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a b s t r a c t 

In many wireless sensor network (WSN) applications, where a plethora of nodes are deployed to sense 

physical phenomena, erroneous measurements could be generated mainly due to the presence of harsh 

environments and/or to the depletion of a sensor’s battery. The measurements that significantly deviate 

from a normal behavior of sensed data are considered as outliers. To address the problem of detecting 

these outliers in wireless sensor networks, we propose a new algorithm, called Distributed Outlier Detec- 

tion Scheme (DODS), in which multiple sensed data types are considered and where outliers are detected 

locally by each node, using a set of classifiers, so that neither information about neighbors is needed to 

be known by other nodes nor a communication is required among them. These characteristics allow the 

proposed scheme to be scalable and efficient in terms of both energy consumption and communication 

cost. The functionalities of the proposed scheme have been validated through extensive simulations us- 

ing real sensed data obtained from Intel-Berkeley Research Lab. The obtained results demonstrate the 

efficiency of the proposed scheme in comparison to the surveyed algorithms. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

The advances in the fields of transistors and semiconductor

evices have led to the deployment of wireless sensor networks

WSNs). A wireless sensor network (WSN) is a self-organized net-

ork that consists of a large number of low-cost and low-powered

ensor devices, which can be deployed in a field, in the air, in vehi-

les, on bodies, underwater, and inside buildings. These small sens-

ng devices can cooperatively monitor real world physical or en-

ironmental conditions, such as temperature, pollution, pressure,

ight, voltage, humidity and motion. They are also considered as

articular networks which are widely used in commercial and in-

ustrial areas, for example, transportation tracking, environmen-

al and habitat monitoring, healthcare, etc. Moreover, in a mili-

ary applications, WSNs can be used for target tracking and bat-

lefield surveillance. In many of these applications, the data sensed

y nodes are often unreliable. The quality of the data is affected

y multiple noises and errors, missing values, duplicated data, or
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nconsistent data [1] , without forgetting the low performance of

odes in terms of energy, computational and memory capabilities.

hese issues generally lead into having the generated data unre-

iable and inaccurate. One of the most sources that influence the

uality of sensed data are outliers. We can define outliers as those

easurements that significantly deviate from the normal pattern

f the sensed data [1] . It means that the sensed data should be

n coherence with a pattern which represents the reality of the

ensed data. Therefore, it is clear that outlier detection is a cru-

ial task in WSNs as it improves the quality of data, the security of

he system, and maximizes the lifetime of the network. 

Historically, research in outlier detection started in data man-

gement field [2,3] . A definition of an outlier is given by

awkins [4] where he considered outlier as an observation that

eviates a lot from other observations and can be generated from

 different mechanism. In WSN, outlier detection technique is the

rocess of identifying those data instances that deviate from the

est of the data patterns based on a certain measure [5] . So, every

easurement whose features dissent significantly from the normal

ehaviors is considered as outliers. In this paper, we present a new

utlier detection algorithm, called DODS (for Distributed Outlier

etection Scheme). The main idea is to clean sensed data (mea-

urements) from outlier (incorrect data). The proposal is based

https://doi.org/10.1016/j.comnet.2019.06.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2019.06.014&domain=pdf
mailto:c.titouna@univ-batna2.dz
https://doi.org/10.1016/j.comnet.2019.06.014


94 C. Titouna, F. Naït-Abdesselam and A. Khokhar / Computer Networks 161 (2019) 93–101 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b  

t  

p  

f  

b  

e  

s  

t  

t  

t  

t  

b  

t  

a  

d  

o  

e  

v  

d  

c  

e  

a  

n  

n  

fl  

t  

e  

c  

e  

a  

l  

h  

o  

o  

t  

t  

t  

t  

p  

n  

o  

B  

n  

t  

c  

b  

b  

a  

(  

e  

p  

d  

i  

s  

m  

o

3

 

t  

t  

a  

i  

a  

F  
on a classification method to classify sensed data in a distributed

manner. The scheme operates in nodes which made the sensing

operation and does not require any neighbor’s communication. In

short, our main contributions can be summarized as follows: 

• Design of multiclassifier-based outlier detection algorithm in

nodes; 

• Parameterization of classifiers to deal with different types of

sensed data; 

• Simulation of the proposal in order to show its effectiveness in

terms of detection accuracy, false alarm, and energy consump-

tion. 

The remainder of this paper is organized as follows.

Section 2 mainly reviews the literature related to outlier de-

tection techniques in WSN. In Section 3 , we first introduce some

formulations and definitions used in our approach and then, we

describe in detail our scheme. Section 4 presents the experimen-

tal results. We conclude the paper and suggest future work in

Section 5 . 

2. Related work 

Outlier detection in WSNs has been studied and a number of

schemes and surveys have been proposed in the literature [6–10] .

However, designing a solution that does not require neighborhood

information remains a challenging issue in WSN’s research. Wu

et al in [11] present two local techniques for identification of out-

lying sensors. The identification of event boundary is also proposed

in this work. The authors use the spatial correlation exists among

neighbors. To exploit this characteristic, nodes compute the dif-

ference between its own measurements and the median of those

of the neighborhood. If the result is greater than a pre-defined

threshold, the node is considered as outlying one. The accuracy is

not high due to the fact that ignorance of the temporal correla-

tion of sensors’ measurements decreases the performance of the

proposed protocol. In contrary, the authors in [12] propose a tech-

nique which exploits the temporal correlation concept. Each node

computes a distance similarity to detect outliers and communi-

cates the result to the neighborhood by a broadcasting message.

This technique permits the identification of global outliers, but the

use of the broadcasting technique increases communication over-

head. Zhang et al. present in [13] , a technique based on distance to

identify a set of global outliers in a snapshot. This technique uses a

structure of aggregation tree to minimize the broadcasting of mes-

sages and reduce communication overhead. The identification of

n global outliers is done by sending a useful data from nodes to

the sink. After that, the sink treats these data and then broad-

casts outlier to network’s nodes for agreement. The result of the

identification of outliers is not sure due to the fact that the topol-

ogy of WSN is not stable. Zhuang and Chen in [14] present two

in-network outlier cleaning techniques for data collection applica-

tions of sensor networks. The first technique uses wavelet analysis

to detect outliers. The second uses dynamic time warping (DTW).

These techniques exploit the advantage of spatiotemporal corre-

lations existing in readings of sensor nodes. The disadvantage of

these techniques is the use of many thresholds which are diffi-

cult to define. Other categories of techniques use the concept of

clustering where they start by grouping similar data instances into

clusters with similar behavior. Data instances are identified as an

outlier if they do not belong to clusters or if the cluster is sig-

nificantly smaller than other clusters. In [15] , authors propose a

technique that minimizes the communication overhead by cluster-

ing the sensor measurements and merging clusters before com-

municating with other nodes. The advantage of this technique is

that it does not need any prior knowledge on data distribution,
ut it needs to fix the width of the cluster. However, in spec-

ral decomposition-based approaches, several techniques are pro-

osed in the literature, using principal component analysis (PCA)

or outlier detection. Chatzigiannakis et al. [16] propose a technique

ased on PCA to resolve the problem of accuracy in data gen-

rated by faulty nodes. The technique develops a model for the

patiotemporal correlations existing between sensed data in a dis-

ributed way. This model is used to detect outlier in sensor node

hrough neighboring sensor nodes readings. The disadvantage of

his technique is computationally expensive; which is caused by

he selection of a good model. Furthermore, other solutions are

ased on classification to detect outliers. These approaches are of-

en used in data mining and machine learning community. These

pproaches allow learning a classification model using the set of

ata instances (training phase) and classify an unseen instance into

ne of the learned (normal/outlier) class (testing phase) [1] . Abid

t al. [17] proposed a solution called OPTICS. The methodology de-

eloped is a density-based classification technique and method or-

ering points to detect the clustering structure. The proposal can

onfigure automatically the parameters without previous known

nvironmental conditions. However, the comparative results show

 low outlier detection rate. Rajasegarar et al. [18] propose a tech-

ique using one-class quarter-sphere to identify outliers in each

ode in a distributed manner. All nodes analyze sensed data of-

ine after collecting all readings, which causes an outlier detec-

ion delay. So, it cannot be applied in real-time applications. Lu

t al. [19] presented an outlier detection method based on Cross-

orrelation. The proposal involves three essential parts: using lin-

ar interpolation in order to reprocess the data, cross-correlation

nalysis for outlier analysis and a multilevel Otsu’s method for out-

ier rank. The proposed method can detect and isolate outliers in

igh dimensional time series datasets, and the hierarchical output

f detection results. The authors in [20] propose a technique based

n spatiotemporal correlations to learn contextual information sta-

istically. Markov models are used and every sensor node computes

he probabilities of its readings being in one predefined interval. If

he probability of the sensed data is not being in the target in-

erval, it will be considered as an outlier. A similar approach was

roposed by Bahrepour et al. [21] , they used the naïve bayesian

etworks in collaboration with neural networks for the detection

f outliers. In [22] , authors propose two techniques using dynamic

ayesian networks (DBN) to detect outliers locally in each sensor

ode. The aim of using DBN is to prevent the dynamic network

opology. Recently, the authors in [23] present a new approach

alled Combined Kernelized Outliers Detection Technique (CKODT)

ased WSNs in the domain of water pipeline. The authors com-

ined numerous methods for dimensionality reduction techniques

nd fault detection such as the Kernel Fisher Discriminant Analysis

KFDA) and the One Class Support Vector Machine (OCSVM). The

xperimental results showed the efficiency of the proposal com-

ared to other approaches in the literature.Contrary to the ideas

eveloped in the above reviewed works in which the neighbor’s

nformation is required and only one type of sensed data is con-

idered, our proposal mainly focused on the design and develop-

ent of self-detection nodes that are able to detect autonomously

utliers where several sensed data types are collected by sensors. 

. Distributed outlier detection scheme 

The main goal of the DODS algorithm is in-network outlier de-

ection. The solution exploits the temporal correlations existing in

he sensed data (current and history sensed data) of the same node

nd its remaining energy level. Outlier detection is performed us-

ng Bayes’ classifier for each type of data. This technique permits

 multivariate classification sensed data in a distributed fashion.

ig. 2 shows the structure of our approach which is represented
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Fig. 1. Nodes randomly deployed over an area. 

Table 1 

Notation. 

Notation Description 

S Set of static nodes 

ID Identificator of a node 

CL Set of clusters 

BS Base Station 

CH Cluster Head 

req i Request i sent by BS 

CPT i Conditional Probability Table of the node i 

EL i Energy Level of the node i 

HSD i History of Sensed Data of the node i 

CSD i Current Sensed Data of the node i 
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y a data type identifier and a set of classifiers. The data type

dentifier allows knowing the type of measured data to direct it

o the good classifier (classifier 1, 2, 3,..., n). In our simulation ex-

eriences, we use only four classifiers (temperature, light, voltage,

nd humidity classifier) according to the real datasets used in dif-

erent scenarios. So, nodes belong to an interesting region (IR) par-

icipate in the outlier detection process. We mean that when a BS

ends request req i for example, only nodes of this region perform

he classification task and not all nodes of the network. As shown

n Fig. 1 , the black circles represent a set of nodes belongs to IR

f the request req i . The white circles are nodes belong to an un-

nteresting region by the request req i . We describe the proposed

lgorithm and details its behavior in the next sub-sections. 

.1. System assumptions 

In the design of the proposed approach, some assumptions have

een considered in order to be complying with a distributed de-

ection. We assume that all static nodes are homogeneous, the

omputation and power capabilities of all of them are the same.

odes’ batteries cannot be recharged and each node is equipped

ith a power control device that has capabilities to vary their

ransmit/receive power. We assume that nodes are locations un-

ware. Let us say that S = { s 1 , s 2 , ..., s n } is the set of n station-

ry randomly deployed nodes with unique identifiers ID ∈ [1, n ] ∩ N ,

n a 2-dimensional square field. The hierarchical structure of

SN adopted in our approach, consist of a set of clusters CL =
 cl 1 , cl 2 , ..., cl m 

} . These clusters have not necessarily the same size.

urthermore, each node s i ∈ S , S = { s 1 , s 2 , ..., s n } gathers information

rom the environment after receiving a request req i from the base

tation. Finally, we summarize the used notations in Table 1 . 

.2. Problem formulation 

In order to classify sensed data, we employ the formalism of

ayesian networks. A Bayesian network is a directed acyclic graph
DAG) that represents a probability distribution. In such a graph,

ach random variable X i is denoted by a node. A directed edge be-

ween two nodes indicates a probabilistic influence (dependency)

f a child. Consequently, the structure of the network denotes the

ssumption that each node X i in the network is conditionally in-

ependent of its non-descendants given its parents. To describe a

robability distribution satisfying these assumptions, each node X i 

n the network is associated with a conditional probability table

 CPT i ), which specifies the distribution over X i given any possible

ssignment of values to its parents [24] . A Bayesian classifier is

imply a Bayesian network applied to a classification task [24] . It

ontains a node C representing the class variable and a node X i for

ach of the features. Given a specific instance x (an assignment of

alues x 1 , x 2 , . . . , x n to the feature variables), the Bayesian network

llows us to compute the probability P (C = c k | X = x ) for each pos-

ible class c k . This is done via Bayes’ theorem, giving us 

p(C = c| X = x ) = 

p(C = c) p(X = x | C = c) 

p(X = x ) 
(1)

he critical quantity in Eq. (1) is P (X = x | C = c k ) , which is often

mpractical to compute without imposing independence assump-

ions. The oldest and most restrictive form of such assumptions is

mbodied in the naïve Bayesian classifier [25] which assumes that

ach features X i is conditionally independent of every other fea-

ure, given the class variable C . Formally, this yields 

p(X = x | C = c) = 

∏ 

i 

p(X i = x i | C = c) (2)

In our approach, we consider the Bayesian Network presented

n Fig. 3 . Our model consists of one observed variable (evidence),

he Current Sensed Data (CSD) and two hidden data: the first one

s the Energy Level (EL) of the node, the second one is the His-

ory of Sensed Data (HSD). The use of such data helps us to in-

er the classifier and give more accuracy in the detection of out-

iers. The HSD permits to exploit the temporal correlation exists

etween sensed data of the same node. On the other hand, the

emaining energy represented by Energy Level is one of the in-

uenced parameters on sensing operation [26] , it is useful to ver-

fy if a node has enough energy to perform its function properly.

uch a parameter can be computed by the node itself. According

o the Eq. (1) , we obtain the following conditional probabilities

quations: 

p(CSD | EL ) = 

p(EL | CSD ) p(CSD ) 

p(EL ) 
(3) 

p(CSD | HSD ) = 

p(HSD | CSD ) p(CSD ) 

p(HSD ) 
(4) 

Now, we compute the joint probability distribution

J(x 1 , x 2 , . . . , x n ) which encapsulates all the variables (param-

ters). It is defined by using the chain rule, which is the result of

he following product: 

J(x 1 , x 2 , . . . , x n ) = 

n ∏ 

i =1 

p(x i | par(x i )) (5)

Where x 1 represents the variable defined on the network and

ar ( x i ) represents the parents of the node. Matching the Eq. (5) on

he Bayesian network described by Fig. 3 , we obtain the following

quation: 

J(CSD | EL, HSD ) = p(CSD | HSD ) p(CSD | EL ) p(CSD ) (6)

n order to learn the prior probability and to compute all CPTs, we

se a supervised off-line method. Such a technique permits to re-

uce computation and maximizes outlier detection accuracy. 
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Fig. 2. Classification structure of our approach. 

Fig. 3. Our Bayesian network. 
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Algorithm 1 The DODS Algorithm. 

BEGIN 

Step 1 : Initialize parameters 

1: N : node in an interesting region (IR) 

//we consider only 4 classifiers (temperature, humidity, light 

and voltage) 

2: T = t 1 , t 2 , . . . , t n : set of classes of temperature data 

3: H = h 1 , h 2 , . . . , h m 

: set of classes of humidity data 

4: L = l 1 , l 2 , . . . , l k : set of classes of light data 

5: V = v 1 , v 2 , . . . , v p : set of classes of voltage data 

6: type _ of _ CSD = type T , type H , type L , type V 
7: Let EL N be the energy level of the node N 

8: Let CSD N be the Current Sensed Data of the node N 

9: Let HSD N be the History (Last) Sensed Data of the node N 

Step 2: Computing of maximum a posteriori (MAP) 

10: Switch type _ of _ CSD do 

11: type T : c MAP = arg max 
c∈ T 

p(EL N | CSD N ) p(HSD N | CSD N ) p(CSD N ) 

12: type H : c MAP = arg max 
c∈ H 

p(EL N | CSD N ) p(HSD N | CSD N ) p(CSD N ) 

13: type L : c MAP = arg max 
c∈ L 

p(EL N | CSD N ) p(HSD N | CSD N ) p(CSD N ) 

14: type V : c MAP = arg max 
c∈ V 

p(EL N | CSD N ) p(HSD N | CSD N ) p(CSD N ) 

15: end Switch 

Step 3: Comparison of result 

16: Switch type _ of _ CSD do 

17: type T : use T to find class _ of _ CSD ; 

18: if class _ of _ CSD = class _ of _ c MAP then 

19: CSD is Normal _ DAT A ; F ORWARD _ CSD 

20: else CSD is Outlier _ DAT A ; REMOV E _ CSD endif 

21: type H : use H to find class _ of _ CSD ; 

22: if class _ of _ CSD = class _ of _ c MAP then 

23: CSD is Normal _ DAT A ; F ORWARD _ CSD 

24: else CSD is Outlier _ DAT A ; REMOV E _ CSD endif 

25: type L : use L to find class _ of _ CSD ; 

26: if class _ of _ CSD = class _ of _ c MAP then 

27: CSD is Normal _ DAT A ; F ORWARD _ CSD 

28: else CSD is Outlier _ DAT A ; REMOV E _ CSD endif 

29: type V : use V to find class _ of _ CSD ; 

30: if class _ of _ CSD = class _ of _ c MAP then 

31: CSD is Normal _ DAT A ; F ORWARD _ CSD 

32: else CSD is Outlier _ DAT A ; REMOV E _ CSD endif 

33: end Switch 

END 
3.3. Inference algorithm 

The process of detecting outliers begins by inferring the clas-

sifier. To achieve this purpose, we use the maximum a posteriori

(MAP) concept [22,27] . The aim of this technique is to determine

all optimal classes c = c 1 , c 2 , . . . , c m 

by maximization of MAP given

the evidence. The MAP formula of our approach is described in the

following equation. 

c MAP = arg max 
c i ∈ C 

p(CSD i | EL i , HSD i ) (7)

c MAP = arg max 
c i ∈ C 

p(EL i | CSD i ) p(HSD i | CSD i ) p(CSD i ) (8)

We can apply Bayes’ theorem to the formula above, we obtain:

c MAP = arg max 
c i ∈ C 

p(EL i , HSD i | CSD i ) p(CSD i ) 

p(EL i , HSD i ) 
(9)

c MAP = arg max 
c i ∈ C 

p(EL i | CSD i ) p(HSD i | CSD i ) p(CSD i ) 

p(EL i , HSD i ) 
(10)

We note that the denominator is a constant and its value does

not affect the argmax, so we can drop it. We obtain the following

formula: 

c MAP = arg max 
c i ∈ C 

p(EL i | CSD i ) p(HSD i | CSD i ) p(CSD i ) (11)

We note that in our design, we consider different classes for

different sensed data. To do that, we suppose T = t 1 , t 2 , . . . , t n , as

a set of classes for the sensed data “Temperature”. For “Humid-

ity”, we put H = h 1 , h 2 , . . . , h m 

as classes of the classifier. The set

of classes proposed to “Light” and “Voltage” is L = l 1 , l 2 , . . . , l k and

 = v 1 , v 2 , . . . , v p respectively. So, c i in Eq. (7) represents one of the

classes mentioned above. According to the sensed data, a node can

use a specific classifier with a specific class. Fig. 2 shows different

classifiers implemented in nodes. For example, if the sensed data

are measured by temperature’s sensor unit, the classifier i speci-

fied to Temperature Data will use the classes T = t 1 , t 2 , . . . , t n for

inference’s process and so on. 

We summarize our approach in the following algorithm. 
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Table 2 

Dataset schema. 

Date Time Epoch Moteid Temp Humidity Light Voltage 

(yy − mm − d d ) ( hh : mm ss : xxx :) ( int ) ( int ) ( real ) ( real ) ( real ) ( real ) 

Fig. 4. Sensors in the Intel Berkeley Research Lab [28] . 
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Table 3 

Simulation parameters. 

Parameters Value(s) 

Square m 

2 100 × 100 

Number of nodes 81 

Cluster size 10 

Number of clusters 8 

Node radio range 40 m 

Transmission channel Wireless channel 

Propagation model log Normal path loss model 

Data packet size 32 bytes 

Bandwidth 200 kB/s 

Radio layer CC 2420 radio layer 

Queue size 50 packets 
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. Performance evaluation 

In order to evaluate our scheme, a set of data were obtained

nd a number of experiments were conducted. Section 4.1 de-

cribes the datasets, while Section 4.2 defines evaluation met-

ics; Section 4.3 shows the simulation parameters and in the

ection 4.4 reports the final results. 

.1. Datasets 

In order to be close to the reality, experiments have been

erformed by using the realistic sensed data collected from 54

ica2Dot sensors deployed in Intel Berkeley Research Lab between

ebruary 28 and April 5, 2004 (see Fig. 4 ) [28] . 

The sensed data included temperature, humidity, light, and

oltage values collected once in 31 s . The quantity of data is about

.3 million readings; it was collected using the TinyDB in-network

uery processing system, built on the TinyOS platform [28] . All

alues measured by sensors are presented in Table 2 . The epoch

s a monotonically increasing sequence number from each mote.

oteids range from 1 to 54; data from some motes may be miss-

ng or truncated. Temperature is in degrees Celsius. Humidity is

anging from 0 to 100%. Light is in Lux (a value of 1 Lux corre-

ponds to moonlight, 400 Lux to a bright office, and 10 0,0 0 0 Lux

o full sunlight). Voltage is expressed in volts, ranging from 2 to

; the batteries, in this case, were lithium ion cells which main-

ain a fairly constant voltage over their lifetime. In the experi-

ents, we first selected some measurements from the nodes with

Ds = 36 , 37 and 38 (see Fig. 2 ), for the time period from 2004-03-

1 to 2004-03-14 corresponding to 15763 log rows. We separate

his dataset according to features (temperature, humidity, light,

nd voltage). We obtain 4 synthetic datasets named: Dataset-Tmp,

ataset-Hmd, Dataset-Lght, and Dataset-Volt. To evaluate our ap-

roach, we add 10 0 0 outliers (Abnormal value) to each previous

atasets. 

.2. Evaluation metrics 

To evaluate the performance of the proposed algorithm, we

nalyzed three principle metrics: Detection Accuracy Rate (DAR),

alse Alarm Rate (FAR) and Energy Consumption. To do that, we

se a confusion matrix (CM) [29] . CM determines True and False
ositives (TP, FP), thus True and False Negatives (TN, FN). TP can

e defined as real outlier detection by a node. On the other side,

P is occurring when a node concludes that a sensed data are an

utlier but is not. The TN denotes that when a node it signals that

here is no outlier in a correct data. Finally, when a node does not

etect an existing outlier, FN increases. This matrix allows us to

valuate carefully the accuracy of our approach. DAR and FAR can

e computed using the following equations: 

AR = 

T P 

(T P + F N) 
(12) 

 AR = 

F P 

(F P + T N) 
(13) 

s regards energy consumption, this metric represents the total en-

rgy dissipated by all nodes to sense and transmit the measured

ata. The energy consumed by the radio of each node has been es-

imated basing on the model proposed by Heinzelman [30] . In this

odel, sending and receiving a k -bit packet with distance d , gen-

rate a radio consumption E T X (k, d) = E elec ∗ k + εamp ∗ k ∗ d 2 , and

 RX (k ) = E elec ∗ k respectively, Where: 

• E elec = 50 nJ/bit: energy for running the transmitter/receiver cir-

cuitry. 

• εamp = 100 pJ/bit/m 

2 : energy for running the transmitter am-

plifier. 

.3. Simulation parameters 

Our experiments are conducted under TOSSIM tool [31] . TOSSIM

s a TinyOS simulation tool which simulates WSN physical and link

ayer features accurately. This allows validating the solution under

ealistic WSN deployment conditions. In the experiments, we chose

ne of the most popular sensor platforms, Mica 2. We use 81 sensor

odes to form 10 clusters. We Consider sensor node with ID = 1 as

he sink and sensor nodes with IDs = 36 , 37 , 38 represent sensor

odes 36, 37 and 38 respectively of our Berkeley’s dataset selected

n Section 4.1 . Sensor node 2 is the CH of the previous set’s sensor

odes. The simulation parameters are depicted in Table 3 . 

.4. Results and discussion 

In this section, we present our experimental results for the pro-

osed algorithm. We compare the performance of our proposed

ODS scheme with CollECT event detection proposed by Wang

t al [32] , and with the outlier detection algorithm (OD) proposed
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Table 4 

Initialization of intervals (case of Temperature and Voltage). 

Temperature( ◦C) 

Small interval [ −50 , −45][ −45 , −40][ −40 , −35][ −35 , −30][ −30 , −25] 

[ −25 , −20][ −20 , −15][ −15 , −10][ −10 , −5][ −5 , 0][0 , 5] 

[5, 10][10, 15][15, 20][20, 25][25, 30][30, 35][35, 40][40, 45] 

[45, 50] 

Medium interval [ −50 , −40][ −40 , −30][ −30 , −20][ −20 , −10][ −10 , 0] 

[0, 10][10, 20][20, 30][30, 40][40, 50] 

Large interval [ −50 , −30][ −30 , −10][ −10 , 10][10 , 30][30 , 50] 

(a) Intervals (case of Temperature). 

Voltage(Volt) 

Small interval [2.0 0 0, 2.025][2.025, 2.050][2.050, 2.075][2.075, 2.100] 

[2.100, 2.125][2.125, 2.150][2.150, 2.175][2.175, 2.200] 

[2.200, 2.225][2.225, 2.250][2.250, 2.275][2.275, 2.300] 

[2.300, 2.325][2.325, 2.350][2.350, 2.375][2.375, 2.400] 

[2.400, 2.425][2.425, 2.450][2.450, 2.475][2.475, 2.500] 

[2.500, 2.125][2.525, 2.550][2.550, 2.575][2.575, 2.600] 

[2.600, 2.625][2.625, 2.650][2.650, 2.675][2.675, 2.700] 

[2.700, 2.725][2.725, 2.750][2.750, 2.775][2.775, 2.800] 

[2.800, 2.825][2.825, 2.850][2.850, 2.875][2.875, 2.900] 

[2.900, 2.925][2.925, 2.950][2.950, 2.975][2.975, 3.000] 

Medium interval [2.00, 2.05][2.05, 2.10][2.10, 2.15][2.15, 2.20][2.20, 2.25] 

[2.25, 2.30][2.30, 2.35][2.35, 2.40][2.40, 2.45][2.45, 2.50] 

[2.50, 2.55][2.55, 2.60][2.60, 2.65][2.65, 2.70][2.70, 2.75] 

[2.75, 2.80][2.80, 2.85][2.85, 2.90][2.90, 2.95][2.95, 3.00] 

Large interval [2.0, 2.1][2.1, 2.2][2.2, 2.3][2.3, 2.4][2.4, 2.5][2.5, 2.6] 

[2.6, 2.7][2.7, 2.8][2.8, 2.9][2.9, 3.0] 

(b) Intervals (case of Voltage). 

 

 

 

 

Table 5 

Initialization of intervals (case of Light and Humidity). 

Light(Lux) 

Small interval [0, 62.5][62.5, 125][125, 187.5][187.5, 250][250, 312.5] 

[312.5, 375][375, 437.5][437.5, 50 0][50 0, 562.5] 

[562.5, 625][625, 6 87.5][6 87.5, 750][750, 812.5] 

[812.5, 875][875, 937.5][937.5, 10 0 0][10 0 0, 1062.5] 

[1062.5, 1125][1125, 1187.5][1187.5, 1250][1250, 1312.5] 

[1312.5, 1375][1375, 1437.5][1437.5, 1500][1500, 1562.5] 

[1562.5, 1625][1625, 1687.5][1687.5, 1750][1750, 1812.5] 

[1812.5, 1875][1875, 1937.5][1937.5, 20 0 0] 

Medium interval [0, 125][125, 250][250, 375][375, 500][625, 750][750, 875] 

[875, 10 0 0][10 0 0, 1125][1125, 1250][1250, 1375] 

[1375, 1500][1625, 1750][1750, 1875][1875, 20 0 0] 

Large interval [0, 250][250, 50 0][50 0, 750][750, 10 0 0][10 0 0, 1250] 

[1250, 1500][1500, 1750][1750, 20 0 0] 

(a) Intervals (case of Light). 

Humidity(%) 

Small interval [0, 5][5, 10][10, 15][15, 20][20, 25][25, 30][30, 35][35, 40] 

[40, 45][45, 50][50, 55][55, 60][60, 65][65, 70][70, 75][75, 80] 

[80, 85][85, 90][90, 95][95, 100] 

Medium interval [0, 15][15, 30][30, 45][45, 60][60, 75][75, 90][90, 100] 

Large interval [0, 25][25, 50][50, 75][75, 100] 

(b) Intervals (case of Humidity). 

o  

s

 

c  

s  

t  

o  
by Asmaa et al. [33] . To do that, experiences are conducted accord-

ing to three scenarios. We use different intervals (Small, medium

and large) to compute c MAP . Tables 4 and 5 summarize the ini-

tialization of these intervals. We also consider the initial energy
Fig. 5. Detection accuracy for
f nodes with IDs = 36 , 37 , 38 equal to 18,720 Joules, that corre-

ponds to the energy of two AA batteries. 

For all scenarios, we proceed to 30 runs under the same test

onditions. We execute temperature, light, voltage and humidity

imulations separately. Fig. 5 a shows the number of outliers de-

ected in case of temperature, versus the simulation time. The rest

f figures ( Fig. 5 b–d) concerns voltage, light and humidity. From
 different types of data. 
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Fig. 6. False alarm rate for different types of data. 

Fig. 7. Energy consumed vs. Number of outliers. 

t  

w  

l  

t  

(  

o  

o  

t  

c  

r  

t  

d  

o  

t  
he curves visible in Fig. 5 a, it can be observed that the DODS-L

ith large intervals produces a good result. It can detect all out-

iers in a minimum of time. On the other hand, when the in-

ervals become smaller, the detection of outlier needs more time

case of DODS-M and DODS-S). The Fig. 5 a also shows clearly that

ur proposed approach DODS-L with large intervals outperforms

utlier detection (OD) approach and the CollECT algorithm. Indeed,
he use of wide intervals in DODS-L allows more possibility for a

alculated value ( c MAP ) in Eq. (11) , to be in the range of the cur-

ent sensed data. However; the OD approach is based on four steps

o classify data; (a) first: clustering algorithm is applied to group

ata into clusters; (b) second: for each cluster, an algorithm of

utlier detection is launched to classify normal and outlier clus-

er; (c) third step: outlier classification is executed to separate



100 C. Titouna, F. Naït-Abdesselam and A. Khokhar / Computer Networks 161 (2019) 93–101 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D

 

c  

i

S

 

f

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  
error and event data; (d) finally, computing the degree of trust-

fulness of the readings of each node. Each step requires time and

energy to be finalized, which is not acceptable in WSN. In addi-

tion, if it occurs an error in the construction of clusters in step

1 of the approach, the process of classification will generate false

results. For the case of CollECT algorithm, it is based on several

procedures (vicinity triangulation, event determination, and border

sensor node selection). It started by the construction of the esti-

mated attribute region to determine the occurrence of the event

(outlier), and to identify in some cases, the event boundary. How-

ever, the algorithm requires a collaboration of nodes to get high

accuracy. This condition increases time and energy consumption.

In our approach, DODS-L detects all outliers and the execution

time is less than that outlier detection approach and CollECT al-

gorithm. The good performance of DODS-L comes from the idea

used to delegate the outlier detection process in a distributed man-

ner. This solution attributes a twofold role to the node: at the

same time, it serves as a measurement node and as a cleaning

tool. 

Besides the evaluation of the detection accuracy metric,

Fig. 6 shows the false alarm rate versus the simulation time. From

results, there is a clear trend that the scenario with large interval

(DODS-L) outperforms all approaches (outlier detection approach

and CollECT algorithm), which reveals the effectiveness and effi-

ciency of the proposed scheme. This gain is mainly favored by the

adopted features of DODS and by the proposed model (see Fig. 2 )

for types of sensed data. However, from Fig. 6 , we observe that

DODS-S obtains higher false alarm rate than the other variants

(DODS-M, DODS-L). The reason for this increase lies in the use of

small intervals which increases the number of classes. That means,

when we computed c MAP of a current sensed data, even it is nor-

mal (not an outlier), the probability where it falls in the same in-

terval is very low. 

Finally, Fig. 7 depicts the energy consumed in joules by nodes.

As shown, the histograms represent the consumption of energy

when we variate the number of outliers (from 200 until 10 0 0 out-

liers) in case of temperature. It is clear that our DODS-L outper-

forms OD approach and CollECT algorithm. In wireless sensor net-

works, three units consume energy: wireless communication, CPU

and sensing unit. We note that the communication unit consumes

more energy compared to other components. Since our algorithm

detects outliers locally in nodes and does not require any neigh-

bors information exchanging, so it performs better than the other

approaches and consumes less energy. 

5. Conclusion 

Most of the proposed approaches for outlier detection in wire-

less sensor networks require having some information and knowl-

edge about the neighboring nodes. However, due to the high

energy consumption due to wireless communications, these ap-

proaches are proven to not be optimal and efficient, and more re-

search is needed to further enhance the performances of such al-

gorithms. To this goal, we proposed in this paper a highly efficient

algorithm, called Distributed Outlier Detection Scheme (DODS). The

effectiveness of this scheme derived from its fully distributed way

of operation as it does not involve any messages exchange in the

neighborhood. To evaluate the performance of the proposed algo-

rithm, a large number of experiments have been performed using

real and synthetic datasets. The proposed algorithm delivers very

interesting performances, thereby demonstrates its effectiveness.

As a future work, we plan to introduce new models for a better

and precise separation of the outlier detection from the event de-

tection. 
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