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a b s t r a c t

With the increasing irreversible damage caused by air pollution, an early warning system to send
warning information to human beings so that they can avoid more harm caused by air pollution is
required. A reliable warning system can provide valuable information to protect mankind from the ef-
fects of pollution and can act as a tool that allows regulators to implement corresponding measures to
reduce air pollution. However, the previous most valuable research studies were focused on pollution
forecasting and the extent to which pollution affects health, and the aim of only a few studies was to
analyze pollution from an application perspective and to construct a reasonable early warning system. In
this study, an air pollution early warning system was constructed, which comprises two modules: an air
pollution forecasting module and an air quality evaluation module. In the forecasting module, two
denoising methods and a multi-objective optimization algorithm are integrated into a novel hybrid
forecasting model. In the evaluation module, fuzzy synthetic evaluation is used to evaluate air quality
objectively. To verify the performance of the proposed early warning system, hourly pollutants con-
centration data were used in a case study of three metropolises in China and three numeric simulation
experiments were conducted. The simulation results show that the forecasting performance of the
L2,1RF-ELM model used in this study is better than the traditional neural network, and the forecasting
model proposed in this paper is better than the traditional statistical model ARIMA. Moreover,the early
warning system performed well in terms of highly accurate forecasting and accurate evaluation in the
three research areas.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

For nearly a century, the rapid development of industrialization
and urbanization has increased the amount of energy consumed by
human activities and caused serious air pollution in the world.
Scholars have conducted a significant number of air pollution
research studies. The results of extensive studies indicate that
exposure to air pollution can cause a variety of diseases (Cohen
et al., 2017; Guo et al., 2016). Moreover, air pollution can also be
detrimental to the ecosystem, leading to the greenhouse effect,
ozone layer destruction, acid rain, reduced solar radiation, etc.
(Anwar et al., 2016; Desonie, 2007; Ramanathan and Feng, 2009).
alian, China.
Therefore, accurate and authentic air quality information is
increasingly needed to enable industries to minimize their pro-
duction of pollutants and residents to adjust their activities
promptly to mitigate the damage caused by major pollution.

To diminish the effects of air pollution, scholars have focused on
analyzing and forecasting the concentrations of pollutants,
devoting their efforts to providing highly accurate forecasting.
During the past one hundred years, many forecasting methods
were proposed, the most popular of which can be classified into
three categories: physical, statistical, and artificial intelligence
models (Bai et al., 2018).

Physical models use the physicochemical process of pollutants
in the atmosphere as the entry point for forecasting pollutant
concentrations. Statistical methods can be divided into causal
models and time series models according to their fundamental
characteristics. The assumption of causal models is that the
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Nomenclature

Abbreviations
AATVs Average Actual Values
ANNs Artificial Neural Networks
AQI Air Quality Index
ARMA Autoregressive Moving Average
ARIMA Autoregressive Integrated Moving Average
BPNN Back-Propagation Neural Network
CW-SVR Chance Weighted Support Vector Regression
ELM Extreme Learning Machine
EMD Empirical Mode Decomposition
EEMD Ensemble Empirical Mode Decomposition
EOF Empirical Orthogonal Function
FB Fractional Bias
FSE Fuzzy Synthetic Evaluation

IMFs Intrinsic Mode Functions
L2,1RFELM ELM based on L2,1-norm and Random Fourier
MAE Mean Absolute Error
MAPE Mean Average Percentage Error
MFs Membership Functions
MOALO Multi-Objective Ant Lion Optimizer
PCs Principal Components
R Pearson's correlation coefficient
RF Random Fourier
RMSE Root Mean Square Error
SLFN Single Hidden Feedback Network
SSA Singular Spectrum Analysis
SVD Singular Value Decomposition
SEMR SSA-EEMD-MOALO-L2,1RFELM
SEME SSA-EEMD-MOALO-ELM
MR MOALO-L2,1RFELM
EMR EEMD-MOALO-L2,1RFELM
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historical relationship between dependent and independent vari-
ables will remain valid in the future. The main idea of time series
models is that history will repeat itself, and the forecast values are
thus based on the information obtained from the past and current
data (Liu et al., 2016). Moreover, with the development of artificial
intelligence arithmetic, artificial intelligence models have been
widely used in many fields.

However, physical forecasting models, including mesoscale
numerical models and fluid dynamic-related methods, require
physical or meteorological information as input variables. These
models consider large scale simulation data and consume excessive
computing resources (Zhao et al., 2017). In addition, because of the
inherent limitations of statistical methods, they show a poor
extrapolation effect and narrow forecasting range. Moreover, arti-
ficial intelligence models also have some defects, such as over-
fitting and a low convergence rate, and they easily get stuck in a
local optimum. Furthermore, raw air pollution data are character-
ized by instability and noise. When the amount of data is insuffi-
cient, individual models lead to imprecise forecasting. Finally, the
concept of a comprehensive evaluation aimed at determining the
degree of pollution is vague and it is difficult to find a clear
boundary, and therefore, fuzzy logic is more suitable for air quality
evaluation. However, the commonly used evaluation tool today is
the Air Quality Index (AQI) (Rahman et al., 2015, 2017; Zhu et al.,
2017).

As can be understood from the analysis above, it is necessary to
develop an effective air quality early warning system for China, and
even for the world. In our study, a new early warning system was
developed, which contains two modules: a hybrid forecasting
module and a synthetic evaluation module. In the forecasting
module, where the “decomposition and ensemble” theory is
applied, the most recently developed forecasting method, an
extreme learning machine (ELM) based on L2,1-norm and random
fourier (L2,1RFELM) and the most recently developed bio-inspired
optimization algorithm called the multi-objective ant lion opti-
mizer (MOALO) are integrated to form a hybrid model. The fore-
casting model is constructed as follows. First, the perspective of
dynamic reconstruction of time series is applied combined with
empirical orthogonal functions that can reduce noise and identify
the components that show trends and periodic changes in the
original sequence. In order to improve the forecasting accuracy and
retain as much as possible of the effective information contained in
the original data, by adding white noise to the sequence the signals
of different scales are automatically distributed to the appropriate
reference scale to decompose the signals again. The L2,1RFELM
model optimized byMOALO is used to forecast the non-major trend
series. In an early warning system, air quality evaluation is also
indispensable. In view of the uncertainty for evaluation, fuzzy
synthetic evaluation (FSE) was applied in the second (evaluation)
part. By using these methods, a more effective forecasting and ac-
curate evaluation results can be achieved, and thus, valuable in-
formation can be provided to the public and governments.

The main contributions and innovations of this study are as
follows.

(1) The original data were decomposed using two different
denoising methods, which are based on the decomposition and
ensemble data-preprocessing technique. The raw air pollution
data were transformed into a filtered time series after being
decomposed and reconstructed. Data preprocessing could
decrease the irregularity of the air pollution data and the noise
that they contain. In this study, pollution forecasting accuracy
was effectively improved.
(2) A novel forecasting method based on EML was successfully
applied in the proposed hybrid forecasting model. The fore-
casting method in the forecasting module is a novel forecasting
algorithm, which is used for the first time in the field of pollu-
tion forecasting. The results of the experiments conducted in
this study proved that the air pollution forecasting performance
of the novel forecasting method is good.
(3) Threemain pollutants were selected in each city included in
the study by using FSE based on the average of pollutant
concentrations. Experiments on the three main pollutants
were then conducted. The experimental results indicate that
these three pollutants could be used to estimate the air quality
in each city, and thus, it is possible to reduce the program run
time and achieve air pollution forecasting that is more indi-
vidualized for different cities.
(4) An air quality early warning system that is feasible and
operable was established. The system comprises accurate
forecasting and effective evaluation. This system was tested
using air pollution data for Beijing, Shanghai, and Guangzhou in
China. All the experimental results reflect the excellent perfor-
mance of the system. It is reasonable to believe that this early
warning system can be used for daily life guidance to reduce the
impact of environmental pollution.

And for the convenience of the readers, all abbreviations in this



J. Wang et al. / Journal of Cleaner Production 234 (2019) 54e7056
paper are concluded in a table as follow:
The rest of this paper is organized as follows. Section 2 outlines

the methodologies that were used in the air pollution forecasting
module. Section 3 introduces the theory of FSE and its application
for selecting three main pollutants. The experiments and evalua-
tion results are reported in Section 4. Section 5 concludes this
article.

2. Preprocessing of air pollution concentration data

The methods that were used in the process of preprocessing are
introduced in this section, including singular spectrum analysis
(SSA), Ensemble empirical mode decomposition (EEMD). Like most
time series, the original air pollution data is unstable and contains
noise. These noises and instability are useless or even disadvanta-
geous to forecast. In order to improve the accuracy of forecasting, it
is necessary to pre-process the data and remove the interference
information from the original time series.

2.1. Initial denosing

SSA is a typical technique for analyzing time series datawhen no
statistical hypotheses exist about the signal or noise (Ma et al.,
2017). This technique can obtain a reconstructed series by
refining and identifying trends or quasi-periodic components and
reducing noise in the original signal (Wang et al., 2017b). Although
the main principle of SSA is simple, the function of this method is
powerful. In practical applications, SSA performs better than
nonparametric methods, such as empirical mode decomposition,
which potentially suffer from the mode-mixing problem. EEMD
cannot entirely neutralize the added white noise(Du et al., 2016).

In this section, we introduce the principle of SSA to explain its
implementation and usage. The process of SSA comprises two
stages and each stage includes two steps.

Stage 1 Decomposition. The main purpose of the decomposition
stage is to decompose the series. This stage consists of two
steps.

Step 1 Embedding. This step can transfer the original time

series, a one-dimensional time series, into a multi-
dimensional time series.
The original series is defined as

X ¼ ðx1; x2;/; xTÞ (1)

Then, the window length is denoted by Lð2 � L � TÞ. The se-
lection rules of L are as follows.

(1) It is preferable that L be less than 1/3 of the length of the
original series;

(2) If the raw data are periodic, Lshould optimally be an integer
multiple of the period.

After the window length has been determined, the multi-
dimensional series Y is also determined. Y is frequently called a
trajectory matrix and can be expressed as:

Y ¼ ½Y1Y2/YK � ¼

2
66664
x1x2x3/xK
x2x3x4/xKþ1
««««
xLxLþ1xLþ2/xT

3
77775 (2)

whereK ¼ T � Lþ 1. Y has two important properties (Gao et al.,
2016):
(1) The elements of matrix Y are from the original series and
every row and column is a subseries of X.

(2) Y is a Hankel matrix, because the elements on the anti-
diagonals are equal.

Step 2 Singular value decomposition (SVD). The main oper-

ation in this step is the decomposition of the trajec-
tory matrix Y.
First, the matrix B ¼ YYT is calculated.
Then, a corresponding orthogonal matrix U ¼ ½u1; u2; /;

uL�2ℝL�Lof the matrix B and V¼ ½v1; v2;/; vL�2ℝL�L is defined. We
can establish the formula

B ¼ USVT (3)

From Eq. (4), we can obtain the eigenvalues matrix S of B:

S¼ ½diagðl1; l2;/; lLÞ;Ο� l1 � l2 � / � lL � 0 (4)

whereΟ is the zero matrix,U is the corresponding eigenvector, also
called the empirical orthogonal function (EOF), and V represents
the principal components (PCs).

Finally, the SVD of the trajectory matrix Ycan be expressed as:

Y¼
Xd
i¼1

Yi d ¼ maxði; li >0Þ ¼ rank Y (5)

where Yi ¼
ffiffiffiffi
li

p
uivTi i ¼ 1;2;/; d is the i-th component of the SVD,

vi ¼ YTui
. ffiffiffiffi

li
p represents the singular vector of singular val-

ues
ffiffiffiffi
li

p
of Y, and the set of f

ffiffiffiffi
li

p
g is the spectrum of Y.

Stage 2 Reconstruction. In this stage, the signals represented by
each eigenvalue are analyzed and combined to reconstruct
a new time series. This stage also consists of two steps.

Step 1 Grouping. Y is divided into n groups, which are non-

connected. First, the set of indices I ¼ f1;/;dg are
split into several groups I1; /; In; then, Yi within
each group is summed into YI. The result of this step
is expressed as (Golyandina et al., 2001):
X

Y¼ ½YI1;YI2;/;YIn�; Where YIn ¼

i2In

Yi (6)
Step 2 Diagonal averaging. The purpose of this step is to
convert the matrix obtained in the previous step
into a sequence of length N. Suppose Z is an L� K
matrix, and L* ¼ minðL;KÞ and K* ¼ maxðL; KÞ. If
L< K, then, z*ij ¼ zij; else, z*ij ¼ zTij ¼ zji. The
restructured sequence RC ¼ ðrc1; rc2;/; rcNÞ can be
converted to a series using
rck ¼

8>>>>>>>>>><
>>>>>>>>>>:

1
k

Xkþ1

q¼1

z*q;k�qþ2 1 � k � L*

1
L*

XL*
q¼1

z*q;k�qþ2 L* � k � K*

1
N � k

Xk�K*þ1

q¼k�K*þ2

z*q;k�qþ2 K* � k � N

(7)
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In the SSA technique, the first r constituents can be considered
the vital information and the remaining N-r constituents can be
considered the noise of the original data (Du et al., 2016).
2.2. Secondary denoising

In order to overcome the shortcomings of Fourier spectral
analysis and other traditional data analysis methods, Huang et al.
(1998) devised a novel time-frequency analysis algorithm, called
empirical mode decomposition (EMD) (Huang et al., 1998). EMD
was effectively applied in many fields soon after it was proposed
(Boudraa and Cexus, 2007; Heng et al., 2016). However, EMD also
cannot process data effectively because of its weaknesses, such as
the mode-mixing problem. Therefore, in order to improve the data
processing capabilities of EMD, Wu et al. (2009) proposed an
improved method named ensemble empirical mode decomposi-
tion (EEMD) (Wu and Huang, 2009). As compared to EMD, EEMD
can offset noise by adding paired white noise. The main steps of
EEMD are as follows.

Step 1. White noise is added to the original data X(t), such as
positive white noise w(t) and negative noise ew(t). The white
noise amplitude is given as 0.1e0.4 times the standard deviation
of the original data.8<

:PðtÞ ¼ XðtÞ þwðtÞ
NðtÞ ¼ XðtÞ �wðtÞ (8)
Step 2. (P(t),N(t)) is decomposed into K intrinsic mode functions
(IMFs), expressed asIjðtÞ ðj ¼ 1;2; /; KÞby using the EMD
technique.
Step 3. Steps 1 and 2 are repeated M times and different white
noise components are added. We obtain the i-th series with
white noise:

8><
>:

PiðtÞ ¼
XK
j¼1

Iþij ðtÞ

NiðtÞ ¼
XK
j¼1

I�ij ðtÞ
i¼1;2;/;M; j ¼ 1;2;/;K (9)

where Pi(t) and Ni(t) are the i-th series after white noise is added
and Iij(t) is the j-th IMF of the i-th trial.

Step 4. The ensemble mean of the corresponding IMFs of the
decomposition is calculated as the data processing result (Wang
et al., 2017a).

XðtÞ ¼ IjðtÞ (10)

IjðtÞ ¼
1
2M

XM
i¼1

�
Iþij ðtÞþ I�ij ðtÞ

�
(11)
3. Introduction of multi-objective optimization algorithm
and forecasting algorithm

The air pollution forecasting model proposed in this paper not
only combines the idea of secondary denoising, but also uses multi-
objective optimization algorithm to find the best parameters of the
forecasting algorithm in order to improve the accuracy of the
forecasting model. This section will introduce the optimization al-
gorithm and forecasting algorithm used in the air pollution fore-
casting model.
3.1. Multi-objective ant lion optimizer

The multi-objective ant lion optimizer (MOALO) is a multi-
objective version of the ant lion optimizer (ALO), proposed by
Mirjalili in 2016. It was inspired by the foraging behavior of ant lion
larvae in nature, and the implementation of this algorithm is
mainly through ant random walks, building traps, trapping ants
into traps, and reconstructing traps. In contrast to those of ALO, the
results of MOALO are a Pareto optimal solution set, and the fitness
of the ant lion is determined by using the roulette wheel mecha-
nism. The main steps and mathematical modeling as presented by
(Du et al., 2017; Mirjalili et al., 2017) are provided below.

Step 1. In nature, large ant lions set large traps to increase their
chances of survival, and therefore, the MOALO algorithm uses a
roulette mechanism to ensure that strong ant lions are able to
capture as much prey as possible. Moreover, to improve the
distribution of the Pareto optimal solutions in the archive, two
mechanisms are considered.
(1) The ant lions are selected based on the least populated

neighborhood strategy. The probability of selecting a solu-
tion in the archive can be calculated as

Pi ¼
k
Ni

1< k<Ni (12)

where Ni is the number of solutions of the i-th solution in the vi-
cinity and k is a constant.

(2) When the archive is full, it is necessary to remove the solu-
tion with the most populated neighborhood. The probability
of a solution being removed can be expressed as

Pr ¼ 1
Pi

¼ Ni

k
(13)
Step 2. The random walks of ants can be simulated as

XðtÞ ¼ ½0; cumsumð2f ðt1Þ�1Þ; cumsumð2f ðt2Þ�1Þ;
/; cumsumð2f ðtnÞ�1Þ� (14)

f ðtÞ ¼
8<
:1 if rand>0:5

0 if rand � 0:5 (15)

where cumsum calculates the cumulative sum, n is the maximum
iteration number, t represents the step of the random walk (itera-
tion in this algorithm), f(t) is a stochastic function, and rand is a
random number generated with uniform distribution in the range
[0,1].

Then, we normalize the random walks by

Xt
i ¼

�
Xt
i � ai

�� �
dti � cti

�
bi � ai

þ cti (16)

where ci
t and di

t are respectively the minimum and maximum of the
i-th variables at the t-th iteration and ai and bi are respectively the
minimum and maximum in the i-th variables. Normalization is
aimed at controlling the randomwalk within the boundaries of the
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search space and avoiding the problem of the ants overshooting.

Step 3. The ants fall into the trap as a result of random walks
around the ant lion, while the random walk of the ants is
affected by the ant lion trap. Themathematical expression of the
simulated ant random walk around the ant lion trap is

ci ¼Antliontj þ ct (17)

di ¼Antliontj þ dt (18)

where ct and dt are respectively the minimum and maximum of all
variables at the t-th iteration and ci and di respectively represent
the minimum and maximum of all the variables for the i-th ant.
Antliontj represents the position of the j-th ant lion at the t-th
iteration.

Step 4. The boundaries of random walks are adaptively
decreased based on the true activities of the ant. The equations
are:

ct ¼ ct

I
(19)

dt ¼ dt

I
(20)

I¼1þ 10w
t
T

w ¼

8>>>>>><
>>>>>>:

2 if t >0:1T
3 if t >0:5T
4 if t >0:75T
5 if t >0:9T
6 if t >0:95T

(21)

where I is a ratio andw is used to adjust the exploration level. ct and
dt are respectively the minimum and maximum of all the variables
at the t-th iteration, t is the current iteration number, and T is the
maximum iteration number.

Step 5. This step comprises mainly modeling the processes of
catching the prey and re-building the traps of the ant lions. To
simulate this, we use

Antliontj ¼ Antti if f
�
Antti

�
< f

�
Antliontj

�
(22)

where Antliontj is the position of the j-th antlion at the t-th iteration
and Antti represents the position of the i-th ant at the t-th iteration.

Step 6. The best ant lion in the optimization process is called the
elite ant lion. Elite ant lions affect all the ants at each stage. The
randomwalks of each ant lion are related to the selected ant lion
and elite ant lion. After considering these two effects, Eq. (23)
should be satisfied:

Antti ¼
RtA þ RtE

2
(23)

where Antti is the position of the selected j-th ant at the t-th iter-
ation. RtA and RtE indicate the random walk around the selected
antlion and the elite ant lion at the t-th iteration, respectively.
3.2. L2,1-norm and random fourier mapping-based extreme
learning machine

In this sub-section, we provide a brief introduction to L2,1-norm
and ELMs and then describe the construction of L2,1RF-ELM.
3.2.1. L2,1-norm of a matrix

Definition 1. In (Ding et al., 2006; Nie et al., 2010), the L2,1-norm
of a matrix is described as

kMk2;1 ¼
Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
j¼1

m2
ij

vuut ¼
Xn
i¼1

kmik2 (24)

where M is an arbitrary matrix and mij represents the elements of
M. mi represents the i-th row of M. Moreover, for any rotational
matrix R, kMRk2;1 ¼ kMk2;1.

L2,1-norm was first proposed for solving the problem of multi-
task learning. It is a perfect sparse inducing norm (Zhou et al.,
2016). This norm is defective for noisy classification learning
tasks and suitable for unifying the extreme learning system.
3.2.2. Extreme learning machine
An ELM, proposed by Huang et al. (2004), is a feed-forward

neural network with a single hidden layer (Huang et al., 2004).
Unlike the traditional feed-forward neural network algorithm, an
ELM requires only that the number of hidden layer nodes be set.
Parameters, such as the weights connected to the hidden layer, are
randomly generated at the beginning. As compared with a feed-
forward back-propagation neural network (BPNN), ELMs have ad-
vantages such as fast learning and less parameter adjustment. The
related theory is described as follows.

First, we define the notations that are used in this sub-section.
In a standard single hidden feedback network (SLFN) with n-L-

m, the input set X and output set Y of Q samples are

X ¼

2
66664
x11 x12 / x1q
x21 x22 / x2q
« « «
xn1 xn2 / xnq

3
77775 (25)

Y ¼

2
66664
y11 y12 / y1q
y21 y22 / y2q
« « «
ym1 ym2 / ymq

3
77775 (26)

The weight of the input layer and hidden layer is denoted by w:

w ¼

2
66664
w11 w12 / w1n
w21 w22 / w2n
« « «
wl1 wl2 / wln

3
77775 (27)

The weight of the hidden layer and output layer is defined as
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b ¼

2
66664
b11 b12 / b1m
b21 b22 / b2m
« « «
bl1 bl2 / blm

3
77775 (28)

The threshold of the neurons in the hidden layer is denoted by b:

b ¼

2
66664
b1
b2
«
bl

3
77775 (29)

The mathematical equation of a neuron can be expressed as

Y ¼ gðw , xþ bÞ (30)

where gðxÞ R/R is an activation function, which is non-linear.
The output of the network is defined as

T ¼ �
t1; t2;/; tq

�
m�q (31)

tj¼

2
66664
t1j
t2j
«
tmj

3
77775
m�l

¼

2
6666666666664

Xl

i¼1

bi1g
�
wixjþbi

�
Xl

i¼1

bi2g
�
wixjþbi

�
«Xl

i¼1

bimg
�
wixjþbi

�

3
7777777777775

ði¼1;2;/; l; j¼1;2;/;qÞ

(32)

wi ¼ ½wi1;wi2;/;win� (33)

xj ¼
�
x1j; x2j;/; xnj

�T (34)

The mathematical formulation of T ¼ ½t1; t2;/; tq�m�q is
Hb ¼ T 0, where T' is a transposed matrix of T and H is the output
matrix of the hidden layer.

Moreover, to understand the ELM algorithm better, we intro-
duce two theorems proposed by Huang et al. (2006)

Theorem1. Given a standard SLFN with n input nodes, L hidden
nodes, andm output nodes, and given a test group fxi; tigNi¼1, where
xi is an input set and ti is an output set and xi 2Rn; ti2 Rm. If acti-
vation function g : R/R is infinitely differentiable in any interval,
for any wi2Rn, bi2R, the output matrix of hidden layer H is
invertible and kHb� T 0k ¼ 0.

Theorem2. Given an input-output sample set fxi; tigNi¼1 and any
small positive numberε>0, if the activation function g : R/ R is
infinitely differentiable in any interval, there is always a standard
SLFN with n input nodes, L hidden nodes, and m output nodes. For
any wi2Rnbi2R, there exists L � N such that kT 0 �Hbk � ε with
probability 1.

Based on Theorems 1 and 2, Huang et al. (2006) proposed an
ELM to train SLFNs. From Theorem 1, we can understand that if
L¼Q, for any w and b an SLFN can approach training samples with
zero error. The mathematical expression is

Xq
j¼1

			tj � yj
			 ¼ 0



yj ¼

h
y1j; y2j;/; ymj

iT�
(35)
When L< Q, according to Theorem 2, the training error of an
SLFN can approach any small positive numberε>0, which is
expressed mathematically as.

Xq
j¼1

			tj � yj
			< ε (36)

Therefore, when activation function g : R/R is infinitely
differentiable,w and b can be randomly selected before the training
progresses, and they do not change during the training. b can be
obtained by solving the least squares solution of

min
b

kHb� T 0k (37)

The solution to this equation is b ¼ HþT0, where the Moore-
Penrose generalized inverse of H isHþ.

The main steps of ELM are summarized as follows.

Step 1. The connecting weight between the input layer and the
hidden layer, wi, is randomly generated and the bias between
the hidden layer and the output layer bi, where i ¼ 1;/; L, is
calculated.
Step 2. The output matrix of hidden layer H is calculated;
Step 3. b is calculated.
3.2.3. Modling an forecating algorithm
Although an ELM has many advantages, no effective "training"

method exists for it, and in general, the greater the number of
hidden neurons, the smaller the training error. However, the
number of hidden neurons cannot be excessively large, and
therefore, the number of hidden neurons needs to be changed
constantly to find the most suitable number of neurons. Therefore,
Zhou et al. (2016) proposed an ELM algorithm based on random
Fourier mapping and L2,1-Norm. In this algorithm, random fourier
(RF) ELM is an explicit approximation of the implicit Gaussian
kernel ELM, and L2,1RF-ELM can prune the redundant and irrelevant
hidden neurons automatically, in order to form a discriminative
and compact hidden layer (Xue et al., 2017).

The objective function of this algorithm is

min
b;x

1
2
kbk2;1 þ

1
2
C
XN
i¼1

kxik2 (38)

s:t: hðxiÞb¼ yTi � xTi i ¼ 1;/;N (39)

Here, b is the output weight matrix, xi represents the training
error vector, and C represents the penalty coefficient. For the
detailed solution process of this function, please see (Zhou et al.,
2016).

According to (Xue et al., 2017), we chose a two-step strategy to
train the L2,1RF-ELM.

Step 1. Neuron selection. The different K hidden nodes are
selected based on the norm of the output weights, where the
norm proportion is less than or equal to a given threshold value.
The threshold is 96% for classification and 96.5% for regression.
Moreover, K is determined by cross validation of different data
sets. The best combination of weight variance and penalty co-
efficient is searched within a given range. The search range of
the weight variance is f2�24;2�22;/;28g and the search range
of the penalty coefficient is f2�20;2�19;/;220g.
Step 2. Output weight calculation. After the hidden nodes are
selected, the output weights can be obtained and an ELM with a



Table 1
Threshold of pollutant concentration (mg/m3;mg/m3) corresponding to air quality of
different levels.

Factors Excellent Good Moderate Heavy Serious

I II III IV V

PM2.5 15 35 75 120 165
PM10 40 70 140 210 320
SO2 20 60 100 140 180
NO2 20 40 60 80 100
CO 2 4 6 8 10
O3 100 160 220 280 340
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finely pruned hidden layer can be trained. The parameter search
range is f2�20;2�19;/;220g

3.3. Optimization of L2,1RF-ELM algorithm

In order to improve the forecasting accuracy of L2,1RF-ELM, we
selects the multi-object ant lion algorithm to optimize the pa-
rameters of the forecasting algorithm. The optimized parameters
include the number of input nodes and the number of hidden layer
nodes of the ELM. And there are two optimization objects, one is
mean squared error, which measures the forecasting accuracy of
the model, and the other is the standard deviation of the fore-
casting error that measures the stability of the prediction model.

The optimization process of MOALO-L2,1RF-ELM usually con-
tains five steps:

Step 1. Input initial parameters of MOALO and L2,1RF-ELM, such
as iterations number, ant lion population size, number of ants
and each ant lion and ant initial position, etc..
Step 2. Determining the objective function of the optimization
algorithm, the objective functions of this study show as

min ¼

8>>>><
>>>>:

O1 ¼ MSE ¼ 1
n

Xn
i¼1

ðbyi � yiÞ2

O2 ¼ stdðbyi � yiÞ
i ¼ 1;2;…;n (40)

Since the stability and accuracy of the forecasting are equally
important, we set the weights of the two objective functions to 0.5
respectively to ensure the accuracy and stability of the forecasting
can be met simultaneously.

Step 3. Continuously update the position information of ant li-
ons and ants according to the value of the objective function.
Step 4. Search for the optimal solution set and update the
archive on each iteration. If reached the maximum number of
iterations or expected errors, the next step is launched; other-
wise, back to step 4 to continue the iteration.
Step 5: Stop the iteration and get the optimal parameters of the
L2,1RF-ELM algorithm. Finally, input the data after pre-
processing to the optimized L2,1RF-ELM to obtain the fore-
casting value.

4. Air quality assessment and application of air pollution
early warning system

The most used air quality evaluation tool is Air Quality Index
(AQI), but “pollution degree” is a relatively vague concept, and hard
to find clear boundaries. Therefore, fuzzy logic is more suitable for
air quality assessment.

FSE is an evaluationmethod based on fuzzymathematics. One of
its advantages is that its mathematical model is simple. Moreover, it
is effective for multi-factor and multi-level complex problem
assessment. In this section, first we introduce the theory, and then,
according to fuzzy evaluation theory the application to the study
areas is described in the second sub-section. Following the sub-
section 4.2, we introduced five model performance metrics in
sub-section 4.3. And sub-section 4.4 descriptions the data we used
in study. The last two sub-sections introduce the experimental
process and experimental results.

4.1. Fussy synthetic evaluation theory

The process of establishing an FSE system is as follows.
Step 1. The set of factors for the evaluation object is determined.

The selected factors should possess the traits of representa-
tiveness, feasibility, and system. Air quality evaluation relies on the
concentration levels of the main air pollutants. Therefore, in this
study, the indicators were chosen according to China's ambient air
quality standards (AAQS: GB3095-2012). Moreover, different
geographical areas have different topographic and economic char-
acteristics, and consequently, the different key pollutants in the
study areas should be also taken into account. The factors set can be
given as

U ¼ fu1;u2;/;umg (41)

Step 2. The evaluation rank standard is determined.

The evaluation rank set is described as V ¼ fv1;v2;/vng. In our
study, the air pollution degrees were divided into five levels, and
therefore, the rank set is given as

V ¼ fExcellent;Good;Moderate;Heavy; Seriousg (42)

The pollutants grading standard according to AAQS is shown in
Table 1.

Step 3. Index fuzzification.In this step, the membership func-
tions (MFs) corresponding to each index are obtained. The
process of fuzzification constitutes the process of membership
calculation by using MFs. In this study, we used the trapezoidal
membership to calculate the membership value.

rij ¼

8>>>>>>><
>>>>>>>:

0 xi � u2
u2 � xi
u2 � u1

u1 < xi <u2

1 xi � u1

ðj ¼ 1Þ (43)

rij ¼

8>>>>>>><
>>>>>>>:

0 xi � u3 or xi � u1
u3 � xi
u3 � u2

u2 < xi < x3

xi � u1
u2 � u1

u1 � xi � u2

ðj ¼ 2Þ (44)



Table 2
Fuzzyweights and fuzzy synthetic evaluation results of pollutants in the study areas.

Area Indices Pollutants(mg/m3;mg/m3)

PM2.5 PM10 SO2 NO2 CO O3 Level

Beijing AATVS 65.97 105.36 10.46 45.65 1.04 67.59 III
W 0.28 0.24 0.04 0.06 0.27 0.11
B 0.21 0.38 0.42 e e e

Shanghai AATVS 42.22 60.20 12.12 44.10 0.75 80.58 II
W 0.23 0.17 0.05 0.06 0.33 0.16
B 0.33 0.56 0.11 e e e

Guangzhou AATVS 36.49 58.53 11.07 52.98 0.89 46.38 II
W 0.20 0.17 0.05 0.07 0.41 0.10
B 0.28 0.45 0.27 e e e
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rij ¼

8>>>>>>><
>>>>>>>:

0 xi � u3 or xi � u2
u4 � xi
u4 � u3

u3 < xi < x4

xi � u3
u3 � u2

u2 � xi � u3

ðj ¼ 3Þ (45)

rij ¼

8>>>>>>><
>>>>>>>:

0 xi � u4 or xi � u3
u5 � xi
u5 � u4

u4 < xi < x5

xi � u4
u4 � u3

u3 � xi � u4

ðj ¼ 4Þ (46)

rij ¼

8>>>>>>><
>>>>>>>:

0 xi � u4
xi � u4
u5 � u4

u4 < xi < x5

1 xi � u5

ðj ¼ 5Þ (47)

where xi is the actual value of index i, j is the air quality rank, and u
represents the threshold value of the air quality rank for different
pollutants. According to the MF, we can obtain the single factor
fuzzy relationship matrix R, which reflects the degree of affiliation
of each pollution factor to each level of air quality.

R¼ �
rij
�
m�n ¼

2
66664
r11 r12 / r1n
r21 r22 / r2n
« « «
rm1 rm2 / rmn

3
77775 (48)

rij in this matrix indicates the membership degree of the factor
ui corresponding to vj.

Step 4. The factor weight is calculated.

Weight reflects the importance of each factor in synthetic
evaluation and directly affects the outcome of the evaluation. Many
methods exist for determining the weight, such as weighted sta-
tistics, Coefficient of variation method, the Delphi method, and
entropy methods. In our study, the weight was calculated by Fuzzy
Weighting Method, the formula is shown as (Xu et al., 2017a)

wi ¼
naiPn

j¼1
rij

(49)

where ai indicates the average of the observed concentration of the
i-th factor and n represents the number of grade levels.

Step 5. The evaluation results are output.

The result B is computed as

B¼fb1;b2;/b6g ¼ W � R (50)
4.2. Application of fuzzy synthetic evaluation

The weight of each pollutant in different cities can be obtained
according to the theory of FSE. Moreover, based on the weight, the
three most important pollutants in different cities are obtained for
subsequent analysis, and a macro is obtained according to the
average concentration of pollutants in different cities.

The results of applying the fuzzy weight of pollutants are shown
in Table 2, where the average actual values (AATVs) for the three
cities included in the study are also presented.

From the results of the FSE listed in Table 2, some conclusions
can be drawn:

1) The air quality of Beijing belongs to Level III with a 42% proba-
bility, to Level II with a 38% probability, and to Level I with a 21%
probability. Therefore, according to the maximum membership
degree principle, the air quality in Beijing belongs to Level III.

2) The air quality of Shanghai and Guangzhou belongs to Level II.
Although both cities are metropolises, the air quality varies with
geography, climate, population, and economic development.

3) To compare the weights of pollutants in the study areas, three
main pollutants of cities were selected. For Beijing, the three
main air pollutants were PM2.5, CO, and PM10. In Shanghai, CO,
PM2.5, and PM10 are the top three pollutants and in Guangzhou,
the three most influential pollutants are also CO, PM2.5, and
PM10.

4) An analysis of the weight of the same pollutant in the different
cities shows that CO, PM2.5, and PM10 are the most important
pollutants in each city. The difference is that the weight of the
three pollutants in Beijing is similar, while a heavier weight is
assigned to CO in Shanghai and Guangzhou.

From the analysis above, it is very clear that CO, PM2.5, and PM10 are
the first three primary pollutants. Therefore, there is an urgent
need to establish an early warning system and provide accurate
information about the concentrations of CO, PM2.5, and PM10 in the
next hour.
4.3. Model performance metrics

According to the above introduction, in the following sub-
sections we describe three experiments designed to evaluate the
performance of the proposed early warning system in three met-
ropolises in China. The experiments were conducted in Beijing,
Shanghai, and Guangzhou, in that order temporally. A comparison
of the forecasting models and pollution evaluation was included in
each experiment.

To evaluate the forecasting performance of our method, five
indexes were selected: the mean average percentage error (MAPE),
the forecasting mean absolute error (MAE), the forecasting root
mean square error (RMSE), the fractional bias of the forecasting
results (FB), and Pearson's correlation coefficient (R). The details of
these error criteria are shown in Table 3.



Table 3
Description and equations of the model performance metric rules.

Metric Description Equation

MAPE Evaluates the forecasting accuracy
MAPE ¼ 1

N

XN

i¼1

����Ai � Fi
Ai

����� 100%

MAE Measures the difference between the forecast value and the actual value
MAE ¼ 1

N

XN

i¼1
jFi � Aij

RMSE Measures the difference between the forecast value and the actual value; it is more sensitive to extreme values than
MAE RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
�
XN

i¼1
ðFi � AiÞ2

r
FB Determines the amount of “over” and “under” forecasts FB ¼ 2ðA � FÞ=ðA þ FÞ
R Measures the correlation of the actual value and the forecast value R ¼

N
P

FiAi�
P

F
P

Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
P

F2i � ðP FiÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
P

A2
i � ðPAiÞ2

qr
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4.4. Data description

In this study, three metropolises in China were selected for
developing and testing the proposed system. These three cities in
the similar scale, but different regions mean different climatic
conditions, topography and geomorphology, which lead to differ-
ences in urban layout and economic development characteristics.
The combination of these factors will lead to different pollution
characteristics. In addition, the data quality of these three cities is
high. Therefore, selecting these three cities can test the feasibility
and generalization ability of the model from the data perspective.

The related information of the selected study sites is shown in
Fig. 1. The datasets of hourly concentrations of air pollutants
were taken from the Chinese Website of air quality real-time
publishing platform (http://113.108.142.147:20035/emcpublish/).
The pollutants of the three cities that are analyzed are PM2.5, PM10,
SO2, NO2, CO, and O3. The hourly concentrations datawere collected
Fig. 1. Information of study areas and
from 1 January 2017 to 1 July 2017. The descriptive statistics
(maximum, minimum, mean, and standard deviation) of these
pollutants are shown in Fig. 1. These datasets were divided into two
sub-datasets: a training dataset, consisting of 3480 data points, and
a testing dataset, consisting of 888 points.

4.5. Experiment I: the case of Beijing

This section is divided into two sub-sections. In the first, the
forecasting abilities of the proposed model and the benchmark
models are compared, and in the second, the FSE of the forecasting
results is presented.

4.5.1. Forecasting models comparison
In order to verify the forecasting ability of the proposed hybrid

model (SSA-EEMD-MOALO-L2,1RFELM, SEMR), the following
models were chosen as the comparative models in this experiment:
the statistics of pollution data.

http://113.108.142.147:20035/emcpublish/
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SSA-EEMD-MOALO-ELM (SEME), EEMD-MOALO-L2,1RFELM (EMR),
MOALO-L2,1RFELM (MR), and L2,1RFELM.

For each forecasting model, the training set consisted of data
from 1 January 2017 to 25 May 2017. These data were tested on the
data from 26 May 2017 to 1 July 2017. The performance of each
model was evaluated using the selected six performance metrics.
The results are presented in Part D of Fig. 2. Fig. 2 also shows in
graphics the forecast results for Beijing, China. Parts A, B, and C of
Fig. 2 illustrate the forecasting error of the proposed forecasting
model for the three pollutants. The error line of SEMR in Fig. 2 is
closest to zero with the lowest volatility.

In Part D of Fig. 2, the figures in bold are themodels that perform
well according to the various evaluation criteria. The following
conclusions can be drawn from Fig. 2:

(1) The optimized forecasting model outperforms the non-
optimized model. From a comparison of the forecasting re-
sults of L2,1RFELM model and the MR model for different
pollutants, it is easy to conclude that the multi-objective
optimized model has a better forecasting capability. The
MAPE value of MR is approximately 2.3% lower than that of
L2,1RFELM on average, and the other metrics (MAE, RMSE, FB,
and R) also show that the performance of the MR forecasting
model is better than that of the L2,1RFELM forecasting model.

(2) The forecasting precision can be improved after data pre-
processing. Let us take CO as an example to compare the
MAPE values in Part D of Fig. 2. The MAPE value of the MR
forecasting model is 8.5376% and of the model after a single
denoising process is 4.3217%, whereas that of the proposed
hybrid model (with two denoising processes) it is 4.1337%.
Fig. 2. Forecasting error and forecasting result of the pr
(3) The models where two denoising methods are applied
perform better. From the experimental results of SEMR, EMR,
and SEME, it can be seen that the MAPE values of different
pollutants for the models that include two denoising
methods (SEMR and SEME) are almost smaller than that
which includes a single denoising method (EMR). In partic-
ular, the MAPE value for SEMR is smaller than that for SEME.
According to this analysis, the forecasting ability of the
forecasting model proposed in this paper is good.

(4) The forecasting model proposed in this paper is significantly
better than the traditional statistical model ARIMA for fore-
casting air pollutant concentration, and the forecasting per-
formance of the L2,1RF-ELMmodel used in this study is better
than that of the traditional neural network, BPNN. According
to the data in Part D of Fig. 2, the metric values of the fore-
casting model proposed in this paper are significantly lower
than those of the ARIMA model. In addition, from the com-
parison of L2,1RF-ELM and BPNN it can be seen that the BPNN
metrics are higher than the L2,1RF-ELM index values. It can
thus be considered that BPNN's forecasting ability is inferior
to that of the L2,1RF-ELM model.

Remark: We compared the MAPE, MAE, RMSE, FB, and R values in
this study. The proposed hybrid model, SEMR, performs better ac-
cording to all metrics. It is proved that the proposed model is superior
to other models in terms of air pollution forecasting. In addition, the
proposed hybrid forecasting model fits well the data of pollutants with
high volatility and inhomogeneity. Therefore, the model can be used as
part of an air quality warning system (Xu et al., 2017b).
oposed model for three main pollutants in Beijing.



Table 4
Air quality evaluation results for Beijing.

Data Point Evaluation results based on the forecasting data Evaluation results based on the actual data

Fuzzy evaluation result B Level Level Fuzzy evaluation result B

26/05/2017 0.0808 0.6866 0.2326 0.0000 0.0000 II II 0.2315 0.5251 0.2433 0.0000 0.0000
27/05/2017 0.1212 0.6268 0.2520 0.0000 0.0000 II II 0.1390 0.4704 0.3905 0.0000 0.0000
28/05/2017 0.1032 0.0123 0.7523 0.1322 0.0000 III III 0.1457 0.3060 0.4683 0.0799 0.0000
29/05/2017 0.2126 0.6382 0.1491 0.0000 0.0000 II I 0.5346 0.3873 0.0781 0.0000 0.0000
30/05/2017 0.1062 0.8395 0.0543 0.0000 0.0000 II II 0.3158 0.6563 0.0279 0.0000 0.0000
31/05/2017 0.0785 0.3355 0.5860 0.0000 0.0000 II II 0.1902 0.4327 0.3771 0.0000 0.0000
01/06/2017 0.5731 0.4269 0.0000 0.0000 0.0000 I I 0.6538 0.3462 0.0000 0.0000 0.0000
02/06/2017 0.4653 0.5347 0.0000 0.0000 0.0000 II II 0.4673 0.5327 0.0000 0.0000 0.0000
03/06/2017 0.5226 0.4774 0.0000 0.0000 0.0000 I I 0.5243 0.4757 0.0000 0.0000 0.0000
04/06/2017 0.0851 0.6630 0.2518 0.0000 0.0000 II II 0.2330 0.5437 0.2233 0.0000 0.0000
05/06/2017 0.0911 0.2973 0.6116 0.0000 0.0000 III III 0.1998 0.2082 0.5920 0.0000 0.0000
06/06/2017 0.6126 0.3755 0.0118 0.0000 0.0000 I I 0.6363 0.3612 0.0025 0.0000 0.0000
07/06/2017 0.1961 0.6646 0.1393 0.0000 0.0000 II II 0.4499 0.4748 0.0754 0.0000 0.0000
08/06/2017 0.5890 0.4110 0.0000 0.0000 0.0000 I I 0.4008 0.3490 0.2502 0.0000 0.0000
09/06/2017 0.2141 0.6465 0.1394 0.0000 0.0000 II II 0.2923 0.4559 0.2518 0.0000 0.0000
10/06/2017 0.3661 0.6257 0.0082 0.0000 0.0000 I I 0.5605 0.4392 0.0003 0.0000 0.0000
11/06/2017 0.1650 0.7402 0.0947 0.0000 0.0000 II II 0.2834 0.5677 0.1489 0.0000 0.0000
12/06/2017 0.1846 0.7584 0.0570 0.0000 0.0000 II II 0.3229 0.5941 0.0830 0.0000 0.0000
13/06/2017 0.2301 0.7077 0.0623 0.0000 0.0000 II II 0.3316 0.6345 0.0339 0.0000 0.0000
14/06/2017 0.2549 0.7253 0.0198 0.0000 0.0000 II II 0.3184 0.5840 0.0976 0.0000 0.0000
15/06/2017 0.0903 0.7825 0.1272 0.0000 0.0000 II II 0.1779 0.6277 0.1944 0.0000 0.0000
16/06/2017 0.0642 0.3007 0.6352 0.0000 0.0000 II II 0.0825 0.5791 0.3383 0.0000 0.0000
17/06/2017 0.0676 0.0000 0.8024 0.1300 0.0000 III III 0.0991 0.3069 0.5141 0.0799 0.0000
18/06/2017 0.0753 0.1089 0.8157 0.0000 0.0000 III III 0.1504 0.3598 0.4899 0.0000 0.0000
20/06/2017 0.2928 0.7072 0.0000 0.0000 0.0000 II II 0.3103 0.6897 0.0000 0.0000 0.0000
21/06/2017 0.1111 0.6368 0.2521 0.0000 0.0000 II II 0.2349 0.6372 0.1279 0.0000 0.0000
22/06/2017 0.5668 0.4332 0.0000 0.0000 0.0000 I I 0.7540 0.2460 0.0000 0.0000 0.0000
23/06/2017 0.9291 0.0709 0.0000 0.0000 0.0000 I I 0.9689 0.0311 0.0000 0.0000 0.0000
24/06/2017 0.8826 0.1174 0.0000 0.0000 0.0000 I I 0.9533 0.0467 0.0000 0.0000 0.0000
25/06/2017 0.6677 0.3323 0.0000 0.0000 0.0000 I I 0.6975 0.3025 0.0000 0.0000 0.0000
26/06/2017 0.7533 0.2467 0.0000 0.0000 0.0000 I I 0.6433 0.3567 0.0000 0.0000 0.0000
27/06/2017 0.0799 0.6385 0.2816 0.0000 0.0000 II II 0.1055 0.5436 0.3509 0.0000 0.0000
28/06/2017 0.0909 0.0980 0.6074 0.2037 0.0000 III II 0.1288 0.3797 0.3676 0.1238 0.0000
29/06/2017 0.0976 0.5158 0.3866 0.0000 0.0000 II II 0.2046 0.5921 0.2032 0.0000 0.0000
30/06/2017 0.0809 0.7064 0.2126 0.0000 0.0000 II II 0.0857 0.5183 0.3960 0.0000 0.0000
01/07/2017 0.0766 0.0504 0.7142 0.1589 0.0000 III III 0.0746 0.3945 0.4343 0.0966 0.0000
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4.5.2. Fuzzy synthetic evaluation of air quality in Beijing
In our experiment, we selected three major air pollutants, PM2.5,

PM10, and CO. In order to verify the effectiveness of the FSE system,
the daily average forecast values of these three major pollutants
were used for FSE of air pollution, and then compared with the
Table 5
Forecasting results of the proposed model and other models in Shanghai.

MAPE(%) MAE RMSE FB R

PM2.5 SEMR 3.6465 1.0598 1.4796 0.0007 0.9984
ARIMA 10.5252 3.0923 4.4770 �0.0007 0.9848
SEME 3.7818 1.1066 1.5661 �0.0005 0.9982
EMR 3.7076 1.0804 1.6058 �0.0008 0.9981
MR 9.6955 2.9843 4.4070 �0.0045 0.9853
L2,1RF-ELM 9.8328 2.9938 4.4955 �0.0039 0.9846
BPNN 7.9557 2.3406 3.3361 �0.0106 0.9812

PM10 SEMR 4.5328 1.8670 3.0369 �0.0019 0.9946
ARIMA 12.7248 5.1509 8.3233 �0.0097 0.9589
SEME 4.6276 1.8701 3.0780 �0.0026 0.9946
EMR 4.7576 1.9299 3.0601 �0.0037 0.9946
MR 12.2929 4.9899 8.0953 �0.0122 0.9609
L2,1RF-ELM 12.3966 5.0582 8.2988 �0.0107 0.9585
BPNN 8.7630 5.3363 9.9142 0.0051 0.9796

CO SEMR 1.6953 0.0107 0.0156 �0.0006 0.9973
ARIMA 4.5847 0.0299 0.0436 0.0008 0.9778
SEME 1.7259 0.0109 0.0156 �0.0015 0.9973
EMR 1.7906 0.0113 0.0156 �0.0026 0.9972
MR 4.6822 0.0300 0.0439 �0.0081 0.9779
L2,1RF-ELM 4.7413 0.0303 0.0440 �0.0068 0.9773
BPNN 4.2084 0.0293 0.0427 �0.0086 0.9685
actual pollution level. The daily average forecast data were calcu-
lated from the hourly average, and the actual pollution level was
obtained by using FSE based on the actual concentration of six
pollutants. The comparison results are shown in Table 4.

The left hand side of Table 4 shows the results of fuzzy
Table 6
Forecasting results of the proposed model and other models in Guangzhou.

MAPE(%) MAE RMSE FB R

PM2.5 SEMR 2.6965 0.5028 0.6698 �0.0023 0.9976
ARIMA 5.4247 1.0810 1.5657 �0.0028 0.9867
SEME 2.7312 0.5112 0.6822 �0.0045 0.9975
EMR 2.7503 0.5191 0.6755 �0.0055 0.9976
MR 5.5808 1.1004 1.6095 �0.0161 0.9867
L2,1RF-ELM 5.6780 1.1164 1.6233 �0.0150 0.9864
BPNN 9.2161 2.3874 3.7394 �0.0325 0.9800

PM10 SEMR 3.3672 1.1505 1.5153 �0.0034 0.9955
ARIMA 9.2703 3.2478 4.4011 �0.0013 0.9605
SEME 3.3815 1.1564 1.5206 �0.0039 0.9955
EMR 3.5642 1.2107 1.5818 �0.0047 0.9950
MR 9.2728 3.2244 4.3838 �0.0177 0.9617
L2,1RF-ELM 9.4138 3.2802 4.4535 �0.0179 0.9608
BPNN 9.1559 4.2441 6.2811 �0.0043 0.9738

CO SEMR 1.3851 0.0099 0.0127 �0.0020 0.9959
ARIMA 3.6532 0.0264 0.0354 �0.0012 0.9666
SEME 1.4564 0.0104 0.0135 �0.0022 0.9953
EMR 1.4283 0.0101 0.0131 �0.0039 0.9956
MR 3.9516 0.0284 0.0372 �0.0108 0.9647
L2,1RF-ELM 4.0622 0.0291 0.0382 �0.0116 0.9629
BPNN 4.0867 0.0336 0.0454 �0.0090 0.9691
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comprehensive evaluation based on the forecast values of the three
major pollutants and the right hand side shows the results of the
fuzzy neutralization evaluation based on the real values of six
pollutants. The corresponding air quality level is also shown. The
bold words (2/37) represent misevaluations; that is, the evaluation
results based on the forecast value are different from those based
on the real value.

The results of observation revealed that the air quality that was
misevaluated was in fact one level lower than the air quality ac-
cording to the evaluation. For example, the actual air quality of 29/
05/2017 was Level I, while according to the evaluation based on the
forecast value it was Level II. This can prevent human health from
harm caused by the fact that the actual air quality is lower than the
forecast air quality.

Remark: The concentrations of pollutants change rapidly with the
weather and human activity. There is nomeans of exactly assessing the
contamination. The ultimate purpose of the so-called pollution eval-
uation system is to provide advice on avoiding major pollution
Fig. 3. Forecasting results and forecasting e
incidents and on guiding human industrial production and life activ-
ities. If the actual air quality is worse than the forecasting air quality, it
may lead to incorrect opinions being put forward and lead to the
occurrence of serious pollution accidents.

4.6. Experiment II: the case of Shanghai and Guangzhou

A good forecasting model should have a high generalization
ability, and therefore, the objective of this experiment was to verify
the model's generalizability for air pollution concentration fore-
casting and air quality evaluation in different cities. This section is
divided into two sub-sections: in the first, the forecast results are
compared and in the second an FSE is presented.

4.6.1. Forecasting models comparison in Shanghai and Guangzhou
The experimental results are presented in Tables 5 and 6, where

the values in bold are the best values of each evaluation metric of
the model. A comparison of the values of the evaluation criteria
rrors for three pollutants in Shanghai.
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shows that the performance of the proposed model is almost better
than that of the other models; in particular in Shanghai, the metric
values of the proposed model are the best.

From the data in Tables 5 and 6, we can reach the same
conclusion as that drawn from the results of Experiment I. The
hybrid model proposed in this paper is superior to the traditional
statistical model ARIMA, and the L2,1RF-ELM forecasting algorithm
used in this study has a better forecasting ability than the BPNN.

So that the comparison results can be understood more intui-
tively, they are presented in Figs. 3 and 4. It can clearly be observed
that the proposed model performs well and is superior to the in-
dividual model and the single denoising model.

Parts A, B, and C of Fig. 3 describe the forecasting performance of
the different models for PM2.5, PM10, and CO, respectively, in
Shanghai, China. Each part consists of two types of figure: the upper
figure shows the forecast values of the different models and the
actual data and the lower figure shows the linear interpolant fitting
between the actual data and different forecast values. The more
concentrated the points, the better is the forecasting performance.
From this figure, it can be concluded that the proposed forecasting
Fig. 4. Forecast results and boxplot for forecasti
model performs well, because the forecasting values are close to
the true values and the errors are small.

The forecasting performance for Guangzhou is shown in Fig. 4.
The figure is divided into three parts, where the first part shows the
forecast values and the actual value of PM2.5 in Shanghai. This part
also shows a comparison of the different model performance
values. Parts 2 and 3 show the forecasting performance for PM10
and CO, respectively. Their composition is similar to that of Part 1,
showing the actual data and the forecast values, as well as the
forecasting performance.

The results of Experiment II also account for the conclusions that
were drawn from the results of Experiment I. In other words, the
hybrid model proposed in this paper can in general be used in the
forecasting of air pollution. In Part D of Fig. 2, Table 5, and Table 6, it
can be seen that the MAPE values of the proposed model for PM2.5
in Beijing, Shanghai, and Guangzhou are 4.2708%, 3.6465%, and
2.6965%, respectively. However, before preprocessing by SSA and
EEMD, theMAPE values for themodel increase by 0.9388%,1.6589%,
and 1.0696%, respectively, as compared with the proposed model.
In comparison, SEMR is an effective hybrid model and superior to
ng error for three pollutants in Guangzhou.
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the other models. Typical criteria were used to evaluate the per-
formance of the models. The results of all the experiments for the
three cities show the excellent performance of the proposedmodel.
The proposed model yields the lowest MAPE, MAE, RMSE, and R
values, and the highest FB value. In summary, the novel hybrid
model is not only effective and practical but also can be generalized.
It yields a high accuracy level and effective forecasting results for air
quality evaluation.

Remark: A good forecasting model is the foundation of an early
warning system. According to the analysis of the forecasting model
proposed in this paper, the L2,1-RFELM model can effectively be used in
air pollution forecasting. The “decomposition and ensemble” process
and the optimized process effectively improve the precision of the
pollution concentration forecasting, and therefore, in our opinion the
proposed hybrid forecasting model can be applied to construct an air
pollution early warning system.
4.6.2. Fuzzy synthetic evaluation in Shanghai and Guangzhou
In order to verify the generalizability of the proposed FSE sys-

tem, it was applied to air pollution in Shanghai and Guangzhou. The
results are divided into two parts: the evaluation results based on
the actual value and the evaluation results based on the forecast
value. Detailed information about the results for Shanghai and
Guangzhou is shown in Tables 7 and 8, respectively.

The results shown in Tables 4, 7 and 8 indicate that the FSE
system performs at an equivalent level for these cities. The evalu-
ation accuracies for the three cities are Beijing 35/37, Shanghai 36/
37, and Guangzhou 37/37. The precise evaluation results of the
Table 7
Air quality evaluation results of Shanghai.

Data Point Evaluation results based on the forecast data

Fuzzy evaluation result B Level

26/05/2017 0.2238 0.6685 0.1077 0.0000 0.0000 II
27/05/2017 0.4125 0.5875 0.0000 0.0000 0.0000 II
28/05/2017 0.3981 0.6019 0.0000 0.0000 0.0000 II
29/05/2017 0.9402 0.0598 0.0000 0.0000 0.0000 I
30/05/2017 0.7321 0.2679 0.0000 0.0000 0.0000 I
31/05/2017 0.0996 0.7015 0.1989 0.0000 0.0000 II
01/06/2017 0.0890 0.2066 0.6389 0.0654 0.0000 III
02/06/2017 0.1403 0.6860 0.1737 0.0000 0.0000 II
03/06/2017 1.0000 0.0000 0.0000 0.0000 0.0000 I
04/06/2017 1.0000 0.0000 0.0000 0.0000 0.0000 I
05/06/2017 0.9597 0.0403 0.0000 0.0000 0.0000 I
06/06/2017 0.6419 0.3581 0.0000 0.0000 0.0000 I
07/06/2017 0.1881 0.5334 0.2785 0.0000 0.0000 II
08/06/2017 0.0805 0.6686 0.1876 0.0633 0.0000 II
09/06/2017 0.0998 0.5072 0.3929 0.0000 0.0000 II
10/06/2017 0.3286 0.6714 0.0000 0.0000 0.0000 II
11/06/2017 1.0000 0.0000 0.0000 0.0000 0.0000 I
12/06/2017 1.0000 0.0000 0.0000 0.0000 0.0000 I
13/06/2017 0.9626 0.0374 0.0000 0.0000 0.0000 I
14/06/2017 0.8457 0.1543 0.0000 0.0000 0.0000 I
15/06/2017 0.4999 0.5001 0.0000 0.0000 0.0000 II
16/06/2017 0.6006 0.3994 0.0000 0.0000 0.0000 I
18/06/2017 0.6226 0.3774 0.0000 0.0000 0.0000 I
19/06/2017 0.9196 0.0804 0.0000 0.0000 0.0000 I
20/06/2017 0.6281 0.3719 0.0000 0.0000 0.0000 I
21/06/2017 0.5433 0.4566 0.0001 0.0000 0.0000 II
22/06/2017 1.0000 0.0000 0.0000 0.0000 0.0000 I
23/06/2017 0.2432 0.4881 0.2687 0.0000 0.0000 II
24/06/2017 0.4978 0.5022 0.0000 0.0000 0.0000 II
25/06/2017 0.3160 0.5113 0.1727 0.0000 0.0000 II
26/06/2017 0.0944 0.2073 0.5440 0.1542 0.0000 III
27/06/2017 0.0925 0.2013 0.4754 0.2308 0.0000 III
28/06/2017 0.2361 0.5360 0.2279 0.0000 0.0000 II
29/06/2017 0.4972 0.5028 0.0000 0.0000 0.0000 II
30/06/2017 0.4764 0.5236 0.0000 0.0000 0.0000 II
01/07/2017 0.2735 0.5861 0.1403 0.0000 0.0000 II
three cities indicate that the three major pollutants can replace six
pollutants in air quality evaluation. The accurate evaluation results
also prove the accuracy of the forecasting results.

According to the analysis of the experimental results, the air
pollution early warning system proposed in this paper has yielded
higher forecasting accuracy and precise evaluation results. The
relevant governmental departments can issue the information of
air quality to the public based on the evaluation results, and then,
the public can take the corresponding protective measures. More-
over, the government can also adopt corresponding countermea-
sures based on the issued information to adjust the production of
factories. Therefore, the system can provide not only early warning
for air pollution, but also strong technical support for the relevant
departments to formulate policies and solve potential air pollution
problems to avoid serious pollution incidents.

Remark: The performance level of the air quality evaluation based
on precise forecasting results is equal for the three study areas. The
results also prove the reliability of the proposed system. Therefore,
citizens can take the corresponding protection measures according to
the evaluation results. Moreover, the government can take corre-
sponding measures to solve the potential air pollution problem to
avoid heavy pollution incidents.
5. Discussion

Although the results of model performance metrics used in this
paper show that the novel hybrid forecasting model proposed in
this paper is superior to the control models, the significance of the
Evaluation results based on the actual data

Level Fuzzy evaluation result B

II 0.3125 0.5737 0.1139 0.0000 0.0000
II 0.4541 0.5096 0.0364 0.0000 0.0000
II 0.4084 0.5916 0.0000 0.0000 0.0000
I 0.9013 0.0987 0.0000 0.0000 0.0000
I 0.8503 0.1497 0.0000 0.0000 0.0000
II 0.2591 0.4987 0.2423 0.0000 0.0000
III 0.1922 0.2166 0.5539 0.0372 0.0000
II 0.3482 0.5704 0.0814 0.0000 0.0000
I 0.8290 0.1710 0.0000 0.0000 0.0000
I 0.9266 0.0734 0.0000 0.0000 0.0000
I 0.8938 0.1062 0.0000 0.0000 0.0000
I 0.7137 0.2863 0.0000 0.0000 0.0000
II 0.2686 0.5965 0.1349 0.0000 0.0000
II 0.0894 0.5050 0.3681 0.0374 0.0000
II 0.1255 0.6178 0.2566 0.0000 0.0000
II 0.4654 0.5346 0.0000 0.0000 0.0000
I 0.9720 0.0280 0.0000 0.0000 0.0000
I 0.9144 0.0856 0.0000 0.0000 0.0000
I 0.7072 0.2928 0.0000 0.0000 0.0000
I 0.7726 0.2274 0.0000 0.0000 0.0000
II 0.4514 0.5422 0.0064 0.0000 0.0000
I 0.5726 0.4274 0.0000 0.0000 0.0000
I 0.8333 0.1667 0.0000 0.0000 0.0000
I 0.8573 0.1427 0.0000 0.0000 0.0000
I 0.6244 0.3756 0.0000 0.0000 0.0000
I 0.5239 0.4761 0.0000 0.0000 0.0000
I 0.9434 0.0566 0.0000 0.0000 0.0000
II 0.2652 0.4670 0.2678 0.0000 0.0000
II 0.3806 0.4787 0.1408 0.0000 0.0000
II 0.2698 0.4951 0.2352 0.0000 0.0000
III 0.2053 0.2788 0.4210 0.0949 0.0000
III 0.2213 0.2723 0.3637 0.1427 0.0000
II 0.4174 0.4646 0.1180 0.0000 0.0000
I 0.5402 0.4598 0.0000 0.0000 0.0000
II 0.4217 0.5776 0.0007 0.0000 0.0000
II 0.3638 0.5688 0.0674 0.0000 0.0000



Table 8
Air quality evaluation results of Guangzhou.

Data Point Evaluation results based on the forecasting data Evaluation results based on the actual data

Fuzzy evaluation result B Level Level Fuzzy evaluation result B

26/05/2017 0.2797 0.6950 0.0253 0.0000 0.0000 II II 0.3202 0.6115 0.0683 0.0000 0.0000
27/05/2017 0.2715 0.6711 0.0574 0.0000 0.0000 II II 0.3349 0.5547 0.1104 0.0000 0.0000
28/05/2017 0.0935 0.1314 0.7751 0.0000 0.0000 III III 0.2452 0.3601 0.3857 0.0089 0.0000
29/05/2017 0.1131 0.6843 0.2026 0.0000 0.0000 II II 0.2056 0.7012 0.0933 0.0000 0.0000
30/05/2017 0.4244 0.5756 0.0000 0.0000 0.0000 II II 0.4881 0.5040 0.0079 0.0000 0.0000
31/05/2017 0.6689 0.3311 0.0000 0.0000 0.0000 I I 0.6317 0.3683 0.0000 0.0000 0.0000
01/06/2017 0.8845 0.1155 0.0000 0.0000 0.0000 I I 0.8076 0.1924 0.0000 0.0000 0.0000
02/06/2017 0.7600 0.2400 0.0000 0.0000 0.0000 I I 0.5393 0.4607 0.0000 0.0000 0.0000
03/06/2017 0.7378 0.2622 0.0000 0.0000 0.0000 I I 0.5308 0.4692 0.0000 0.0000 0.0000
04/06/2017 0.8392 0.1608 0.0000 0.0000 0.0000 I I 0.5744 0.4256 0.0000 0.0000 0.0000
05/06/2017 0.9885 0.0115 0.0000 0.0000 0.0000 I I 0.8188 0.1812 0.0000 0.0000 0.0000
06/06/2017 1.0000 0.0000 0.0000 0.0000 0.0000 I I 0.8801 0.1199 0.0000 0.0000 0.0000
07/06/2017 1.0000 0.0000 0.0000 0.0000 0.0000 I I 0.6354 0.3646 0.0000 0.0000 0.0000
08/06/2017 0.9431 0.0569 0.0000 0.0000 0.0000 I I 0.5880 0.4120 0.0000 0.0000 0.0000
09/06/2017 0.9142 0.0858 0.0000 0.0000 0.0000 I I 0.4913 0.4055 0.1032 0.0000 0.0000
10/06/2017 0.9801 0.0199 0.0000 0.0000 0.0000 I I 0.6665 0.3335 0.0000 0.0000 0.0000
11/06/2017 0.8998 0.1002 0.0000 0.0000 0.0000 I I 0.7939 0.2061 0.0000 0.0000 0.0000
12/06/2017 1.0000 0.0000 0.0000 0.0000 0.0000 I I 0.7704 0.2296 0.0000 0.0000 0.0000
13/06/2017 0.9758 0.0242 0.0000 0.0000 0.0000 I I 0.5714 0.4286 0.0000 0.0000 0.0000
14/06/2017 0.8393 0.1607 0.0000 0.0000 0.0000 I I 0.4371 0.2716 0.2913 0.0000 0.0000
15/06/2017 0.3743 0.6257 0.0000 0.0000 0.0000 I II 0.4823 0.5177 0.0000 0.0000 0.0000
16/06/2017 0.9976 0.0024 0.0000 0.0000 0.0000 I I 0.4924 0.4738 0.0338 0.0000 0.0000
17/06/2017 0.9719 0.0281 0.0000 0.0000 0.0000 I I 0.4334 0.2008 0.3658 0.0000 0.0000
18/06/2017 0.1300 0.8700 0.0000 0.0000 0.0000 I II 0.4739 0.5251 0.0010 0.0000 0.0000
20/06/2017 0.8553 0.1447 0.0000 0.0000 0.0000 I I 0.4686 0.3497 0.1817 0.0000 0.0000
21/06/2017 0.9236 0.0764 0.0000 0.0000 0.0000 I I 0.4990 0.4039 0.0971 0.0000 0.0000
22/06/2017 0.9030 0.0970 0.0000 0.0000 0.0000 I I 0.4897 0.4204 0.0899 0.0000 0.0000
23/06/2017 1.0000 0.0000 0.0000 0.0000 0.0000 I I 0.6893 0.3107 0.0000 0.0000 0.0000
24/06/2017 1.0000 0.0000 0.0000 0.0000 0.0000 I I 0.7378 0.2622 0.0000 0.0000 0.0000
25/06/2017 1.0000 0.0000 0.0000 0.0000 0.0000 I I 0.8133 0.1867 0.0000 0.0000 0.0000
26/06/2017 1.0000 0.0000 0.0000 0.0000 0.0000 I I 0.8661 0.1339 0.0000 0.0000 0.0000
27/06/2017 1.0000 0.0000 0.0000 0.0000 0.0000 I I 0.8801 0.1199 0.0000 0.0000 0.0000
28/06/2017 1.0000 0.0000 0.0000 0.0000 0.0000 I I 0.8227 0.1773 0.0000 0.0000 0.0000
29/06/2017 0.9642 0.0358 0.0000 0.0000 0.0000 I I 0.7598 0.2402 0.0000 0.0000 0.0000
30/06/2017 0.9753 0.0247 0.0000 0.0000 0.0000 I I 0.7501 0.2499 0.0000 0.0000 0.0000
01/07/2017 1.0000 0.0000 0.0000 0.0000 0.0000 I I 0.7596 0.2404 0.0000 0.0000 0.0000
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model remains to be tested. According to relevant literature,
DieboldeMariano (DM) test is the most commonly used method to
test the significance of forecasting models. In order to ensure
the comparability of the results, this paper will also select the
DM test to verify the significance of the proposed forecasting
method.

DM test was proposed by Diebold and Marina in 1995. This
methodwas proposed to test for whether two sets of forecast errors
have equal mean value. DM test is a hypothesis test, a pair of hy-
potheses of which is as follows (Wu et al., 2019):

The Null hypothesis is that the loss functions of the forecast
values of two models have the same unconditional expectation.

H0:EðdmÞ ¼ 0
The Alternative hypothesis is that the forecasting capabilities of

the two models are different.
H1:EðdmÞs0
The D-M statistic is calculated as follow formula:

DM ¼
Pm

i¼1ðLðvð1Þm ÞLðvð2Þm ÞÞ=mffiffiffiffiffiffiffiffiffiffiffiffi
S2=m

p S2

The explanation of each variable in the formula is as follows:

1. vð1Þm represents forecasting error of first method.

2. vð2Þm is forecasting error of second method.

3. L
�
v
ð1Þ
m

�
is a loss function of first method, which used to estimate

the forecasting precision. And in this paper we chose absolute
deviation loss:
LðvðiÞm
�
¼

���vðiÞm ���

4. S2 is a variance estimator of the difference of loss function

dm ¼ Lðvð1Þm ÞLðvð2Þm Þ.

DM follows the standard normal distribution under null hy-
pothesis, so the rejection region is jDMj> za =

2. It is means that if the
value of DM falls in the interval

�� za =

2; za =

2

�
the null hypothesis of

no difference will be accepted, else the null hypothesis will be
rejected (Gao et al., 2016). In this study, the DM test results are
show in the Table 9.

The results of Table 9 indicate that the proposed forecasting
model is significantly superior to the other six models. For Beijing,
the values of the DM statistic between the proposed model and the
control models are larger than the upper limit at a 1% significance
level, which means the proposed model is distinct superiority over
the other models in forecasting Beijing pollutants' concentration.
And for Guangzhou, the value of the DM statistic between the
proposed model and SSA-EEMD-MOALO-ELM is larger than the
upper limit at a 5% significance level, this result means there is a
weaker significant superiority between those two models. There
are three values smaller than the limit at a 1% significance level in
Shanghai's results, but in general, the proposed model is significant
then control models.

In summary, the proposed model outperforms other control
models, and for different pollutants, the superiority is also different.



Table 9
DM test result of three pollutants in three research cities.

Beijing Shanghai Guangzhou

PM2.5 MR 3.7672* 10.4080* 6.1226*
EMR 3.3252* 1.4984*** 4.1974*
SEME 3.6204* 2.3029** 4.5904*
BPNN 3.8031* 11.1070* 6.4116*
ARIMA 3.7654* 11.0366* 5.9510*
L2,1RF-ELM 3.4945* 9.6985* 6.0251*

PM10 MR 5.8715* 3.1601* 12.4637*
EMR 5.7991* 3.1601* 10.3919*
SEME 6.1879* 1.5206*** 2.1596**
BPNN 5.6750* 5.0354* 12.2556*
ARIMA 5.5420* 5.2005* 12.4395*
L2,1RF-ELM 5.3663* 4.6675* 11.9389*

CO MR 5.6732* 9.4685* 13.9766*
EMR 4.6265* 8.0884* 2.8076*
SEME 3.8183* 8.1703* 1.9618**
BPNN 5.2622* 9.6582* 13.7855*
ARIMA 5.5566* 10.0692* 12.4049*
L2,1RF-ELM 5.3989* 9.4575* 13.4534*

*indicates the 1% significance level; ** indicates the 5% significance level; *** in-
dicates the 15% significance level.
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6. Conclusion

Air pollution has attracted worldwide attention in recent years,
not only because it is harmful to people and the environment, but
also because it is difficult to control. In order to solve these prob-
lems, a two-module air pollution early warning system was pro-
posed in this paper. The results of this early warning system can not
only guide humans, but also provide a basis for air pollution control.
When air pollution is expected to reach a certain level, the pro-
duction activities of some severely polluting factories can be halted
and residents can be reminded to go outdoors less and take more
protective measures.

The first module of the early warning system is the forecasting
module. Its objective is to provide accurate forecasting of pollutant
concentrations. In this module, an EML based on L2,1-norm and
random Fourier (L2,1RFELM), a novel and very precise algorithm,
was employed. Based on this method, a hybrid air quality fore-
casting model was proposed. It also integrates the principle of
“decomposition and ensemble” and a multi-objective optimization
algorithm. The first step of this module follows the principle of
“decomposition and ensemble.” “Principal components,” a method
from the perspective of dynamic reconstruction of time series,
combined with empirical orthogonal functions, was used to
decompose the original time series into two series, one of which
contains most of the information in the original series and is called
the trend sequence. The second series is called the main sequence.
Then, the trend sequence is forecast by using a supervised learning
algorithm for single hidden layer feed-forward neural networks
and obtains the forecasting value of the trend sequence. Mean-
while, the main sequence is decomposed again by applying a
method based on the “decomposition and ensemble” principle.
After decomposition, the main sequence becomes IMFs and we use
the L2,1-RFELM optimized by multi-objective ant lion optimizer
(MOALO) to forecast each IMF. Ultimately, the main forecast value
and the trend forecast value are added to obtain the final forecast
results. In our study, the proposed hybrid model was applied to
forecast the hourly air pollution concentration of major pollutants
in Beijing, Shanghai, and Guangzhou. The forecasting results of the
hybrid model were compared with those of benchmark models.
The comparative results indicate that the proposed hybrid model
outperformed the other models for the three cities. The second
module is the air quality evaluation element, inwhich FSE was used
to assess air quality based on the forecast concentration.
Most research on air pollution forecasting is aimed at achieving
a high forecasting accuracy level, but ignores further research and
the applications of the forecasting results. Forecasting is mean-
ingless if not applied to human life. Therefore, using the accurate
forecasting results, a further study addressing air pollution early
warning systems can be conducted. According to the information
provided by the early warning system, people can adopt measures
to control pollution and take precautions against air pollution. The
early warning system proposed in this study provides accurate
forecasting and an effective evaluation. Overall, it can guide peo-
ple's activities to avoid the influence of air pollution.
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