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Modern applications of industrial automation and robotics are increasingly relying on
image processing techniques. This paper shows ways in which image processing can be
applied to solve actual problems in robotics and instrumentation. The paper starts by pre-
senting the fundamentals of camera models, digital acquisition of images and selected pro-
cessing techniques, followed by examples of applications of such knowledge. Four
examples of image processing applications are shown: rim detection in automotive wheel
images, dimensional verification of crankshafts, measurement of wheel alignment angles
of a car and a stereo visual odometry algorithm for mobile robotics. The examples not only
illustrate the uses of different image processing techniques, but may also inspire the devel-
opment of new robotic and industrial automation products.

� 2019 Published by Elsevier Ltd.
1. Introduction

The engineering community is experiencing a dramatic growth in application of image processing as a tool to perform
non-intrusive precision measurement, autonomous robot navigation or reliable verification of industrial automation pro-
cesses. Image acquisition and processing techniques are familiar to physics, computer, electrical and mechanical engineering
sciences for a relatively long time. Specialized literature on this field is usually dedicated to specific aspects such as the
geometry of camera projections and computer vision [1–5], image acquisition and processing [6], or either the scientific
and industrial applications of image processing and analysis [7].

This paper is both a review and a tutorial of applied image processing in industrial automation, aimed at researchers,
postgraduate students and engineers. Digital images can be associated with geometric properties of objects, such as shapes
and dimensions, which enables a myriad of applications and developments. In order to exploit such possibilities, the paper
provides insight into some of the key techniques associated with image acquisition, processing and analysis. Theoretical
aspects on the geometry of perspective projection, camera calibration, epipolar geometry and stereo image correspondence
are further elaborated with regards to technical details. Such a mathematical framework is the core for the use of cameras as
measuring devices in photogrammetry. Four applications of image processing are shown through examples in actual robotics
and instrumentation scenarios: rim detection in automotive wheel images; dimensional verification of crankshafts;
measurement of the wheel alignment angles of a car, and a stereo visual odometry algorithm for mobile robotics. The
examples are innovative concepts that can inspire a wider range of image-related applications. Each example considers four
aspects: (1) a motivation; (2) an explicit description of the system setup and calibration; (3) mathematical rationale and
references to first principles that explicit the assumptions behind each application; (4) empirical results and discussion.
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The text is organized as follows: Section 2 introduces the pinhole camera model, image sensing devices and color models,
which are associated to the process of image acquisition and primary conditioning operations. Section 3 provides a detailed
explanation of a selection of image processing techniques, namely, correction of lens distortion, histogram equalization, ero-
sion and dilation, edge and shape detection, geometry of perspective projection, camera calibration, epipolar geometry and
the Scale Invariant Feature Transform. All such topics correspond to essential techniques of image processing, followed by
the rationale for practical analysis of image elements. Section 4 describes a method for rim detection in automotive wheel
images, which illustrates the use of image processing techniques. Section 5 presents a 3-D crankshaft verification system,
which illustrates the use of multiple camera images in the construction of a spatial point cloud model of a solid. Section 6
shows a wheel alignment measuring system, which illustrates the potential use of photogrammetry in precision engineering
measurements. Section 7 introduces a stereo visual odometry algorithmwhich shows the potential use of cameras applied to
autonomous mobile robotics.
2. Camera, image and color models

This section presents the primary concepts of image acquisition and processing that are the pinhole camera model, digital
image formation and practical color models.

2.1. The pinhole camera model

The pinhole camera model [1,8] is the simplest and most useful representation of the process of capturing an image. Fig. 1
illustrates the pinhole camera model. The light reflected from an object is concentrated and projected through the pinhole in
the camera’s image plane, producing an inverted perspective image [6]. The image plane is located at a focal length f from
the pinhole. The scale of the projected image depends on the focal distance. In actual cameras, the pinhole is substituted by
optical lenses that perform the task of concentrating the light from objects in front of the camera, providing at the same time
a bigger area for the passage of light.

2.2. Image sensing devices

Light that comes from the camera lens pass through primary color (red, green and blue) optical filters embedded in an
electronic sensor, which can typically be charge-coupled devices (CCD) or complementary metal-oxide-semiconductors
(CMOS). The device is comprised of a two-dimensional array of sensitive elements (pixels) that receive light filtered in
the three basic colors and map their intensities into discrete numerical values that usually range from 0 (minimum intensity)
to 255 (maximum intensity). Fig. 2 illustrates such an image sensing device. The levels of light intensity discerned by each
pixel, in each of the three basic colors, yield a combination of 16,777,216 different color tones. Such a range of different
intensities can be numerically represented by a digital number with 24 binary digits (bits). The output digital image is a
matrix of M rows by N columns, where each element stores three 8-bit numbers proportional to the primary color
intensities.

2.3. Color models

Although an image is usually captured in the primary red, green and blue colors, it can be represented using other color
models or formats according to the application. The most popular color formats are presented below.

2.3.1. RGB
The red, green, and blue (RGB) color system, originally used in conventional photography [9], has current applications in

television and computer displays [10]. Fig. 3 depicts the formation of colors from primary RGB intensities. In RGB, intensity
weighted combinations of the projections of the three primary colors yield all the other possible colors.

Fig. 4 illustrates the RGB components of a colored image.
Fig. 1. The pinhole camera model.



Fig. 2. Digital image formation.

(a) The RGB color mixing. (b) The RGB cube representa�on.

Fig. 3. The RGB color model. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.).
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2.3.2. YUV
The YUV model was created as a re-coding of the RGB standard to minimize the bandwidth of analogue color television

transmissions and to provide downwards compatibility with black-and-white television. The YUV standard comprises the
luminance (Y) and the color differences (U, V) or chrominance components. The luminance is calculated as a weighted
sum of red, green and blue light intensity components. The color difference components U and V are formed by subtracting
luminance from blue and red color intensities, respectively. The Y, U and V components are computed as [11]
Y ¼ 0:299Rþ 0:587Gþ 0:114B; ð1Þ

U ¼ 0:492 B� Yð Þ; ð2Þ
Fig. 4. The RGB components of an image.
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V ¼ 0:877 R� Yð Þ: ð3Þ

The Y component is important in computer vision applications because it provides a compact grayscale representation of

RGB colors. Other color models used in video and television applications derive from the YUV standard, such as the YPbPr,
YCbCr and YIQ standards [11].

2.3.3. CMYB
The cyan, magenta, yellow and black (CMYB) standard is used in color printing devices. The black color component is

defined separately due to the high demand of such a color in text printing applications.

2.3.4. HLS and HSV
The hue, lightness, saturation (HLS) and the hue, saturation, value (HSV) color models were developed to approximate the

human perception and interpretation of colors. Individual colors, in such models, can be represented by points in an inverted
hexcone, as shown in Fig. 5. Hue is an angular measure that varies from 0 to 360, beginning and ending with red and running
through green, blue and all intermediary colors. Saturation indicates the degree to which hue differs from a neutral gray.
Saturation values run from 0, which means no color saturation, to 1, which is the highest saturation for a given hue at a given
illumination. The intensity components, lightness in HLS and value in HSV, indicate the illumination level. Both vary from 0
(black, no light) to 1 (white, full illumination). The difference between them is that saturated colors have lightness 0.5 in the
HSL model while in HSV their value is 1.

Although popular in most of digital image processing applications, the color models presented herein are only a small set
of a greater variety of standards defined for different intents and purposes [11].

3. Image processing techniques

This section introduces a selection of popular image processing techniques including graphical examples that are funda-
mental to the robotics and instrumentation applications presented in Sections 4–7.

3.1. Correction of lens distortion

Camera lenses introduce non-linear geometric distortions to captured images, that can be numerically corrected by recal-
culation of the relative positions of the pixels in the image matrix. Radial and tangential distortion coefficients calibrate the
horizontal and vertical positions of a pixel of coordinates xd; ydð Þ [12,13]. The distortion-corrected coordinates xu; yuð Þ of a
pixel are calculated as
xu ¼ xd � xdð ÞK rð Þ þ P1 r2 þ 2 xd � xdð Þ2
� �

þ 2P2 xd � xdð Þ yd � ydð Þ
h i

P rð Þ; ð4Þ

yu ¼ yd � ydð ÞK rð Þ þ P2 r2 þ 2 yd � ydð Þ2
� �

þ 2P1 xd � xdð Þ yd � ydð Þ
h i

P rð Þ; ð5Þ
where
K rð Þ ¼ 1þ
X1
k¼1

Kkr2k; ð6Þ
Fig. 5. The HSV hexcone representation.
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P rð Þ ¼ 1þ
X1
k¼3

Pkr2k k�2ð Þ; ð7Þ

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xd � xdð Þ2 þ yd � ydð Þ2

q
; ð8Þ
xd and yd are the coordinates of the principal point or image center and Kk and Pk are the radial and tangential distortion coef-
ficients, respectively. Appropriate radial and tangential distortion coefficients can be determined by heuristic calibration.
Fig. 6 depicts the result of correction of lens distortion of a dotted image pattern.

3.2. Histogram equalization

The different intensities of light captured by pixels in a digital image, should occupy preferably the whole range of avail-
able discrete levels, in order yield the best picture quality. In this sense, the minimum light intensities of an image should be
ideally associated with the value zero and the maximum light intensities with the highest value of the discrete mapping
range. An equally distributed image intensity range guarantees a good image contrast [14]. The histogram equalization of
a pixel that occupies the position x; yð Þ, with an initial associated intensity I x; yð Þ, is given by
Ie x; yð Þ ¼ L� 1
N

Cf I x; yð Þð Þ; ð9Þ
where L is the number of possible intensity values, Cf Ið Þ is the cumulative frequency distribution of the pixel intensity I and N
is the total number of pixels in the image. The cumulative frequency distribution is the accumulated sum of image histogram
values in the range 0; L� 1½ �.

Fig. 7 illustrates the difference in contrast after the equalization of a grayscale image. Fig. 8 shows the histogram and
cumulative frequency distribution of the original and equalized images. In colored images, equalization is applied separately
to the intensities of each primary composing color [14].

3.3. Erosion and dilation

Erosion and dilation are fundamental binary operations in the context of morphological image processing. Mathematical
morphology, describes the algorithms used in the representation and description of geometric structures or region shapes.
Morphological imaging is an effective tool in industrial applications, including product verification, precision measurement
and robot vision. Morphological algorithms such as image boundary, skeleton and convex hull and image processing tools
such as pruning, thinning and morphological filtering are based on primitive dilation and erosion operations. The concepts
summarized in this section are based on the textbook of Gonzalez and Woods, Ref. [6].

Dilation and erosion are defined in terms of set translation and set reflection. The concept of structuring element is fun-
damental in these morphological definitions. A structuring element is a small image or sub-image with a specific shape used
to test the structural properties of an image under study. The origin of a structuring element is commonly located at its cen-
ter of gravity and is the reference point in the formulation of set reflection and translation.

The translation of a set B in Z2 by a point z ¼ z1; z2ð Þ, denoted by Bz, is defined as
Bz ¼ pjp ¼ bþ z; for b 2 Bf g: ð10Þ

Fig. 9 illustrates the erosion operation. Given an image A and an arbitrary structuring element B, where A and B are sets in

Z2, the erosion of A by B, denoted by A� B, is defined as
A� B ¼ zjBz #Af g: ð11Þ
The reflection of set B in Z2, denoted by bB, is defined as
bB ¼ pjp ¼ �b; for b 2 Bf g: ð12Þ

Fig. 10 depicts the dilation operation. The dilation of an image A by a structuring element B, denoted by A� B, is defined as
A� B ¼ zjbBz \ A–£
n o

: ð13Þ
3.4. Edge and shape detection

The detection of edges in an image is a convenient way to define regions of interest in order to perform identification and
comparison of geometric forms, measurements, or to provide a simplified data structure to a complex image. Edge detection
algorithms are based on the change of pixel intensities in specific image regions. The Canny’s algorithm is one of the most
popular and practical edge detection algorithms in digital image processing. Canny [15] has established important statistical
characteristics of pixel intensity changes in order to precisely define the edge regions of an image. In Canny’s edge detection,



(a) The do�ed pa�ern. (b) The distor�on-corrected image.

Fig. 6. Correction of lens distortion in a dotted pattern.

(a) Original image. (b) High contrast image.

Fig. 7. Histogram equalization in a grayscale image.
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an image is convolved with a structuring element to obtain a blurred image that optimizes the edge detection process. The
horizontal, vertical and diagonal changes of intensity in the blurred image provide the information about the edges of the
original image. An efficient recursive implementation of Canny’s edge detection can be found in an early work of Deriche
[16].

Canny’s edge detection requires a grayscale image and a Gaussian structuring element or smoothing filter. A typical Gaus-
sian square structuring element of size 5 is shown in Eq. (14).
G ¼ 1
159

2 4 5 4 2
4 9 12 9 4
5 12 15 12 5
4 9 12 9 4
2 4 5 4 2

26666664

37777775: ð14Þ
Fig. 11 depicts the process of edge detection. Fig. 11a shows the grayscale image of a landscape. The image is convolved
with a Gaussian square structuring element to obtain the smoothed image of Fig. 11b. The filtered image is mapped into a
binary image by imposing a discriminant threshold on pixel intensities. Fig. 11c shows the output binary image. The regions
with the most significant changes in intensity are the detected edges of the original image.

Shape detection is a complementary technique to extract information of shapes in an image. Shape detection methods
search for regular patterns of interest, e.g. lines, circles and ellipses, that often appear in images of man-made structures
(buildings, roads, rounded objects) and in nature (plants, fruits, cells, stars). The Hough transform [16,17] is one of the most
popular and effective techniques for the detection of shapes in an image.

Hough transform is based on a voting process that identifies curves in a space of parameters. As an example, consider the
parametrization of a line in the normal form q ¼ x cos hð Þ þ y sin hð Þ, where q is the length of a normal segment from the ori-
gin to the line and h is the orientation of qwith respect to the x-axis. A given point in the line of coordinates xi; yið Þ in the xy-



(a) Original image.
Grayscale intensity Grayscale intensity

Grayscale intensity Grayscale intensity

(b) High contrast image.
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Fig. 8. Histogram and cumulative frequency distributions.

(a) Original image. (b) Eroded image.

Fig. 9. Erosion of the radial lines with a square structuring element of 14-pixel size.

(a) Original image. (b) Dilated image. 

Fig. 10. Dilation of a text with gaps of 1 and 2-pixel size using a 3 � 3 cross-shaped structuring element.
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(a) Original image. (c) Canny’s edges.(b)Smoothed Image.

Fig. 11. The edge detection process.
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space maps to a sinusoidal curve of parameters hi; qið Þ of the hq space. A different point in the line of coordinates xj; yj
� �

in

the xy-space describes another sinusoidal curve of parameters hj; qj

� �
in the hq space. The curves in the hq space will cross

at a certain point of coordinates h
0
; q0

� �
that defines the parameters of the line that passes through both points in the xy-

space. In computer realization, the hq space is a square tessellation of fixed intervals or accumulator cells, usually
�90� < h < 90� and �D < q < D, where D is the main diagonal of the image. An accumulator cell increments its count (or
vote) by one, each time a sinusoidal curve passes within. The cell with the highest votes defines the desired line
parametrization.

Fig. 12 illustrates line detection using the Hough transform. Edges detected from the original image (Fig. 12a) are mapped
to discretized sinusoidal curves in the parameter space, as shown in Fig. 12b. Two sets of crossing points with the greatest
incidence in the parameter space, highlighted in Fig. 12b are selected to yield the identified lines shown in Fig. 12c (thicker
lines).

3.5. Geometry of perspective projections

The geometry of perspective projections is a fundamental concept in photogrammetry for the use of cameras as measuring
devices. The geometry of a perspective projection is based on a modified version of the pinhole camera model of Fig. 1, where
the image plane is in front of the pinhole rather than behind it, to allow for non-inverted projections. Three reference frames
are defined in such a context. The world reference frame is an arbitrary coordinates system that describes objects in the 3-D
space. The camera reference frame is a 3-D coordinates system located at the projection center of the camera. The image ref-
erence frame is a 2-D coordinates system located at the upper-left corner of the image projection plane. The coordinates of
the world and camera reference frames are expressed in units of length, whereas the coordinates of the image reference
frame are expressed in units of pixel.

A point P in the 3-D space is expressed in the world reference frame as
P|
w ¼ X Y Z½ �: ð15Þ
Point P is expressed in the camera reference frame as
P|
c ¼ x y z½ �: ð16Þ
(a) Original image. (b) Parameter space . (c) Detected lines.

Fig. 12. Detection of lines with the Hough transform.
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The perspective projection of P, denoted by p, is expressed in the camera reference frame as
p| ¼ x0 y0 f½ �; ð17Þ
where f is the focal length.
The pixel mapping of point P, denoted by p, is expressed in the image reference frame as
p| ¼ u v½ �: ð18Þ

Fig. 13 shows a representation of world, camera and image reference frames and point P with its perspective projection p.

Rotation R and translation t define the extrinsic parameters of the camera. Rotation R represents the orientation of the camera
reference frame with respect to the world and is defined by the 3 � 3 rotation matrix
R ¼
cos hZ sin hZ 0
� sin hZ cos hZ 0
0 0 1

264
375 cos hY 0 � sin hY

0 1 0
sin hY 0 cos hY

264
375 1 0 0

0 cos hX sin hX
0 � sin hX cos hX

264
375; ð19Þ
where hX , hY and hZ are the angles of rotation of the axes of world coordinates. Translation t describes the position of the
origin of world coordinates with respect to the camera reference frame.

The transformation of coordinates of a point in the world into the camera reference frame is given by
Pc ¼ R|Pw þ t: ð20Þ

The perspective projection of point Pc is expressed as
p ¼ f
z
Pc: ð21Þ
The pixel mapping of point p on the image plane is given by
bp ¼ round
1
f
Ap

� �
; ð22Þ
where bp is a vector of homogeneous coordinates. The vector of homogeneous coordinates is related to the pixel mapping
vector as
bp| ¼ p| 1½ � ð23Þ
and A is the matrix of intrinsic parameters of the camera, defined as
A ¼
Sxf c u0

0 Syf v0

0 0 1

264
375; ð24Þ
where Sx and Sy are the horizontal and vertical pixel densities (in units of pixel per length unit), u0 and v0 are the horizontal
and vertical pixel coordinates of the principal optical axis respectively, and c is the pixel skew parameter, which is zero for
most of the digital cameras with a square pixel aspect ratio. Eq. (23) imposes the vector bp to be of integer values through an
integer rounding operation. This is because pixels in a digital image are discrete representations of the continuous intensities
projected on the image plane of a camera. The theoretical aspects of perspective projection presented so far are fundamental
for the definition of a camera calibration procedure described in the sequence.
Fig. 13. The three coordinate systems of perspective projection.
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3.6. Camera calibration

Camera calibration consists in identifying the intrinsic and extrinsic parameters of a camera with respect to a global ref-
erence frame. Calibrationmethods are often based on reference points of a calibration pattern to estimate the camera param-
eters. A calibration pattern is an object that defines a metric in a global reference frame. The projections of reference points in
the camera’s image plane enable the calibration process. A number of camera calibration approaches are found in literature
[18], including a popular calibration method that uses a planar calibration chessboard, available as an open-source package
[19].

The following method is based on the work of Kurka et al. [20], which uses a solid box of known dimensions as the cal-
ibration pattern. Fig. 14 depicts an image of the box captured by a digital camera. The box vertices are the calibration points,
whose positions are determined using image processing techniques such as edge detection and geometry of perspective pro-
jection, as detailed in previous sections. The global coordinates system located at the box vertex 7 in Fig. 14 is arbitrarily
regarded as the global reference frame.

Vertex points are represented by Bk, with k ¼ 1;2; � � �8, and described in world coordinates as
B1 ¼
0
H

0

264
375;B2 ¼

D

H

0

264
375;B3 ¼

D

0
0

264
375;B4 ¼

D

0
W

264
375;B5 ¼

0
0
W

264
375;B6 ¼

0
H

W

264
375;B7 ¼

0
0
0

264
375;B8 ¼

D

H

W

264
375; ð25Þ
where D, H and W are the known parameters of depth, height and width of the box, respectively.
The global referenced box vertex point Bk, expressed in camera coordinates, Pk, is written as
Pk ¼ R|Bk þ t: ð26Þ

The same point Bk, expressed in homogeneous image coordinates bpk using Eqs. (22) and (26), is given by
bpk ¼
1
zk

A R|Bk þ tð Þ; ð27Þ
where zk is the depth or z-axis coordinate of point pk in the camera frame of references.
In a practical calibration procedure, the only known quantities of Eq. (27) are the integer valued pixel coordinates uk and

vk of vector bpk, and the world coordinates Xk, Yk and Zk of vertex Bk. Camera calibration consists in estimating the unknown
quantities of Eq. (27), which are, the depth zk, intrinsic calibration matrix A, rotation matrix R, and translation vector t, which
is the origin position of the world reference frame.

It can be seen in [20], that the basic parameter identification relation can be drawn for a set of three different box vertices,
namely points Bka, Bkb and Bkc , and their respective homogenous image projections bpka, bpkb, bpkc , as
B|
kI
� I� B|

kII
� bPkI

bP�1

kII

h i
vec ARð Þ ¼ 0; ð28Þ
where matrices bPkj are defined as
bPkI ¼ 0:5bpka �bpkb
0:5bpkc

h i
; ð29Þ

bPkII ¼ �bpka 0:5bpkb
0:5bpkc

h i
: ð30Þ
Vectors Bkj are defined as
BkI ¼ 0:5Bka � Bkb þ 0:5Bkc

� � ð31Þ
Fig. 14. Calibration box and the world reference frame.
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and
BkII ¼ �Bka þ 0:5Bkb þ 0:5Bkc

� �
: ð32Þ
The Kronecker product is denoted by �, matrix AR is defined as
AR ¼ AR; ð33Þ

term I is the identity matrix of dimension 3 � 3, and the operation that stacks the columns of matrix AR, turning it into a
vector of dimension 9 � 1, is denoted by vec( ).

Eq. (28) can be expanded, in the presence of n 	 3 different sets of vertex coordinates vectors, and image coordinate pro-
jections, yielding the vertex related matrices BkI and BkII , and their corresponding homogeneous image coordinates based

matrices P̂kI and P̂kII , resulting in
Pe ¼ 0; ð34Þ

where
P ¼

B|
1I
� I� B|

1II
� P̂1I P̂

�1
1II

� �
B|
2I
� I� B|

2II
� P̂2I P̂

�1
2II

� �
..
.

B|
nI
� I� B|

nII
� P̂nI P̂

�1
nII

� �

266666664

377777775; ð35Þ
and e is the representation for vec ARð Þ.
Eq. (35) is a system of 3n�9 homogeneous equations, which finds solutions in the vectors of the right null space of P. In

practical cases, where the image projections of the spatial vertex points are discrete pixel positions, matrix P will not have a
null space, and e will be estimated as the right singular vector of P associated with its smallest singular value.

The estimation vector is reshaped into a matrix of dimension 3 � 3, which is an approximation of matrix AR, that is
AR ¼ reshape �e;3� 3ð Þ: ð36Þ

Matrix AR is also an estimation of the product of the intrinsic calibration and rotation matrices, according to Eq. (33). The

orthogonal property of the rotation matrix allows manipulation of Eq. (33) to yield an estimation of the self-transpose pro-
duct of the calibration matrix, that is
ARR|A| ¼ A| ’ eAR
eA|

R ð37Þ
Matrix eAR of Eq. (37) is the normalized version of AR, forcing its third row, third column element to be 1, similar to the
likewise element of AA|.

Estimations of the intrinsic camera parameters are derived from the self-transpose product of matrix eAR, according to
Eqs. (37) and (24)
eSx f ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
element of row1; column1of eAR

eA|
R

� �
� el2

0

r
; ð38Þ

eSyf ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
element of row2; column2of eAR

eA|
R

� �
� em2

0

r
; ð39Þ

el0
eSxf ’ element of row1; column3of eAR

eA|
R; ð40Þ

em0
eSyf ’ element of row2; column3of eAR

eA|
R; ð41Þ
A preliminary estimate for the rotation matrix can be obtained from Eq. (33) as
eR 0 ¼ eA�1 eAR; ð42Þ

where
eA ¼
eSx f 0 el0

0 eSyf em0

0 0 1

264
375 : ð43Þ
The final estimate for the rotation matrix, denoted by eR, is obtained by normalizing the singular values of eR 0, that is
eR ¼ URV
|
R; ð44Þ
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where UR and VR are matrices with the left and right singular vectors of eR 0.
The translation vector t can be estimated simultaneously with a vector of depth projection values by applying Eq. (27) to a

number n 	 2 of pairs of spatial and projected points, via the least-squares solution of a linear system of equations
p̂1 0 . . . 0 �eA
0 p̂2 . . . 0 �eA
..
. ..

. . .
. ..

. �eA
0 0 . . . p̂n �eA

2666664

3777775 k



t



" #
¼

eARB1eARB2

..

.

eARBn

2666664

3777775; ð45Þ
where ek is the vector of estimated depth projections defined as
ek| ¼ z1 z2 . . . zn½ �: ð46Þ
3.7. Epipolar geometry

Epipolar geometry is the geometry of stereoscopic vision. Stereo computer vision refers to the imaging system consisting
of a pair of cameras that emulate the human binocular vision capability. The visual perception of depth in stereo systems is
possible due to disparity, which is the difference in apparent position of objects in a scene observed by two independent cam-
eras. Epipolar geometry relates the concept of visual disparity to objects or physical points on a 3-D environment. The pro-
cess of retrieving depth information is known as stereo image matching, which consists of finding pixel correspondences in
two images and converting their 2-D positions into 3-D coordinates. The textbook of Trucco and Verri [5] dedicates a chapter
to stereo vision and its geometric relationships. The main aspects of such subjects are introduced in the sequence.

Fig. 15 shows the geometry of a stereo vision system. The stereo system consist of two pinhole cameras (left and right
cameras) with projection centers Ol and Or and image planes pl and pr . The 3-D reference frame of each camera is located
at the corresponding projection center and the z-axis coincides with the optical axis in both cases. The line that connects
both camera projection centers is called the baseline. The baseline intersects the image planes pl and pr at points el and
er , called epipoles. A given point P in the 3-D space is described by vector Pl

| ¼ xl; yl; zl½ �, or Pr
| ¼ xr ; yr ; zr½ � and generates

the projections pl
| ¼ x

0
l; y

0
l ; f l

	 

and pr

| ¼ x
0
r ; y

0
r ; f r

	 

of camera coordinates, where f l and f r are focal lengths. The epipolar lines

ul and ur connect the epipoles to the projections. Such a geometry defines the epipolar constraint, which restricts the match of
a point in the image of a camera to the epipolar line in the image of the opposite camera. The epipolar plane pP is defined by
point P and the centers of projection Ol and Or of the cameras.

Translation vector t ¼ Or � Olð Þ and rotation matrix R are the extrinsic parameters that relate the reference frames of the
left and right cameras. The relation between Pl and Pr is given by
Pl ¼ R|Pr þ t: ð47Þ

An interest point P and its projections are related by the perspective projection equations
pl ¼
f l
zl
Pl ð48Þ
and
pr ¼
f r
zr
Pr: ð49Þ
Fig. 15. The epipolar geometry.
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The essential matrix E, in camera coordinates, establishes the epipolar constraint between left and right projections, such
as
p|
rEpl ¼ 0; ð50Þ

E ¼ bTR|; ð51Þ
where bT is the skew-symmetric matrix representation of the cross product operator for t, that is }t � }. The product Epl can
be thought of as a vector perpendicular to the epipolar plane, projected in the right camera system of coordinates. The dot
product of vector pr , in the epipolar plane pP , and Epl, is thus null.

Points bpl and bpr are the pixel mappings of homogenous coordinates corresponding to pl and pr , such as
pl ¼ f lA
�1
l
bpl; ð52Þ

pr ¼ f rA
�1
r
bpr; ð53Þ
where Al and Ar are the matrices of intrinsic parameters of the left and right cameras, respectively.
The fundamental matrix F, of image coordinates, establishes the epipolar constraint between left and right projections as
bp|

rFbpl ¼ 0; ð54Þ

F ¼ A�|
r EA�1

l : ð55Þ

Matrices E and F can be estimated using the eight-point algorithm described in [5].

3.7.1. Extrinsic parameters of the stereo system
Fig. 16 shows the geometric relations between the cameras and the world. Rotations Rl and Rr , and translations tl and tr ,

describe the origin of world coordinates OW in terms of the reference frames of the left and right cameras, respectively. The
extrinsic parameters of the stereo system R and t are calculated with respect to the reference frame of the left camera, such
as
R ¼ R|
rRl; ð56Þ

t ¼ tl � R|tr : ð57Þ
3.7.2. Stereo correspondence
The reconstruction of the 3-D scene depends on the solution of the correspondence problem or disparity estimation.

Fig. 17 depicts the stereo correspondence problem. The position of a point P in space is recovered from its projections pl

and pr . The coordinates x0
l and x0

r are the projections referred to the principal points cl and cr , t is the baseline and z is the
straight-line distance from the point P to the baseline.

From the construction of the problem,
z ¼ f
t
d
; ð58Þ

d ¼ x
0
l � x

0
r; ð59Þ
where the disparity d is the difference in horizontal image position between corresponding points in both images and is
inversely proportional to the depth z, for parallel cameras, as shown in Fig. 17.

Algorithms to find correspondence pairs, according to [5], can be classified in two main classes: correlation-based and
feature-based. Correlation-based algorithms operate on the complete set of image points and feature-based methods on a
sparse set of image features. A comprehensive review on stereo correspondence methods is found in [2].

3.7.2.1. Correlation-based methods. Correlation-based methods search for correspondences over image windows of fixed size.
The similarity criterion is established by a measure of the inter-window correlation in the two images. The window that
maximizes this criterion contains corresponding elements.

3.7.2.2. Feature-based methods. Feature-based methods focus on the search of image descriptors that describe particular char-
acteristics of the images. The similarity criterion is established through a measure of the distance between descriptors. The
corresponding elements are given by the pair of descriptors with minimum distance. Appropriate constraints, such as the
epipolar restriction, improve the performance of correspondence methods by imposing a condition on the search and reduc-
ing false matches and occlusions (points with no counterpart in the opposite image). The correlation technique discussed
herein are present in a feature-based method called the Scale Invariant Feature Transform (SIFT), which is presented in
Section 3.8.



Fig. 16. The extrinsic parameters of a stereo system.

Fig. 17. Depth estimation from disparity of corresponding points.
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3.7.3. 3-D reconstruction by triangulation
Fig. 18 depicts the 3-D reconstruction of a point P in space by triangulation, that is, by finding the closest point between

projective directions l ¼ Ol; plð Þ and r ¼ Or ; prð Þ. Although the projection lines of a point in two different cameras should
intersect in space, it does not occur in a practical 3-D reconstruction application. This is due to the fact that, in a practical
application, the position of the corresponding pair pl and pr and the camera parameters are only approximate estimations.
Therefore, the 3-D reconstruction problem can be solved by calculating depths zl and zr , in an optimal way, such as to
minimize a spatial position difference error vector, that is
e ¼ zlpl � zrR
|pr � t; ð60Þ
zl
zr

� �
¼ p|

l pl �p|
l R

|pr

�p|
l R

|pr p|
rpr

� ��1 p|
l t

�p|
rRt

� �
; ð61Þ
where e is the position difference error vector and zlpl and zrR
|pr parametrize projection lines l and r, respectively. The depth

values calculated according to Eq. (61), minimize the squared error e|e. The optimally reconstructed 3-D intersection point is
P0, located at the middle of error vector Other reconstruction scenarios are discussed in [2,5].

3.8. Scale invariant feature transform

The Scale Invariant Feature Transform (SIFT) is a feature-based method for stereo correspondence developed by Lowe
[21]. The SIFT algorithm searches for image points of interest or keypoints based on a scale-space [22]. The keypoints are
invariant to affine transformations, illumination changes and additive Gaussian noise [23]. The SIFT algorithm consists of
four major stages described in the sequence. The scale-space extrema detection stage searches for candidate keypoints in
the scale-space of a Difference of Gaussian (DOG) function. The keypoint localization stage filters out candidates based on
criteria such as minimum contrast or minimum ratio of principal curvature. The orientation assignment stage adds a vector
of orientation to a keypoint in order to achieve rotational invariance. The keypoint descriptor stage calculates a local image
descriptor that remains invariant to additional changes in illumination and 3-D viewpoint.



Fig. 18. The 3-D reconstruction by triangulation.
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3.8.1. Scale-space extrema detection
The SIFT algorithm starts by detecting candidate keypoint locations that preserve their geometric characteristics, despite

changes in image scale. The keypoint search is performed on a DOG scale-space, which is a function containing all possible
image scales. A scale-space L x; y;rð Þ is defined by the convolution of image I x; yð Þ with a Gaussian smoothing filter G x; y;rð Þ,
that is
L x; y;rð Þ ¼ G x; y;rð Þ � I x; yð Þ; ð62Þ

where
G x; y;rð Þ ¼ 1
2pr2 e

� x2þy2ð Þ=2r2
; ð63Þ
and r is the standard deviation or blurring factor. The DOG function is an approximation of the Laplacian of the Gaussian
function r2r2G, which is an appropriate space to search for image invariance to scale [22]. The DOG between two images
with distortion scales kr and r is given by
D x; y;rð Þ ¼ L x; y; krð Þ � L x; y;rð Þ: ð64Þ

The DOG is also calculated for scale spaces of octave resampled versions of the original image. Octaves are calculated by

doubling the value of the distorting factor r. The image is resampled by 50% in the x and y dimensions, whenmoving through
octaves. Keypoint identification or extrema detection is performed on a 3-D Moore neighborhood, which is the local pixel
neighborhood at the same scale-space and up and down the octaves. Fig. 19 illustrates the local pixel search on a 3-D Moore
neighborhood of unitary radius. A pixel is considered extrema or keypoint candidate if its intensity value is a minimum or
maximum compared with its neighbors.

3.8.2. Keypoint localization
The location of candidate keypoints is refined to discard low contrast or edge points. Keypoint location is interpolated

using the quadratic Taylor expansion of the DOG at sample point x| ¼ x; y;r½ �, such as
D xð Þ ¼ Dþ @D
@x

� �|

xþ 1
2
x| @

2D
@x2

x: ð65Þ
An optimal keypoint offset bx is obtained by minimizing Eq. (65), which results in
bx ¼ � @2D
@x2

 !�1
@D
@x

: ð66Þ
Fig. 19. The 3-D Moore neighborhood (marked in gray) of a pixel (marked in black).
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If any component of bx is greater than 0.5, it means that the extrema is closer to a different sample point. In such a case, the
interpolation is calculated again at the new sample point. The final keypoint location results from adding the offset bx to the
original location of corresponding sample point. Furthermore, low contrast extrema are discarded by using the minimum
threshold discrimination criteria D bx� � < 0:03. Such a threshold expects image pixel values on the interval 0;1½ �. Poorly
defined responses at the edges are also neglected for instability by setting a threshold on the ratio of principal curvatures
Tr Hð Þ2
Det Hð Þ <

r þ 1ð Þ2
r

; ð67Þ
where r ¼ a=b, is the ratio between the largest and the smallest magnitude eigenvalues of matrix H, and H is the 2 � 2 Hes-
sian matrix computed at the scale and location of the keypoint, such as
H ¼ Dxx Dxy

Dxy Dyy

� �
; ð68Þ
where the matrix elements are the second-order partial derivatives of D xð Þ estimated by difference of adjacent sample
points.

3.8.3. Orientation assignment
The keypoint receives an orientation angle that describes its local pixel neighborhood in terms of direction and provides

invariance to rotation. Keypoint orientation is calculated from the local gradients of the smoothed image L at the initial scale
r. The local gradients of magnitude m x; yð Þ and orientation h x; yð Þ are calculated as
m x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L xþ 1; yð Þ � L x� 1; yð Þð Þ2 þ L x; yþ 1ð Þ � L x; y� 1ð Þð Þ2

q
; ð69Þ

h x; yð Þ ¼ arctan
L x; yþ 1ð Þ � L x; y� 1ð Þ
L xþ 1; yð Þ � L x� 1; yð Þ
� �

: ð70Þ
An orientation histogram is calculated from the orientation gradients of the keypoint and its neighborhood. The orienta-
tion histogram is a vector of 36 components corresponding to 10 degree equal divisions of a unit circle. The vector elements
are weighted by the corresponding gradient of magnitude m and a Gaussian circular window with smoothing factor
r ¼ 1:5rki , where rki belongs to the scale i of keypoint k. The final keypoint orientation is the peak value of the orientation
histogram. Histogram peaks above 80% of the highest value are also considered, in order to create additional keypoints of
same scale and location, but different orientation.

3.8.4. Keypoint descriptor
The keypoint descriptor defines local image regions that remain invariant to scale, orientation, illumination and 3-D view-

point changes. The local gradients of magnitude and orientation of the keypoint and its neighborhood are rotated by the key-
point orientation angle to obtain rotation invariant metrics. The new gradients are weighted by a Gaussian window that
emphasizes the effect of most influential gradients closer to the keypoint. The resulting keypoint descriptor is a square
matrix whose elements are the magnitudes of eight different orientation histograms, calculated over local keypoint regions.
Fig. 20 shows the 2 � 2 orientation histograms corresponding to a descriptor array calculated over a smoothed 8 � 8 key-
point sub region.

The SIFT feature vector is computed by concatenating the magnitude of all orientation histograms. The result is a vector of
rn2 components, where r is the number of histogram orientations and n is the size of the square features matrix. For instance,
a keypoint vector of 128 components is the result of considering a 4 � 4 descriptor and 8 orientations. The output is con-
verted to a unit vector, for further affine invariance to illumination, provided that contrast and illumination transitions
Fig. 20. Local image gradients weighted by a Gaussian window (overlaid circle) and the keypoint descriptor.
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are considered as linear operations. Other non-linear changes in illumination are neglected because the main information of
the keypoint descriptor is preserved in the distribution of the orientations rather than in its magnitude.

4. Application 1: Wheel rim detection

The detection of shapes in digital images has a wide variety of applications such as robot localization [6], object measure-
ment [4], counting [5] and identification [3]. In this application, a method for the detection of rims in automotive wheel
images is described, which is based on the Hough transform.

4.1. System setup

The system consists of a digital camera of 2976 � 1672 pixel resolution that captures images of an automotive wheel.
Fig. 21a depicts a typical camera image. It can be noticed that the wheel image is affected by illumination (low contrast)
and lens distortion (curved objects at edges). Histogram equalization (Section 3.2) and correction of lens distortion (Sec-
tion 3.1) are performed sequentially to correct such effects. Fig. 21b shows the result after applying both corrections. The
high contrast image results in more evenly distributed pixel intensities in the histograms, which are shown beneath the
images in Fig. 21. The effect of correction of lens distortion is observed at the edges of the side objects in Fig. 21b.

4.2. Rim ellipse detection

Circular wheel rims are projected as ellipses in the image plane due to the camera’s viewpoint. The wheel’s rim can thus
be detected using a variation of the Hough transform (Section 3.4) applied to elliptical shapes [23,24]. Firstly, the RBG wheel
image is converted to grayscale intensities using Eq. (1). Secondly, the Canny edge detector is computed over the grayscale
image. Thirdly, the Hough transform is applied to detect the parameters of the rim ellipse of coordinates u;vð Þ, defined as
ueð Þ2
a2

þ veð Þ2
b2 ¼ 1; ð71Þ

ue ¼ u� u0ð Þ cosHþ v � v0ð Þ sinH; ð72Þ

ve ¼ � u� u0ð Þ sinHþ v � v0ð Þ cosH; ð73Þ

where u0 and v0 are the center coordinates, a and b are the lengths of semi-major and semi-minor axes and H is the axis
rotation angle. Computational implementations of Hough’s ellipse detection usually require estimates of minimum andmax-
imum input range for the semi-major axis in order to optimize the search in the parameter space.
(a) Original image. (b) Histogram equaliza�on and distor�on correc�on.

Fig. 21. Wheel image preprocessing.



(a) Edge detec�on. (b) Ellipse detec�on.

Fig. 22. Wheel rim detection.
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4.3. Experimental test results

Fig. 22 illustrates the wheel rim detection method. The image size is reduced to 40% of the total resolution to simplify the
calculations. Fig. 22a shows the resulting image after applying Canny’s edge detection. The semi-major axis of the ellipse on
the edge of the rim is in the range 430;460½ � (pixels), which is a useful information to restrict the search of the ellipse in the
parameter space. Fig. 22b represents the detected wheel rim ellipse in a colorful thick line. Results of wheel rim detection
enable applications such as the measurement of wheel alignment angles, as will be shown in Section 6.
5. Application 2: Automatic 3-D crankshaft verification system

Image processing can be applied in industrial automation to solve complex tasks required for product quality assurance,
such as pattern recognition, counting and verification. One of the advantages of computer-aided visual inspection is the thor-
ough automatic examination of every manufactured component as opposed to human-based inspection, which often relies
on statistical sampling. The following application introduces an automatic system for dimensional verification of automotive
crankshafts using a multiple camera setup. The system is based on the results of a preliminary study [25] and a patent [37].
Fig. 23 characterizes the system, comprised of six cameras that capture simultaneous images of the crankshaft. The crank-
shaft has a length of 1.068 m, a width of 0.281 m, and a height of 0.242 m. System tests are performed on a simulated
environment.

5.1. System setup and calibration

Fig. 24 depicts the multiple camera setup. Six cameras of 960 � 540 pixel resolution and 35 mm focal length are arranged
in two parallel rows and oriented towards the crankshaft surface.

The system is comprised of the camera projection centers Oi, image planes pi, focal lengths f i translation vectors ti and
rotation matrices Ri. The cameras are positioned at a 1.06 m height from the crankshaft base and rotated hx = 40� about their
local x-axes towards the crankshaft surface. The origin of world coordinates OW is arbitrarily located at the projection center
of camera 1. The design parameters have the typical values jjt1jj ¼ jjt2jj ¼ jjt4jj ¼ jjt5jj ¼ 300 mm, jjt3jj ¼ 1600 mm,
R1 ¼ R2 ¼ R4 ¼ R5 ¼ I3, where I3 is the identity matrix of size 3, and R3 is a matrix of successive rotations hx = �80� and
hz = 180� about local x and z axes.
Fig. 23. The crankshaft verification system.



Fig. 24. The multiple camera setup.
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Local calibrations are performed for the stereo pairs of cameras 1 and 2, 2 and 3, 4 and 5, and 5 and 6 to identify the local
intrinsic and extrinsic camera parameters using the calibration procedure described in Section 3.6. The extrinsic parameters
of the stereo subsystems ti and Ri are calibrated from the latter local extrinsic parameters using Eqs. (56) and (57), as in the
stereo system of Fig. 16. Tables 1 and 2 summarize the results of the calibration processes. Translations and rotations are
expressed as vectors of relative coordinates for subsets of two consecutive cameras.

5.2. Image matching

Fig. 25 depicts the process of image matching between pairs of adjacent camera images to reconstruct the 3-D crankshaft
surface using epipolar geometry, as described in Section 3.7. Stereo matching is evaluated specifically for the pairs of cam-
eras 1 and 2, 2 and 3, 4 and 5, and 5 and 6 using the SIFT computational implementation of Vedaldi and Fulkerson [26].

Table 3 shows the result of the image matching process for each stereo subsystem. A total of 1319 keypoint correspon-
dences were identified in such a particular scenario.

5.3. Crankshaft surface reconstruction

The reconstruction problem consists in recovering the geometric characteristics of the crankshaft, such as shape and
dimensions, from the images of six cameras at different viewpoints. The 3-D local coordinates of an interest point in the
object, denoted Pi, are calculated by triangulation of a pair of corresponding keypoints using Eq. (61). The coordinates of
Pi, which are referred to the reference frame of the leftmost camera of the corresponding stereo pair, are converted to global
coordinates in the world reference frame, denoted B, by the composition of successive rotations and translations, according
to
B ¼
Yi�1

k¼1

R|
k

 !
Pi þ

Xi�1

k¼1

tk; i ¼ 2;4;5: ð74Þ
5.4. Simulation test results

The camera setup and the crankshaft are simulated in the 3-D graphics freeware platform, Blender. The software enables
the construction of a 3-D virtual model of a solid with a texturized surface, whose geometry is imported from a CAD solid
model. The software also allows the creation of illumination sources and virtual cameras that capture rendered images of the
solid. The present example uses virtual models of a texturized automotive cranckshaft, placed on a measuring table and seen
by 6 virtual cameras with artificial illumination. Fig. 26 depicts the 3-D crankshaft reconstruction plotted as a point cloud
(left) and selected points of the reference CAD model (right). The reconstructed crankshaft is compared with a ground truth



Table 1
Calibration of intrinsic parameters.

Camera Focal length mmð Þ
1 34.729
2 37.439
3 34.921
4 33.314
5 34.217
6 35.380

Table 2
Calibration of extrinsic parameters.

Index ið Þ ti| ¼ tx ty tz½ � mmð Þ Ri
| ¼ hx hy hz½ � degð Þ

1 302:984 �0:859 0:000½ � 0:000 0:000 0:000½ �
2 302:995 0:800 0:000½ � 0:000 0:000 0 :000½ �
3 0:022 �12252:321 10287:235½ � �82:984 0:000 177:016½ �
4 302:954 0:272 0:000½ � 0:000 0:000 0:000½ �
5 303:003 0:000 0:000½ � 0:000 0:000 0:000½ �

(a) Image of camera 1. (b) Image of camera 2.

Fig. 25. Image matching of two crankshaft images.

Table 3
Keypoint correspondences in the stereo subsystems.

Input Keypoint matches

Cameras 1 and 2 320
Cameras 2 and 3 357
Cameras 4 and 5 335
Cameras 5 and 6 307
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CAD cloud of 11,130 points. The reconstruction error is calculated as a measure of the nearest distances between the recon-
structed and CAD points. The result yields a Gaussian approximation of the reconstruction error distribution with
l ¼ 1:594 mm and r ¼ 2:703 mm. Mean error and standard deviation are the controlling parameters to verify the quality
of the reconstructed crankshaft solid.

6. Application 3: Wheel alignment measuring system

The following design is a system to measure the alignment angles of automotive wheels. The system is based on the study
of Kurka and Mingoto [30] and patent [27]. The specific goal is to estimate the camber and toe alignment angles of the front
wheels of a car, depicted in Fig. 27. The third alignment angle, caster, can be measured indirectly [28] by turning the wheels
of the vehicle in a process called caster sweep [29]. The acquisition devices are eight cameras arranged in four stereo subsys-
tems that capture simultaneous wheel images. System calibration is based on an adaptation of the algorithm introduced in
Section 3.6. System tests are performed on a virtual set of automotive wheels.

6.1. System setup and calibration

Fig. 28 depicts the measuring system consisting of four stereo camera subsystems associated to wheels 1, 2, 3 and 4. The
stereo subsystems are attached to a support of fixed baseline, high enough to have the center of the wheels and the optical
axes of the cameras at the same height. Cameras with 1280 � 720 pixel resolution are separately oriented towards the



(a) 3-D reconstructed cranksha�. (b) CAD cranksha� cloud of 11,130 points. 

Fig. 26. The 3-D crankshaft reconstruction.

Fig. 27. The camber and toe wheel alignment angles.

Fig. 28. The wheel alignment measuring system.
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wheels to operate in precision and reference dispositions. Precision cameras 1, 3, 5 and 7 are perpendicular to the wheels to
capture the largest possible images of the rims, as per recommendation of a previous sensitivity analysis of the system [30].
Reference cameras 2, 4, 6 and 8 are oriented towards the geometric center of the system to capture images of the rims as well
as to facilitate subsequent calibration procedures.

System calibration is divided in local and global modified versions of the algorithm introduced in Section 3.6. The calibra-
tion patterns are hollow cubes of known dimensions with spherical vertices of different colors. This modification simplifies
the calculus of the positions of the calibration points [20]. The calibration points are the image plane projections of the cen-
ters of the eight spherical cube vertices. The algorithm to identify such calibration points is described in [31].

Local calibration identifies the intrinsic and extrinsic parameters of the stereo subsystems. Four stereo calibrations are
performed using a small calibration calliper, as shown in Fig. 29a. The local extrinsic parameters of the stereo subsystems
are calculated with respect to corresponding reference cameras using Eqs. (56) and (57).

Global calibration process identifies the positions of the stereo subsystems with respect to the world reference frame. The
origin of the world coordinates, denoted by OW , is arbitrarily located at the projection center of camera 2. A bigger calibration
caliper is positioned at the center point of the measuring system, as shown in Fig. 29b. Rotations and translations are cal-
culated with respect to corresponding reference cameras. The global extrinsic parameters of the stereo subsystems are cal-
culated with respect to the world origin using Eqs. (56) and (57).
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6.2. Image matching

Fig. 27a shows wheel images of cameras 7 and 8 and the identified rim contour ellipses (in dotted lines). The rim contour
points in the left image are associated to epipolar lines in the right image due to the epipolar constraint, as described in Sec-
tion 3.7. An epipolar line intersects the rim ellipse at two points, as shown in Fig. 30b. Because the cameras are located at the
same height, the pair of corresponding ellipse points will be the one of closest distance in the y-axis of image coordinates.
The image matching process is repeated for all the ellipse points in the left image to determine their corresponding rim con-
tour points in the right image, linked by a straight line as depicted in Fig. 30c. Due to the resolution of the image or other
optical uncertainties, some epipolar lines of the upper and lower sections of the rim may intersect the ellipse at more than
two points or may not intersect it at all. Consequently, the ellipse points in the upper and lower sections of the rim are
neglected by considering the discriminant threshold of 10% of the rim diameter, which results in a smaller set of correspond-
ing contour points, as shown in Fig. 30d.
(a) Local calibra�on. (b) Global 

Fig. 29. The system calibration processes.

(a) The iden�fied ellipse points in the rim contours. (b) A rim contour point and its corresponding epipolar 

c) The correspondences of rim contour (d) The upper and lower rim points are 

Fig. 30. The epipolar lines of a wheel contour and the matching process.
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6.3. Wheel rim edge reconstruction

Fig. 31a illustrates the result of the 3-D wheel rim edge reconstruction. The 3-D wheel rim edge is reconstructed by tri-
angulation of the corresponding rim contour points using Eq. (61). In order to be able to measure the wheel alignment angles,
an auxiliary reference frame called the wheel axis system is firstly defined. The wheel axis system is the orthogonal 3-D basis
resulting from the Principal Component Analysis (PCA) of the 3-D wheel rim edge points, as illustrated in Fig. 31b. Vectors u
and v are located in the wheel rim edge plane and vector w is collinear with the wheel spin axis. The local PCA coordinates
are converted to global coordinates in the world reference frame using the extrinsic parameters of the global calibration pro-
cess of the corresponding stereo subsystem.

6.4. Camber and toe angle estimation

The camber and toe alignment angles of the front wheels are measured in the car reference frame, which is a special ref-
erence frame calculated as follows. A vector x0 is defined in the direction of the line that connects the centers of wheels 3 and
4. A second vector y0 is defined in the direction of the line that connects the centers of wheels 3 and 2. A third vector z0 is
calculated by the cross product of x0 and y0 . The triad x0 , y0 and z0 is normalized to yield the basis of unit vectors bx, by and bz,
denoted the car reference frame.

Fig. 32a depicts the location of the wheel spin axes in the car reference frame. Vectors w1, w2, w3 and w4 are collinear
with the wheel spin axes and perpendicular to wheels 1, 2, 3 and 4, respectively. Vectors w3 and w4 are approximately col-
linear with the bx-axis. Vectors w1 and w2 are perpendicular to the misaligned wheels 1 and 2, respectively.

Fig. 32b depicts the location of the wheel alignment angles in the car reference frame. Vector w1xz is the projection of w1

onto plane bxbz. The camber angle of wheel 1, denoted by c1, is the angle from w1xz to the bx-axis and is calculated as
c1 ¼ arccos
w1xz �w4

kw1xzkkw4k
� �

: ð75Þ
Vector w2xz is the projection of w2 onto the bxbz plane. The camber angle of the wheel 2, denoted c2, is the angle from w2xz

to the �bx-axis and is calculated as
c2 ¼ arccos
w2xz �w3

kw2xzkkw3k
� �

ð76Þ
Vector w1xy is the projection of w1 onto the bxby plane. The toe angle of the wheel 1, denoted w1, is the angle from w1xy to
the bx-axis and is calculated as
w1 ¼ arccos
w1xy �w4

kw1xykkw4k
� �

: ð77Þ
(a) 3-D wheel rim edge (b) The wheel axis system.

Fig. 31. 3-D reconstruction of wheel 4 and its associated PCA directions.



(a) Loca�on of the wheel spin axes
in the car reference frame.

(b) Loca�on of the camber and toe alignment angles
of the front wheels in the car reference frame.

Fig. 32. The car reference frame and wheel alignment angles.
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Vector w2xy is the projection of w2 onto the bxby plane. The toe angle of the wheel 2, denoted w2, is the angle from w2xy to
the �bx-axis and is calculated as
Table 5
Ground

Grou

Whe

Cam

0
0
0
20
�20
0
0
0
0
0

Aver
Max
w2 ¼ arccos
w2xy �w3

kw2xykkw3k
� �

ð78Þ
6.5. Simulation test results

The system is simulated in the 3-D graphics freeware Blender, described in Section 5.4. For this simulation, the 3-D model
of a complete vehicle is used, as well as all virtual cameras and illumination needed to emulate the environmental conditions
of the measurement test. Table 4 shows the dimensions of the calibration patterns used in local and global calibration
processes.
Table 4
Dimensions of the calibration boxes.

Dimensions cmð Þ Local calibration pattern Global calibration pattern

Width 17 65
Height 17 75
Depth 27 85
Ball radius 2.5 7.5
Side radius 1.25 2.5

truth and measuring systemmeasurements.

nd truth degð Þ Measuring system degð Þ
el 1 Wheel 2 Wheel 1 Wheel 2

ber Toe Camber Toe Camber Toe Camber Toe

0 0 0 �1.07 0.86 0.12 �0.31
20 0 0 �0.74 19.21 0.12 �0.31
�20 0 0 �1.42 �18.34 0.12 �0.31
0 0 0 18.52 0.45 0.12 �0.31
0 0 0 �20.81 1.03 0.12 �0.31
0 0 20 �1.07 0.86 �0.18 19.04
0 0 �20 �1.07 0.86 0.39 �20.01
0 20 0 �1.07 0.87 19.78 �0.42
0 �20 0 �1.08 0.85 �19.64 �0.62
0 20 �20 �1.07 0.87 20.89 �20.09

age difference 1.11 0.95 0.35 0.44
imum difference 1.48 1.66 0.89 0.96
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Table 5 summarizes the results of the measurements obtained with the measuring system against the ground truth wheel
angles. A total of ten misaligned camber and toe angles were simulated. The first five correspond to wheel 1 and next five to
wheel 2.

The results demonstrate congruent angular measurements with 1.11 degrees of maximum average difference. The max-
imum angular difference of all the measurements was 1.66 degrees.

7. Application 4: Stereo visual odometry for mobile robotics

Visual odometry is a technique to estimate the pose of a vehicle using imaging sensors. It is widely used in mobile
robotics to complement wheel encoders odometry estimations in autonomous navigation. The following application exam-
ple is inspired in a previous work [32], which introduces a stereo visual odometry algorithm to reconstruct the path of a
robot moving in an unstructured environment. Robot motion is reconstructed using a stereo camera system and a
feature-based image matching approach. Visual odometry is calculated by integrating the estimations of small successive
displacement movements of the robot.

7.1. System setup and calibration

The system setup consists of two cameras of 720 � 480 pixel resolution and fixed baseline assembled in a mobile robotic
platform. The parameters of the stereo system are the focal lengths f l and f r , the camera’s relative rotation matrix R and
translation vector t, as shown in Fig. 16. Calibration is performed using the algorithm introduced in Section 3.6 to determine
the intrinsic and extrinsic parameters of the cameras. Local robot motion will be estimated in the robot reference frame,
which is a coordinate system located at the projection center of the left camera. The world reference frame is arbitrarily
located at the initial position of the robot.

7.2. Image matching

The image matching algorithm is based on a practical implementation of the SIFT algorithm described in Section 3.8 [26].
Four stereo images are captured at consecutive robot steps i� 1 and i, where i 2 N, and are analyzed as shown in the
sequence illustrated in Fig. 33. The image planes pl and pr refer to the left and right cameras, respectively. Numbered arrows
in the figure represent the sequenced operation of finding correspondence keypoints. The main assumption is that consec-
utive images preserve keypoint correspondences whenever the robot undergoes a small displacement. The set of common
keypoints between the four images will be the input data for visual odometry estimation.

7.3. Stereo visual odometry algorithm

Fig. 34 illustrates the correspondences of keypoints at two successive robot steps. Local robot motion is represented by
the rotation matrix Ri and the translation vector ti.

Local robot motion is retrieved from the 3-D keypoint reprojections Pk and Q k of the left camera at corresponding robot
steps i� 1 and i, respectively, where k is the index of a detected keypoint in the scene. The 3-D keypoint reprojections are

calculated by triangulation, as in Eq. (61). The reprojections are arranged in the matrices of homogeneous coordinates P̂ and

Q̂ of size 4�k, according to
P̂ ¼ P1 P2 . . . Pk

1 1 . . . 1

� �
; ð79Þ

Q̂ ¼ Q 1 Q 2 . . . Q k

1 1 . . . 1

� �
: ð80Þ
1

3

2

4

Fig. 33. Stereo matching sequence.



Fig. 34. Keypoint correspondences and the robot motion model.
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Local robot motion is estimated by least-squares solution of the transformation matrixM that relates both matrices bP andbQ , such as
M ¼ bP bQ y
; ð81Þ

M ¼ R
|

ti
0| 1

" #
; ð82Þ
where the estimated 3 � 3 robot’s rotation matrix Ri and the 3 � 1 translation vector ti are submatrices of the block matrix
M, and 0 is a vector of null elements and size 3 � 1.

In practical scenarios, robot motion may be estimated more accurately through Principal Component Analysis (PCA) of
the keypoint clouds Pk and Q k. The PCA representation increases robustness to the estimates of 3-D keypoint positions, pro-
vides invariance to scale of the 3-D clouds, and reduces the dimension of the original problem. The robot motion parameters
are estimated using PCA, such as
R
�
i ¼ UQU

�1
P ; ð83Þ

t
�
i ¼ P

�
�R

�|
i Q

�
; ð84Þ
where UP and UQ are 3 � 3 eigenvector matrices with the principal directions of the keypoint clouds Pk and Q k, respectively,
and P and Q are the 3 � 1 vectors of corresponding cloud centroids.

Fig. 35 illustrates the flow of the stereo visual odometry algorithm. Visual odometry is calculated by the composition of
successive rotations and translations. The robot pose, denoted Bi, is defined by the recursive formula
Bi ¼ Bi�1 þ
Yi�1

n¼0

R
|
n

 !
ti; i > 0; ð85Þ
or in the explicit version of the formula as
Bi ¼ B0 þ
Xi

m¼1

Ym�1

n¼0

R
|
n

 !
tm; i > 0; ð86Þ
where B0 is the initial robot pose, R
�
0 ¼ I3, and I3 is the identity matrix of size 3.

7.4. Simulation test results

The example is based on 3-D simulations using the freeware platform Blender. In this application the 3-D (virtual) model
of the inside environment of a commercial office is used. The model is comprised of texturized furniture and equipment,
floor, ceiling, windows, natural and artificial illumination. A 3-D model of a small differential wheeled robot with a pair
Fig. 35. Stereo visual odometry in a mobile robot.



Fig. 36. The original robot path and the stereo visual odometry reconstruction.
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of stereoscopic cameras is also introduced in the indoor environment. The simulated robot moves in a predefined trajectory
in the virtual environment, capturing images from both cameras as it travels small increments of distance along the path.
Fig. 36 depicts the reconstruction of a simulated robot trajectory with i ¼ 11 steps. The ground truth robot path contains
straight and diagonal lines and rotations at different angles. The deviation error of the reconstructed path is measured in
units of length as
ei ¼ jjBi � B


ijj; ð87Þ
where Bi and B


i are the actual and estimated robot poses at step i, respectively. Visual odometry estimation yields an error of

mean, l ¼ 0:2488m and standard deviation, r ¼ 0:1035m. Such a visual odometry algorithm is plausible of being imple-
mented in real-time scenarios [33] and can be further improved in combination with probabilistic sensor fusion algorithms
and additional perception devices as in current state-of-the-art in visual navigation [34–36,38,39].

8. Conclusion

This paper reviews the fundamentals of image acquisition and processing within the scope of industrial automation,
robotics and instrumentation applications. The text presents the relevance and rationale behind the most popular and useful
techniques of digital image processing in a comprehensive manner. The technical details of photogrammetry discussed here,
such as the geometry of perspective projection, camera calibration, epipolar geometry and stereo correspondence form a col-
lection of concepts and techniques that can be readily applied by scientists and engineers. Practical applications of the tech-
niques described in this work are shown in the form of four different examples of scientific and industrial relevance.
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