEX function). It took an aver-

ge of 439 milliseconds to segment each image from the Microsoft

rabCut dataset on a computer with an Intel Core i7 4790K CPU

nd 32GB of RAM. 

Wang, Ji et al. (2018) presents a comparison of the average

unning times of 7 representative interactive image segmentation

echniques on all 20 test images of size 321 × 481 in the Microsoft

rabCut dataset. They also used an Intel i7 CPU and MATLAB
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Table 12 

Comparison of the average error rates obtained on the GrabCut dataset ( Rother et al., 

2004 ) by the proposed method and other interactive image segmentation methods. The 

error rates for the other methods were compiled from the works of Ding et al. (2012) , 

Ducournau and Bretto (2014) , Wang, Ji et al. (2018) , and Bampis, Maragos, and 

Bovik (2017) . 

Method Error Rate 

sDPMNL (boundary) ( Ding et al., 2012 ) 11.43% 

GMMVL (location + color + boundary) ( Yi, Zhang, & Wang, 2004 ) 10.45% 

SVM (location + color + boundary) ( Chang & Lin, 2011 ) 9.21% 

GM-MRF ( Blake et al., 2004 ) 7.90% 

sDPMNL (color) ( Ding et al., 2012 ) 7.65% 

Superpixels Hypergraph ( Ding & Yilmaz, 2008 ) 7.30% 

Lazy Snapping ( Li et al., 2004 ) 6.65% 

Graph Cuts ( Boykov & Jolly, 2001 ) 6.60% 

Cost volume filtering ( Hosni, Rhemann, Bleyer, Rother, & Gelautz, 2013 ) 6.20% 

Directed Image Neighborhood Hypergraph ( Ducournau & Bretto, 2014 ) 6.15% 

RobustP n ( Kohli, Ladický, & Torr, 2009 ) 6.08% 

Grabcut ( Rother et al., 2004 ) 5.46% 

Regularized Laplacian ( Duchenne et al., 2008 ) 5.40% 

Grady’s random walker ( Grady, 2006 ) 5.40% 

Probabilistic Hypergraph ( Ding & Yilmaz, 2010 ) 5.33% 

DPMVL (color + boundary) ( Ding et al., 2012 ) 5.19% 

Laplacian Coordinates ( Casaca, Nonato, & Taubin, 2014 ) 5.04% 

sDPMVL (color + boundary) ( Ding et al., 2012 ) 4.78% 

Sub-Markov Random Walk ( Dong et al., 2016 ) 4.61% 

Normalized Lazy Random Walker ( Bampis et al., 2017 ) 4.37% 

Normalized Random Walker ( Bampis et al., 2017 ) 4.35% 

Nonparametric Higher-Order ( Kim, Lee, & Lee, 2010 ) 4.25% 

Proposed method (default parameters) 4.15% 

Constrained Random Walks ( Yang, Cai, Zheng, & Luo, 2010 ) 4.08% 

Lazy Randow Walks ( Shen, Du, Wang, & Li, 2014 ) 3.89% 

Robust Multilayer Graph Constraints ( Wang, Ji et al., 2016 ) 3.79% 

Texture Aware Model ( Zhou, Zheng, & Wei, 2013 ) 3.64% 

Pairwise Likelihood Learning ( Wang et al., 2017 ) 3.49% 

Multi-layer Graph Constraints ( Wang, Sun et al., 2016 ) 3.44% 

Proposed method (optimized k ) 3.21% 

Random Walks with Restart ( Kim, Lee, & Lee, 2008 ) 3.11% 

Normalized Sub-Markov Random Walk ( Bampis et al., 2017 ) 3.10% 

Diffusive Likelihood ( Wang, Ji et al., 2018 ) 3.08% 

Table 13 

Comparison of the average running time obtained on all 20 images of 

size 321 × 481 in the Microsoft GrabCut dataset ( Rother et al., 2004 ) by 

the proposed method and other interactive image segmentation meth- 

ods, using the original trimaps . The times for the other methods were 

reported by Wang, Ji et al. (2018) . 

Method Time (s) 

Nonparametric Higher-Order ( Kim et al., 2010 ) 11.0 

Multi-layer Graph Constraints ( Wang, Sun et al., 2016 ) 5.4 

Sub-Markov Random Walk ( Dong et al., 2016 ) 5.1 

Diffusive Likelihood ( Wang, Ji et al., 2018 ) 3.4 

Laplacian Coordinates ( Casaca et al., 2014 ) 3.2 

Grady’s random walker ( Grady, 2006 ) 0.8 

GrabCut ( Rother et al., 2004 ) 0.7 

Proposed Method (default parameters) 0.3 
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mplementations in their tests. Therefore, the same test was ap-

lied to the proposed method and the results are shown in

able 13 . The proposed method was faster than all the other tested

ethods. 

.2. Parameter analysis 

The proposed method sensitivity to parameter values is ana-

yzed using the Microsoft GrabCut dataset. In all scenarios, the 50

mages of the dataset are segmented with the default parameters,

xcept for the parameter under analysis. Fig. 8 (a) shows the error

ates when k = { 2 , 4 , . . . , 40 } . Fig. 8 (b) shows the error rates when

= { 0 . 05 , 0 . 10 , . . . , 1 . 00 } . Fig. 8 (c) and (d) shows the error rates

nd execution times when ω = { 10 −1 , 10 −2 , . . . , 10 −10 } . 
By analyzing those graphics, one can notice that k = 8 and

 = 10 produced the best results in the k parameter analysis. σ has

ow sensitivity and has its best range around σ = 0 . 4 to σ = 0 . 7 .

inally, ω has decreasing error rates as it lowers down to ω = 10 −4 ,

nd then it stabilizes. However, since this parameter is directly re-

ated to the stop criterion, the execution times are higher as ω de-

reases. ω = 10 −4 offers a good trade-off between execution time

nd error rates. 

.3. Seed sensitivity analysis 

The original “trimaps” from the Microsoft GrabCut dataset pro-

ides a large number of seeds for iterative image segmentation

ethods. However, the proposed method does not need all those

eeds to provide reasonable segmentation results. Therefore, an ex-

eriment was set in which each “trimap” from the dataset had

ach of its seeds randomly erased with a probability p , so the

hanged pixels would appear unlabeled to the method. By varying

 from 0 to 0.99, it is possible to generate “trimaps” with roughly

00% to 1% of the original seeds, respectively. So 2,0 0 0 “trimaps”

ere generated for each image, 20 of them for each of the 100

onfigurations of p = { 0 . 00 , 0 . 01 , . . . , 0 . 99 } . The proposed method

as applied to all of them. The mean error rates on each configu-

ation are presented in Fig. 9 (a). 

Notice that while the error rates decrease as the number of

eeds decreases in Fig. 9 (a), that does not necessarily mean that

he segmentation results are better, because with fewer seeds,

here are more unlabeled pixels and each pixel mislabeled by the

lgorithm has less impact on the error rate. Thus, Fig. 9 (b) shows

he error rates on each configuration, but excluding the pixels
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Fig. 7. The proposed method applied to the Microsoft GrabCut dataset: (a) input images, (b) “trimaps” providing seed regions, (c) close-up foreground segmentation results 

with default parameters, (d) close-up foreground segmentation results with optimized k . 

 

 

 

 

 

 

 

 

 

 

 

 

Table 14 

Comparison of the average error rates obtained on the GrabCut dataset 

( Rother et al., 2004 ) by the proposed method and other interactive image segmen- 

tation methods, using the sets of “scribbles” from Andrade and Carrera (2015) The 

error rates for the other methods were reported by Bampis et al. (2017) . 

Error 

Method S 1 S 2 

Random Walks with Restart ( Kim et al., 2008 ) 6.65% 6.44% 

Lazy Randow Walks ( Shen et al., 2014 ) 6.42% 6.12% 

Normalized Sub-Markov Random Walk ( Bampis et al., 2017 ) 6.07% 5.81% 

Sub-Markov Random Walk ( Dong et al., 2016 ) 6.07% 5.81% 

Grady’s random walker ( Grady, 2006 ) 5.58% 2.91% 

Laplacian Coordinates ( Casaca et al., 2014 ) 5.37% 3.75% 

Normalized Lazy Random Walker ( Bampis et al., 2017 ) 4.80% 2.49% 

Normalized Random Walker ( Bampis et al., 2017 ) 4.77% 2.48% 

Proposed Method (default parameters) 3.68% 1.60% 

Proposed Method (optimized k ) 2.28% 1.21% 
which were seeds in the original “trimaps” from the error rate

computation. These results showed that the number of seeds may

be greatly reduced without much impact in the error rates. 

5.4. Microsoft grabcut dataset with “Scribbles”

Andrade and Carrera (2015) presents an objective and empirical

evaluation method for seed-based interactive segmentation algo-

rithms. They have extended the Microsoft GrabCut dataset by in-

corporating two sets of “scribbles” for each of the 50 images. 2 

The first set of “scribbles” employ four strokes per image, three

on the background and one small area on the foreground object.

The second set of “scribbles” indicate and mark in more detail the

foreground region. The two sets reflect two different degrees of

user effort. 

The proposed method was applied to both sets of “scribbles”.

Table 14 presents a comparison of the average error rates obtained

by the proposed method and other interactive image segmenta-
2 Available at https://github.com/flandrade/dataset-interactive-algorithms. 

t  

d  

L  
ion methods. The proposed method was first applied to the whole

ataset with its default parameters ( k = 10 , λ = λ1 , ω = 10 −4 ).

ater, the parameter k was optimized for each image. In both
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Fig. 8. The proposed method applied to the Microsoft GrabCut dataset with the default parameters except for the parameter under analysis: (a) error rates for k = 2 to 

k = 40 , (b) error rates for σ = 0 . 05 to σ = 1 . 00 , (c) error rates for ω = 10 −1 to ω = 10 −10 , (d) execution times for ω = 10 −1 to ω = 10 −10 (average of 100 realizations). 

Fig. 9. The proposed method with its default parameters applied to the Microsoft GrabCut dataset with a subset of the original seeds. Each point is an average of 20 

realizations with different random seeds selected: (a) all unlabeled pixels are computed in the error rate, (b) unlabeled pixels that were originally a seed pixel are not 

computed in the error rate. 
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cenarios, and for both sets of “scribbles”, the proposed method

utperformed the other 8 methods even with its default parame-

ers. 

. Conclusions 

In this paper, a graph-based interactive image segmentation

ethod is proposed. Seeds are provided by the user in form of

scribbles”, loosely traced over the objects of interest and the back-

round. The method takes advantage of complex networks proper-

ies to spread labels quickly, with low time and storage complexity.

t can be applied to multi-class problems at no extra cost. 

Despite its simplicity, the method can achieve classification

ccuracy comparable to those achieved by some state-of-the-art
ethods when applied to the Microsoft GrabCut dataset, with their

riginal trimaps used as user input, which is commonly used to

valuate and compare interactive image segmentation methods. It

s also the fastest method when compared to other 7 methods, in-

luding some classic and some newer state-of-the-art approaches.

oreover, it achieved the best results when the user input is com-

osed only by a few “scribbles”, outperforming 8 other recent ap-

roaches. 

Though the proposed method has some parameters which can

e fine-tuned to achieve better results, usually only k has a sig-

ificant impact on the classification accuracy. The default parame-

ers may be used when the time is restricted. The user may also

ne-tune parameters while adding more “scribbles” if he/she is not

atisfied with the current segmentation results. 
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The method may also be extended by introducing edge-finding

components or edge related features to decrease error rates fur-

ther, and to handle more challenging segmentation tasks. 
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