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A B S T R A C T

Although biogas is not a new approach to producing renewable fuel, it could further be developed to improve its
potential as an alternative energy source. To achieve this, vast improvements in the efficiency and cost of biogas
production are essential. These enhancements require detailed systematic monitoring to attain a near-optimal
biogas production process. To date, there is a striking imbalance between the inherent biological complexity of
anaerobic digestion, and the minimal information currently measured on-line. The objective of this review is to
discuss how improvements in availability and cost of sensor technology used for determining the key compounds
and their dynamics within the biogas processing plant will facilitate the further understanding of the biogas
production process, preventing the biological process failure. In particular, colourimetric assays (sensor assays
based on coloured dyes) for variable detection in anaerobic digestion provide a stable, multivariate system for
the detection of Volatile Fatty Acids (VFAs), but also provide a much deeper insight into the process by assessing
other parameters, which, to date have never been measured on-line. These sensor improvements will allow the
biogas production, even on a small scale, to be guided in the optimum direction, avoiding the biological process
from collapsing. This will result in improved efficiency, at a reduced operational cost. The potential of col-
ourimetric assay methods for use in anaerobic digestion as a sensor technology with associated data analysis
methodologies has not previously been observed. Here, a 23-dye colourimetric sensor array was experimentally
assessed to exhibit the differentiation of 10mM acetic acid, 5 mM propionic acid and 0.3mM butyric acid. The
feasibility of on-line, cost-effective, rapid, and efficient detection of VFAs together with other key parameters by
these colourimetric sensor arrays is intended to be assessed to advocate their usage in AD.

1. Introduction

One route to production of renewable, clean energy is through
biogas production, where biogas is derived from biological waste ma-
terials. Biogas is produced through anaerobic digestion (AD) of organic
waste materials by a variety of microorganisms [1]. The inherent
complexity of this ecosystem resulting from the dynamical interaction
of several hundreds of bacterial and archaeal species [2], developing on
a mixture of substrates, results in significant difficulty in determining
the state of the digestion process [1].

The most straightforward information is provided by monitoring of
gases (H2, CH4 and CO2) measured in the gas-phase of the anaerobic
digester. Their fluctuations can provide information about the digesters’
productivity [3]. Measurement of pH is also important. A pH outside
the range of 6–8 often indicates process deterioration, limiting methane
production and eventually collapse of the entire biological process [4].

Concentrations of volatile fatty acids (VFAs; mainly acetic, butyric and
propionic acid) have been suggested as useful control parameters, as
these acids are indirectly indicative of the activity of the methanogenic
consortia [3,4]. VFA accumulation can be interpreted as organic over-
load or inhibition of the methanogenic microbial communities [5].
Acidogenic microorganisms transform hydrolysis products into VFAs,
while acetogenic microorganisms then convert VFAs into acetate, H2

and CO2. Methane is then produced by the methanogens [6], with the
majority being produced by acetotrophic methanogens, transforming
acetate into methane and CO2 [7]. VFA concentrations are a required
control parameter for biogas production monitoring [8,9], and it is
essential that VFAs are monitored to understand the biological process.
Additionally, the ratio of VFAs over total alkalinity is often suggested as
an indicator of the processes stability, with the objective of this ratio
remaining below 0.3 [10].

Normal wastewater fed anaerobic digester operation yields VFA

https://doi.org/10.1016/j.rser.2019.04.083
Received 28 January 2019; Received in revised form 9 April 2019; Accepted 29 April 2019

∗ Corresponding author. Department of Electronic Systems & ENERSENSE, NTNU, Trondheim, Norway.
E-mail address: jacob.j.lamb@ntnu.no (J.J. Lamb).

Renewable and Sustainable Energy Reviews 111 (2019) 87–96

Available online 16 May 2019
1364-0321/ © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/BY/4.0/).

T

http://www.sciencedirect.com/science/journal/13640321
https://www.elsevier.com/locate/rser
https://doi.org/10.1016/j.rser.2019.04.083
https://doi.org/10.1016/j.rser.2019.04.083
mailto:jacob.j.lamb@ntnu.no
https://doi.org/10.1016/j.rser.2019.04.083
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rser.2019.04.083&domain=pdf


concentrations around 10, 5 and 0.3mM for acetic, propionic and bu-
tyric acid, respectively. Furthermore, imbalances within the reactor can
result in spikes up to 30, 20 and 3mM; however, the specific con-
centrations of VFAs suggesting imbalances does differ between different
systems and feedstocks. It has also been suggested that propionate is the
main VFA indicating the stress status of the AD process [11]. Therefore,
the discrimination between individual VFAs is essential and develop-
ments in sensor systems that can differentiate VFAs without a sub-
stantial complexity and cost are required.

Cost-effective sensor technologies for monitoring different VFAs
species within the reactor are crucial for improving efficiency, pro-
ductivity and cost of biogas production. There are many methods for
achieving monitoring of a variety of parameters within bioreactors
[12–15]. These mainly rely on sample extraction, but in some cases, the
sensor can be interfaced directly with the internal environment of the
bioreactor. Despite this, there are still improvements required to make
cheaper sensors with higher accuracy and specificity. Ideally, a mon-
itoring system must have a set of sensors coupled to a treatment phase
within a software program, where the measurements are carried out
automatically with limited human intervention or expertise. The data
can then be combined with numerical models to update an algorithm
diagnosing the state of the digester and detecting erroneous working
modes [10].

Optical-based chemical sensors (colourimetric sensors) appear to
have the potential of providing such additional crucial information.
They are low cost, require relatively simple instrumentation and
straightforward sample preparation, and can be integrated within ex-
isting control systems. In general, there can frequently be a trade-off
between sensitivity and robustness, and their use in bioreactors may be
severely challenged by limited selectivity, repeatability, robustness and
stability [16]. One path around this is to apply the artificial noses and
tongues concepts [16,17]. Each sensor in the array is only partially
selective but has distinctive responses to the various chemical entities
of interest. Adding a multivariate chemometric tool results in quanti-
tative responses for each entity. A few attempts have been made to
apply artificial tongues, based on electrical or electrochemical sensors,
for detection during AD [18,19]. However, the limited success of these
technologies is due to the complex and poorly reproducible composi-
tion of process media [19], resulting in sensor contamination and bio-
fouling.

The development of artificial tongues based on optical sensor arrays
is another option [17]. For optical sensors, the analyte interacts with

the sensor material, resulting in changing the materials optical prop-
erties. The sensor array is a combination of a variety of dyes, each with
different specificities for different analytes (Fig. 1 and Table 1). Light
probes the sensing material. A wide range of optical techniques are
available for probing (e.g., refraction, scattering, reflection). Probing of
multiple properties can be used to enhance sensor performance. Suc-
cessful application of optical tongues to metal ions, food and beverages,
amino acids, proteins, bacteria, cancer and disease diagnostic have
been reviewed [17]. Despite the inherent advantages, optical tongues
have so far not been sufficiently considered for AD monitoring.

In this review, a contemporary sensor technology that can combine
AD with on-line data to accurately picture the state of the complex
anaerobic ecosystem is proven, discussed and compared to current in-
dustry methods. Overall, the contemporary technologies linked with
the analysis methods presented have the potential for improving the
efficiency, economic costs and productivity of biogas plants.

2. Requirements for sensors to determine the state of an anaerobic
digester

2.1. General principles of anaerobic digestion sensing

There are different ways that sensors can be incorporated into the
biogas production plant to fulfil the on-line monitoring requirement.
The sensors used for measurements of variables within an anaerobic
digester can require the extraction of samples from the bioreactor, fil-
tration, and external measuring (at-line sensor), the sensor to be within
the digester (in-line sensor), or for the sample to be extracted from the
digester and analysed in a laboratory (off-line sensor) [20]. Moreover,
at-line sensors are those that are connected to external sampling loops
or extraction piping, where the digestate will, in theory, represent the
internal environment of the digester, but is technically no longer in the
internal environment of the digester. The alternative is to utilise an in-
line sensor, that is a sensor which is interfaced directly with the internal
environment of the digester, giving the most accurate, up-to-date sen-
sing of the internal environment of the digester. Furthermore, mea-
surements can be either on-line or off-line. This refers to the time taken
for a measurement process, and whether it requires extraction and
measurement outside of the digester/sample-loop environment. A
measurement that can be rapidly and continuously detected in either an
at-line or in-line configuration is considered on-line, as it provides ‘live’
data. A measurement that requires extraction of a sample, external

Abbreviations

AD Anaerobic digestion
EKF Extended Kalman filters
ELO Extended Luenberger observers
GC Gas chromatography
HCA Hierarchical cluster analysis
IR Infrared

LDA Linear discriminant analysis
NIR Near-infrared
PCA Principal component analysis
SVM Support vector machines
TDA Tensor discriminant analysis
TRL Technology readiness level
UASB Up-flow anaerobic sludge blanket
VFA Volatile fatty acid

Fig. 1. Schematic Representation of a
Colourimetric Sensor Array. This representation
shows a 36-dye colourimetric sensor array before
exposure (left), after expose (middle) to a specific
analyte, and a difference map (right). The difference
map is achieved by subtracting the two images (be-
fore and after exposure), resulting in a difference
vector in 108 dimensions, (changes in 36 dye colours
in the green, red, and blue colour channels).
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processing of the sample and finally measurement is considered an off-
line measurement. This is because there is a significant time delay be-
tween sampling and measurement.

The in-line sensors must be resistant to pressure (slightly above
atmospheric) and temperature (between 35 °C and 55 °C) fluctuations,
as well as being able to be cleaned (in some cases this means auto-
claving, or γ-irradiating the sensor). Furthermore, they should be sub-
stantially resistant to interference by fouling. Sensors should provide
appropriate quality, having high accuracy, specificity, sensitivity, and
quantification. The data provided by sensors requires an appropriate
data analysis method that can be automated as much as possible to
reduce the requirement for expertise. After data analysis, the computed
measurements should produce great consistency, and be robust, stable
and linear.

For live (on-line) monitoring of a biogas plant to be useful, the re-
sponse time of the sensors is an important characteristic [20]. Although
the delay for measurements is specific to each sensor and application,
the time required to obtain a result must be small (< 10min) relative to
the essential process dynamics. More specifically, the time required to
obtain a result will depend significantly on the retention time of the AD
reactor, analysis duration and the dead volume of the filtration system
used. Moreover, it must be much faster than the time required for the
accumulation of VFAs to occur in order to detect a stress event.
Therefore, the sensor system must be tailored to the process with ade-
quate sampling locations. Otherwise, significantly low efficiency of the
process control will occur [21].

The location within the digester is essential, as the digester can be
either homogeneous or inhomogeneous. This depends significantly on
the feedstock type, process size and AD technology. Moreover, there are
AD technologies that are intended to have inhomogeneous chemical
gradients within the reactor (e.g., up-flow anaerobic sludge blanket
(UASB) & fluidised bed reactors), and this is exacerbated with the in-
crease of reactor size. If the reactor is homogeneous, the sensor can be
placed anywhere within the bioreactor, and the signal will represent the
actual state; however, if it is inhomogeneous, many sensor systems and
arrays may be needed to interpret the condition of the digester fully.

There are three main phases (solid, liquid and gas), inside the
anaerobic digester. These phases have different properties, variables
and requirements when considering in-line sensor technologies. The
liquid phase of the anaerobic digester is a complex mix of various or-
ganisms, substrates, nutrients, products, metabolites, and dissolved
gases. Due to the diffusion rate of components from liquid to gas, it is
desirable to make measurements directly from the liquid phase of the
digester. This can drastically reduce any lag time between changes in
the digester dynamics and detection of these changes.

2.2. Traditional VFA sensing

The most common techniques used to assess digester state is the
measurement of the VFA bulk by titrimetry (off-line), various gas
chromatography (off-line) techniques and Near-infrared (NIR) and in-
frared (IR) spectrometry [5].

2.2.1. Titrimetry
The cheapest method for VFA detection is through automated ti-

trimetric units [22]. Titrimetry is a standard laboratory method of
quantitative chemical analysis that is used to determine the unknown
concentration of an identified analyte. Titrimetric methods of analysis
allow the quantification of VFAs without the need for extensive sample
filtration (depending on the consistency of the digestate). These can
take a sample from the anaerobic digester, perform a few straight-for-
ward sample treatments (typically filtering of centrifugation), then use
titrimetric techniques to determine the acidic concentration of the
sample. A computer is used to control the titration analysis, allowing
automatic VFA quantification, as well as automatic adjusting of the
protocol based on expected VFA concentrations. The robustness and
simplicity of the automatic titration procedure allow it to be readily
applied to any AD process to perform total VFA analysis. Furthermore,
off-the-shelf units for measuring the VFA concentration in AD are
readily available. Despite this, the accuracy of titration methods, when
compared to analytical laboratory measurements, is still debatable
[23–25], and the quantification of individual VFA is unable to be per-
formed by this method. There are many interfering components present
in large quantities in AD, including acids or bases (e.g., lactate &
phosphate), that can probably explain the reduced accuracy of titri-
metric methods [23–25].

2.2.2. Gas chromatography
In analytical chemistry, gas chromatography (GC) is used as a

technique for the separation and analysis of compounds. Analytical
measurements using GC methods produce highly accurate results, and
any method of VFA detection should always be calibrated using a GC
method. These sensors are generally off-line and in a controlled la-
boratory; however, there have been examples of their integration to AD
reactors for VFA analysis. A gas chromatograph connected to an
anaerobic digester has been shown to allow automatic VFA quantifi-
cation with a frequency of 15min in the range from 0 to 3000mg L−1 of
all the short-chain VFAs [26]. This form of measurement requires in situ
filtrations of the digestate before analysis, and although the method was
automated, intervention from technicians is needed daily to maintain
operation. Attempts at removing the requirement for filtration methods
that are susceptible to biofouling have been made by replacing the
filtration step with a sample pre-treatment cell [27]. This pre-treatment
adjusts the temperature, pH and ionic strength of a sample to lower VFA
solubility, obtaining a gaseous sample of VFAs for analysis. This system
has been shown to deliver on-line determinations of short-chain VFAs
from a laboratory-scale AD reactor fed with cow manure for over six
months [28]. It is now the basis for many non-filtration automatic GC
sampling methods used to date for detection of VFAs in anaerobic di-
gesters, but due to the requirement of a GC machine (high cost asso-
ciated with machine purchase, maintenance and expertise), this ap-
proach is not practical for smaller scale biogas plants.

2.2.3. Infrared and near-infrared spectroscopy
Near-infrared and infrared spectroscopy (NIR and IR spectroscopy,

respectively) involves the transmittance of infrared electromagnetic
radiation through a sample. This form of spectroscopy can use a range
of techniques (mostly based on absorption spectroscopy), and it can be
used to identify and study many chemicals within the digestate. Both
organic and inorganic compounds have specific spectral vibrational
signatures within the IR spectrum, and the more of these vibrational
modes that can be excited, the higher the specificity of analyte

Table 1
Examples of chemometric dyes for colourimetric analysis.

Bronsted acid-base dyes Redox dyes Metalloporphyrins

Bromocresol green Lissamine green CuPC
Cresol red Viologen H2TPP
Indigo carmine Diphenylamine CoOEP
Metanil yellow o-dianisidine ZnTPP
Malachite green N-phenyl-1,4-

phenylenediamine
FeTF5PP(Cl)

Nile red N,N′-diphenyl-1,4-
phenylenediamine

Pd(CH3CO2)2

Nitrazine yellow Zn(TMP)
Methyl red CuTPP
Thymol blue Cu(neodecanoate)2
Litmus
Delphinidin
Cyanidin
Brookers Merocyanine

dye
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determination [29]. IR spectroscopy, therefore, can offer rapid, sensi-
tive, and robust multi-analyte data from the anaerobic digester. Fur-
thermore, IR sensors are straightforward to incorporate into an in-line
measurement system that is also on-line, using mostly non-invasive
technologies via direct beam or optical fibre methods in a recirculation
loop [30].

NIR spectroscopic methods are based on the combination and
overtones of vibrational modes. Targets of interest are alcohols (O–H
bonds), aliphatic and aromatic carbon compounds (C–H bonds) and
proteins (N–H bonds). Glucose, biomass and various biological process
products are therefore suited for monitoring by NIR [29,31]; however,
the spectral bands are much broader in NIR and end up overlapping,
therefore reducing the specificity [32]. The signal-to-noise ratio in NIR
can be improved by increasing the path length [32], but mid-IR can
give a more quantitative and precise measurement of molecules in
biological processes.

Non-invasive spectroscopic methods using NIR have been shown to
give an overview of the total VFA content within the AD process
[33,34]. Furthermore, NIR spectroscopy has been demonstrated to de-
termine VFA concentrations within industrial AD reactors [35,36]. At-
tempts have been made to reduce the cost of this methodology by re-
moving the requirement for ultrafiltration by use of sample
sedimentation and 150 μm filtration [33]. This method resulted in high
uncertainties in the detected VFAs due to their low concentrations in
the samples, and therefore low absorption in the spectra [33]. Fur-
thermore, due to the complexity of the digestate, an extensive cali-
bration of the spectroscopic procedure is required for the specific AD
process [33]. The calibration issue hinders the tremendous advantage
of these spectroscopic approaches as the nature of the feedstock gen-
erally varies over time, and expensive re-calibrations must be carried
out frequently. Nevertheless, using this sensing technology, process
upsets and failures were able to be documented by the analysis of the
spectra of a 6-month AD process [35].

2.3. Remarks

These methods suffer from some disadvantages concerning sample
preparation and biofouling [5]. Near-infrared and infrared spectro-
metry have been proven to be a real alternative, but they require an
advanced system for automated sampling, sample transfer, and filtering
to enable sufficiently sampling (< 2 h) [34]. Ultrafiltration of the di-
gestate samples is required to produce a clear liquid free of particles for
GC, NIR and IR spectroscopy. In the long term, this ultrafiltration will
result in the biofouling of the filtration unit, a property that needs to be
considered.

Table 2 gives an overview of some VFA detection technologies in AD
and assesses their benefits and drawbacks. The criteria used for this
assessment include accuracy of the technology, differentiation between
different VFAs, required pre-processing of the sample, requirement for
human expertise during the measurement, post-sensor data computa-
tion and analysis, overall analysis duration, initial cost of the tech-
nology, usage cost over a year period, extendability to detect other

variables and the technology readiness level (TRL) with respect for the
technologies use for VFA detection in AD.

3. Algorithm-based monitoring

3.1. Software sensors

The information provided by some of the on-line sensors can be
expanded thanks to mathematical approaches. For this, there are two
types of strategies. The methods based on data analysis and those re-
lying on a mathematical model representing the plant dynamics.

3.1.1. Observers
Software sensors are used to provide an on-line state estimation for

accurately determining the state of the process, especially by estimating
non-measured yet crucial variables. They are also vital in supporting a
closed-loop control strategy. This approach (also named state estima-
tors or state observers), is supported by a great deal of theoretical
background. The software sensor is a way to assimilate the real-time
data from the plant on-line, combine them with the theoretical process
knowledge embedded into a dynamical mathematical model and
eventually predict variables that are not measured or only available at a
low sampling frequency. Different strategies for designing a software
sensor exist, which depend on model accuracy, sensor information,
reliability and sampling frequency.

The most popular approaches are an extension of linear frameworks.
The extended Kalman filters (EKF) and extended Luenberger observers
(ELO) are the most famous algorithms [37]. However, since these es-
timators require a local linear approximation of the process model,
stability and convergence properties are generally not guaranteed over
a wide operating range. Moreover, these algorithms assume perfect
knowledge of the model and its parameters. It is often sensitive to in-
accuracies in the model parameters. Different strategies have been de-
veloped to reduce the dependency on parameter uncertainty. They
consist of basing the estimation scheme on the mass balance informa-
tion. Mass balance partially represents the process, while dealing with
the missing information in a robust way. In general, the gaseous flow
rates support an on-line estimate of the kinetics of some of the model
processes using the so-called asymptotic observer [38]. They rely on a
change of variables cancelling the nonlinear terms of the systems,
ending up with a linear observer [39]. The main drawback of this
asymptotic observer is that the dilution rate pilots the convergence rate.
Adaptive observers consist of simultaneously estimating model para-
meters and process states [40]; whereas, nonlinear observers are tai-
lored to the process model using its parameters, where the algorithm
accounts for the full process nonlinearity [41]. The complexity of the
resulting observer algorithms is a limitation for its implementation and
its calibration.

Instead of reconstructing the precise numerical values of the state
variable, interval observers estimate a guaranteed interval in which the
state of the variable is between [42,43]. Such an approach has suc-
cessfully be proposed to AD [44,45]. The uncertainty in influent

Table 2
Overview of VFA detection technologies used in anaerobic digestion.

Sensing technology Accuracy VFA
distinction

Sample pre-
processing

Human
expertise

Post-sensor data
computation

Overall analysis
duration
(minute)

Initial Cost
(USD)

Ongoing
costsa (USD)

Addi-tionnal
variable
detection

TRLb

Gas chromatography 5 5 5 5 2 60 30,000 300 2 6
Titrimetry 3 1 3 3 2 30 15,000 100 1 9
Infrared spectroscopy 4 5 5 5 5 60 50,000 100 3 4
Colourimetric sensors 3 5 2 3 3 2 2000 100 5 2

Each technology is ranked from 1 (low) to 5 (high) for each category unless otherwise stated.
a Rough estimate of consumable costs per year.
b Technology readiness level.
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concentration is inherently a difficult factor to estimate the process
state accurately; however, Jauregui-Medina et al., 2009 proposed a si-
multaneous input-and-state observer to estimate the influent con-
centrations [46]. Moreover, some of these observer designs have been
extended to deal with spatial distributions within the reactor [47,48].

3.1.2. Multivariate process analysis
Multivariate data analysis uses a variety of methods from a range of

scientific fields (e.g., computer science, statistics, and applied mathe-
matics). These methods, in turn, allow interpretation of the massive
amounts of data obtained from the bioprocess and support the detection
of unusual working modes and their diagnosis.

Classification using principal component analysis (PCA) is a pow-
erful way to determine the status of a bioreactor [49]. PCA allows the
reduction of high-dimensional data to fewer, linearly independent
components [20,50]. Assessment of the principal components can then
be achieved by this method via assessment of the variance that is in-
duced by the changes occurring within the bioreactor. Generally, PCA is
used to analyse the difference, distribution, or structure of data sets to
identify outliers and abnormal working modes. One typically seeks
some new orthogonal dimensions sufficient to encompass at least 95%
of the variance. Plots using the resulting set of principal components are
often easier to visualise than the original dataset, but only if the original
dataset has a low dimensionally in a statistical sense. Support vector
machines (SVMs) can also be used to classify the on-line data, allowing
the separation of the data by as much as possible [51,52]. Descriptions
of the main changes within the bioreactor process that can be seen in
the data can be made using these SVMs.

Like hierarchical cluster analysis (HCA), PCA is an unbiased method
that is best suited for evaluation of data sets rather than prediction;
however, PCA can make basic prediction methods possible, primarily if
the data set has low dimensionality and has a significant separation
among sample classes. The constraints of a PCA process also allows
possible monitoring of the courses of various unspecific variables, as
represented by the most relevant spectral changes [53]. Furthermore,
the process trajectory can be identified eventually from similar ‘ideal’
bioprocesses. If the data set does not have a significant separation, PCA
may not adequately be able to predict the identity of an experimental
sample.

In addition to the methods outlined here, there are many more
analysis methods that can be applied to multivariate process analysis.
Gomes et al. [54] provide an in-depth assessment of multivariate
methods for process analysis and how to incorporate them with bio-
process technology to achieve process analysis and control.

It is difficult to compare different theoretical models since they are
all tailored to different situations and supported by different on-line
information. As a rule, in all cases, software sensor algorithms should
utilise all the available information and be tailored to the specific task
that is desired to be achieved. For further discussion on mathematical
model selection, control and instrumentation in anaerobic digestion,
reviews by Jimenez et al. [55] and Donoso-Bravo et al. [56] provide
highly detailed overviews.

4. Utilisation of colourimetric sensors in anaerobic digestion

4.1. Emerging colourimetric sensor technologies

Colourimetric sensors (optical chemosensory nose or tongue sys-
tems) consist of a matrix-embedded indicator that reacts with a specific
analyte [57]. The matrix immobilises the indicator, with the im-
mobilised indicator near a light source (usually a light emitting diode),
which is directed to illuminate the sensor matrix, while an imaging unit
is positioned above the matrix (Fig. 2) [14,58]. The interaction of the
indicator with the analyte can cause a change in the optical properties
of the indicator (e.g., changes in absorption, reflection, fluorescence or
photoluminescence), which can be correlated to the identity and con-
centration of the analyte. Disposable sensor patches can be used as the
chemical indicator-containing matrix, allowing a straightforward
modular setup of the sensor. These can be placed directly into the
anaerobic digester (in-line) or in an external closed-loop (at-line) con-
figuration. A small window can be incorporated into such a setup, al-
lowing an external optical component to illuminate and image the
chemical indicators.

The interaction between the indicator and the analyte should ideally
be of a chemical nature rather than that of a physical nature (e.g.,
temperature). This is because chemical interactions provide a higher
dimensionality than physical interactions, leading to higher sensitivities
of analytes. Interactions of interest for colourimetric and fluorometric
arrays can be grouped into five classes. These are Lewis acid-base dyes,
Brønsted acid-base dyes (i.e., pH indicator dyes), sizeable permanent
dipole dyes for local polarity detection, and hydrogen bonding (i.e.,
solvatochromic, vapochromic, or zwitterionic dyes), redox-responsive
dyes and chromogenic aggregative colourants [17]. Table 1 displays
some of these groups of dyes.

During sensing, the illuminated colourimetric sensor array pad is
imaged digitally on a regular basis. A difference map is generated
comparing the original image before the AD process began, with the
current image (Fig. 1). The difference map is achieved by straightfor-
ward digital subtraction of the red, blue, and green colour channels of
the digital image, allowing the sensing of complex mixtures. The dye
concentration and spot intensity have the potential to create dis-
crepancies between individual sensor pad arrays; however, the use of
the differences in RGB colours when analysing reduces these differences
significantly [59]. Furthermore, the ease of visualisation of the colour
changes in colourimetric sensor arrays is advantageous for analyte
identification.

Recent developments in optical noses and tongues suggest that it
may be possible also to determine and quantify individual VFAs using a
colourimetric sensor [17,59–64]. No previous observations have been
made assessing the ability of colourimetric sensor arrays for the de-
tection of VFAs present during AD. This was assessed experimentally
using a 23-dye colourimetric sensor array with the digestate from AD.
The digestate was split into three separate anaerobic vessels and spiked
with acetic, propionic and butyric acid to concentrations of 10, 5 and
0.3 mM, respectively. The colourimetric sensor arrays were exposed
directly to the raw (unfiltered) digestate from each vessel for 10 s, then
imaged. After computational processing of the images, PCA of the data
was performed to determine if the colourimetric sensor array could
differentiate between the three VFAs (Figs. 3 and 4). It was observed

Fig. 2. Schematic Representation of Sensor Array
Setup. A straightforward setup of a colourimetric
sensor array, where a sample enters from the left,
flowing over the dye array, and out on the right. A
light source and camera are installed perpendicular
to the sensor array, allowing illumination and ima-
ging of the sensor array.
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that a clear differentiation between the three VFAs in raw digestate
from an AD process could be achieved in lab conditions at realistic VFA
concentrations. Furthermore, this would allow the detection of VFAs
before they accumulate to concentrations that may have a negative
impact on the production of biogas, preventing the collapse of the
biological process.

Ammonia can also be measured by the use of colourimetric sensor
analysis, where it can be detected below 50 ppb [65,66]. Another recent
method developed uses colourimetric assays, which have been designed
to sense H2S [67]. Dissolved CO2 [68,69] have been observed to be
detected using optical tongue methods to sensitivities of 0–20%. The
measurement of pH using coloured dyes is a well-established technique
and has been successfully established in bioprocess monitoring [58].
This is also apparent for sensing hydrocarbons, suggesting there may be
potential for also sensing methane [17].

4.2. Calibration of colourimetric sensors

Reconstructing the concentrations of different species combining

the signals extracted from the colourimetric sensors is one of the main
challenges. The idea consists of using a learning data set, consisting of
measurement data of compounds with known concentrations and che-
mical or biological species.

4.2.1. Data consistency checking
Before these methods can be undertaken, confirmation of the con-

sistency of the data set must be completed. This means that the com-
parability of the different data sets must be established for successful
data analysis. This process usually consists of a variety of pre-processing
methods of the data sets, including deviation [70], filtering [71] nor-
malisation, standardisation, centring, weighing and scaling [72]. The
pre-processing of data is a powerful, yet sensitive component in data
analysis [73], where the chosen method depends on the data used.
Relevant information is the next target for the pre-processing of the
data. The exclusion of unnecessary information within the data set (e.g.,
overlay of bands within the base-line spectra), is essential. The exclu-
sion can be achieved by using methods of normalisation or baseline
subtraction/correction, eliminating unnecessary data. Multivariate data
analysis can then be performed after the pre-processing.

4.2.2. Advanced calibration
Advanced calibration is then essential to be able to predict, for

unknown samples, the concentration of the different constituents it
contains. This calibration stage for colourimetric sensors is very close to
the requirement for IR spectrometry calibration, both of which can
produce multivariate data that needs to be analysed for interpretation.

Colourimetric sensors have high dimensionality due to the large
number of different chemical properties that the different dyes can
sense [17]. To differentiate among all compounds and possible mixtures
requires highly multidimensional data. There are a variety of statistical
methods available to deal with high dimensional data well beyond the
scope of this review [74,75]. In general, for chemometric data, there
are two distinct statistical approaches: clustering vs classification
[74–76]. Cluster analysis essentially tells one what resembles what,
e.g., how close the vectors representing data are to one another in a
high dimensional space. Classification analysis, on the other hand, at-
tempts to predict to which category (among a fixed number of known
categories) any particular (new) datum belongs.

Statistical methods can be either biased or unbiased (or model-free).
Unbiased methods are typically used to evaluate a data set to provide a
semi-quantitative idea of the quality of the data set and follow simple,
straightforward algorithms. Biased methods, on the other hand, can
provide significantly more power and utility with a concomitant in-
crease in complexity, but at the cost of demanding datasets for which
one already knows the answers. Biased methods can also be predictive,
allowing for class assignment of new experimental cases by using a
training set. The three most common approaches are HCA, PCA, and
linear discriminant analysis (LDA).

4.2.3. Calibration with principal component analysis
Colourimetric sensor data often requires only two principal com-

ponents to express a natural variability among the data, regardless of
the number of different sensor dyes in the physical array. High re-
producibility and safety of the bioprocess can be provided using this
type of process control [77].

When dealing with a broad range of analyte classes, a sensor array
designed with high dimensionality is highly desirable. If one is ex-
amining a narrow class of analytes, the then apparent high di-
mensionality of a sensor array becomes indicative of significant
amounts of noise relative to total variance. Consequently, the di-
mensionality of the data is not determined directly by the number of
different sensor dyes in the colourimetric array. Using a colourimetric
array containing 16 redox-sensitive dye formulations to detect powerful
oxidants and peroxy-based explosives, a PCA revealed that only two
dimensions, as opposed to 16, were required to reach 95% variance

Fig. 3. Scree Plot. Typical scree plot is showing the Eigenvalue of each com-
ponent using data from a 23-dye colourimetric array. Each dye has three colour
channels (red, green and blue), resulting in 69 components. The Eigenvalue is
used to display the variance observed in each component, and the larger the
magnitude, the higher the variance.

Fig. 4. Score Plot. The score plot of a PCA of a 23-dye colourimetric array in
response to butyric, propionic and acetic acid in anaerobic digestate. The plot
uses the first two principal components determined by the PCA to visualise the
results of the colourimetric array dye-colour changes in response to the three
acids assayed.
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[78].
The number of dimensions needed to assess 95% variance within

the sample provides information about the range of analytes being
probed, as probes for one analyte may only need one dimension to
achieve 95% variance, whereas probes from multiple analytes will re-
quire multiple dimensions to achieve 95% variance [17]. PCA is thus a
powerful tool for calibrating sensor arrays, especially those with mul-
tiple disparate components, as it allows some insight into the sensor's
chemical reactivity. A scree plot (Fig. 3), showing the cumulative
contributions of each principal component, provides a quantitative
measure of the contributions of different orthogonal reactivities to the
variance of the array response. A score plot (Fig. 4) of the first two
principal components can then display each measured variable, and
further group them.

4.2.4. Calibration with hierarchical cluster analysis
The agglomerative clustering technique of HCA determines clusters

from the Euclidean distance between experimental data. The ‘nearest-
neighbours’ are paired into a single cluster that is then paired with
other ‘nearest-neighbours’ until all variables are connected [74,75]. The
resulting dendrogram shows connectivity and some measures of the
distance between each of the pairs. In the context of chemical analyses,
these two essential pieces of data answer two questions, the con-
nectivity explains relationship similarity, and distance explains mag-
nitude. This analysis technique is commonly observed in evolutionary
genetics, where different species can be related to one another through
their connectivity and closeness. There are three primary limitations to
the HCA technique. The first involves fundamental limitations of all
unbiased methods, as HCA is not readily capable of predictive analysis.
Second, dendrograms created using HCA must be re-created with each
addition of a new analyte, so comparing dendrograms is typically only
useful for rough qualitative purposes. The third limitation is that of
interpretation of noisy data. Dendrograms can have rotations around
clustering axes that do not represent meaningful differences.

4.2.5. Calibration with linear discriminant analysis
Like PCA, LDA is a dimensional reduction technique that constructs

a set of orthogonal dimensions used to describe the data; however, LDA
seeks to find a set of dimensions that best separates data into already
known classes, rather than merely describing the total variance. Unlike
HCA or PCA, LDA is a biased method. Statistical analysis using LDA
requires inputting a class label for each sample. Components of each
dimension are ranked to maximise the ratio of between-sample variance
to within-sample variance. LDA can be used to predict the identity of
unknown samples by using a training set, similar to PCA; however,
because the dimensional components are optimised to maximise dif-
ferentiability, LDA will show better ability to differentiate among
sample classes. The primary weakness of LDA is related to the sample
size. The covariance matrix tends to be unstable when the sample size is

not significantly larger than the number of sample classes being ana-
lysed, and this is more problematic for high dimensional data.
Consequently, LDA can give drastically fluctuating results with small
sample sizes (compared to PCA or HCA, which can be unreliable with
small sample size, but not unstable).

Tensor discriminant analysis (TDA) is an improvement on LDA [79].
TDA is an array generalisation of LDA that can take advantage of high
dimensionality. It is used to classify multi-way array measurements,
rather than one-way vector measurements [79]. Data collected using a
colourimetric sensor array can be viewed as a 3-way tensor (the first
way corresponding to the choice of the dye, the second way corre-
sponding to the effects of the colour changes and the third way corre-
sponding to time progression) [80]. Tensor discriminant analysis can
significantly improve the sensitivity, specificity, and computational
efficiency of discriminant analysis methods because of the dimension-
ality reduction.

4.3. Promising perspectives of colourimetric sensors

4.3.1. Microorganism strain detection
Strain screening can be advantageous to determine the direction in

which the AD process is heading. Specific microorganisms produce
specific chemical profiles; therefore, it may be possible to determine the
dynamics of each microorganism group within an AD reactor by sensing
the metabolites produced. Use of colourimetric sensor arrays has been
proven to be able to differentiate and identify a variety of micro-
organism species and strains based solely on the metabolites of their
growth [81–83]. Although the environment within an anaerobic di-
gester is very complex, it may be possible to target particular metabo-
lites that are produced by the microorganisms of interest, allowing
monitoring of the microbial environment.

4.3.2. Other compounds of interest in anaerobic digestion
Methanethiol is a robust and toxic odorant present in biogas pro-

duced by AD. It has been suggested that this may also be able to be
detected using colourimetric analysis [17]. Glucose and fructose are
common carbon storage molecules involved in biological processes.
These have been shown to be detected using colourimetric analysis and
can be adapted to detect glucose and fructose during AD [84–86]. Al-
though there is a large variety of analytes that colourimetric sensors can
detect [17], this sensor technology still requires evaluation in biogas
production monitoring. Table 3 summarises some of the possible ana-
lytes that could be detected in AD.

4.3.3. Perspectives and challenges for the development of colourimetric
sensors

The main limitation of a colourimetric sensor in AD is that the
sensor provides a composite response to a complex mixture. Moreover,
a component by component analysis of the AD process is not obtained

Table 3
The evaluated potential for colourimetric array detection.

Analyte Detection method Sensitivity Reference

Oxygen Fluorophores were used in an optical system to measure dissolved oxygen for bioprocess monitoring. 4.3–100% [58]
pH Fluorophores were used in an optical system to measure pH for bioprocess monitoring. pH 4–10 [58]
CO2 Using a platinum divinyl complex (platinum in xylene), fluorescence was detected relative to the amount of dissolved CO2 in a

buffered solution.
0–20% [68,69]

Methanethiol Suggested that metalloproteins are capable of sensing methanethiol at deficient concentrations. N/A [17]
Glucose Glucose (along with many other sugars) were able to be detected to deficient concentrations, using a variety of chemically

sensitive pigments.
< 1mM [84–86]

Fructose Fructose (along with many other sugars) were able to be detected to deficient concentrations, using a variety of chemically
sensitive pigments.

< 25mM [84–86]

Ammonia Using metalloporphyrin chemoresponsive dyes, low levels of ammonia gas rapidly. > 50 ppb [65,66]
H2S A colourimetric sensor array comprised of various chemoresponsive dyes was shown to detect a wide range of H2S gas

concentrations.
50 ppb–50 ppm [67]

Strain screening A colourimetric array with a variety of dyes was shown to detect metabolites produced by ten different bacterial strains. N/A [81–83]
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due to the nature of the colourimetric sensors cross-reactive sensor
array, the natural assumption with complex mixtures, characteristic of
AD, that a complete quantitative analysis of each component must be
achieved. Contrary to this, in such complex mixtures, there are many
analytical achievements desired. These are generally to do with com-
parisons between AD reactors to identify if they are the same, whether
there are a few specific components within the mixture that have
changed irrespective of the continuous complex mixture, or whether
the material was processed correctly before measurement to achieve an
accurate result.

In contrary to this, the main strength of a colourimetric sensor in AD
is that the composite response of the sensor array in a complex mixture
allows the simplification of fingerprinting the AD mixture. As outlined
previously, many recent advances in such technologies have resulted in
the differentiation between largely similar complex mixtures by distinct
colourimetric fingerprints.

Colourimetric sensor arrays also provide non-uniform intrinsic re-
sponses to analytes by probing their chemical properties rather than
their physical properties. This makes such sensor arrays ideal for de-
tecting volatile and toxic components, due to their high reactivity,
making them straightforward to detect, even at extremely low con-
centrations. Concerning the AD process, one such component is the H2S
content of the biogas produced. This is a very toxic and potent com-
pound that is very reactive, with its measurement at low concentrations
still challenging. This reactivity can be exploited by colourimetric
sensors, allowing easy chemical detection. This enhanced detection of
volatile and toxic compounds by colourimetric sensors eliminates many
issues seen with traditional electronic noses and tongues, and solid-
state chemical sensors, such as false-positive identifications. A dis-
advantage of this is when detection of less-reactive components are
desired. Although by principle these are less reactive in their natural
state in the AD process, a suggested way to overcome this is to pre-react
the components to produce forms that are more reactive. For example,
the partial oxidation of the components, resulting in products with a
higher reactivity, allowing for straight-forward detection by colouri-
metric sensor arrays [87]. By improving the selectivity of such methods,
the capabilities of colourimetric sensor arrays would be significantly
improved, especially when dealing with such complex mixtures with a
high level of interferents as seen in AD.

When applying colourimetric sensor arrays to the liquid-phase of
AD, the potential solubility of the dye probes becomes a significant
problem. Although the complex AD mixture requires direct access to the
sensor dyes, these dyes cannot be allowed to dissolve into the AD
mixture. This can be overcome by improving the immobilisation of the
sensor dyes into sol-gel formations; however, this can also result in
unfavourable results in the distribution of the dye within the sol-gel
matrix. Another way to avoid this problem is by performing analysis of
the AD liquid mixture parallel to the process in an at-line or off-line
protocol. However, this could be a time consuming and undesired
methodology, although automation of this method could yield suffi-
cient results in some cases. Despite this, it is suggested that improve-
ments in the attachment of the sensor dyes to a substrate to immobilise
them in a liquid environment is the desired method for realising an on-
line colourimetric sensor for AD.

The high turbidity of the liquid phase of the digestate is a challenge
for optical detection of the colourimetric sensor arrays. If not com-
pensated for, this would result in an ineffective sensor system. To avoid
this, the sensor array can be designed to have the coloured dyes on a
glass array. This would allow the dyes to be accessed through the back
of the glass array, avoiding the problem related to high turbidity. This
would also avoid any disruption caused by solid particles and fibres to
the imaging of the sensor array.

The integration of colourimetric sensor arrays into an AD would
allow direct detection of the chemical compounds within the gas and
liquid phases. This direct integration (whether directly placed within
the reactor, or near a port to the internal space of the reactor), and the

limited time required to achieve analyte-sensor dye interactions, will
significantly improve the ability to have instantaneous measurements
of the AD state. It is realistic to foresee the development of an on-line
sensor system based on colourimetric sensor arrays for use in AD,
coupled with automated post-treatment of the sensor data.

The lifetime of colourimetric sensors is significantly dependent on
the strength of the interactions between the sensor dyes and the analyte
components interacting with them. Moreover, with weak analyte-sensor
interactions, the reversibility of the sensor is achievable; however,
strong interactions may have limited reversibility. By designing a col-
ourimetric sensor array with the intention of weak analyte-sensor in-
teractions, the reversibility may be improved; however, this will come
at a cost to the dimensionality of the data as less variation in the colours
of the dyes will be observed. Alternatively, by designing a sensor array
for strong analyte-sensor interactions, the dimensionality of the data
will be higher. Although the reversibility may be compromised by doing
this, the dye arrays are rather straight-forward to produce and could be
used in a semi-disposable manner, with a short lifetime.

4.3.4. Future perspectives
Future research on colourimetric sensor arrays for detection of VFAs

in AD should focus on field trials in industrial AD plants, and increasing
the lifetime of the sensor arrays. The increase in lifetime could be
achieved by preferentially utilizing dyes that react with the liquid phase
of the AD in a reversible manner, or by the development of further
analysis software that can utilise data from dyes that show limited
colour change due to irreversible reactions. Furthermore, more analysis
of the sensor arrays response to different VFAs of different concentra-
tions in different AD environments is heavily required. Moreover, this
will allow the implementation of machine learning approaches to have
a highly detailed assessment of the sensor arrays behaviour in relation
to the AD environment and VFA concentrations.

5. Concluding remarks

Modern AD processes require cost-effective sensor technologies that
allow the on-line measurement of key variables beyond VFAs, even for
the smallest biogas production plants. These sensor and analysis im-
provements will give the operators of biogas plants the potential to gain
not only a greater understanding of the complex environment within
the production plant but also predict the direction of the reactions
within the bioreactor. Colourimetric sensor array technologies can fulfil
the requirements for future on-line biogas sensing. They will allow the
operator to gain a greater understanding of the internal AD environ-
ment, facilitating the prediction of the direction of the process. The low
economic requirement of colourimetric sensors will also allow for
cheap, small and cost-effective devices able to detect and discriminate
between various VFAs at low concentrations. With this low economic
cost and the reduced requirement for technical expertise, colourimetric
sensors will be able to be implemented in a variety of biogas plants,
including small, low budget plants. The rapid timeframe from the
sensor interaction with the sample to the computed result will essen-
tially facilitate on-line detection of process deviations. This will sig-
nificantly remove the detection delay as observed with current tech-
nologies. Furthermore, the flexibility of the colourimetric sensor
systems will allow adaptation to detect a variety of other analytes
within the digestate, potentially facilitating a multi-variate, on-line,
cost-effective and robust sensor system. By providing a high fidelity
depiction of AD, it is also likely to improve the knowledge of this
complex process.
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