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 

Abstract— In this work, we have proposed a charge plasma 

based doping less double gated tunnel FET (DLDGTFET) based 

biosensor using dielectric modulation with a cavity introduced at 

the source side for the label free sensing of the biomolecules. 

These biomolecules are immobilized in the cavity region to induce 

drain current. The sensing of the biomolecules is based on the 

drain current of the device while the drain current is based on the 

dielectric constant and the interfacing charges of the 

biomolecules. The cavity length is varied between 25 nm and 30 

nm and different dielectric constants have been used. The 

expansion of the cavity length results in slight reduction of the 

drain current due to lowering of the capacitance. Higher 

dielectric constants result in better drain current values which 

leads to an increase in the sensitivity of the device. The maximum 

sensitivity attained was as high as 1.0x1010. As compared to other 

transistors, DLDGTFET provides better sensitivity as a biosensor 

and also the leakage current is low.   

Index Terms— Charge plasma, Dielectric Modulation Tunnel 

FET, Biosensor, Biomolecule Sensitivity. 

 

I. INTRODUCTION 

ATELY, the field of biosensors has been growing due to 

its wide range of applications ranging from medical [1] to 

environmental and agricultural fields. Biosensors based on 

FETs have been studied due to their various advantages such 

as low cost and their ability to detect charged biomolecules. 

FET-based biosensors were popular due to their performance 

in label-free detection of the biomolecules [2]. Despite being a 

low cost device, FET based biosensor did not had much 

applications due to their inability of detecting neutral charged 

particles. Later on, the dielectrically modulated FET based 

biosensors were imported to detect both charged and non-

charged biomolecules [3]. A cavity was introduced under the  
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gate to immobilize the biomolecules and determine the 

outcome on the basis of dielectric constant and drain current 

[4]. The immobilization of the biomolecules causes the 

electrical parameters to modulate and form a biosensor. 

However, it has some drawbacks such as scaling, power 

supply, short channel effects (SCEs) [5, 6], etc. 

Later on, biosensors based on metal oxide semiconductors 

FETs (MOSFETs) were introduced because of their better 

performance with respect to the drain current as compared to 

the conventional FETs. Due to its limitations such as the 

inability of the sub-threshold swing to reduce below 

60mV/dec [7, 8] and higher leakage current, MOSFET based 

biosensors did not find much attention. To overcome these 

issues, a TFET based biosensor was proposed [9]. TFET based 

biosensor is one of the most promising device which helps to 

overcome the difficulties faced by the conventional FETs. The 

performance of TFET devices are improved due to Band-to-

Band tunneling [10, 11] at the source and channel interface 

which results in higher sensitivity for biosensing purpose as 

compared to the thermionic emission in MOSFETs. 

We have proposed a charge plasma [12] based DLDGTFET 

(Doping-less [13] double gate tunnel FET) biosensor for the 

detection of biomolecules. The random dopant fluctuation 

(RDFs) is a major issue in doped nanoscale devices [14]. 

However, achieving physical doping with the help of thermal 

annealing process at source and drain region is complex and to 

achieve uniform doping in required region with the help of 

diffusion or ion implantation is also a challenge. Therefore, 

charge plasma technique is used in DLDGTFET to achieve 

source (p+) and drain (n+) regions over the silicon body to 

avoid physical doping and reduce the cost for annealing 

process [12]. In this device, the p+ region and n+ region are 

formed by applying suitable metal work functions at the 

source and drain sides [12]. This results in the absence of 

abrupt junctions admist the source-channel and drain-channel 

regions which further simplifies the fabrication process of 

DLDGTFET. Biosensors are used to detect the biological 

elements present in the environment by converting the 

biological response into electrical signal [15]. This is achieved 

by introducing cavities at the top and bottom regions of the 

device towards the source side underneath the gates. The 

cavities help in the detection of biomolecule charges (both 

positive and negative) in terms of dielectric constant and their 

respective currents. Due to the presence of biomolecules, the 
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electrical parameters of the device get modulated due to which 

the detection of biomolecules becomes easy. The double gate 

metals have been used for better gate controllability [13] and 

also to control the threshold voltage with the help of the gate 

work function. The high-k dielectric [16] present as gate oxide 

will increase the DLDGTFET drain current because ON 

current is directly proportional to the gate dielectric constant. 

Hence, HfO2 has been used as a dielectric [17].  

This paper focuses on label free sensing [2] by studying the 

impact of different biomolecules on the performance of 

DLDGTFET device. In this work, the comparison of drain 

current for different cavity lengths (25nm and 30nm) has been 

studied in detail with different biomolecules such as Protein, 

Biotion, Aminopropyltrithoxysilane, etc. for biosensing 

application. The comparison is done for different 

biomolecules as well as interfacing charges (both positive and 

negative) to study their effect on the drain current. 

 

 

II. DEVICE STRUCTURE 

 

For the simulation of DLDGTFET based Biosensor, the 

device parameters with their respective values are: thickness 

of silicon film (Tsi= 10 nm), channel length (L= 50 nm), gate 

oxide thickness (tox= 5nm), intrinsic carrier concentration (ni= 

1×1015 𝑐𝑚−3). In the charge plasma based DLDGTFET, the 

source and drain regions are formed by using suitable metal 

work functions. The P+ region is formed by introducing 

platinum (WF=5.93 eV) at the source side while hafnium 

(WF=3.9 eV) is used to form the N+ region at the drain side. 

Cavities formed underneath the gates are introduced with 

different biomolecules to get the device modulated to detect 

the biomolecules. In Figure 1, it can be seen that the channel is 

parted into two regions. The first region is the cavity length 

taken as 25 and 30 nm and the second region is gate oxide 

(HfO2) whose length is taken as 25 and 20 nm. The metal 

work function of both the gates is 4.5 eV. The spacer between 

the gate and source (Lgs) is 3 nm and between gate and drain 

(Lgd) is 15 nm [18]. As shown in Figure 1, the spacer between 

gate and source is set to be lesser than that between drain and 

gate because it determines the electron tunneling probability 

from source to the channel [19]. To avoid the formation of 

silicide, 3 nm thick silicon dioxide between silicon substrate 

and drain electrode and 0.5 nm thick silicon dioxide between 

source electrode and silicon film are introduced respectively 

[19]. 

Silvaco Atlas tool is used to obtain the simulation results of 

above mentioned device [20]. In the simulations, drift 

diffusion current transport model is contemplated for the 

tunneling of electrons and holes. By using Lombardi mobility 

(CVT) model and concentration dependent Shockley-Read-

Hall recombination and generation model, the effect of 

leakage current and mobility are accounted. The model, Non-

local BTBT, is considered to account for the distinct 

separation of holes generated in valance band, electrons 

originated in the conduction band and also to model the 

tunneling process more precisely [20]. 

 
Fig. 1 2D Structure of DLDGTFET Biosensor. 

 

 
Fig. 2 Transfer characteristics of DLDGTFET with different value of cavity 

for cavity length=25nm. 

 

III. RESULTS AND DISCUSSIONS 

 

Different biomolecules have different dielectric constants. 

There exists two kinds of biomolecules – neutral and charged. 

The simulations of neutral biomolecules are based on their 

dielectric constants while the charged biomolecules are 

simulated by considering the dielectric constant as well as the 

charge density. The immobilization of the biomolecules 

induces BTBT procedure from source to channel region for 

different dielectric constants and interfacing charges. 

As length of the cavity is varied, there is a variation in drain 

current due to immobilization of biomolecules in the cavity 

region with different dielectric constants and with cavity 

length 25 nm at VDS =1.0V as shown in Figure 2. The notation 

‘cavity=1’ represents that the cavity consists of air. Similarly, 

‘cavity=2’ represents that the cavity is filled with 

biomolecules having a dielectric value as 2 and so on. Since, 

the tunneling barrier width increases when cavities are 

introduced under the gate, the possibility of low electron 

tunnelling arises. After introducing biomolecules, the 

tunnelling barrier width reduces with an increase in the 

dielectric constant as seen in Figure 3. Whereas, the OFF 

current remains constant due to an increase in the curve of the 

energy band which leads to the depletion of the barrier width. 

More curving of the energy band will lead to more tunneling 

of electrons due to reduced tunneling barrier between the 

conduction band of channel and valence band of source. 
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Fig. 3 Energy band diagram for DLDGTFET with different value of cavity for 
cavity length= 25nm. 

 

 

For the charged biomolecules, both dielectric constants and 

interfacing charges (ID_NF) are taken into account. Figure 

4(a) shows the variation in drain current when positively 

charged biomolecules are immobilized under the gates. It is 

known that voltage is directly proportional to current and 

also, 𝑞 = 𝑐𝑣, where q is the charge, c is the capacitance and v 

is the voltage. Hence, charge is directly proportional to the 

current. Therefore, the drain current increases with an increase 

in the interfacing charges because it decreases the barrier 

width between the conduction band and the valence band of 

channel and source respectively. Figure 4(b) shows the plot of 

drain current when negatively charged biomolecules are 

introduced in the cavity. The drain current obtained for 

negatively charged particles is low as compared to that of the 

positively charged particles because for the negatively charged 

particles, the charge density becomes low when compared to 

the positively charged particles, however, the current increases 

with an increase in the interfacing charges of the biomolecules 

while the OFF state current remains the same. The explanation 

for increase in the current is same as for positively charged 

biomolecules, i.e. the current increases with an increase in the 

charge. 

Figure 5 shows the variation in drain current due to 

immobilization of biomolecules in the cavity region by taking 

different dielectric constants with a cavity length of 30 nm at 

VDS =1.0V. It is observed that there is a slight change in the 

drain current when the cavity length is increased from 25nm to 

30 nm. It occurs due to the fact that in DLDGTFET the current 

is obtained by the tunneling principle. Increase in length 

widens the tunnelling barrier which leads to a lower 

probability of tunneling. Capacitance is inversely proportional 

to length l, which can be shown by the relation, 𝐶 =
𝜀𝐴

𝑙
, where 

C is the capacitance, 𝜀 is the permittivity and A denotes the 

area. As we increase the length of the cavity, it decreases the 

capacitance between the gate and the channel region. 

Therefore, increase in cavity length decreases the drain 

current.  

Figure 6 shows the electric field variation for different 

dielectric constants of biomolecules. We can see that the 

biomolecules with higher dielectric constants provide a higher  

 

(a) 

 
 

(b)  

 

 
 
Fig. 4 Drain Current for DLDGTFET with cavity length=25nm with cavity=7 

for different (a) positive interfacing charges and (b) negative interfacing 

charges. 

 

 
 

Fig. 5 Transfer characteristics of DLDGTFET with different value of cavity 

for cavity length=30nm. 

 

value of electric field. It takes place due to the fact that when 

gate voltage is applied, it induces electric field. We know that 

electric filed is inversely proportional to the length of the 

cavity. In Figure 6, it can be seen that the higher the dielectric, 

the higher is the electric field and more electric field indicates 

more tunneling of electrons which in turn means higher drain 

current. 
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   Fig.6 Effective Electric Field at cavity length=30 nm with different cavity. 

 

 

(a) 

 
(b) 

 
 
Fig. 7 (a) Drain Current for DLDGTFET and (b) Energy band diagram for 

different positive interfacing charges with cavity length=30nm with cavity =7. 

 

Figure 7(a) holds the same explanation for the increased cavity 

length i.e. 30nm as it was for the charged biomolecules for 

cavity length 25nm. It is observed that an increase in the 

positive interfacing charges will increase the drain current. 

This happens due to lowering of the tunneling barrier between 

 

 

(a) 

 

 
 

(b) 

 
Fig. 8 (a) Drain Current for DLDGTFET and (b) Energy band diagram for 

different negative interfacing charges with cavity length=30nm with 

cavity =7. 

 

the conduction and the valence band as shown in Figure 7(b).   

Positively charged biomolecules produce more drain current 

than the negatively charged biomolecules which leads to 

depletion of the barrier width. Figure 8(a) shows an increase in 

the drain current because the charge density of the negatively 

charged biomolecules increases due to the same fact that the 

tunneling barrier reduces and the tunneling probability of the 

electrons increases which leads to a higher drain current as 

seen in Figure 8(b). In spite of all, the OFF state current 

remains constant throughout. 
 

The drain current sensitivity is considered to be the main 

factor while measuring the performance of a biosensor. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝐼𝑑(𝑏𝑖𝑜) − 𝐼𝑑(𝑎𝑖𝑟)

𝐼𝑑(𝑎𝑖𝑟)
 

where Id(bio)= drain current with biomolecules and Id(air)= 

drain current without biomolecules. 

Figure 9 (a) and (b) shows the drain current sensitivity 

characteristics of the DLDGTFET with cavity length 25nm 

and 30nm respectively at VDS=1.0V. The notation 

‘SS_k=2vs1’ denotes the sensitivity factor when biomolecule  
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(b) 

 
Fig. 9 Sensitivity plot of cavity length (a) 25 nm and (b) 30 nm. 

 

 

with dielectric value 2 is taken into account for the 

calculations with respect to air and so on.  The sensitivity 

increases with the drain current which in turn is associated 

with the dielectric constant. Whenever there is a moderate 

change in the dielectric value, it is observed that the sensitivity 

increases with the drain current. The ability of DLDGTFET to 

sense the biomolecules is directly proportional to the drain 

current sensitivity.    

 
 

 

IV. CONCLUSION 

 

It is observed that since the immobilization of biomolecules 

takes place under the gate, TFET proves to be a better device 

for sensing biomolecules. The proposed structure DLDGTFET 

is obtained using charge plasma technique which eliminates 

the need for the formation of junctions. Biosensors have 

several applications which requires high sensitivity and 

DGDLTFET poses the ability to fulfill the requirements. Thus, 

taking cost and performance into consideration, a charge 

plasma based DLDGTFET exhibits surpassing qualities with 

respect to cavity length and different charged and neutral 

biomolecules. It provides better drain current sensitivity and 

also, the leakage current remains constant throughout with a 

minimum value, making it a highly desirable structure. 
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