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Integration of Wireless Sensor Networks (WSN) in the field of agriculture has provided a new direction for the
production of crops. The same can be applied particularly to greenhouses. Greenhouses provide a protected
environment for plants and crops. This paper reviews the role of WSN in monitoring of greenhouses. The paper
presents an end-to-end survey; starting from the layout of crops in greenhouses, wireless technology used for
communication of sensors, techniques to choose transmission interval or rate. Layouts and sampling techniques

are also classified and compared. Other than these, the paper also studies various prediction models and decision
supporting techniques adopted in greenhouses for efficient integration and management of WSN. These pre-
diction models are also comprehensively analyzed in this work.

1. Introduction

Modern day scenario of agriculture has changed. Over the years,
population has increased. According to UN’s world population prospect
2017 report, population is estimated to reach 9.8 billion by 2050
(United Nations, 2017). Along with population, demand for food is also
multiplying. According to Food and Agriculture Organization of the
United Nations (FAO), although there are 30,000 types of edible plants
available, humans cultivate only 4% of it (FAO, 1999). The agricultural
land has considerably reduced due to various factors like urbanization
and industrialization. To cope up with these situations, modern-day
technological solutions are required. Other than this, water scarcity,
increase in fertilization and dynamic climate changes have also strained
to integrate technology to achieve required production in agriculture
with minimum wastage of resources. WSN is one prominent technology
that has developed over past few years and has found its path in many
applications like military, defense, healthcare, agriculture, etc. In
agriculture, WSN is particularly used to achieve a state called Precision
Agriculture (PA). PA works on the phenomenon of observing (using
sensors) and responding (using actuators) and tries to achieve para-
metric values and conditions required for optimum health and yield of
crop. PA also focuses on optimizing resources used for production.
Fig. 1 shows the complete process of monitoring and control in a field.
Sensors are placed at required stations in suitable and optimal de-
ployment. Sensed information is sent to central repository through
available wireless channel. After analyzing the information, either that
information is utilized for futuristic improvements or appropriate

* Correspoding authors.

control action is commanded.

Greenhouse or Polyhouse is an agricultural innovation to provide a
regulated and controlled environment to crops. Greenhouse forms a
closed loop in itself and crops are shielded from outside environment. It
forms a protected environment for cultivation and has great importance
in the era of changing climatic conditions. So greenhouse is an example
of precision agriculture. Greenhouses work on the concept of the
greenhouse effect. Sunlight comes inside greenhouse through trans-
parent roof and walls. Due to closed structure, heat is not able to escape
and trapped inside greenhouse. Modern-day greenhouses are equipped
with artificial systems to provide ventilation, light, heat, etc. A modern
greenhouse may have exhaust fans, sprinklers or cellulose cooling pads.
It may have provision for artificial lighting. Majority of energy in
greenhouse is consumed by heating and ventilation systems
(Khoshnevisan et al., 2013). WSN can help in controlling these equip-
ment and provide an optimized environment to crops.

1.1. Motivation

When keyword ‘WSN’ was searched on Google scholar, about
345,000 results were found. Till 2010, 57,200 results were found and
after 2010, 78,600 results were found. After 2015, only 33,200 related
works were found. On searching keyword ‘greenhouse’, a total of
2,330,000 results appeared. Before 2010, it was 1320000, after 2010 it
was 110000, after 2015 it was 246000. If we combine both keywords,
total results appeared were only 7120. Till 2010, only 1190 results
appeared and after 2010, 6190 results were found. After 2015, only
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Fig. 1. Complete process of monitoring and control.
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2390 results were found. Searching individually on the IEEE digital
library, keyword ‘WSN' gave about 17,700 results; keyword ‘green-
house’ gave about 3800 results. Shockingly, on searching both key-
words together, only 80 results appeared. Out of these 80, 79 were
conference papers. Authors feel that WSN has the potential to bring a
green revolution like scenario in greenhouse culture. However, the re-
search in the area is very limited. As shown in Figs. 2-4, as compared to
WSN driven agricultural research, papers on greenhouse facilitated by
WSN technology are very limited. The research for application of WSN
in a greenhouse has picked up momentum in past 10 years but still has a
wide scope. Data presented for 2018 is not complete. Only available
papers at the time of writing this paper are considered. Papers for 2019
are early access papers.

1.2. Contribution

In this paper, we surveyed the application of WSN in greenhouses.
This survey provides an end-to-end review. So this review can assist
novice researchers in the field. The paper can be referred at every stage
of deployment and implementation of a wireless sensor network in a
greenhouse. The paper provides help at very first stage i.e. nodes pla-
cement or layout. Section 2 discusses layout techniques of sensors in a
greenhouse. This review can also help in reducing data effectively by
choosing appropriate sampling techniques. Since the paper focuses on
sampling techniques implemented in greenhouses, so certain advantage
of experience can be taken. After choosing transmission interval on the
basis of sampling technique at second stage, data needs to be
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transmitted at third stage using communication technologies. Section 3
discusses data sampling techniques and Section 4 discusses various
communication technologies adopted for sensor communication parti-
cularly in greenhouses. The review also lends a helping hand at the last
stage of analysis and decision making. Section 5 discusses the sig-
nificance of prediction models and popular prediction models for a
greenhouse environment. Section 6 presents various techniques im-
plemented for support of decision making. This paper also classifies
layouts and sampling techniques implemented in greenhouses.

2. Layouts

Layout means the way in which something is arranged. Layout
should not be confused with topology. Topology refers to placement of
nodes to represent direction of flow of information while layout is
physical placement of nodes. Layout is also referred to as physical to-
pology sometimes. Sensor layout is an important fact which must be
paid appropriate attention. Greenhouse is a very dynamic environment
where parameters change spatially as well as temporally. Crops will
grow over time and will eventually affect performance of sensors. A
large greenhouse will have particularly many microclimatic zones
within itself. It may have heterogeneous zones where parameters and
overall environment differ from the surrounding zones within a single
greenhouse. These microclimates exist both horizontally as well as
vertically in a greenhouse. Monitoring of these parameters requires
non-uniform deployment of sensors. Irrigation and fertilization patterns
can also help in deciding location of sensors. In this paper, layout of
sensors in a greenhouse has been categorized broadly as horizontal
layout and vertical layout. Many authors working in the field of mon-
itoring and control of greenhouse have proposed few other layout
concepts also which have been covered in third subsection of this sec-
tion.

2.1. Horizontal layout

Conventional systems have either random or grid layout of sensors
in greenhouse. Mancuso and Bustaffa (2006) proposed to place the 6
nodes in rows and columns crossing each other to form a grid. The grid
covered an area of 20 by 50 m of tomato greenhouse. Bridge node was
placed along the longer edge of greenhouse in the middle. Similar setup
can be sited to cover a larger greenhouse like 30 by 30 length units
using 900 sensors placed on all the junctions (Ferentinos and
Tsiligiridis, 2007). Shah et al. (2009) used the same layout to monitor a

small okra greenhouse of 6 by 9m. In another scenario, rather than
placing sensor nodes in grid layout, authors propose to divide the
geographic area of field in grids and site 2-3 nodes in each grid. Nodes
on the edge of grid are shared with neighboring grid. Base station is
positioned on one edge of greenhouse (Quynh et al., 2015). Nodes
within grid provide more flexibility and better free space coverage than
layout with nodes on junctions of grid. Another variant of grid are
tessellations (Caicedo-Ortiz et al., 2018). Grids are normally visualized
as repeated patterns of squares or rectangles. Tessellations are tiles
formed by regular polygons. These polygons can be triangles, squares,
hexagons, etc. Tessellations inherit the simplicity of grids and have an
additional advantage of covering free spaces. It avoids overlapping and
maintains uniformity in communication. For example, nodes placed on
edges of such tessellations are equidistant (Poe and Schmitt, 2009).
Authors further enhance the concept by introducing layers of tessella-
tions. Fig. 5 shows examples of tessellations and Fig. 6 represents layers
of tessellations. Nodes in different layers are represented with different
notations. Layers surround the central point of tessellation.

Relation between number of nodes (N) and number of layers (C) is
given in Eq. (1).

N= (2 C+ 1)? (€]

Song et al. (2011) modify the grid layout to increase the network
lifetime. Within grid, hierarchal cluster topology is presented. Parent
nodes are proposed to have redundant nodes to improve the network
lifetime over uniform positioning. The algorithm is called as Redundant
Node Deployment Algorithm (RNDA). RNDA utilizes the concept of
load balancing to increase network lifetime. With few numbers of re-
dundant nodes, network lifetime can be prolonged for thousands of
rounds. Other than grid, random layout is also simple. While grid is the
most commonly used layout, Raheemah et al. (2016) preferred to de-
ploy directional antennas to construct a row-only layout. Transmitter
was placed in front of each row to develop a path loss model in mango
greenhouse.

Although greenhouse is a closed loop control system in itself, it can’t
be assumed to be completely independent of outside climatic condi-
tions. Sometimes there is a requirement of monitoring outside en-
vironment of greenhouse along with the inside environment. So during
layout stage, appropriate sensors should be placed outside the green-
house to measure outside environmental parameters like temperature,
humidity, rain, etc. Outside sensors can form their own topology iso-
lated from inside sensor nodes or if sensors need to communicate, it
should be in range. Dan et al. (2015) divided the 200 nodes in type ‘A’
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Fig. 5. Tessellations.

and type ‘B’. Type ‘A’ are sensor nodes for outside climate monitoring
and type ‘B’ are sensors for inside climate monitoring. Many other au-
thors also preferred a weather station outside the greenhouse for the
accuracy of measurements (Azaza et al., 2016; Pahuja et al., 2013;
Lopez-Martinez et al., 2018). Layout can also be decided on the basis of
microclimatic properties. 24 sensors, 2 gateways and 48 wireless
cameras were positioned in four regions in a Phalaenopsis orchid
greenhouse to find dependence of growth of leaves on various para-
meters. These four regions were: well-ventilated region, hot and less
humid region, a sultry region and a humid region (Liao et al., 2017).
Although in this work authors placed the sensors and wireless cameras
uniformly but heterogeneity and dynamics of the region can be con-
sidered as a factor while deciding number of nodes in each region.
Along with static sensors, mobile sensors can also be deployed to have a
reliable greenhouse monitoring system. 120 nodes and 4 gateways were
placed in an orchid greenhouse for monitoring purpose. Out of these
120, 52 nodes were fixed and remaining 68 were moving at the pace of
0.15m/s. Topology was formed every 30min using Dynamic Con-
vergecast Tree Algorithm (DCTA). Longest measured distance between
nodes was 75.6 m (Jiang et al., 2016). Potential of mobile nodes for
monitoring of greenhouses is still an almost unexplored area.

All the above-discussed literature considered a single network but
few authors tried to investigate the concept of multiple networks or

___*___

—_———- - - - —

multiple topologies for the monitoring of single greenhouse. These
networks can be totally isolated, have little interdependence or total
interdependence. In a tomato greenhouse, sensors were deployed uni-
formly in cluster tree topology while routing nodes formed a triangular
lattice grid. Sensor network and routing nodes’ network had total in-
terdependence (Yang et al., 2015). Different network can also be
formed for separate type of sensors. Riquelme et al. (2009) proposed to
deploy separate network of soil sensor nodes and environmental sensor
nodes. To monitor quality of water used for irrigation, another isolated
network was deployed. Although the deployed field was not a green-
house, idea of individual isolated networks for soil sensors and en-
vironmental sensors can provide new paradigm to greenhouse mon-
itoring.

The horizontal layouts are summarized in Table 1. For deployment
of sensor in a layout, along with number of sensors, crop and measured
parameter is an important factor. Although grid topology seems to be
simple to be deployed, it may be over the edge deployment and wastage
of nodes sometimes in greenhouse environment. Overlap is a serious
issue in square grid layout. Secondly, few environmental parameters do
not change within few meters in a greenhouse. So for measurement of
parameters like temperature, humidity and illumination, grid layout
does not work optimally. For parameters where range of variability of
parameter is within few meters like soil temperature, soil moisture, soil

@ Innermost Layer Node

* Middle Layer Node

e Outermost Layer Node

|
e

Fig. 6. Layers of tessellations.
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Table 1

Horizontal layout.

Measured Parameters

Area

Number of Nodes

Crop

Reference

Layout

Air Temperature, Humidity and Soil temperature

20m X 50 m

7 (including one gateway)

Tomato

Mancuso and Bustaffa (2006)

Grid

Temperature, Humidity, CO, concentration and Illumination

35m x 200 m

200

Dan et al. (2015)

Inside and outside

Temperature, Humidity, CO, concentration and Illumination

Temperature, Humidity, VPD

374m X 211m X 195m

30m X 48m

Basil

Azaza et al. (2016)

7

Chilli

Pahuja et al. (2013)

Depending on number of layers 10026 m? Temperature and Soil Moisture

24 nodes and 2 gateways

Cassava
Orchid
Mango

Caicedo-Ortiz et al. (2018)
Liao et al. (2017)

Tessellations

130cm X 140cm X 150em  Temperature, Humidity and Illumination

50m X 10 m x5m

Divided in regions

Rows only

273 (7 on each tree, 3 lanes of 13 trees in each

TOW)

Raheemah et al. (2016)

Temperature, Humidity, Illumination and Soil Moisture, Chlorophyll

content

72m X 36 m X 10m

120 (52 fixed, 68 moving)

Orchid

Jiang et al. (2016)

Fixed and moving nodes

Temperature, Humidity, Sap flow, Stem diameter, leaf thickness, leaf
wetness

50m x 50 m

30 (20 sensors, 9 routers, 1 gateway)

Tomato

Yang et al. (2015)

Separate topology for sensors and

routers

Computers and Electronics in Agriculture 163 (2019) 104877

PH, etc., grid layout is suitable but requires more number of sensors and
hence costs more. For example if in a certain field, range of variability
of soil moisture is 15 m then distance among nodes should be less than
15 m for efficient monitoring. Tessellations are still an unexplored area.
By optimizing number of layers, node’s density can be optimized. In-
cluding the idea of outside sensors can help in considering the ignored
factors of outside environment also. Analysis of outside parameters like
illumination and wind speed can add an additional perspective to the
monitoring of greenhouses. For crops grown inside greenhouse, VPD
(Vapor Pressure Deficit) is more enlightening parameter than relative
humidity. VPD represents the difference between actual moisture level
in air and moisture level at full saturation. As the difference between
two increases, VPD increases. So, crops try to draw more water from
roots and rate of transpiration increases. If VPD is less, water condenses
out of air on crop leaves. Thus VPD provides assistance for disease
forecast. For analysis purpose like in an application where a control
group needs to be compared with experiment group, field divided in
region fits best. The concept of moving nodes seem very attractive but it
comes with the constraints of movement path without hindrance of
crop environment. Greenhouses spread over hectares, moving nodes
can provide an additional aid in monitoring. For parameters having
short range of variability, moving node can be put into practice to avoid
the cost of dense network. For touch based sensors like chlorophyll
content meter, a robotic moving node can ease the monitoring process.
Isolation of topology of sensors and routers prolongs the network life-
time and manages the risk. Triangular lattice topology used for routing
nodes helped in reducing overlapping. Isolation of network for sensitive
sensors like CO, concentration sensor with compatibility issues can also
help in prolonging the lifetime. In case of supplemental light sources,
sensors should be rightly positioned to capture the true value of illu-
mination or irradiance reaching crop.

2.2. Vertical layout

As the name suggests, sensors are not deployed at ground level in
vertical layout system. Since all the crops grow in vertical direction
either upwards or downwards, vertical layout has a special significance
for greenhouse climate control. Growth and foliage of crop greatly af-
fect the communication range of sensor (Yang et al., 2015), so vertical
layout seems to be one of the prominent solutions. This survey classifies
all the variants of vertical layouts in a typical greenhouse. In the
starting years of sensor era, when sensors were quite expensive,
greenhouses used to have a single sensor node on the roof in the centre.
As predicted by Moore’s law, level of integration increased and helped
in cut down on prices. This enabled the deployment of multiple sensors
to increase the accuracy and reliability of monitoring system. Few
proposed to have all sensor nodes at single height (Akkas and Sokullu,
2017; Lixuan et al., 2014) while other authors suggested placing sensors
at separate height levels (Ahonen et al., 2008; Raheemah et al., 2016;
Pahuja et al., 2013) (Harris et al., 2016; Srbinovska et al., 2015; Zou
et al., 2017). Pahuja et al. (2013) used the model to monitor parameters
at canopy level and above canopy level of crop while Harris et al.
(2016) utilized it for calibration purpose. In another variant of vertical
layout, sensors were positioned on ground and only coordinators were
placed at raised level or in center in case of single coordinator (Mancuso
and Bustaffa, 2006; Sabri et al., 2011).

To monitor soil parameters, sensors may need to be placed vertically
downwards i.e. underground (Rishi and Kumar, 2013). Yu et al. (2011)
proposed to place only antennas at separate heights to increase com-
munication range whereas sensors are on ground level. Communication
distance increases with an increase in antenna height but only till 1 m
because after that height, tomato tree does not interfere. So the height
levels of sensors depend upon height of crop. Vertical layout can sup-
port in acquiring growth related parameters of crop like NDVI (Nor-
malized Difference Vegetation Index). NDVI depends upon spectral data
of crop canopy reflectance. Mathematically, NDVI can be represented as
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Table 2

Vertical Layout.

Focused Area

Number of nodes Measured Parameter

Height levels

Number of height zones

Crop

Reference

Layout

Microclimate Monitoring

Temperature, Humidity, CO,
concentration and irradiance

4

120 cm, 176 cm, 295 cm,

310cm

Tomato

Ahonen et al. (2008)

Sensors at separate heights

Estimating path loss model

7 on each tree

0.5m, 1m, 1.5m, 2m,
2.5m, 3m, 3.5m

Mango

Raheemah et al.

(2016)

Microclimate Monitoring

Temperature, Humidity, VPD

Above canopy (1.5m) and

below canopy

Chilli

Pahuja et al. (2013)

Calibration of sensor

Soil Chloride concentration

2 set of sensors (14 sensors)

Harris et al. (2016)
Zou et al. (2017)

Predictive Modeling of

parameters

Temperature, Humidity, Luminosity

and Wind speed

0.5m and 3m

Tomato

Temperature, humidity and Soil pH  Monitoring

3 nodes and 5 nodes in two
different scenarios tested

Height was changed with  Final height was 2.5m
growth of plant

Pepper vegetable

Srbinovska et al.

(2015)

Temperature, Humidity, Luminosity =~ Monitoring

and Pressure

NDVI

Akkas and Sokullu

(2017)

Sensors at one height level

Prediction crop growth

Im

Strawberry

Lixuan et al. (2014)

Monitoring

Air Temperature, Humidity and Soil

temperature

Coordinator at height of

65 cm

Tomato

Mancuso and Bustaffa

(2006)

Sensor and coordinator at

separate level

Fuzzy inference system

Temperature and Humidity

Coordinator at height of
3.5m in middle

Sabri et al. (2011)

Computers and Electronics in Agriculture 163 (2019) 104877

in Eq. (2).
R, — R
NDVI = %~
Rni + Rv (2)

where R,; is near infrared spectral reflectance from crops and R, is
visible light spectral reflectance from crops.

Table 2 summarizes the papers deploying vertical layout. Similar as
horizontal layout, vertical layout also depends on measured parameter.
For soil chloride concentration or soil pH, sensors need to be sited
vertically down. For wind speed, sensor needs to be placed outside and
at a certain minimum height. Since CO, is heavier than air, so CO5
sensors are more affective at below canopy level of crop. Similarly,
while monitoring illumination or irradiance reaching leaves of crop,
light sensors should be located above leaf level to avoid shading zones.
Another important parameter to be observed is height levels. While
placing sensors at different height zones, canopy level of the crop
should be considered to avoid interference. For example, if monitored
crop is tomato then placement of antenna of node should be above 1 m
to maintain connectivity. If crop changes the height to sizeable level
during growth cycle, for example pepper, then height of the node
should be incremented as the crop grows or other solutions like long
distance routing node should be implemented (Yang et al., 2015).

2.3. Others

Other than horizontal and vertical layout of sensors in greenhouse,
few other layouts are also proposed. Hybrid of both layouts can also
prove to be quiet promising in monitoring of greenhouse. Aiello et al.
(2018) proposed to have 20 sensor nodes at 5 different points and 4
different heights from 0.7 m to 3.8 m. This hybrid layout was deployed
for disease forecasting. In another work, lettuce was grown in a
greenhouse on shelves with 9 sensor nodes on each shelf. To check and
compare the reliability of proposed system, few shelves were deployed
with fans and other without fans. Number of shelves changed in various
experiments (Jiang et al., 2018). As shown in Fig. 7, Nodes can also be
placed in 3D row-column-height based grid structure (Lopez-Martinez
et al., 2018).

Table 3 summarizes papers deploying hybrid vertical and horizontal
layout.

Model greenhouse is one of the common layouts used for verifica-
tion and testing (Park and Park, 2011; Thakur et al., 2018; Pascual
et al., 2015). Model greenhouse is smaller than the normal greenhouse
and replicates the interior environment of actual greenhouse. Home
greenhouses are also an example of model greenhouses. So only single
sensor node is sufficient to monitor it and information is directly
communicated to server without any bridge or gateway. Park and Park
(2011) tested the performance of a dew condensation control system in
a model greenhouse. Model greenhouse examples are shown in Fig. 8.

Change in one parameter in a greenhouse may affect the other
parameter. Illumination or radiation intensity can affect the measure-
ment of temperature and humidity. Ferentinos et al. (2017) analyzed
the effect of various radiation intensity levels on error in temperature
and relative humidity readings. So it was proposed to keep nodes

e Node

Fig. 7. 3D grid layout.
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Table 3

Hybrid vertical and horizontal layout.

Focused area

Area

Height levels

Number of height

zones

Number of nodes

Crop

Reference

Kumar

Disease forecasting

24m x 30m

0.7m, 1.5m, 2.2 m,

3.8m

100 (20 motes at 5 points)

Horticulture

Aiello et al. (2018)

Monitoring and disease

forecasting
Monitoring

255 cm X 560 cm, each shelf of

120 cm X 60 cm
32m X 32m

Between ground to

200 cm

4

37 (9 on each of the four shelves, one gateway)

Lettuce

Jiang et al. (2018)

0.23m, 0.93m, 1.56m

3

38 (12 sensors at 3 heights, 1 gateway, one outdoor

Tomato
weather station)

Lépez-Martinez et al. (2018)
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shaded or boxed, whereas shaded sensor nodes performed better than
completely boxed sensor nodes. Kuroda et al. (2015) also proposed to
place the nodes inside a box. Nodes can also be deployed in tiers or
master-slave like architecture. In tier-based layout, few sensor nodes
only sense the data while other few having additional capability can
also aggregate and process the data. Lowest level tier nodes send the
measured data to upper level tier. Upper level sensor nodes may process
the data if required or may directly send to its upper level tier. Nodes in
the highest level are connected to gateways or central repositories (Bai
et al., 2018; Wang et al., 2013).

3. Sampling techniques

Sampling in the terms of statistical analysis means taking few
samples from a larger population. Sampling of data in terms of WSN is a
separate term but yet closely related. Sampling is the process of sending
data samples through a transceiver to next sensor node, gateway or
directly to central server. Sampling has a deep impact on network
lifetime. Most of the energy consumption in the setup of a WSN is
consumed by transceiver or radio (Didioui, 2014). As shown in Fig. 9,
radio consumes most of the energy in a wireless sensor network. So
optimizing the data transmission or sampling can help in reducing
overall energy consumption and hence prolonging the network lifetime.

Sampling technique decides how much out of the measured data is
transmitted via transceiver and at what frequency. Since in a typical
greenhouse environment value of parameters may not change for even
hours, so it is not required to transmit data frequently. Greenhouse
monitoring requires application-specific sampling techniques. This
section surveys various sampling techniques being used by various re-
searchers in literature for greenhouse environment control.

Simplest of all is periodic sampling i.e. sending data at periodic
intervals. Periodic sampling is the most commonly used sampling
technique, although sampling interval may be different ranging from
few seconds to hours (Ahonen et al., 2008; Park and Park, 2011;
Mancuso and Bustaffa, 2006; Liao et al., 2017; Pascual et al., 2015;
Rishi and Kumar, 2013; Aiello et al., 2018; Lamprinos et al., 2015;
Zhang et al., 2017; Kassim et al., 2017; Sampaio and Motoyama, 2017a;
Gupta and Quan, 2018; Harris et al., 2016; Srbinovska et al., 2017; Mat
et al., 2015; Ferentinos et al., 2014; Srbinovska et al., 2015; Chuang
et al., 2014; Zou et al., 2017). Small sampling interval reduces error in
measurement but increases energy consumption and vice-versa. So
there is a tradeoff between energy consumption and sampling error.
Finding appropriate sampling period is one of the challenges in design
of monitoring systems (Cullen et al., 2000). Real-time sampling is a
technique for real-time monitoring (Azaza et al., 2016; Thakur et al.,
2018; Akkas and Sokullu, 2017; Park et al., 2011). Crops grown in
critical weather conditions or highly dynamic environment may require
real-time monitoring. It requires the transceiver to be always in on state
to sample data; hence it is not energy efficient. In threshold or level
cross sampling, data is communicated only if it crosses an alarming or
preset level. Mekki et al. (2015) proposed to send measured value of
temperature, humidity, moisture, CO, concentration and light intensity
only if it crosses a preset value. Pawlowski et al. (2009) suggested an-
other variant of level cross sampling i.e. data is transmitted only when
there is a significant difference in current and last sampled value. This
difference (8) is preset as a threshold. If x(t;) is present sampled value
and x(t;) is previous sampled value, then Eq. (3) represents the relation.

x(t) — =x(t)l > 6 3

It is also called send-on-delta sampling. Instead of considering ac-
tual value of signal, present and previous value of error can also be
taken into account. Authors proposed an additional control presented in
Eq. (4) to increase the stability.

te — ts 2 tnax (4)

where t,,x is maximum sampling interval. The control rule says that if
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Fig. 8. Examples of model greenhouse (Park and Park, 2011; Thakur et al., 2018).

15

10 +

Current Consumption {mA)

Radio Control Unit

Sensor

Fig. 9. Current consumption in a WSN node (Didioui, 2014).

certain time (tya,) has passed since last sample taken then data will be
sampled irrespective of 8. If § is large, sampled data is less but error in
measurement is more. To reduce number of sample-events of highly
variable parameter like wind speed, it was proposed to use filtering.
Threshold can be set manually by farmers with the help of an expert or
strategic artificial intelligence techniques can be used.

Sampling techniques can be made adaptive as per parameter value
i.e. sample frequently in critical ranges of temperature, humidity, etc.
So the tradeoff between sampling error and energy consumption can be
balanced. Bai et al. (2018) proposed adaptive multirate sampling. In
adaptive multirate sampling, sensors adjust their sampling rate ac-
cording to rate of change of parameter. Measurement rate (L) was
calculated as shown in Eq. (5):

3k, (i) — ¥ (tik-1) <o
Alti) = 42k, a <y (i) — Y (tie-1) < @
h, 30 — % Ee-1) > @ (5)

where i refers to sensor node state vector, (tjx) refers to data trans-
mitted by sensor i at present instant and y;(t;x—1) refers to data trans-
mitted by same sensor at previous instant. h is preset sampling interval
and hence decides the sampling rate. Parameters a; and a, affect the
number of transmission. For example, if a, is a small value then sam-
pling interval is selected as h, so number of transmissions will be re-
latively high. In dynamic multirate sampling, rate of sampling is
changed according to time of the day. For example, since temperature
change is relatively slow in 00:00-08:00 than 08:00-14:00, so sampling
rate is slower in former than latter. Dynamic multirate sampling has less
number of transmissions than non-multirate sampling. Adaptive mul-
tirate sampling has number of transmissions even less than dynamic
multi-rate sampling. Also adaptive multi-rate sampling is more flexible
and fluctuations are relatively less when temperature changes slowly.

Sampling technique can also be made adaptive of type of parameter i.e.
temperature, humidity, soil pH, soil moisture, etc. Soil data needs to be
sampled more frequently than environmental parameters. Light in-
tensity’s information needs to be sampled less frequently than en-
vironmental parameters. Although varying with parameter, sampling is
still periodic (Quynh et al., 2015). Periodic Sampling with averaged
Delayed Transmission (PSDT) is another technique to deal with tradeoff
issue. Data is sampled frequently but not transmitted frequently. Data
sampled over a longer duration is averaged and sent with a delay.
Pahuja et al. (2013) proposed to sample the temperature and humidity
data at every 2min interval but send the average value at 15 min in-
terval. Lixuan et al. (2014) considered number of measurements for
averaging rather than interval. Data was periodically sampled and
averaged over 10 readings. Another sampling technique suggested in
literature takes advantages of both PSDT and threshold sampling. Data
is averaged over the interval but sent only if it has significant difference
from previous value (Sabri et al., 2011).

Rather than working on an algorithm, sampling can also be done on
receiving instruction. This instruction can be from a control center
(Song et al., 2011; Lépez-Martinez et al., 2018) or from an observer
(Guo et al., 2018). Sampling on instruction helps in synchronization of
data signal from all the nodes. It has a good capability in risk handling
but it is not suitable for monitoring of all type of crops. It is an appli-
cation-specific technique. Rate of data transmission may depend on
type of crop also.

Table 4 summarizes the sampling techniques and its key features in
the last column. Number of transmissions for periodic sampling is cal-
culated on the basis of sampling interval. For sampling interval of
5 min, data is transmitted 12 times in an hour and 288 times in a day.
Similarly, if sampling interval is 5s, data is transmitted 17,280 times
per day. Long interval between samples incurs lesser number of trans-
missions. So, longer interval between samples saves energy at the cost
of reliability of data. Number of transmissions for threshold level cross
sampling depends upon the dynamics of environment in greenhouse. If
environment is frequently changing, number of transmissions will be
high. Number of transmissions shown in table for send-on-delta sam-
pling is for 8 days as acquired by Pawlowski et al. (2009). Similarly data
represented for adaptive multirate sampling and dynamic multirate
sampling is acquired by Bai et al. (2018) and Quynh et al. (2015) opted
different sampling rate for different parameters. Light data was sampled
once every 30s, Temperature was sampled once every 10s, Air hu-
midity was sampled once every 5s and soil parameters were sampled
once every 2s. Using sampling interval, number of transmissions are
calculated for per day. For PSDT averaged over time sampling, data is
sampled every 2 min but average value is transmitted every 15 min (4
times in an hour). So, number of transmissions is 96/day. For PSDT,
averaged over readings, data is sampled every 2min but transmitted
after acquiring 10 readings i.e. after 20 min (3 times in an hour). So,
number of transmissions is 72/day. Number of transmissions will
change if number of readings to be acquired before transmission is
changed.
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Table 4
Sampling techniques.
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Sampling Technique

Number of Transmissions

Remarks

Periodic (Ahonen et al., 2008; Park and Park, 2011; Liao et al., 2017;
Pascual et al., 2015; Rishi and Kumar, 2013; Aiello et al., 2018;

Lamprinos et al., 2015; Zhang et al., 2017 and others) 5/day for h=5h

Threshold level cross (Mekki et al., 2015)

17,280/day for h = 55
288/day for h = 5min

Depends on changing environmental parameters

® Reliable but less energy efficient.
® Reliability decrease with increase in h.
® Suits for highly dynamic and critical environment.

® Prone to sampling error.

® May fail in case of faulty sensor and then human
intervention is required.

Energy efficient.

® Suits for less dynamic environment like greenhouse.
Send-on-delta (Pawlowski et al., 2009) Parameter 8§=3% 8§=5% ® Data is for eight days.
® Higher the §, lesser the number of transmissions.
Inside temp. 469 279 ® In case of faulty sensors, sampling may have stability
Outside temp. 762 353 issues.
Humidity 674 358 ® Further, more control rules can be added to increase
Solar Radiation 826 553 stability.
Wind Speed 5720 3715
Wind Direction 5003 3255
Adaptive multirate sampling (Bai et al., 2018) 18 forh =15 ® Units of time interval not clearly mentioned but can
22 forh =10 be assumed to be minutes.
18 for h = 14 ® Data is for a; = 0.5 and a, = 1.0
® Data is average number of transmissions.
® Tradeoff between power consumption and accuracy
can be balanced by optimizing o; and as.
Dynamic Multirate Sampling (Bai et al., 2018) 20 forh=5 ® Data is averaged number of transmissions.
40 for h = 10, 14 ® Not suitable for slowly changing environment.
Adaptive with parameter (Quynh et al., 2015) Parameter Transmissions ® Energy consumption is less than techniques having
same transmission interval for all parameters.
Temp. 8640/day ® Sending data of different parameters in separate
Air Humidity 17,280/day packets incurs additional energy wastage.
Soil Humidity 43,200/day
Soil pH 43,200/day
Light 2880/day

PSDT averaged over time (Pahuja et al., 2013)
15 min)

PSDT averaged over readings (Lixuan et al., 2014)
readings)

96/day (sample over 2 min, send average over

72/day (sample over 2 min, send average over 10

Data is sampled at shorter interval for accuracy but
it is sent with a delay after averaging over a specific
period to save power.

® Power efficient yet accurate and reliable.

Data transmission has latency that is independent of
sampling rate.

Data is sampled at shorter interval for accuracy but
it is sent after averaging over a specific number of
readings to save power.

® More power efficient and accurate than PSDT averaged
over time.

Data transmission has latency but it depends on
sampling rate.

4. Communication technology

Sensors need to communicate to send the sensed data to control
centre. Connectivity in typical greenhouse is required among sensors
and sensors to gateway or a base station. The connectivity can be en-
tirely wireless or hybrid wired-wireless. In this section, technologies
used for connectivity of sensors in greenhouse application are surveyed.

4.1. Zigbee

Idea of Zigbee floated in 1990s but Zigbee was standardized by
Zigbee alliance in early years of 2000s. Zigbee operates in 2.4 GHz ISM
(Industrial, Scientific and Medical) band. Zigbee is based on IEEE
802.15.4 standard. IEEE 802.15.4 is a standard for layer 1 and layer 2
(Fenzel, 2013). Zigbee is defined for layer 3 and above. Other than
providing communication, Zigbee provides routing, authentication and
mesh networking facilities. Due to mesh networking, Zigbee can sup-
port 65,000 devices in network. In Zigbee, three types of devices are
defined: Zigbee end devices, Zigbee routers and Zigbee coordinators.
Sensors are Zigbee end devices that don’t have any routing capability

but can communicate the data to parent node. Zigbee routers have the
capability to route the data and Zigbee uses AODV (Ad-hoc On-demand
Distance Vector) as routing protocol. Zigbee coordinator is the core and
single control station of the network. Zigbee can communicate in range
of 10-20 m, has low-duty cycle and low power consumption. Hence it is
suitable for management of greenhouse environment (Zigbee
Specification, 2004). Zigbee is most widely used for intra-sensor com-
munication in a greenhouse (Park and Park, 2011; Mancuso and
Bustaffa, 2006; Mirabella and Brischetto, 2011; Azaza et al., 2016;
Rodriguez et al., 2017; Pascual et al., 2015; Aiello et al., 2018; Jiang
et al., 2016; Yang et al., 2015; Lamprinos et al., 2015; Pahuja et al.,
2013; Guo et al., 2018; Sabri et al., 2011; Thakur et al., 2018; Kassim
et al.,, 2017; Sampaio and Motoyama, 2017a; Gupta and Quan, 2018,
Mat et al., 2015; Singh et al., 2015; Wang et al., 2013; Lixuan et al.,
2014; Lépez-Martinez et al., 2018).

4.2. GPRS

GPRS stands for General Packet Radio Service. GPRS was standar-
dized by European Telecommunications Standard Institute (ETSI) and
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was launched in year 2000. It is a packet based service for GSM (Global
System for Mobile) devices. GPRS doesn’t have a range limitation. Also,
its advanced versions provide increased data rate (Schiller, 2012). Since
in GPRS, users share the resources, so delay is dependent on it. GPRS
was used in greenhouse environment to send regular alerts on farmer’s
phone (Dan et al., 2015; Mekki et al., 2015). These alerts were periodic
and required the farmer’s GSM phone to be in coverage area. GPRS can
also be used for data logging of greenhouse environment (Azaza et al.,
2016; Mat et al., 2015). Rishi and Kumar (2013) proposed an intelligent
irrigation system based on GSM. Lixuan et al. (2014) proposed to send
spectral data of crop canopy reflectance to remote server using GPRS. It
is suitable for remote monitoring of greenhouse also (Yang et al., 2015;
Kassim et al., 2017; Wang et al., 2013). Mostly GPRS was used for
sensor to base station or gateway to base station communication.
GPRS’s main advantage is its wide availability over the world but soon
it may phase out for acquisition of higher data rate services like 4G and
5G. GPRS is cost effective for low data rate applications like greenhouse
monitoring but 4G and 5G may not be.

4.3. Wi-Fi

Wi-Fi stands for Wireless Fidelity. Wi-Fi is based on IEEE 802.11
standard and utilizes radio frequency band. Wi-Fi is trademarked by
Wi-Fi Alliance that constitutes a group of companies. Wi-Fi was laun-
ched in late years of 1990s. It has a communication range of 20-100 m.
Wi-Fi network has an access point, through which all the devices
communicate (Schiller, 2012). Wi-Fi was used in greenhouse for the
connection of sensors or gateway to central server. It provides speed of
2-54 Mbps, so data can be sent with tolerable latency. Thakur et al.
(2018) proposed the use of ESP8266 Wi-Fi module to send data to base
station, from where farmer can monitor it. Wi-Fi was mostly used for
gateway to central server or cloud communication (Guo et al., 2018;
Jiang et al., 2018). Using Wi-Fi for sensor to sensor communication can
be energy consuming and affect lifetime of network. Wi-Fi can be used
to connect multiple greenhouses spread over a wide region with het-
erogeneous systems deployed (Lopez-Martinez et al., 2018).

4.4. LoRa (Long Range)

LoRa is another communication enabling technology for agriculture
(dos Santos et al., 2019). It was developed by a group of companies
called as LoRa Alliance (Alliance, 2017). It is owned by Semtech Cor-
poration, California. LoRa has long range i.e. in kilometers and low
power consumption, so it helps in deploying LPWAN (Low Power Wide
Area Networks). LoRaWAN (LoRa Wide Area Network) is a network
based on LoRa technology. LoRa gateways receive the data from LoRa
end devices and direct it to LoRa servers. LoRa trade-offs data rate to
attain long range of communication. It executes on the unlicensed band
like 169 MHz, 868 MHz, 433 MHz. Implementation using unlicensed
bands does not need any permission but are vulnerable to interference.
Due to its long range, LoRa can support remote monitoring applications
like greenhouse monitoring. Reka et al. (2019) suggested implementing
LoRa for greenhouse. LoRa can handle thousands of nodes and can
communicate over wide range. It can communicate over distances
ranging from 5km to 10 km. Still, it manages to have low power con-
sumption and hence lifetime of 10-20 years. Authors argue that Zigbee
can handle only few hundred of nodes; hence LoRa can be deployed for
greenhouses spread over hectares. LoRa is mainly used for gateway to
central server communication.

4.5. Bluetooth

Bluetooth was initially standardized by IEEE 802.15.1. Now,
Bluetooth Special Interest Group (SIG) regulates standardization and
licensing of Bluetooth technologies. Bluetooth consumes less power and
was developed for WPAN (Wireless Personal Area Network). Bluetooth
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deploys spread spectrum hopping. It can support a data rate of 1-3
Mbps depending upon the version. Class 3 Bluetooth devices have range
of 1 m, class 2 has range of 10 m and class 1 has range of 100 m. The
technology needs the devices to form a connection before transmitting
data. In a communication, one of the device acts as a master while other
acts as a slave. Slave node in one network can be a master in the ad-
joining network. Ad-hoc network formed by bluetooth enabled devices
are called as piconets. Many piconets combine to form a scatternet
(Bluetooth Specification, 2017). Hong and Hsieh (2016) used RN41
bluetooth module to build an automatic irrigation system in a lettuce
greenhouse. Bluetooth can be used for sensor to sensor communication
and if the range limitations permit, it can also be used for sensor to
gateway or gateway to base station communication.

4.6. Others

Other than these commonly used technologies, there were few
wireless technologies that are not widely used but still got a place in
greenhouse WSN environment in few projects. To increase the speed
and reliability, LAN can also be used to send data to base station,
whereas sensors still communicate wirelessly. It is a kind of hybrid
system (Mancuso and Bustaffa, 2006). A Controlled Area Network
(CAN) based wired bus is also another option for greenhouse (Mirabella
and Brischetto, 2011). A suitable bridge is provided between wired and
wireless system. Serial port can also be used for sensor or gateway to
base station communication in a greenhouse (Song et al., 2011;
Sampaio and Motoyama, 2017a; Srbinovska et al., 2015). Pahuja et al.
(2013) proposed connecting actuators to PC through industrial serial
networking standard RS-485. Zhang et al. (2017) used USB (Universal
Serial Bus) for sending data from gateway to base station in a cotton
greenhouse. Other than USB, RS-232 regulated ports can also be used
for serial transmission. Serial transmissions are faster than parallel
transmissions. Although serial port promises burst data transformation
in less time, it can put a bound on the expansion of network. Gupta and
Quan (2018) proposed using XStream proprietary RF (Radio Fre-
quency) modem for communication between coordinator/gateway and
control station.

XStream is a long range radio communication module, which can
transmit in range of 5-16 km. As shown in Fig. 10, central control
station was an application on PC which was connected to XStream
modem using USB.’

Kuroda et al. (2015) proposed a long haul sensor network and used
400 MHz band for communication. Results show that 400 MHz band
under ARIBT67 radio standard performs better than 2.4 GHz band
communication. It has better packet reachability and less packet loss
even in the case of obstructed path. It can transfer to a range of 100 m
without a relay node. Since the 400 MHz band communication is less
affected by obstruction; hence it is more suitable for greenhouse en-
vironment. Sensor to coordinator communication was proposed via I*C
interface.

4.7. Performance comparison of communication technologies

Table 5 compares the above-mentioned communication technolo-
gies for parameters like range, operating frequency band, network size,
cost, data rate, power consumption and communication mode. Range is
one of the limitation factors in greenhouse monitoring environment. In
each case, there is a trade-off among range, data rate and power con-
sumption. Communication technology with high data rate has high
power consumption.

Wi-Fi and Bluetooth devices provide more data rates and consume
more power than Zigbee. Hence, it has less average lifetime than Zigbee
network. Since greenhouse environment does not need high rate of

! http://ftp1.digi.com/support/documentation/ds_xstream_modem.pdf.
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Fig. 10. Central control station connected to Xstream modem (Gupta and Quan,
2018).

Table 5
Performance comparison of communication technologies.
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5. Prediction models

Prediction models are optimization models which are used to pre-
dict parameter values for which sensors are not available like photo-
synthesis. This prediction is made on the basis of available parameters.
Other control systems take action when problem has already occurred
i.e. when parameters are out of the bound of thresholds. This may lead
to partial loss of crop. Predictive modeling can help in building a
proactive model. These models can predict values of common para-
meters like temperature, humidity, etc. on the basis of previous data to
execute proactively and reduce sampling load. Prediction models learn
from certain training data sets to make predictions. Third type of pre-
diction models is regression type models; that are normally used to find
relationship among various parameters. Artificial neural networks can
be used as one of the tools to implement predictive modeling. As shown
in Fig. 11, a typical neural network has three-layer architecture: Input
layer, hidden layer and output layer. Nodes in a layer are called as
neurons. Data is fed at input layer to get predicted parameters at

Range Frequency Band Network Size (Jawad et al., 2017)  Cost Data Rate Power Consumption Communication Mode
Zigbee 10-20m 2.4GHz 65,000 nodes per network Low 20-250Kbps Low Peer to Peer
GPRS In range of mobile network ~ 900-1800 MHz 1000 nodes per network High 56-114Kbps High Base station to device
area
Wi-Fi 20-100 m 2.4 GHz 32 nodes per network High 2-54 Gbps High Access point to device
LoRa 10km+ 169 MHz 10,000 nodes per gateway Moderate 0.3-50Kbps  Low Peer to Peer
868 MHz
433 MHz
Bluetooth 1-100m depending upon 2.4-2.485GHz 8 nodes per piconet Low 1-3 Mbps Moderate Master Slave and Peer to Peer
class
XStream 5-16 km 2.4 GHz 7 channels, each with 65,000 Low 10-20 Kbps Low Peer to Peer

addresses

_.Q/

O
O
—O

Input Layer\.g /)'utcpug.;r

Hidden Layer

Fig. 11. Simple neural network.

transmission, so Zigbee provides appropriate solution. Zigbee can sup-
port 65,000 devices in a network, so network can also be extended over
large area. LoRa provides wide communication range with low data
rate. So, LoRa is also valuable for widely spread greenhouses but for
larger number of devices in network, it has high latency. So Zigbee
should be preferred over LoRa if data communication is required only
over few meters. XStream also provides long range communication with
low data rate. Difference between LoRa and XStream is of operating
frequency and network size. Also, XStream supports cloud based ser-
vices. Zigbee, LoRa and XStream operate in peer to peer communication
mode. Wi-Fi network has an access point which acts as a router for all
communication among devices. Similarly GPRS has a gateway or base
station for device communication. Bluetooth is a short range device
with small network size. It suits for small home based greenhouses.
GPRS has high communication range but also has high cost and power
consumption. GPRS suits for messaging based alert services for green-
house monitoring.

11

output. Links between input layer and hidden layer, hidden layer and
output layer have weights. Before forwarding the calculated weighted
output to next layer, hidden layer and output layer apply an activation
function. Activation function is transfer function of the layer, which
defines linearity or non-linearity of the network. Depending upon
characteristics, a neural network may have multiple hidden layers also.
Certain previous datasets are provided to the neural network first for
training purpose. After being trained, network provides the output of
the required dataset (Kriesel, 2007). This section presents various pre-
diction models adopted for the prediction of parameters in a green-
house.

5.1. Prediction on the basis of available parameters

Jiang et al. (2015) proposed to predict photosynthesis rate on the
basis of available parameters like air temperature, air humidity, light
intensity and CO, concentration. BPNN (Back Propagation Neural
Network) model was used for training and testing. BPNN propagates the
error computed at output of simple neural network back in the network
to recalculate weights. It is a type of supervised learning. There were
total 7 hidden layers in BPNN model. Logsig was used as input transfer
function of hidden layer and purelin was output transfer function. Total
144 samples were taken. Out of that 132 were used for training and rest
12 was used for testing. The model was used to optimize CO, con-
centration to find maximum photosynthesis rate for tomato crop in
seedling stage. Ting et al. (2015) also worked to find the optimum CO,
concentration but for tomato crop in flowering stage. To enhance the
performance of BPNN, PCA (Principal Component Analysis) processing
was used. PCA removed redundancy from input data before feeding it to
BPNN model. K-fold cross validation was used to check error. Yuhan
et al. (2015) proposed to use K-means clustering instead of PCA for
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Table 6
BPNN comparison with 10-fold cross validation and its own variants.
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Prediction model R (Correlation Coefficient)

MAE (Mean Average Error)

ARE (Absolute Relative Error) RMSE (Root Mean Square Error)

10-fold cross validation 0.9523 1.0319
BPNN 0.9899 1.23

BPNN + complete attribute set (9 attributes) 0.9964 0.6958
BPNN + reduced attribute set (6 attributes) 0.9965 0.4026

0.5941 1.94
0.9682 1.46
0.728 0.7428
0.453 0.3245

processing of data i.e. it discretizes the data. Authors also further pro-
posed to use reduction theory to reduce number of input attributes from
9 to 6. Table 6 compares BPNN with 10-fold cross validation and its
own variants. BPNN has better accuracy and correlation coefficient
than 10-fold cross validation. Also, BPNN with reduced number of at-
tributes performs best. It has highest accuracy and trains two times
faster than model with complete attribute set.

Other than photosynthesis, number of sensor nodes required for a
greenhouse can also be predicted. Sampaio and Motoyama (2017b)
estimated number of sensor nodes required on two bases: number of
addresses available for sensor nodes and traffic distribution and mod-
eling. Srbinovska et al. (2017) proposed to predict lifetime of network
of nodes in a greenhouse using energy consumption estimation.

Lixuan et al. (2014) deployed four optical channels to collect crop
canopy reflectance data. This spectral data was collected by intelligent
photoelectric sensors, which convert it to electric signal and send it to
gateway. Collected data is processed to calculate crop growth para-
meter NDVI as shown in Eq. (2).

Above all prediction models aided in predicting parameters for
which no sensors are available but prediction models can also help in
predicting parameters for which sensors are available.

5.2. Prediction on the basis of previous data

Rather than collecting data for complete duration, predictive mod-
eling helps in predicting next few samples on the basis of last few
samples. This sets a new paradigm in energy consumption optimization
of WSN. If few samples are predicted rather than collecting, it decreases
the load on transceiver and hence saves energy. Rodriguez et al. (2017)
proposed to predict greenhouse environmental parameters. Last few
hours data was used to predict next 30 min of data. Linear regression,
Neuronal network and SVM (Support Vector Machine) were used as
prediction models. 70% of the sampled data was used for training; rest
of the 30% was used for testing purpose. Comparison proved SVM to be
a better prediction model than linear regression in terms of error. SVM
was first introduced for classification. It is a supervised learning model.
Fig. 12 describes the main idea behind SVM.

SVM maps the input to a higher dimensional space and a hyper
plane marks the margin between two classes. Based on training set,
SVM first marks the margins of classes and then categorizes the given
input into mapped classes. These margins can further be optimized for
efficient solution. SVM has a benefit of lesser number of parameters
over BPNN (Chorowski et al., 2014). ELM (Extreme Learning Machine)
model can also be used to predict temperature and humidity in a
greenhouse (Liu et al., 2016). To predict next sample, last three samples
were used. Model’s hidden layer had 26 nodes and sin as activation
function. ELM was proposed as a single hidden layer feed-forward
network. Input weights of the feed forward network are inherited from

Tranform original

: ; Find the best
input space into

separating
hyperplane

higher dimensional
space

past or randomly selected and kept constant. Only output weights are
adjusted to minimize error. Due to random selection of input weights,
ELM is faster than SVM and back propagation. ELM also has the cap-
ability of universal approximation (Chorowski et al., 2014).

Mathematically, ELM prediction model can be represented as in Eq.
(6).

H
5= uf@xi+B) j=1,2,.Q ©
i=1

where, a; is input weight of i™ neuron, Bi is bias of i™" neuron, i is
output weight of i™ neuron. x is input vector and s is corresponding
output vector. Q is number of training samples. f is activation function.
H is number of hidden layer neurons. Input vector is multiplied with
input weights and bias is added to it. After applying activation function,
output weights are multiplied. In ELM prediction model, specifically o
and P are chosen randomly, hence it has poor stability.

KELM (Kernel based ELM) prediction model was also proposed as an
advancement. KELM introduced the implementation of stable kernel
functions on ELM to improve the performance. As compared to BPNN,
Elman and SVM, ELM is better in terms of training speed, general-
ization, error and correlation coefficient (Huang et al., 2006). ELM has
an advantage of global optimal solution. KELM is 2.9 times faster than
ELM, has better generalization ability and stability.

Few of the work in literature also tried using both type of prediction
models discussed in Sections 5.1 and 5.2 together. Zou et al. (2017)
proposed to predict inside temperature and humidity of greenhouse by
taking previous inside temperature, previous inside humidity, outside
humidity, outside temperature, solar radiation and wind speed as input
to prediction model. B-ELM (Bidirectional ELM) has reduced number of
hidden nodes and better learning capabilities than ELM. It reduces the
number of hidden nodes without compromising performance. B-ELM
does not take input weights randomly but calculate it for one iteration.
This further improves the speed as compared to network with com-
pletely random input weights (Yang et al., 2012). It was proposed to
optimize B-ELM prediction model using convex optimization. Convex
optimization proposes to find unique global minima in a set of local
minima forming convex function (Boyd and Vandenberghe, 2004). CB-
ELM (Convex Bidirectional ELM) suggests recalculating output weights
of hidden layer whenever a new node enters. Recalculation helps in
faster convergence of CB-ELM network. Convex optimization helps in
better generalization performance of CB-ELM than any network with sin
activation function. It performs better than SVM, BPNN, B-ELM and
RBF (Radial Basis Function). RBF implements radial basis functions as
activation functions. It can be implemented as a kernel with other
models.

Table 7 summarizes the comparison of various prediction models in
terms of various parameters. Comparing these prediction models with

Fig. 12. Steps of SVM classification.

Finally, optimize the

solution
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Table 7
Comparison of prediction models.

Computers and Electronics in Agriculture 163 (2019) 104877

Training Speed Generalization capability

Error Stability Universal approximation capability

BPNN Very low Low

SVM Low Moderate

ELM Moderate Moderate

KELM Moderate High

B-ELM High Same as ELM at reduced number of hidden nodes
CB-ELM  High High

Moderate Low (Increase with number of nodes) Not good

High Moderate Not good
Moderate Moderate Good
Low High Good
Low High Good
Low High Good

objective values is not possible due to difference in parametric basis, so
models are compared in the table descriptively. Summarizing in terms
of error, it is observed that CB-ELM has the best accuracy and RBF has
the least. Back-Propagation algorithms have better accuracy than SVM.
In terms of training speed, ELM and its variant models perform the best.
Back-Propagation algorithms are 33 times slower than ELM but still 25
times faster than SVM. Since ELM and its variants are feed-forward
networks, so these are good universal approximators. BPNN has low
generalization capability.

5.3. Regression based prediction model

Regression is statistical prediction technique which is used to form a
relationship among different variables. Since greenhouse is a closed
loop environment in itself, change in one variable can affect other cli-
matic or soil variables. Depicting dependence of dependent variable on
independent variables can lend a hand in optimization of resources.
Mancuso and Bustaffa (2006) suggested finding impact of correlation of
temperature and humidity on yield, disease formation and overall
cultivation. Regression was used to form a relationship between soil
moisture and Working Duration of Pump. Thus water usage for irriga-
tion was optimized on the basis of this prediction (Hong and Hsieh,
2016). Shah et al. (2009) proposed to optimize water and pesticide
usage both using prediction model. Data was collected for 3 months to
calculate evapotranspiration (ET) and leaf wetness duration. It was
deduced that rate of evapotranspiration decreased with decrease in soil
moisture. So relation between ET and soil moisture was formed to take
irrigation decisions. Similarly, leaf wetness duration was used to fore-
cast infection index of grape berries. Based on this infection index,
pesticide was sprayed when required. Along with timings, amount of
pesticide was also optimized. Liao et al. (2017) proposed to predict
relationship between growth of leaves and environmental factors.
Wireless cameras were deployed to check leaf growth parameters.
Cultivation area was divided into 4 regions and test was conducted for
each region to check relation between leaf growth and temperature,
relative humidity and illumination. One-way ANOVA, two-way ANOVA
and Games-Howell test was conducted to analyze relation in four re-
gions. Region with temperature less than 30°C and relative humidity
less than 75% showed maximum daily average growth. Temperature
had no impact on leaf growth while humidity had great impact. En-
vironmental parameters can also affect sensor’s performance.
Ferentinos et al. (2014) tried to analyze the effect of various environ-
mental parameters on RSSI (Received Signal Strength Indicator) value,
voltage and energy consumption of sensor nodes. A strong correlation
between voltage of sensor nodes and temperature-humidity (T-H) was
found. A correlation between energy consumption and T-H was also
there. Relation of T-H with RSSI value was relatively weak. RSSI value
mostly depended upon distance from the base station. Patil et al. (2008)
presented various prediction models to predict tropical greenhouse
temperature in six different seasons: Rainy, winter, summer, mid-rainy,
mid-summer and mid-winter. ARX (Auto Regressive model with an
external input), ARMAX (Auto Regressive Moving Average model with
an external input) and NNARX (Neural Network Auto Regressive model
with an external input) was used to estimate inside temperature with

outside air temperature, outside air humidity, outside solar radiation
and cloud cover as input to prediction model. Auto regression models
depend on previous values of data while moving average models pro-
duce a series of rolling averages to give the idea of followed trend.

6. Decision support systems

In a greenhouse control system, various decision supporting tech-
niques were also adopted. Most commonly used techniques were fuzzy
logic and fusion. Fuzzy logic can be thought of as a mechanization of
human thought process. Fuzzy logic tries to copy the way a human
thinks (Zadeh, 2008). Instead of precisely mentioning the value of
parameters in a greenhouse, fuzzy logic can offer a better way out. A
fuzzy logic based control system was used in a Basil greenhouse to
optimize water consumption (Azaza et al., 2016). With temperature,
humidity, CO, concentration, illumination as input to fuzzy logic
system, ventilation rate, heating rate, CO, flow rate, artificial shading,
illumination and humidification/dehumidification was taken as output.
Deviation of internal and external T-H (Temperature-Humidity) from a
setpoint was taken as input to control ventilation and heating. Fuzzy
logic controller saved 22% energy and 33% water. Pahuja et al. (2013)
proposed to use fuzzy logic to control VPD in a Chilli greenhouse. Ge-
netic algorithm was proposed as an add-on to fuzzy logic system to
make membership function adaptive (Gottschalk et al., 2003).

Fusion is another technique frequently used in literature for the
optimization of decision support system. Multisensor fusion can help in
better decision making. It increases the reliability of system by reducing
probability of false alarms. Each sensor sends its data to control center.
Control center fuses the data from all the sensors to make a reliable and
global decision. Aiello et al. (2018) proposed “k out of n” fusion tech-
nique. It suggests summing individual decisions of only those sensors
that have value above a set threshold. Bai et al. (2018) proposed a
hierarchal fusion technique. Since regions in a greenhouse are locally
consistent, sensors collect the data and send to cluster head for cluster-
level fusion. Cluster heads send the data to sink for sink-level fusion.
This is also called as two-stage data fusion.

To make the best of both worlds, Zhang et al. (2017) proposed
fuzzification as technique to fuse data. Two parameters i.e. leaf angle
and chlorophyll concentration were fused to judge the vigor of cotton.
Weighted average fuzzy arithmetic operators were used to make final
decisions. Thus fusion and fuzzy logic techniques can help in the better
contribution of WSN in greenhouses. These techniques enhance the
decision making capability of the overall WSN system.

7. Conclusion and future work

A state-of-art review for the inclusion of WSN in greenhouse ap-
plication is presented in this paper. Various layouts for placing sensors
in greenhouses are reviewed, classified and analyzed. These layouts can
be horizontal or vertical across the greenhouse. Other than horizontal
and vertical, many other placements are also explored. After layouts,
various sampling techniques for choosing transmission interval are also
studied in this paper. Focusing a greenhouse set-up, the trade-off be-
tween energy consumption and accuracy is also discussed for these
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sampling techniques. Technologies deployed for communication of
sensor networks among themselves and with gateway or server are also
discussed. Other than common communication technologies like
Zigbee, Bluetooth, Wi-Fi; many other technologies and hybrid systems
are also explored. Zigbee and LoRa suits best for transmission of data in
a greenhouse environment, where LoRa can also be used for inter-
greenhouse sensor communication over large area. Prediction models
built on the basis of previous data in the time series and on the basis of
other parameters are also presented. Regression based prediction
models are also reviewed in this paper. At last, few techniques
strengthening decision making of the WSN systems in a greenhouse are
also discussed.

Although being worked upon from past few years, the im-
plementation of WSN in greenhouses still has so many open challenges.
Major challenge is lifetime of the network. Optimizing transmission
interval on the basis of a sampling technique can reduce energy con-
sumption and hence increase the network lifetime but it compromises
the fidelity of data. So balancing this trade-off is a big challenge.
Various signal processing techniques can be explored in further opti-
mization to solve the issue. Even though Zigbee suits best in terms of
energy and cost for greenhouse environment but it routes packets on
the basis of shortest path. Due to eventual growth of crops in a green-
house, shortest path may not always be the best path. So, commu-
nication technologies require special routing and link quality para-
meters for greenhouse scenario. Reduction of number of nodes in a per
unit coverage area is also a considerable challenge to balance cost vs.
coverage area trade-off. Further, cloud technologies can also be in-
tegrated with WSN to handle layout and communication limitations.
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