
Contents lists available at ScienceDirect

Medical Hypotheses

journal homepage: www.elsevier.com/locate/mehy

Chaos theory for clinical manifestations in multiple sclerosis

Tetsuya Akaishia,b,⁎, Toshiyuki Takahashia,b, Ichiro Nakashimac

a Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
bDepartment of Neurology, Yonezawa National Hospital, Yonezawa, Japan
c Department of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan

A R T I C L E I N F O

MSC code:
34C28 (Complex behavior, chaotic systems)

Keywords:
Chaos theory
Complex system
Autoimmunity
Multiple sclerosis
Logistic map

A B S T R A C T

Multiple sclerosis (MS) is a demyelinating disease which characteristically shows repeated relapses and remis-
sions irregularly in the central nervous system. At present, the pathological mechanism of MS is unknown and we
do not have any theories or mathematical models to explain its disseminated patterns in time and space. In this
paper, we present a new theoretical model from a viewpoint of complex system with chaos model to reproduce
and explain the non-linear clinical and pathological manifestations in MS. First, we adopted a discrete logistic
equation with non-linear dynamics to prepare a scalar quantity for the strength of pathogenic factor at a specific
location of the central nervous system at a specific time to reflect the negative feedback in immunity. Then, we
set distinct minimum thresholds in the above-mentioned scalar quantity for demyelination possibly causing
clinical relapses and for cerebral atrophy. With this simple model, we could theoretically reproduce all the
subtypes of relapsing-remitting MS, primary progressive MS, and secondary progressive MS. With the sensitivity
to initial conditions and sensitivity to minute change in parameters of the chaos theory, we could also reproduce
the spatial dissemination. Such chaotic behavior could be reproduced with other similar upward-convex func-
tions with appropriate set of initial conditions and parameters. In conclusion, by applying chaos theory to the
three-dimensional scalar field of the central nervous system, we can reproduce the non-linear outcome of the
clinical course and explain the unsolved disseminations in time and space of the MS patients.

Introduction

Autoimmune-related diseases are likely to have elevated immune
activity and abnormal immune response, though whether they are
primary or secondary are not necessarily clear [1]. Such abnormal
immune strength is sometimes difficult to be measured with a single
laboratory biomarker when the pathological mechanism is uncertain. In
the complex system in immunity, many types of blood cells (e.g. lym-
phocytes) and tissue cells (e.g. microglia) play complex roles with
mutual interactions. Large numbers of many other factors like cyto-
kines, chemokines, and permeability of blood-brain barrier make the
complex interactions even more complicated [2–6]. In addition to these
numerous players of immune system, countless numbers of endogenous
and exogenous factors (e.g. sex, age, race, food, stress, infection, vac-
cination, tobacco, medications, pregnancy, etc.) also affect the system
[7–12].

At present, in the field of clinical neurology, one of the most mys-
terious autoimmune-related diseases with unknown causes is multiple
sclerosis (MS). MS is a famous demyelinating disease in the central
nervous system (CNS) with irregular clinical relapses and disseminated

CNS lesions. The pathogenesis of MS is not fully known, but it has been
suggested to be multifactorial (e.g. auto-immunity, diet, vitamin D,
higher latitude, Epstein-Barr virus infection, and smoking) with pos-
sible causal cascades [13–16]. There are at least three subtypes as its
clinical courses: primary-progressive MS (PPMS), relapsing-remitting
MS (RRMS), and secondary-progressive MS (SPMS) transitioned from
RRMS [17]. Characteristic conventional subtype of MS is RRMS, in
which both of subclinical cerebral atrophy and clinical relapses take
place with dissemination in time and space [18,19]. PPMS is also a
worrisome phenotype; it shows almost no clinical relapses but shows
faster cerebral atrophy than RRMS from an early stage [20–22]. Al-
though tremendous amounts of researches have been conducted in MS,
we are still on the way to identify its primary etiology and pathological
mechanism.

In demyelinating diseases, several mathematical models have been
proposed to explain the concentric pattern of demyelinating lesions,
mainly focusing on the recruitment and activation levels of the mac-
rophages [23,24]. With these conventional models, we can reproduce
and explain the appearance of cerebral lesions in demyelinating dis-
eases. As a next step, to explain the non-linear irregular clinical course
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and disseminated distribution of the lesions in MS, we need an addi-
tional disease model for MS.

To explain phenomena with such unpredictable patterns in time and
space, one of the promising methods would be the complex system
model with chaos theory [25]. Chaos theory has been widely applied in
the field of meteorology, astronomy, and economics to explain the
unpredictable non-linear actual phenomena in these fields. From be-
fore, it has been suggested that this mathematical model could be ap-
plied to the actual physiological phenomenon with oscillating patterns
in the actual human body [26]. However, such considerations have
been conducted in the field of hematologic diseases and we do not know
whether we can apply such chaotic model even to neurological diseases
like MS.

In this report, to invent a new theoretical model of MS to explain its
irregular clinical characteristics (i.e. dissemination in time, dissemina-
tion in space, or accelerated cerebral atrophy), we considered the
possible application of the model in MS and investigated whether we
can develop a new disease model mainly based on chaotic model to
comprehensively reproduce the clinical manifestations in MS.

Material and methods

Logistic map and discrete logistic equation of immune strength

There are tremendous amount of blood cells and cytokines that play
roles in the immune system and we do not know which of the element
plays the primary pathogenic role in MS. Thus, we cannot actually
measure the strength of pathogenic immunological activity in MS in the
clinical site yet. However, considering the characteristic clinical course
and MRI patterns in MS patients, we can rationally suppose that the
primary pathogenic factor or the decisive immune abnormality in each
MS patient would be temporally homogeneous and could be theoreti-
cally expressed as a single scalar quantity at each point of location and
time. Whether all MS patients are suffered from the same pathophy-
siology or not is uncertain; however, preparing a scalar quantity to
express the strength of decisive pathogenic factor in each MS patient
would not cause a theoretical contradiction.

Based on this premise, in this study, we suppose a scalar quantity of
positive real number between 0.0 and +∞ to express the pathogenic
immune strength at a specific location of CNS in each MS patient at a
specific point of time. Because there is no definite upper limit of im-
mune strength in the actual human body, we need to convert and roll
up the scalar quantity into a limited range to be utilized in a model with
complex system. For such numerical conversion, one of the most pop-
ular methods is the logistic equation or the logarithmic transformation
[27,28]. Because low levels of pathogenic immune strength can be ig-
nored here, sigmoidal functions with logistic equation, rather than the
logarithmic functions, would be more suitable here [29]. Thus, in this
report, conversion with logistic equation was supposed in rolling up the
scalar quantity into a limited range. In Fig. 1, a sigmoidal curve based
on logistic equation is shown. Each scalar quantity of immune strength
between 0.0 and +∞ can be converted into one-to-one corresponding
value between 0.0 and 1.0. In this report, we define the converted value
of the pathogenic immune strength as “St”, where “S” stands for
strength of immunity and “t” stands for a specific time.
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In the immune system, negative feedback system plays an important
role in suppressing its overrun and controlling the overall strength
[30–32]. If the strength of pathogenic immunity (St) is hyper-activated
at some point of time, it will somehow suppress the strength. In each
MS patient at a specific point of time, such suppressive pressure on St
can be expressed as a single parameter of scalar quantity. One of the
most famous and simple methods to express such chronological

fluctuations with feedback system is the discrete logistic equation, also
known as logistic map, as shown below [33,34].

= − < <+x a x x a(1 ) (0.0 4.0)n n n1 (2)

In this equation, “xn” is a variable and “a” is an arbitrary parameter
between 0.0 and 4.0. This iterated function is most frequently used in a
discussion of population change within limited space and resources, in
which xn stands for the population number of the n-th generation.
Theoretically, this equation can also be applied to the pathogenic im-
mune strength of St in MS, because such feedback system will require
time periods with the orders of days to weeks to exert negative feedback
in the living tissues, including the nervous system [35–37]. Here, we
tentatively regard that (t+ 1)-th cycle of the pathogenic immune
strength ( +St 1) is regulated by that in t-th cycle with unknown period of
the cycle. Then, a theoretical equation shown below can be derived.

= − < <+S a S S a(1 ) (0.0 4.0)t t t1 (3)

In the right side of this discrete iterated function, St reflects the
present strength of pathogenic immunity and (1 − St) reflects negative
feedback system that suppresses the excess immunity. Graph of this
quadratic function, with St on X-axis and +St 1 on Y-axis, is shown on the
left side of Fig. 2. In this figure, the space filled with grey color will be
described in the next section. As shown in the right side of Fig. 2, vertex
of the graph changes with different values of parameter “a”. As the
value of parameter “a” increases, the vertex will be vertically elevated
and vice versa. Factors like infection, female, development of immune
system in adolescence, and vaccinations would increase the value of
parameter “a”; factors like senescence and immune-suppressants would
decrease it.

Similar convex upward functions other than the equation [3] can
also reproduce the feedback system of immunity, if the function and the
parameter are appropriately prepared. An example of such function
other than the Eq. (3) will be discussed and simulated in a later section
(“Dissemination in space” section).

Model of cerebral atrophy and relapses in MS

In MS, subclinical accelerated cerebral atrophy is known to ac-
company even without apparent clinical relapses. A weak correlation
between total number of relapses and grey matter volume is also sug-
gested [21]. Based on these facts, we can estimate that there would be a
common pathophysiology between the cerebral atrophy and clinical
relapses in MS, though not identified yet. This concept is compatible
with previous reports suggesting the responsibility of hyperactive im-
munity for the cerebral atrophy in MS patients [38]. Because there is a
subgroup of patients who only present cerebral atrophy without ap-
parent clinical relapses, known as PPMS, a threshold for the accelerated
cerebral atrophy would be lower than that for clinical relapses.

Fig. 1. Sigmoidal curve with logistic equation for numerical conversion. By
using the logistic equation, pathogenic immune strength in MS will be con-
verted into a scalar quantity (St) between 0.0 and 1.0. Abbreviations: MS,
multiple sclerosis; St , pathogenic immune strength at the time of “t”.
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Considering these bases together, we can set areas of St with an
accelerated cerebral atrophy (filled with light grey) or clinical relapses
(filled with dark grey) as shown in the left side of Fig. 2. Exact levels of
these thresholds in St would widely vary among MS patients. In this
figure, threshold of St for cerebral atrophy was tentatively set around
0.60 and that for clinical relapses was set around 0.80.

Cobweb plot and chronological fluctuation of immune strength

To investigate chronological behavioral pattern of St , which is
regulated by the Eq. (3), we can use a method known as “cobweb plot”,
as shown in the left side of Fig. 3. By pursuing the track on this cobweb
plot, eventual pattern of behavior (e.g. convergence, oscillation, chaotic
etc.) can be visualized. In the right side of Fig. 3, an example of
chronological behavioral pattern of St , with parameter a set at 2.0, is
shown. In this case, as time passes and cycle number of t increases, St
gradually converges toward 0.500. If parameter “a” and St are not
changed by indirect causes, St will not part from 0.500, no matter how
long we continue to observe. Also, if parameter “a” is constant, the
behavioral pattern (convergence, oscillation, or chaotic) and the value
of convergence will be the same, no matter of the setting of the initial
value (S0).

Dissemination in time and space of MS lesions

To discuss whether the complex system with chaos model is a good
theory to explain and reproduce clinical manifestations in MS, we have
to confirm that this model can reproduce all of the clinical subtypes,
dissemination in time, and dissemination in space of MS lesions [18]. As
to the reproduction of MS subtypes, we can judge by investigating
analogy between chronological behavior of St and the characteristic
clinical courses in each MS subtype. As to dissemination in time, we can
simply judge by confirming that arbitrary upward-convex graphs of St
and +St 1 can present chaotic behaviors. As to dissemination in space, we
can judge by checking whether two adjacent location in CNS with very
close initial value (S0) and/or parameter “a” can produce completely
different behavior of St with chaotic pattern.

Results

Relationship between the value of parameter “a” and relapses

The right side of Fig. 4 is the bifurcation diagram showing the
distributional range of St for each value of the parameter “a”, when the
time period of “t” is enough large. As shown in the previous report, St
converged to −a a( 1)/ when parameter “a” is between 1.0 and 3.0.

Fig. 2. Graph of the discrete logistic equation and effect of parameter “a”. (Left) On the graph of discrete logistic equation, lower thresholds of St for an accelerated
cerebral atrophy and clinical relapses are assumed. The parameters, pattern of the function, and the threshold lines could be different among the patients. (Right)
Vertex of the discrete logistic function vertically moves as parameter “a” changes. Abbreviations: a, parameter “a” in Eq. (3), DMDs, disease modifying drugs; St ,
pathogenic immune strength at the time of “t”.

Fig. 3. An example of cobweb plot with parameter “a” set at 2.0. Discrete value of St gradually converges at 0.50 with parameter “a” fixed at 2.0. With the tentative
settings of parameter “a” and threshold for cerebral atrophy in this figure, St will not reach an enough level to cause cerebral atrophy or relapses, no matter how long
the time passes. Abbreviations: a, parameter “a” in Eq. (3); St , pathogenic immune strength at the time of “t”; S0: initial condition of St ; t, time.
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When the value of “a” is between 3.57 and 4.0, it will show chaotic
behavioral patterns [25].

Although the assumed threshold lines and the parameter “a” would
be dramatically different among MS patients, it is almost certain that
patients with the value of parameter “a” under which St surpass the
threshold for clinical relapses will be more likely to show chaotic pat-
terns in St .

Analogy of the chaos model with actual MS

Reproduction of each MS subtype and dissemination in time
Actual simulation of chronological behavior in St for each value of

parameter “a” is shown in Fig. 5. Roughly speaking, behavioral patterns
of St can be categorized into the following three types: convergence,
oscillation, and chaotic.

As we can see in Fig. 5(b), even when St converges to a specific
value, the convergence can take place above the threshold lines for
cerebral atrophy and below the line for clinical relapses with a specific
range of parameter “a”. Such behavioral pattern may correspond to the
clinical courses in PPMS and SPMS.

As parameter “a” becomes larger than a specific point, behavioral
pattern of St come to show chaotic patterns, as shown in Fig. 5(d). This
type of behavior could represent the conventional clinical course in
RRMS. In this way, complex system with chaotic pattern can reproduce

Fig. 4. Relationship of the behavioral pattern of St for each parameter “a” and the clinical episodes. St converges at one level when parameter “a” is between 0.0 and
3.0; St shows oscillating behavior between two levels when parameter a is between 3.0 and around 3.45; St shows chaotic behavior when parameter “a” is between
3.57 and 4.0. St with a higher value of parameter “a” is more likely to present both an accelerated cerebral atrophy and a chaotic behavioral pattern with irregular
clinical relapses simultaneously. Abbreviations: a, parameter “a”; St , pathogenic immune strength at the time of “t”.

Fig. 5. Behavioral patterns of St and their analogies with MS subtypes. (a) St converges at one level below the threshold for cerebral atrophy, if the value of parameter
“a” is small. (b) St converges at one level above the threshold for cerebral atrophy. This pattern could represent the progressive patterns in MS. (c) St shows oscillating
pattern under parameter a within a specific range. (d) As parameter “a” becomes larger than a specific point around 3.57, St comes to show chaotic behavior and
irregularly show values above the threshold for clinical relapses. Rate of cerebral atrophy would be slower than that in Fig. 5(b). This pattern could represent the
conventional relapsing-remitting type. Abbreviations: a, parameter “a”; PPMS, primary progressive multiple sclerosis; RRMS, relapsing-remitting multiple sclerosis;
SPMS, secondary progressive multiple sclerosis; St , pathogenic immune strength at the time of “t”; t, time.

T. Akaishi et al. Medical Hypotheses 115 (2018) 87–93

90



all the MS subtypes.
In conclusion here, we can conclude that this model can reproduce

the characteristic manifestation of dissemination in time.

Dissemination in space
To discuss about the reproducibility of “dissemination in space”

with this model, we need to show that different two spots with very
close distance in CNS can present dramatically different behavioral
patterns in St . Otherwise, all MS lesions would be inevitably con-
tinuous, not disseminated, both in time and space; in such case, com-
plex system cannot reproduce characteristic plaque lesions with clear
margin in MS.

First, we will check whether a minute difference of parameter “a”
between two adjacent spots in CNS can produce completely different
chronological behavior of St or not. Fig. 6(a) depicts a virtual contour
graph of parameter “a” as a scalar field on a tentative coordinate in the
CNS. For convenience, in this geographical schema, coordinates in the
CNS is expressed with two-dimensional shape (X and Y), though co-
ordinates in the actual CNS tissue is ideally to be expressed as three-
dimensional by using X, Y, and Z.

Because we can regard that parameter “a” would be continuous
across a continuous space in the CNS, we can estimate that parameter
“a” would be almost the same between two very close locations in CNS.

= = +→ + +lim a a r x y( Δ Δ )r x x y y x y0 ( Δ , Δ ) ( , )
2 2 (4)

However, as shown in the upper side of Fig. 6(b), two distinct
parameters of “a” and “a+ Δa” with only a small difference (Δa)
cannot produce similar or correlated chronological behaviors of St , if “t”
becomes sufficiently large.

≠ ≤ <→∞ → + →∞lim lim S lim S a( ) (3.6599. .. 4.0)t a a a t t a tΔ 0 ( Δ ), , (5)

Next, we will check whether a minute difference of initial value (S0)
could produce a completely different chronological behavior of St or
not. This is a phenomenon known as “sensitivity to initial conditions” of
chaotic systems [39,40]. To make sure, we simulated whether a very
small difference of initial values (S0 =0.3000 vs S0 =0.3001) could
produce totally different behavioral patterns of St or not; and the re-
sulted behavioral pattern was highly sensitive to the minute difference

of initial condition, as shown in the lower side of Fig. 6(b).
At this point, we can conclude that the complex system with chaotic

model can reproduce not only the “dissemination in time” but also the
“dissemination in space” in MS.

Applicability of other similar non-linear functions for St
As we discussed in the material and methods section, Eq. (3) is only

one of the possible recurrence relations of St that well reflect positive
and negative feedback systems in immunity. To confirm that some
different upward-convex functions may also produce chaotic behavioral
patterns in St , a simple polygonal line function as shown below will be
tentatively adopted, in which the symbol of || represents absolute value
of the content.

= − − < <+S a S a(1 |1 2 |) (0.0 1.0)t t1 (6)

The left side of Fig. 7 shows the graph of this Eq. (6). The right side
of Fig. 7 shows the bifurcation diagram based on this function with
parameter “a” on X-axis and distributional range of St after enough time
period on Y-axis. As the same with Eq. (3), even a simple polygonal line
function like Eq. (6) could also produce chaotic behavior of St , as shown
in the right side of Fig. 7. In conclusion here, we confirmed that up-
ward-convex functions other than Eq. (3), in which a specific value of

+St 1 could be derived from two distinct values of St , may produce
chaotic behavioral patterns in St , if parameter “a” is properly set.

Discussion

In this report, by using the complex system with chaotic model, we
could satisfactorily reproduce the clinical subtypes of MS. And by
taking concepts of “sensitivity to initial conditions” and “sensitivity to
minute difference of the parameter” into account, we could also re-
produce the clinical characteristics of “dissemination in time and space”
in MS patients.

At the first point, we have to discuss whether we can apply a dis-
crete function like Eq. (3) to actual immunological phenomenon in
human body. Certainly, within a very short time period, feedback
system of immune system could work as a kind of continuous function
like the following differential equation, known as Hutchinson model
[41,42].

Fig. 6. (a) Geographical map of parameter “a” on the locational coordinates and (b) simulations showing chaotic behavior sensitive to minute differences in
parameter “a” and initial condition (S0). (a) In this virtual schema, location in central nervous system (CNS) is tentatively shown as two-dimensional plane for
convenience with X-axis and Y-axis. At each location of (x, y), parameter “a” could take different values, which is shown as Z-axis. Value of parameter “a” at (x, y) and
(x+ Δx, y+ Δy) would be almost similar, which are described as ax y, and + +ax x y yΔ , Δ in this figure, respectively. (b) Even minute changes in initial condition of St (S0)
and parameter “a” can produce dramatically different behavior of St after a sufficient period of time. These results of simulation could represent phenomena of
“dissemination in time and space” in MS patients. Areas filled with light grey represents pathogenic immune strength causing accelerated cerebral atrophy; that with
dark grey represents the strength causing clinical relapses. Abbreviations: a, parameter “a”; Δx, small increment of x; St , pathogenic immune strength at the time of
“t”; Sa t, , St with a specific value of parameter “a”; S0, initial condition of St ; t, time.
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In this differential equation, “a” is a varying parameter specific to
each individual, “K” is a constant value for each individual representing
maximum capacity of immune system, and “T” stands for time delay of
short span. Actually, with this model, we can also reproduce a perma-
nent regular oscillation of St with appropriate settings of parameter “a”,
constant value of “K”, and time delay of “T”. However, in most settings
of these variables, this equation brings a gradual convergence in St ;
thus, clinical manifestations cannot be reproduced with models based
on Eq. (7). This equation may stand if the immune system is in fully
stable condition and unaffected from any internal and external factors,
in which situation the immune strength can be regarded as a continuous
variable. But in actual human body, immune system is irregularly af-
fected by numerous internal or external affectors, resulting in inter-
mittent immune responses that would significantly shift the immune
strength at each point of time. Such responses would require a time
period in the scale of days or weeks, after which a new initial condition
of S0 and a slightly shifted value of parameter “a” would be given
[36,43]. Based on these considerations, it would be more reasonable to
assume a discrete logistic equation like (3) in considering the immune
strength in living organisms. Certainly, we cannot reproduce the irre-
gular complex pattern of the clinical course in MS only with a con-
tinuous model like the logistic equation; such model would surely result
in a convergence to a specific level. We need a discrete function like the
logistic map to reproduce such irregular complex model.

Characteristic pattern of clinical course in MS patients are the
clinical onset in their late 20 s and the transition to SPMS with de-
creased relapses in their 40 s and 50 s [44,45]. This new model can also
explain these characteristic clinical courses in MS. As described in the
section “Reproduction of each MS subtype and dissemination in time”,
this new model can independently reproduce all subtypes of PPMS,
RRMS, and SPMS, by appropriately setting the value of parameter “a”.
Now, the general strength of immune response in human body is
thought to reach its peak in the early 20 s and gradually decrease up to
the middle age [45–48]. This fact can be applied to the new model with
a changed value of parameter “a” for the age-dependent strength of
immune response. As the strength of immune response gradually in-
crease with immune maturation, represented by the elevation of para-
meter “a”, the value of St will more likely to show the chronological
pattern as shown in Fig. 5(d). On the other hand, as the strength of
immune response gradually decrease with immune-senescence, re-
presented by the decrement of parameter “a”, St will gradually come to
show the patterns as shown in Fig. 5(b) or (c).

Lastly, we discuss about the different size and distribution of lesions

not only among MS patients but also within each MS patient. Based on
the presented new disease model for MS, the various size and shape of
lesions in each MS patient can be explained by the specific size and
shape of the distributed independent closed systems within each pa-
tient. The volume of each independent closed system in one patient
would be regulated by multiple factors like the running of blood vessels,
distance from the vessels, permeability of blood-brain barrier, or the
lymphatic drainage system in the CNS [49,50]. These multiple factors
for determining the size and distribution of each independent system in
the CNS would produce the various size and shape of MS lesions in each
patient. When we compare the chronological change of St in a closed
system between different MS patients, not only the value of “a” but also
the threshold levels would be totally different. Multiple factors men-
tioned in the introduction (e.g. geography, vitamin D, genetic back-
ground, Epstein-Barr virus infection, and smoking) would contribute to
such interpersonal diversity.

Although this model can explain and reproduce many character-
istics in MS, there are some limitations for this report. Unfortunately, at
present, we have not known which of the immunological factors in MS
patients correspond to the variable of St . Certainly, the elements that
comprise a scalar quantity of St would not be single. By now, there have
already been many immunological elements that are suggested to play
important roles in the pathomechanism of MS, like B cells, Th17 cells,
Th1/Th2 balance, and many others [51–54]. Though we do not know
which of these candidates are more important than the others, we have
some clues to estimate the important pathogenic affectors in MS. For
example, in MS, an established treatment in the acute phase of relapses
is high-dose intravenous prednisolone and those in the intermittent
period as preventive therapies are interferon-β injection or oral fingo-
limod [54–56]. Based on these facts, we can infer that the provisional
variable of St in this report would represent a fraction of immune
system that is affected by these medications. Another limitation is that
whether we can assume a single scalar quantity of St to represent the
total sum of pathogenic immune strength in MS patients. Realistically,
integrating multiple candidates at each moment into a single scalar
quantity of St might be a little bit too radical. Even in that case, we can
further apply couples of chaotic systems like coupled map lattice (CML)
and globally coupled map (GCM) [57,58], and we shall have similar
conclusions with this report. Or, maybe, we can simply redefine the
pathogenic immune strength with a vector value and apply this chaotic
model to each element of the vector. The last limitation of this study is
that we do not know the exact values of parameters and the thresholds
for brain atrophy and clinical relapses in each person, yet. At present,
unfortunately, this model can be used only to explain the possible pa-
thological mechanism in MS and it would not be useful as a diagnostic

Fig. 7. Bifurcation diagram with a simple polygonal line function. An arbitrary upward-convex function like this simple shape could also produce a chaotic behavior
in a specific range of the parameter “a”. Abbreviation: St , pathogenic immune strength at the time of “t”.
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or predictive model for MS patients.

Conclusions

In this report, a new theoretical disease model for MS based on
complex system with chaos theory in the immune system has been in-
troduced to explain the non-linear irregular pattern of clinical mani-
festations in MS. With this new disease model, we would be able to
achieve new insights into the mysterious pathomechanism of MS.
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