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Particle Swarm Optimization
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Abstract 

A precise detection of the fault feature parameter of motor current is a new research hotspot in the broken rotor bar 
(BRB) fault diagnosis of induction motors. Discrete Fourier transform (DFT) is the most popular technique in this field, 
owing to low computation and easy realization. However, its accuracy is often limited by the data window length, 
spectral leakage, fence effect, etc. Therefore, a new detection method based on a global optimization algorithm is 
proposed. First, a BRB fault current model and a residual error function are designed to transform the fault parameter 
detection problem into a nonlinear least-square problem. Because this optimization problem has a great number of 
local optima and needs to be resolved rapidly and accurately, a joint algorithm (called TR-MBPSO) based on a modi-
fied bare-bones particle swarm optimization (BPSO) and trust region (TR) is subsequently proposed. In the TR-MBPSO, 
a reinitialization strategy of inactive particle is introduced to the BPSO to enhance the swarm diversity and global 
search ability. Meanwhile, the TR is combined with the modified BPSO to improve convergence speed and accuracy. 
It also includes a global convergence analysis, whose result proves that the TR-MBPSO can converge to the global 
optimum with the probability of 1. Both simulations and experiments are conducted, and the results indicate that 
the proposed detection method not only has high accuracy of parameter estimation with short-time data window, 
e.g., the magnitude and frequency precision of the fault-related components reaches  10−4, but also overcomes the 
impacts of spectral leakage and non-integer-period sampling. The proposed research provides a new BRB detection 
method, which has enough precision to extract the parameters of the fault feature components.
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1 Introduction
Induction motors are widely used in the industry, owing 
to many advantages such as simple construction, reliabil-
ity and high efficiency. Although such motors are consid-
erably reliable and robust, they still suffer from internal 
machine faults caused by corrosive and dusty environ-
ments. One of the most common faults is a broken rotor 
bar (BRB), which accounts for approximately 10% of total 

induction motor faults [1]. Therefore, early BRB detec-
tion in induction motors is surely significant.

When a broken bar occurs in the rotor, the geometry 
and magnetic flux of the motor are unbalanced. New 
sideband frequency components at (1 ± 2s)f1 Hz will 
appear in the stator current, where s is the slip and f1 is 
the power supply frequency [2]. This implies that the BRB 
fault can be detected efficiently by using the frequencies 
and amplitudes of (1 ± 2s)f1 components. Thus, motor 
current signature analysis (MCSA), which is non-inva-
sive, is the most widely used technique for BRB detec-
tion. With MCSA, many detection methods based on 
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numerous digital signal processing techniques have been 
proposed in recent years.

For frequency domain analysis, the discrete Fourier 
transform (DFT) has been widely used in various BRB 
detection methods [3] to acquire signal spectrum. In 
fact, DFT-based methods are only efficient for station-
ary signals. Some drawbacks, such as spectral leakage 
and frequency resolution with finite-length discrete sig-
nal, limit their performance. As we know, the frequen-
cies of fault-related components, (1 ± 2s)f1, are very close 
to the supply frequency and are often time-varying in a 
long measurement time. Meanwhile, their amplitudes 
are very small in the preliminary period of fault and 
are prone to be influenced by load level. Therefore, for 
DFT-based methods, a large number of data points are 
required to ensure enough measurement time and high 
frequency resolution. However, a long measurement 
time in which the slip and stator current remain stable 
is not always available. Furthermore, long measurement 
time will affect the accuracy of fault detection as a result 
of the increasing probability of load fluctuations, noise 
and other interference factors. To improve frequency 
resolution, the zoom-DFT (ZDFT) technique was intro-
duced into BRB detection [4]. Although ZDFT increases 
the accuracy in a specified frequency range and lowers 
the calculation cost, its high-frequency resolution still 
requires long-time data window.

For time-frequency domain analysis, there are many 
signal processing techniques used in BRB fault detection, 
for instance, short time Fourier transform (STFT) [5], 
continuous/discrete wavelet transform (C/DWT) [6, 7] 
and wavelet packet transform (WPT) [8]. For STFT-based 
methods, the time-frequency resolution is restricted 
by the data window size. For wavelet-based techniques, 
a disadvantage is that the analysis result of signal is 
directly affected by the choice of wavelet base function 
and signal-to-noise ratios. Based on CWT, the general-
ized synchrosqueezing transform (GST), proposed by 
Chuanet et al. [9], is another novel time-frequency tool. 
It has been applied in fault detection of gearboxes [10], 
rolling element bearings [11] and induction motors [12]. 
Although its application in BRB fault detection is scarce, 
GST is a potential signal processing technique, especially 
for induction motors fed by inverters.

In other papers, the Hilbert modulus [13], product of 
the current and virtual flux [14] and instantaneous power 
[15] which are analyzed through DFT, have been used in 
BRB detection to avoid the problem that the characteris-
tic components are often submerged by the fundamental 
component. However, these methods still require a long-
time data window to obtain good frequency resolution. 
In Ref. [16], a new detection method was proposed based 
on modulation signal bispectrum (MSB) analysis. It can 

obtain more accurate amplitudes of the characteristic 
components. However, the experiment results show that 
the MSB-based method requires a very high sampling 
rate (96  kHz) and a long measurement time (20  s) to 
obtain sufficient MSB accuracy and frequency resolution. 
Another method, which combines the zooming and rota-
tion invariance techniques, was presented in Ref. [17]. 
Despite of its good analysis results, the load variation 
is still a problem. To improve the parameter estimation 
accuracy of fault-related components, the high-frequency 
resolution spectrum analysis was combined with an opti-
mization algorithm in Ref. [18], and experiments verified 
the good results of this method. Automatic identifica-
tion of the BRB fault is another pressing problem. Kes-
kesa et al. [8], and Shi et al. [19], applied a support vector 
machine (SVM) in BRB fault diagnosis, and the identi-
fication accuracy could meet the project requirements. 
However, the SVM learning efficiency is low, which lim-
ited its application. Many new machine learning methods 
and classifiers, such as AdaBoost [20], incremental learn-
ing [21, 22] and minimax probability machine [23], are 
feasible ways for addressing the above problem, but there 
still remains substantial research to perform before they 
could be actually used in induction motors.

In this paper, a new method based on a global optimiza-
tion algorithm for BRB detection is proposed. At present, 
there are many intelligent algorithms for global optimiza-
tion, such as the genetic algorithm [24], particle swarm 
optimization (PSO) and ant colony algorithm. Compared 
with other evolutionary algorithms, PSO has the advan-
tages of simple concept, easy realization and fast conver-
gence speed. It has been widely used in wavelet network 
optimization [25], impeller parameter optimization, 
stretch force trajectory optimization, and in other prac-
tical engineering problems. Therefore, this paper also 
selects it as the solver. However, when an optimization 
problem needs to be resolved rapidly and accurately, such 
as parameter estimation of the fault-related components, 
PSO becomes powerless. Therefore, a joint optimiza-
tion algorithm, combining a modified bare-bones parti-
cle swarm optimization (BPSO) and trust region (TR), is 
proposed subsequently to improve the solution precision 
and convergence speed. The distinctive advantage of this 
detection method is that more accurate parameters of 
the fault-related components are estimated, even using a 
short-time data window.

2  BRB Detection Method Using Global 
Optimization Algorithm

For a healthy induction motor, the fundamental har-
monic is a prime component, and the other harmonics 
are very small around the fundamental frequency. One 
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of the three-phase stator currents could be expressed as 
follows:

where A1 is amplitude of the fundamental component, f1 
is the fundamental frequency, and φ1 is its phase angle.

When a BRB fault occurs, its resistance increases and 
causes an asymmetry in the rotor magnetic field. The 
asymmetry will then cause superimposed components 
in the stator current at fbrk = (1 ± 2ks)f1 Hz, where k = 1, 
2, 3, …. Among the fault characteristic components, the 
amplitudes of fbr1 = (1 ± 2s)f1 components are the maxi-
mum. Thus, the motor current of fault condition can be 
simulated as

where A2,3 are the amplitudes of the fault-related compo-
nents, and φ2,3 are their phase angles.

In this section, the proposed detection method of 
BRB fault conducts on the current model of Eq.  (2) and 
parameter estimation (i.e., amplitude, frequency and 
phase) based on a global optimization algorithm. The 
process is illustrated in Figure  1 and described as fol-
lows. Firstly, the actual current signal and the model cur-
rent are sampled with time interval Ts, so that the data 
sequences of is(ti) and im(ti) can be obtained respectively, 
where ti = i × Ts. Then, the difference r (namely, the resid-
ual error) between is(ti) and im(ti) is calculated, which is 
the objective function of the optimization algorithm. The 
specific definition of residual error is shown as

where M is the sampling number.
If the residual error r is larger than the threshold, or 

other termination criteria are not satisfied, the optimiza-
tion algorithm will produce a new set of parameters for 

(1)im(t) = A1 cos(2π f1t + φ1),

(2)
im(t) = A1 cos(2π f1t + φ1)

+ A2 cos[2π(1− 2s)f1t + φ2]

+ A3 cos[2π(1+ 2s)f1t + φ3],

(3)r =

M
∑

i=1

[is(ti)− im(ti)]
2,

the current model im(ti) by the update mechanism. The 
iterative process is repeated until the termination criteria 
are satisfied.

The objective function, Eq. (3), is a multimodal optimi-
zation problem, and has many local minimum values. For 
example, the projection of the residual error (in function 
of 2sf1) in Figure 2 has a lot of local minima.

For nonlinear problems, like in Eq.  (3), the traditional 
least squares methods, such as the trust region (TR) algo-
rithm and simplex method are powerless, because these 
algorithms are easily trapped into a local optimum and 
are very sensitive to the starting point. On the contrary, 
the global optimization algorithms based on population, 
such as PSO, are not sensitive to the starting point, and 
they have a strong solving ability for nonlinear problems. 
However, their local-search capability is poor and need to 
be improved.

To find the exact global optimum of Eq.  (3), we select 
the PSO algorithm and improve it. Then, the TR is intro-
duced to refine the result in the PSO process. The detail 
of the joint algorithm is described in the next section.

3  Joint Algorithm Based on Particle Swarm 
Optimization and Trust Region

3.1  Particle Swarm Optimization
PSO is a global, population-based optimization approach 
developed by Kennedy and Eberhart in 1995 [26]. With 
the PSO algorithm, each particle represents a candidate 
solution for the problem and adjusts its velocity and 
position based on two optima. One is its personal best 
position pi = [pi1, pi2, …, piα], namely, its own flying expe-
riences, where α is the total dimension number of search 
space. The other is the global best position pg = [pg1, 
pg2,…, pgα], namely, its companions’ flying experiences. In 
each generation, the velocity vi = [vi1, vi2,…, viα] and posi-
tion of particle xi = [xi1, xi2, …, xiα] are updated by the fol-
lowing formula as [26]:

is(ti)

im(ti)

Objective 
function:
residual 

error

Parameters 
of (1±2s)f1

components

Generate new  
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using global 
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Figure 1 BRB detection method using global optimization algorithm
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where ω is an inertia weight, c1 and c2 are non-negative 
constants, r1 and r2 are random numbers within [0, 1], 
− vmax ≤ vij ≤ vmax, and vmax is a maximum velocity set by 
the user, i = 1, 2,…, N, N is the population size of particle 
swarm, j= 1, 2,…,α.

In 2003, Kennedy [27] proposed a simple PSO algo-
rithm called bare-bones particle swarm optimization 
(BPSO). In BPSO, the particle’s velocity, Eq. (4), is elimi-
nated, and the position of each particle is updated by a 
Gaussian sampling based on pi and pg. The updated for-
mula is shown as

where µij(n) = (pij(n)+ pgj(n))/2 and σ 2

ij (n) = |pij(n)−

pgj(n)| are the mean and standard deviation of the Gauss-
ian distribution, respectively. Unlike the canonical PSO, 
BPSO is obviously control-parameter-free and more suit-
able for practical engineering problems.

3.2  Modified BPSO
BPSO is a global optimal algorithm but it still easily falls 
into a local optimum [27]. With the increasing number 
of iterations, particles will gather around the global best 
particle. The distance between pi and pg decrease sig-
nificantly, which makes the probability that the particle 
moves to a new position very small. If the global best 
particle is a local optimum of the optimized problem, it 
is difficult to escape from this local optimum. Aiming 
at this problem, a reinitialization strategy of the inac-
tive particle is introduced into the BPSO to enhance the 
swarm diversity and global search ability. The definition 
of the inactive particle is as follows.

Definition 1 For a particle, if its fitness is no improve-
ment for η cumulative iterations, we will consider it as an 
inactive particle, where η is the inactive coefficient.

To record the change of particles, a parameter stag-
nation_iteration is used to monitor the fitness value 
for each particle. At each iteration, if there is no fit-
ness improvement for a particle xi, the stagnation_
iteration[i] will be increased by one, or else, decreased 
by one. If stagnation_iteration [i] ≥ η, this particle will 
be seen as inactive particle, and then be reinitialized. 
Meanwhile, the inactive particle will forget its memory 
and select the current position to be the personal best 

(4)
vij(n+ 1) = ωvij(n)+ c1r1(pij(n)− xij(n))

+ c2r2(pgj(n)− xij(n)),

(5)xij(n+ 1) = xij(n)+ vij(n+ 1),

(6)xij(n+ 1) = G
(

µij(n), σ
2
ij (n)

)

,

position. This reinitialization operator will help the inac-
tive particle escape from the local optimum and improve 
its search efficiency. The inactive coefficient η, set by the 
user according to the problem complexity, adjusts the 
number of the initialized particle to make the MBPSO 
achieve a satisfactory balance of exploitation and explo-
ration capability.

3.3  Trust Region Algorithm
TR is a popular iterative algorithm used for solving 
unconstrained optimization problems [28]. It is based 
on the Newton’s method and has strong convergence 
and stability. In the implementation process, a starting 
point x0 and trust region radius r0 need to be given at 
first. Then, according to the iterative rules, a sequence of 
points {xk} is generated to search for the optimal solution. 
At each iteration, the TR iterative mechanism is as fol-
lows. Firstly, a small region is initialized as a trust region 
centering on the current iteration point, and a trial step 
dk is calculated by solving a sub-problem within this 
region. Then, an evaluation function is used to decide 
whether to accept the trial step and determine the trust 
region radius of next iteration. If the trial step is accepted, 
xk+1 = xk+dk, otherwise, xk+1 = xk. The new radius of the 
trust region depends on the trial step quality. In gen-
eral, if the trial step is suitable, the new radius will be 
expanded or maintained. Otherwise, it will be reduced.

Because the TR makes full use of the problem’s informa-
tion and region knowledge, it has fast convergence speed 
and strong local searching ability. However, for multimodal 
and multivariate optimization problems, it often traps in 
local optima and is difficult to obtain the global optimal 
point. This is because the next search direction of TR is only 
based on the local develop ability of objective function.

3.4  Joint Algorithm Based on MBPSO and TR
To improve the convergence speed and avoid “prema-
ture convergence” at the late stage of PSO algorithm, TR 
is introduced into MBPSO. In the iteration process of 
MBPSO, TR is applied to the global best particle every 
K iterations. This combining strategy not only makes 
use of the experience and information of particle swarm, 
but also considers the computational cost of TR, which 
makes the joint algorithm (called TR-MBPSO) achieve 
fast and efficient convergence performance with a small 
amount of computational cost. In addition, according to 
the problem’s complexity, this strategy can adjust the call 
frequency of trust-region search to improve the quality of 
solution and search efficiency.

The key steps of TR-MBPSO are outlined as follows.
Step 1: Initialization. Initialize all particles, personal 

best positions, global best position and stagnation_
iteration, set the parameters, such as size of swarm N, 
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maximum generation mmax, interval generation K and 
inactive coefficient η.

Step 2: Calculate each particle’s fitness.
Step 3: Update each personal best position, according 

to

where fit(∙) is the fitness function, pq is the personal best 
position of inactive particle, and pi is the personal best 
position of the other particle.

Step 4: Reinitialize stagnation_iteration[q] of inac-
tive particles. For the remaining particles, if their fit-
ness does not change, the stagnation_iteration[i] will 
be increased by 1, or else, decreased by 1.

Step 5: Update the global best position pg.
Step 6: If n/K = ⌊n/K⌋ (where ⌊·⌋ indicates rounding 

down), apply TR to the global best particle and update.
Step 7: Update each particle position. If the particle is 

an inactive particle, reinitialize its position at random; 
otherwise, update the position according to Eq. (6).

Step 8: If the termination criteria are satisfied, stop 
the iteration procedure and output the optimal solu-
tion; otherwise, go to step 2.

3.5  Global Convergence Analysis
In Ref. [29], Solis and Wets have discussed the conver-
gence of stochastic search algorithms. For convenience, 
the relevant definitions are shown below again.

Lemma 1 fit(F(pg, ξ))≤fit(pg) and if ξ ∈ S , then fit(F(pg, 
ξ))≤fit(ξ).

Where F is a function that constructs a solution to the 
problem, ξ is a vector generated from the sample space 
(Rα, B, µn), the search space S is a subset of Rα, µt is a 
probability measure on B, and B is the σ-algebra of a sub-
set of Rα.

This means that the solution suggested by F carries the 
guarantee that the newly constructed solution will be no 
worse than the current solution. Different F functions 
lead to different algorithms, but condition Lemma 1 
must be satisfied for an optimization algorithm to work 
correctly.

Lemma 2 For any Borel subset A of S with Ө[A] > 0, we 
have that

(7)







pq(n+ 1) = xq(n+ 1),

pi(n+ 1) =

�

pi(n)
xi(n+ 1)

fit(pi(n)) ≤ fit(xi(n+ 1))
fit(pi(n)) > fit(xi(n+ 1))

(i �= q),

where Ө[A] is the Lebesgue measure, and µn(A) is the 
probability of A being generated by µn.

This means that for any subset A of S with positive meas-
ure Ө, the probability of repeatedly missing the set A 
using random samples (e.g., the ξ above), must be zero.

Theorem  1 Suppose that fit(∙) is a measurable func-
tion, S is a measurable subnet of Rα, and Lemma 1 and 
Lemma 2 are satisfied. {pg(n)}∞n=0 is a sequence gener-
ated by the algorithm. Then,

where Rε is the optimality region, P(pg (n) ∈ Rε) is the 
probability that at step n, the point pg(n) generated by the 
algorithm is in Rε. By Theorem 1, we thus have that an 
algorithm satisfying Lemma 1 and Lemma 2 is a global 
optimization algorithm.

Because the TR-MBPSO belongs to the framework of a 
global stochastic search algorithm, its convergence can be 
proved by Theorem 1. Therefore, we only need to validate 
that the TR-MBPSO satisfies both Lemma 1 and Lemma 
2.

Suppose that {pg(n)} is a sequence generated by the TR-
MBPSO algorithm, where pg(n) is the current best position 
of the swarm at time n, and function F is defined as

According to Eq.  (10), the TR-MBPSO clearly satisfies 
Lemma 1 because the sequence pg(n) is monotonic by 
definition.

If the TR-MBPSO algorithm satisfies Lemma 2, the 
union of the sample spaces of the particles must cover S, 
i.e.,

(8)
∞
∏

n=0

(1− µn(A)) = 0,

(9)lim
n→+∞

P(pg(n) ∈ Rε) = 1,

(10)

F(pg(n), xi(n)) =

{

pg(n),

xi(n),

fit(pg(n)) ≤ fit(xi(n)),

fit(pg(n)) > fit(xi(n)).

(11)S ⊆

N
⋃

i=1

Mi,n,
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where Mi,n denotes the support of the sample space of 
particle i at time step n, and N is the population size.

Because the inactive particles re-initialize their posi-
tions in the whole search space in TR-MBPSO, the sup-
port sets of these sample spaces Mq,n, are equal to the 
whole search space. This means Ө[Mq,n] = Ө[S]. Thus, the 
TR-MBPSO algorithm satisfies Lemma 2.

According to Theorem 1, the TR-MBPSO must be a 
global search algorithm.

4  Detection Procedure of TR‑MBPSO‑Based 
Method and Simulation Analysis

4.1  Procedure
Based on Sections  2 and 3.4, the key steps of the pro-
posed detection method are as follows.

Step 1: Measure the stator current is(ti).
Step 2: Initialize all the particles which are coded as  

xi = (A1, f1, φ1, A2, 2sf1, φ2, A3, φ3), their personal best 
positions, global best position and stagnation_iteration; 
set the parameters, such as size of swarm N, maximum 
generation mmax, interval generation K and inactive coef-
ficient η.

Step 3: Calculate each particle’s fitness by using Eq. (3).
Step 4: Update each personal best position, according 

to Eq. (7).
Step 5: Reinitialize stagnation_iteration[q] of inactive 

particles. For the remaining particles, if their fitness does 
not change, the stagnation_iteration[i] will be increased 
by 1, or else, decreased by 1.

Step 6: Update the global best position pg.
Step 7: If n/K = ⌊n/K⌋ , apply TR to the global best par-

ticle and update.
Step 8: Update each particle position. If the particle is 

an inactive particle, reinitialize its position at random; 
otherwise, update the position according to Eq. (6).

Step 9: If the termination criteria are satisfied, stop the 
iteration procedure, and output the optimal solution, i.e., 
the parameters of the fundamental and fault-related com-
ponents; otherwise, go to Step 3.

4.2  Simulation Analysis
To analyze the performance of the proposed detection 
method, a simulated signal is designed as BRB-fault sta-
tor current, that is

In this simulation, the sampling rate is 1000  Hz, and 
the sampling number of per signal rises at different sam-
ples, such as 1000, 2000, 3000 and 4000.

Firstly, the proposed detection method is tested with 
1000 data samples (i.e., the length of data window is  

(12)

is(t) = 10 cos(100π t − π/4)

+ 0.2 cos[2π(50− 0.4)t + π/2]

+ 0.2 cos[2π(50+ 0.4)t + π ].

only 1  s). Both BPSO and TR-MBPSO are selected to 
solve the parameter-estimation problem for comparison, 
and their parameter configurations are summarized in 
Table 1.

To compare the optimal ability and convergence speed, 
the performance of the TR-MBPSO is compared with 
BPSO based on BV, MV, WV, and SR, where BV, MV and 
WV are the best value, mean value and worst value of the 
residual error, respectively. It is clear that the fitness value 
of the known global optimum is 0 in this problem, and 
the optimal solution is (10, 50, −π/4, 0.2, 0.4, π/2, 0.2, π). 
SR is the success rate of optimization. In the simulation 
process, a run is considered successful if its result is close 
to the known global optimum within 0.1. Because PSO is 
a stochastic optimization algorithm, all the results of the 
metrics, which are summarized in Table 2, are averaged 
over 30 runs.

The BV and MV of the TR-MBPSO are much better than 
those of the BPSO, which indicates that the proposed algo-
rithm has a more powerful search capability. In addition, 
the smaller WV value indicates its better stabilization. 
Because of the reinitialization strategy of the inactive par-
ticle, the TR-MBPSO has higher probability of finding the 
global optimal value. As Table  2 shown, the TR-MBPSO 
is capable of converging to the global optimum with 100% 
successful rate, while the BPSO’s SR is only 13.3%, which 
means that the robustness of the proposed algorithm is 
strong enough to solve the BRB detection problem.

Figure  3 graphically presents the convergence charac-
teristics of the algorithms’ evolutionary processes in solv-
ing the parameter estimation problem. From Figure 3, we 
find that the TR-MBPSO converges to the near-optimal 
solution faster than the BPSO and can get a better solu-
tion at the end of evolution process.

For BRB fault detection, the solution quality is more 
important because it contains amplitude, frequency and 
phase of the fault-related components. Table 3 shows the 
parameter estimation results of the proposed detection 
method, while Table 4 shows the estimation error com-
parison using different optimization algorithms. All the 
results are statistical data based on 30 runs.

Although the BPSO-based method has good estima-
tion of the fundamental-component parameters, the 

Table 1 Parameter configurations for  selected 
optimization algorithms

Parameter BPSO TR-MBPSO

Population size N 50 50

Maximum generation mmax 80 80

Inactive coefficient η − 10

Interval generation K − 20
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estimation accuracy of the fault-related parameters is 
not high enough so that the reliability of the BRB fault 
detection is affected. On contrast, all the parameters of 
the fundamental component and fault-related compo-
nents are determined accurately by the TR-MBPSO-
based method, even with a short-time data window. The 
error data shown in Table 4 further validates the supe-
riority of the proposed detection method in parameter 
estimation accuracy. Amplitude and frequency of the 
fault-related components are the key parameters for 
BRB fault detection. As shown in Table  4, the estima-
tion precision of these two parameters reaches  10−4. 
Under the worst condition, the max error will not 

exceed  10−3. Therefore, the TR-MBPSO-based detec-
tion method is sensitive enough for the BRB indicator.

Figure  4 graphically displays the spectrum analysis 
results of the proposed method and DFT. Because the 
frequency interval between the fundamental and fault-
related components is only 0.4  Hz, the data-window 
length of the DFT method must be extended. Thus, 
different-length data windows, such as 2, 3 and 4  s, are 
selected to apply in the DFT method, and the results are 
shown in Figure 4(b)–(d), and Table 5. From Figure 4(b), 
no spectrum peaks of the fault-related components are 
found; therefore, their amplitudes, frequencies, and 
phases are also not acquired, causing a final failure of BRB 
detection. In Figure 4c, its frequency resolution, 0.33 Hz, 
is less than the frequency interval between fundamental 
and fault-related components. However, the fault char-
acteristics cannot be identified owing to spectral leakage 
from the fundamental component. Although the fre-
quency resolution of Figure  4(d), 0.25  Hz, is enough to 
identify the characteristics, the fault-related components 
are not very clear because of spectral leakage and non-
integer-period sampling. Compared with Figure 4(b)–(d), 
the proposed method has such a high frequency resolu-
tion that the characteristics of the fault components can 
be clearly identified, and eliminates the influence of spec-
tral leakage and non-integer-period sampling. 

Table 5 presents the DFT estimation results, which are 
computed with different-length data windows. Because 
the lengths of the three data windows are integer times 
of the fundamental period, the DFT method gets good 
results regarding amplitude and frequency of the fun-
damental component. However, an obvious deviation 
occurs in phase estimation. For the DFT estimation com-
puted with data window length of 2 or 3  s, the param-
eters of fault-related components are still unavailable 
owing to identification failure of characteristic peaks in 
Figure 4(b), (c). The DFT estimation computed with data-
window length of 4  s is able to obtain all parameters of 

Table 2 Optimal performance comparison of  the  selected 
algorithms

Algorithm Index

BV MV WV SR

BPSO 2.912 × 10−3 3.594 × 10−1 1.519 0.133

TR-MBPSO 1.872 × 10−23 2.769 × 10−5 8.272 × 10−4 1
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Figure 3 Fitness evolutionary curves

Table 3 Estimation results of the proposed detection method using different optimization algorithms

Parameter True value Average estimation value based on BPSO Average estimation 
value based 
on TR-MBPSO

Amplitude A1 (A) 10 10.0722 9.9998

Frequency f1 (Hz) 50 50.0035 50.0000

Phase φ1 (rad) − π/4 − 0.7971 − 0.7854

Amplitude A2 (A) 0.2 0.2176 0.2002

Frequency 2sf1 (Hz) 0.4 0.4849 0.3997

Phase φ2 (rad) π/2 1.8847 1.5683

Amplitude A3 (A) 0.2 0.1927 0.1999

Phase φ3 (rad) π 2.4169 3.1416
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the fault-related components, while its estimation accu-
racy is low, especially in amplitude and phase estimation. 
The reason is that the data length is not integer times of 
the period of fault-related components.

From Table 5 and Figure 4, it can be seen that the DFT 
method needs a longer data window to guarantee detec-
tion performance and estimation accuracy. However, a 
long measurement time would increase the probability of 
load variation and noise influence, and then decrease the 
reliability of fault detection.

The aforementioned analysis reveals that the proposed 
method has very significant advantages in terms of using 
a much shorter data window to satisfy high-precision 
detection of fault feature parameter, compared with the 
DFT technique. Therefore, the reasonable conclusion can 
be drawn that the proposed method is practical to detect 
a BRB fault and is preferable for motors with small slip 
and fluctuant load, as only a short-time measurement is 
required.

5  Experimental Verification
5.1  Experimental Setup
Figure  5 presents the overview of the induction motor 
experimental system. The motor drives an 8 kW genera-
tor to supply 20 sets of incandescent bulbs. The incan-
descent bulb groups can be switched to adjust the motor 
load as required.

The type of test motor is Y132 M-4, and its specifica-
tions are shown in Table  6. Besides a healthy rotor, the 
motor is equipped with a fault rotor, which has one 
broken bar. Three Hall current sensors LAH25-NP are 
equipped for motor-current measurement. The discrete 
current data is acquired into the computer for detec-
tion and analysis by the analog signal acquisition card 

Table 4 Estimation error comparison using different 
optimization algorithms

Parameter BBPSO TR-MBPSO

Mean error Max error Mean error Max error

Amplitude 
A1 (A)

7.284 × 10−2 2.385 × 10−1 2.826 × 10−4 7.915 × 10−4

Frequency f1 
(Hz)

7.353 × 10−3 2.303 × 10−2 2.097 × 10−5 5.891 × 10−4

Phase φ1 (rad) 2.427 × 10−2 7.638 × 10−2 6.765 × 10−5 1.894 × 10−3

Amplitude 
A2 (A)

6.675 × 10−2 1.996 × 10−1 2.962 × 10−4 8.240 × 10−3

Frequency 
2sf1 (Hz)

9.642 × 10−2 1.987 × 10−1 3.243 × 10−4 9.123 × 10−3

Phase φ2 (rad) 5.703 × 10−1 1.537 2.857 × 10−3 8.045 × 10−2

Amplitude 
A3 (A)

3.514 × 10−2 9.422 × 10−2 7.625 × 10−6 2.123 × 10−4

Phase φ3 (rad) 7.247 × 10−1 1.890 2.238 × 10−7 3.356 × 10−6
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PCI8622. The detection tests were performed with the 
equipment described above, first using a healthy motor, 
then a motor with one broken bar. In each case, three dif-
ferent levels of load were used: full, medium and low. The 
signal-sampling period is 0.7 ms, and the sampling num-
ber of per signal rises at 13,000 samples.

During the experiments, one phase stator current with 
2000 samples (i.e., the data-window length is 1.4  s) was 
analyzed by the DFT method and the proposed method 
respectively. Meanwhile, 13,000 signal samples (i.e., the 
data-window length is 9.1 s) were also used with the DFT 
method for comparison. The parameter configurations of 
TR-MBPSO are the same as in Table 1.

Table 5 DFT estimation results with  different lengths 
of data window

Parameter True value Different lengths of data 
window

2 s 3 s 4 s

Amplitude A1 (A) 10 10.0917 9.9904 10.0677

Frequency f1 (Hz) 50 50.000 50.000 50.000

Phase φ1 (rad) − π/4 − 2.3562 − 2.3562 − 2.3562

Amplitude A2 (A) 0.2 − − 0.1417

Frequency 2sf1 (Hz) 0.4 − − 0.5000

Phase φ2 (rad) π/2 − − 1.3516

Amplitude A3 (A) 0.2 − − 0.1423

Phase φ3 (rad) π − − 2.7031

Figure 5 Experimental setup

Table 6 Specifications of the test motor

Rated 
power PN 
(kW)

Rated 
voltage UN 
(V)

Rated 
current IN 
(A)

Rated 
speed nN (r/
min)

Number 
of rotor bars

7.5 380 15.4 1440 32
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5.2  Experimental Results
Under the healthy condition, Figures  6, 7 and 8 show 
the stator current and spectra analyzed by the proposed 
method and DFT, respectively. For comparison, Fig-
ures 9, 10 and 11 provide the corresponding results under 
faulty condition.

For the healthy motor operating with medium and low 
load, the DFT-analysis results based on two different 
data lengths are consistent with the reality, as shown in 
Figures 7(c), (d) and 8(c), (d). However, the DFT method 
cannot obtain satisfactory results when the motor is fully 
loaded. As shown in Figure  6(d), although the motor is 
healthy, the DFT spectrum computed with data-win-
dow length of 9.1  s has two peaks at 46.0440  Hz and 
53.9560 Hz, which are close to (1–2 s)f1 (≈ 45.9253 Hz) or 
(1 + 2 s)f1 (≈ 54.0587 Hz), and their amplitudes are both 
greater than 0.05. In Figure 6(c), the DFT spectrum com-
puted with data-window length of 1.4  s also has a peak 
at 46.4286 Hz. Hence, it is likely that those peaks could 
be misinterpreted as the BRB indicator, leading to a false 
diagnosis.

Although Figures  6(b), 7(b) and 8(b), which are the 
spectrum analysis results of the proposed method, also 
have peaks around the fault-related frequency, their 

amplitudes are very small (less than 0.02). Compared 
with the faulty condition, as shown in Figures 9(b), 10(b) 
and 11(b), the amplitudes are small enough. Therefore, it 
eliminates the possibility of false diagnosis.

In addition, under different load conditions, the actual 
frequency values of the fundamental component are 
49.9920 Hz, 49.9637 Hz and 50.0048 Hz, respectively. In 
Figures  6, 7 and 8, it is clear that the proposed method 
has higher accuracy in frequency estimation. The DFT 
method also achieves a good precision, but it can only 
present the peaks at the integer multiples of the fre-
quency resolution, which limits the estimation precision.

When the motor load is mediumor full, the two meth-
ods can distinguish fault-related components, as shown 
in Figures  9 and 10. However, the distinction effects of 
the proposed method are more obvious. This is because 
its calculation principles can effectively avoid the spec-
trum leakage and fence effect. It is clear that the proposed 
method has best performance; the DFT analysis com-
puted with data-window length of 9.1 s ranks second, and 
the DFT analysis computed with data-window length of 
1.4 s obtains the worst performance. These results dem-
onstrate that the TR-MBPSO-based method is practical 
to detect a BRB fault using a short-time data window.
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Figure 7 Healthy and medium-load case: stator current and spectrum analysis results with different detection methods
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Under the low-load case, the proposed method and the 
DFT analysis computed with data-window length of 9.1 s 
can successfully identify the fault characteristic, as shown 
in Figure 11. However, the DFT spectrum computed with 
data-window length of 1.4 s is not satisfactory. From Fig-
ure 11(c), we can see that the sideband components are 
submerged completely by the fundamental component. 
The reason is that the frequency resolution of the 1.4  s 
data window is 0.7143  Hz, while the frequency interval 
between the characteristic and fundamental components 
is only 0.67 Hz.

On the contrary, Figure  11(b) shows that the spec-
trum of the proposed method can present the BRB indi-
cator at more precise frequencies (realistic (1 − 2  s)f1 
(≈ 49.3400  Hz) and (1 + 2  s)f1 (≈ 50.6734  Hz)). Thus, it 
is easier to determine a BRB fault using these frequency 
values. Further, this also demonstrates that the proposed 
method can achieve a high-frequency resolution even 
with a short-time data window.

Comparing Figures 6, 7 and 8 with Figures 9, 10 and 11, 
it is easy to conclude that the proposed method is very 
sensitive and adequate for BRB detection in induction 

motors operating with different loads, even when the 
motors are in the incipient fault stage (with one BRB).

6  Conclusions

1) Based on a BRB fault current model and residual 
error function, a novel BRB detection method using a 
global optimization algorithm is proposed. The simu-
lation results show that, compared with DFT, it has 
higher detection precision of the fault feature param-
eter even with a short data window, no spectral leak-
age, and without integer-period sampling.

2) A joint algorithm TR-MBPSO is proposed by com-
bining a modified BPSO and the TR. Compared with 
the BPSO, the TR-MBPSO makes good use of the 
characteristics of the two algorithms, and obtains a 
noticeable improvement in solution quality, conver-
gence rate and robustness.

3) The theory analysis of algorithm convergence is 
implemented. The results show that the TR-MBPSO 
can converge to the global optimum with the prob-
ability of 1.
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Page 13 of 14Wang et al. Chin. J. Mech. Eng.           (2019) 32:10 

4) Finally, experiments on a real induction motor are 
implemented. The results verify the feasibility and 
superiority of the proposed detection method.
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