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Abstract—Load flow methods for distribution networks such 

as Backward Forward Sweep (BFS) have a good computational 

performance and can find solutions with accuracy. However, 

some studies may demand the determination of low voltage 

solutions, and this poses a problem for these methods since they 

cannot find these solutions due to convergence issues. This paper 

presents a load flow method based on a novel complex-valued 

formulation developed for distribution networks, which works 

well on radial topologies by using an incidence matrix to avoid 

complicated series element models, allow high-performance and 

low-voltage solution capability. The formulation is solved by 

Newton’s method via Wirtinger’s calculus. To prove the low-

voltage solution capability, both sides of QV curves, i.e., unstable 

and stable regions were traced on balanced and unbalanced 

networks. Performance tests in the IEEE test feeders show that 

the runtime is less than or equal to the runtime of the BFS 

method. Furthermore, the line R/X ratio and the number of 

controlled voltage node or volt-var functions do not affect the 

computational performance, yielding advantages over the classic 

Newton and BFS methods. 

 
Index Terms—Complex-valued formulation, distribution 

networks, load flow, low-voltage solutions, Newton’s method, QV 

curves, transformer connections, volt-var function, Wirtinger’s 

calculus. 

.   NOMENCLATURE 

Variables 

𝐼0 Current of the reference node 

𝐼𝑁  Vector of nodal currents (except reference node) 

𝐼𝑌, 𝐼∆ and 𝐼𝑠ℎ  Vectors of the star, delta and shunt currents  

𝐼𝐵  Vector of branches’ flow currents 

∆𝑉𝐵 Vector of branches’ voltage drops 

𝑉𝑁 Vector of nodes’ phase voltages 

𝑉∆ Vector of nodes’ line voltages 

𝑓 Vector mismatch function of the voltage drops 

𝑆𝐺 , 𝑆𝐿𝑌, and 
𝑆𝐿∆ 

Vector of generation power, and star and delta 

loads. 

𝑆𝐿𝑍𝑌, 𝑆𝐿𝐼𝑌 
and 𝑆𝐿𝑃𝑌 

Vectors of ZIP star load components (constant 

impedance, current, and power) 

𝑆𝐿𝑍∆, 𝑆𝐿𝐼∆ 
and 𝑆𝐿𝑃∆ 

Vectors of ZIP delta load components (constant 

impedance, current, and power) 
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𝑓𝑃𝑉 and 𝑓𝑉𝑉 Vector mismatch functions of the PV and VV 

nodes 

𝑉𝑃𝑉 and 𝑉1𝑃𝑉 Vectors of nodal and positive-sequence voltages 

of the PV nodes 

𝑉𝑉𝑉 and 𝑉1𝑉𝑉 Vectors of nodal and positive-sequence voltages 

of the VV nodes 

𝑆𝑃𝑉 and 𝑆𝑉𝑉 Vectors of complex powers of the PV and VV 

nodes 

𝑓𝐺𝑉 and 𝑆𝐺𝑉  Vector function of mismatches, and complex 

powers of the generation nodes (PV and VV) 

𝑇 Matrix of branch’s turns ratio 

Parameters 

𝐿 Incidence matrix 

𝐿0 and 𝐿𝑐  Submatrices of 𝐿 

𝑁 Number of nodes (except reference node) 

[𝑍𝐵] Block diagonal matrix of the branch’s 

impedances 

[𝑌𝑠ℎ] Block diagonal matrix of the nodes’ shunt 

admittances 

𝑉𝑅  Voltage constant of the reference node 

[𝑌𝐷] Block diagonal matrix for the phase to line 

voltage conversion 

𝑆𝐿0𝑌 and 
𝑆𝐿0∆ 

Vectors of the total star and delta loads at 

nominal voltage. 

𝑍𝑃, 𝑍𝑄, 𝐼𝑃, 

𝐼𝑄, 𝑃𝑃, and 

𝑃𝑄 

Vectors of ZIP coefficients 

𝑁𝑃𝑉 and 𝑁𝑉𝑉 Number of PV and VV nodes 

[𝐴𝑃𝑉] and  
[𝐴𝑉𝑉] 

Block diagonal matrices for the phase to 

positive-sequence voltage conversion of the PV 

and VV nodes 

𝑃𝑃𝑉 and 𝑃𝑉𝑉 Vectors of specified active powers of the PV and 

VV nodes 

Operators 

⨀ Element-wise product between two vectors 

1 (∙)⁄  Element-wise reciprocal of a vector 

(∙)∗ Conjugate of a vector or matrix 

(∙)𝑇 Transpose of a vector or matrix 

(∙)𝐻 Conjugate transpose of a vector or matrix 
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.   INTRODUCTION 

HE QV and PV curves provide important information 

about voltage stability of a system. In transmission 

systems, these curves are traced by Continuation Power Flow 

(CPF) techniques [1], [2]. These techniques use Newton’s 

method to solve the real-valued load flow formulation, and its 

Jacobian matrix helps to predict the curves’ points and to 

detect bifurcation and unstable points.  

Voltage stability analyses for distribution networks were 

not necessary for the past, nevertheless, over the last decade, 

these networks are evolving from static overplanned networks 

to dynamic active systems which will require operation 

planning similar to transmission systems in some aspects. The 

main reason for this transformation is the increased 

penetration of distributed generators (DG) [3]. 

In this new reality, the existent tools to analyze distribution 

systems no longer support the information needs for the new 

decision-making process to operate this networks. One such 

area in need of new tools is voltage stability analyses. This is 

the reason why the feasibility of CPF in distribution networks 

should be revised; what it implies to have effective and 

efficient load flow methods available. 

    One of the load flow methods most widely used in 

distribution networks is the Backward Forward Sweep (BFS) 

[4], developed by taking advantage of the radial topology, 

resulting in an efficient tool. However, the lack of a Jacobian 

matrix makes it impractical to use into CPF techniques. 

Furthermore, the BFS method can’t find points of the left side 

of QV curves or the low side of PV curves, due to 

convergence issues on low voltage solutions [5]. 

    Traditional Newton’s method for real-valued formulation in 

polar form, used in transmission systems, have been 

developed for balanced systems, and its computational 

performance is improved by decoupling techniques, however, 

these techniques are not suitable for radial unbalanced 

distribution networks with high line R/X ratios [6]. A load 

flow method that has a Jacobian matrix and computational 

performance similar to BFS would be more desirable to plot 

QV and PV curves. 

    Some load flow methods with direct [7]–[9] or improved 

BFS [10]–[12] approaches have been proposed in the 

literature. However, their iterative processes are similar to 

BFS, and low voltage solutions could be infeasible. In [13], a 

non-iterative method is presented, but the accuracy decreases 

in low voltage solutions. Furthermore, all aforementioned 

methods don’t employ a Jacobian matrix. 

    References [14]–[17] present methods and analyses for load 

flow formulations using Wirtinger’s calculus. This framework 

straightforwardly obtains a Jacobian matrix of a complex-

valued function to be used in Newton’s method. In this way, 

the authors solve the complex-valued formulation without the 

need to split it into two real-valued formulations. Even though 

the proposals are shown as robust, these references don’t 

explain details of unbalanced three-phase element models, and 

elements such as ideal or shifting transformers are 

complicated to include in the system’s admittance matrix 

(matrix used in their formulations). To deal with this last 

issue, approaches with an incidence matrix [7]–[9] could be 

used and to model series elements through impedances instead 

of admittances. 

    In summary, voltage stability studies are becoming more 

important in the increasingly active distribution networks, 

therefore, a three-phase load flow method for these networks 

with the following features is necessary: 

 Find any type of load flow solution (high and low voltage); 

 Being able to work with radial topologies; 

 Allow to easily model any three-phase element of a 

distribution network: unbalanced star and delta loads, ZIP 

load model, three-phase lines with mutual impedances, 

On-Load Tap Changer (OLTC), DG operating in 

controlled voltage mode or with volt-var functions, among 

others; 

 Provide high computational performance; 

 Have a Jacobian matrix. 

    This paper proposes a load flow method, which presents all 

of these characteristics. It is based on a novel complex-valued 

formulation developed specifically for unbalanced radial 

networks through an incidence matrix. The formulation is 

solved, in the same way as [16] and [17], by Newton’s method 

using Wirtinger’s calculus, preserving the powerful 

convergence property of Newton’s method [14]. 

    The text is organized as follows: In section III, the load flow 

formulation is presented. Section IV introduces the models of 

common elements in distribution networks. Section V presents 

the iterative solution technique. Section VI shows how to trace 

QV curves using the proposed load flow method. Section VII 

perform load flow performance tests and explores the low-

voltage solution capability by tracing QV curves. Finally, the 

main conclusions are exposed. 

.   LOAD FLOW FORMULATION 

    The formulation proposed in this paper, called Radial 

Complex-valued Formulation (RCF), compares branch voltage 

drops calculated by two modes, one calculated from injected 

nodal currents and another from node voltages. The load flow 

problem is considered solved when both voltage drops match. 

All magnitudes are expressed in per-unit (p.u.). 

Incidence Matrix 

    The voltage drop calculations use matrices based on the 

incidence matrix 𝐿, which is explained below. 

    In (1), the matrix shows the relationships between the 

injected nodal and branch flow currents of the system depicted 

in Fig. 1. The node 0 is the reference node and there is a 

transformer between nodes 3 and 4. 

[
 
 
 
 
 
𝐼0
𝐼1
𝐼2
𝐼3
𝐼4
𝐼5]

 
 
 
 
 

=

[
 
 
 
 
 
   Ι   
−Ι    Ι Ι
 −Ι  

  
  
  

       −Ι
   
   

  𝑇𝐻  
−Ι    Ι
 −Ι]

 
 
 
 
 

[
 
 
 
 
𝐼𝐵1

𝐼𝐵2

𝐼𝐵3

𝐼𝐵4

𝐼𝐵5]
 
 
 
 

 (1) 

The value 𝐼𝑖  is the three-phase nodal current of node 𝑖, and 𝐼𝐵𝑗  

is the branch flow current of branch 𝑗. Each column of 𝐿 is 

associated with a branch and each row with a node. The 

following steps form the matrix. 

T 
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For each branch (column): 

- Set −Ι in the ending node. 

- Set 𝑇𝐻 in the sending node. 

where Ι is the identity matrix of size 3x3, and 𝑇 is the matrix 

of transformer ratio. (∙)𝐻 denotes conjugate transpose. For 

lines without transformer 𝑇 = Ι, and Appendix D shows 𝑇 for 

several transformer connections. Thus, once formed 𝐿 for any 

system with the aforementioned steps; equation (2) defines the 

relationship between the injected nodal 𝐼 and branch flow 𝐼𝐵 

currents according to Kirchhoff’s current law. 

𝐼 = 𝐿 𝐼𝐵  (2) 

    Also, the sum of branch power losses of a system is equal to 

the sum of injected nodal powers, expressed in (3). ∆𝑉𝐵 and 𝑉 

are the branch voltage drops and node voltages, respectively. 

    Replacing (2) in (3) yields (4). This equation shows the 

relationships between ∆𝑉𝐵 and 𝑉 according to Kirchhoff’s 

voltage law. 

𝐼𝐵
𝐻∆𝑉𝐵 = 𝐼𝐻𝑉          (3) 

∆𝑉𝐵 = 𝐿𝐻  𝑉   (4) 

    It is essential to observe that 𝐿 provides the relationship 

between currents; and its conjugate transpose 𝐿𝐻 provides the 

relationship between voltages, which is very useful. 

Branch voltage drops calculated from injected nodal 

currents 

Equation (2) is written in (5), where 𝐼0 and 𝐼𝑁 are injected 

currents by the reference node and others 𝑁 nodes, 

respectively. 𝐿0 is made taking three rows of 𝐿 related to the 

reference node. Thus, for a radial network with (𝑁 + 1) nodes 

and 𝑁 branches, the matrix 𝐿𝐶  is square and (6) can be written. 

[
𝐼0
𝐼𝑁

] = [
𝐿0

𝐿𝐶
] 𝐼𝐵      (5) 

𝐼𝐵 = 𝐿𝐶
−1𝐼𝑁 (6) 

    For a branch 𝑗, the voltage drop is ∆𝑉𝐵𝑗 = 𝑍𝐵𝑗  𝐼𝐵𝑗, being 

𝑍𝐵𝑗 the branch’s impedance matrix. By placing all ∆𝑉𝐵𝑗  in a 

vector (7) is obtained, which provides ∆𝑉𝐵 using as variable 

𝐼𝑁 . Where [𝑍𝐵] is a block diagonal matrix formed by the 

impedance matrices of all branches. 

∆𝑉𝐵 = [𝑍𝐵] 𝐿𝐶
−1 𝐼𝑁 (7) 

Branch voltage drops calculated from node voltages 

Equation (4) is expanded as shown in (8), where 𝑉0 and 𝑉𝑁 

are voltages of the reference node and the other 𝑁 nodes, 

respectively. Finally, (9) provides ∆𝑉𝐵 calculated by means of 

𝑉𝑁. Being 𝑉𝑅 = 𝐿0
𝐻 𝑉0 a voltage constant related to the 

reference node. 

∆𝑉𝐵 = [
𝐿0

𝐿𝐶
]
𝐻

 [
𝑉0

𝑉𝑁
]    (8) 

∆𝑉𝐵 = 𝑉𝑅 + 𝐿𝐶
𝐻 𝑉𝑁 (9) 

Load flow problem formulation 

    The goal is to match equations (7) and (9). For this purpose, 

(10) defines a vector function 𝑓, and the load flow problem is 

solved when 𝑉𝑁 leads  𝑓 to become zero. 

𝑓 = 𝑉𝑅 + 𝐿𝐶
𝐻  𝑉𝑁 − [𝑍𝐵] 𝐿𝐶

−1 𝐼𝑁 (10) 

    The vector of nodal currents 𝐼𝑁 depends on voltage, load 

and generator powers, and shunt admittances of each node: 

𝐼𝑁 = 𝐼𝑌 + [𝑌𝐷]𝑇𝐼∆ + 𝐼𝑠ℎ      

𝐼𝑌 = (𝑆𝐺
∗ − 𝑆𝐿𝑌

∗ )⨀
1

𝑉𝑁
∗          

𝐼∆ = −(𝑆𝐿∆
∗ ⨀

1

𝑉∆
∗)              

𝐼𝑠ℎ = −[𝑌𝑠ℎ]𝑉𝑁                       

𝑉∆ = [𝑌𝐷] 𝑉𝑁                        

(11) 

where [𝑌𝑠ℎ] and [𝑌𝐷] are block diagonal matrices. [𝑌𝑠ℎ] is 

formed by shunt admittances of all nodes, and the phase to 

line voltage conversion matrix [𝑌𝐷] by 𝑁 matrices 𝑦𝑑 (12). 

The vectors 𝑆𝐺 , 𝑆𝐿𝑌, and 𝑆𝐿∆ are the concatenation of three-

phase values of generation power, star and delta load of all 

nodes, respectively, and 𝑉∆ contains line voltages. 

    𝑦𝑑 = [
   1 −1    0
   0    1 −1
−1    0    1

] (12) 

    Note that 𝑓 is computed by 𝑉𝑁 and 𝐼𝑁 through constant 

matrices, yielding simplicity in calculations. 

.   MODELS 

    This section presents the models of the elements usually 

present in a distribution network. 

ZIP load model with star and delta connections 

    The vectors 𝑆𝐿𝑌 and 𝑆𝐿∆ depend on 𝑉𝑁 and 𝑉∆,  as shown in 

(13) and (14), respectively. Vectors 𝑆𝐿0𝑌 and 𝑆𝐿0∆ are the star 

and delta loads of all nodes at nominal voltage, and  𝑍𝑃, 𝑍𝑄, 

𝐼𝑃, 𝐼𝑄, 𝑃𝑃, and 𝑃𝑄 are the ZIP coefficients. 

𝑆𝐿𝑌 = 𝑆𝐿𝑍𝑌⨀𝑉𝑁⨀𝑉𝑁
∗ + 𝑆𝐿𝐼𝑌⨀[𝑉𝑁⨀𝑉𝑁

∗]1/2 + 𝑆𝐿𝑃𝑌 
𝑆𝐿𝑍𝑌 = Re(𝑆𝐿0𝑌)⨀𝑍𝑃 + 𝑗 Im(𝑆𝐿0𝑌) ⨀𝑍𝑄                     

𝑆𝐿𝐼𝑌 = Re(𝑆𝐿0𝑌) ⨀ 𝐼𝑃 + 𝑗 Im(𝑆𝐿0𝑌)⨀ 𝐼𝑄                    

𝑆𝐿𝑃𝑌 = Re(𝑆𝐿0𝑌)⨀𝑃𝑃 + 𝑗 Im(𝑆𝐿0𝑌) ⨀𝑃𝑄                     

(13) 

𝑆𝐿∆ = 𝑆𝐿𝑍𝑌⨀𝑉∆⨀𝑉∆
∗ + 𝑆𝐿𝐼𝑌⨀[𝑉∆⨀𝑉∆

∗]1/2 + 𝑆𝐿𝑃∆ 

𝑆𝐿𝑍∆ = (Re(𝑆𝐿0∆)⨀𝑍𝑃 + 𝑗 Im(𝑆𝐿0∆) ⨀𝑍𝑄) 3⁄           

𝑆𝐿𝐼∆ = (Re(𝑆𝐿0∆) ⨀ 𝐼𝑃 + 𝑗 Im(𝑆𝐿0∆) ⨀ 𝐼𝑄) √3⁄       

𝑆𝐿𝑃∆ =  Re(𝑆𝐿0∆)⨀𝑃𝑃 + 𝑗 Im(𝑆𝐿0∆) ⨀𝑃𝑄                  

(14) 

Distributed generators 

    Notice that ZIP load models enable one to emulate a 

generator. Such emulation is achieved by modeling the load as 

Fig. 1. Radial network 
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a negative power. Hence, generators that operate with a 

constant current or some desired mode of operation addressed 

by suitable ZIP parameters can be modeled through the load 

model presented above. Also, three generator models are 

developed below. 

    1)  Constant power (PQ node) 

    Each generator modeled as PQ node operates keeping 

constant the generation power. Hence, its power must be 

merely specified in the vector 𝑆𝐺 . 

    2)  Controlled voltage (PV node) 

    Each generator operates controlling its positive sequence 

voltage and keeping active power constant. The power 

injection is balanced. 

    For each PV node 𝑖, a function 𝑓𝑃𝑉,𝑖 is defined as: 

𝑓𝑃𝑉,𝑖 = (𝑣1,𝑖  𝑣1,𝑖
∗ − 𝑣𝑠𝑝,𝑖

2) + 𝑗 (
𝑠𝑃𝑉,𝑖+𝑠𝑃𝑉,𝑖

∗

2
− 𝑝𝑠𝑝,𝑖) 

𝑣1,𝑖 = 𝑎𝑣𝑖                                                                      
𝑎 = 1 3⁄ [1 𝑒𝑗2𝜋 3⁄ 𝑒−𝑗2𝜋 3⁄ ]                    

(15) 

    The value of 𝑓𝑃𝑉,𝑖 must be zero. The real part of 𝑓𝑃𝑉,𝑖 is the 

condition that makes matching the positive sequence voltage 

magnitude |𝑣1,𝑖| and specified voltage 𝑣𝑠𝑝,𝑖, and the imaginary 

part is the condition that makes matching Re(𝑠𝑃𝑉,𝑖) and 

specified active power 𝑝𝑠𝑝,𝑖. Being 𝑠𝑃𝑉,𝑖 the generation power, 

and 𝑣𝑖 the three-phase node voltage. 

All 𝑓𝑃𝑉,𝑖 of 𝑁𝑃𝑉 PV nodes can be expressed compactly by a 

vector function: 

𝑓𝑃𝑉 = (𝑉1𝑃𝑉⨀𝑉1𝑃𝑉
∗ − 𝑉𝑠𝑝

2) + 𝑗 (
𝑆𝑃𝑉+𝑆𝑃𝑉

∗

2
− 𝑃𝑃𝑉) 

𝑉1𝑃𝑉 = [𝐴𝑃𝑉] 𝑉𝑃𝑉                                                              
(16) 

where the block diagonal matrix [𝐴𝑃𝑉] is formed by 𝑁𝑃𝑉 

matrices 𝑎. The vector 𝑉𝑃𝑉 is the 𝑣𝑖 concatenation of all PV 

nodes. 

    3)  Volt-Var functions (VV node) 

    The active power remains constant, and reactive power 

depends linearly on the magnitude of positive sequence 

voltage using a piecewise linear function. The volt-var 

function is defined through 𝐾 points (𝑣𝑘  , 𝑄𝑘) that determine 

(𝐾 − 1) intervals [18]: 

𝑄 = 𝑄𝑘 + 𝑛𝑘(|𝑣1| − 𝑣𝑘) 

𝑛𝑘 =
𝑄𝑘+1 − 𝑄𝑘

𝑣𝑘+1 − 𝑣𝑘

                   
(17) 

The value 𝑘 must be chosen according to current voltage and 

the intervals. 

    For each VV node 𝑖, a function 𝑓𝑉𝑉,𝑖 is defined as: 

𝑓𝑉𝑉,𝑖 = 𝑄𝑘,𝑖 + 𝑛𝑘,𝑖 [(𝑣1,𝑖𝑣1,𝑖
∗ )

1
2 − 𝑣𝑘,𝑖] + 𝑗(𝑠𝑉𝑉,𝑖 − 𝑝𝑠𝑝,𝑖) 

𝑣1,𝑖 = 𝑎𝑣𝑖                                                                                

(18) 

    The value of 𝑓𝑉𝑉,𝑖 must be zero. The real part of 𝑓𝑉𝑉,𝑖 is the 

condition that makes matching the reactive power given by the 

volt-var function, and Im(𝑠𝑉𝑉,𝑖), and the imaginary part is the 

condition that makes matching Re(𝑠𝑉𝑉,𝑖) and specified active 

power 𝑝𝑠𝑝,𝑖, being 𝑠𝑉𝑉,𝑖 the generation power. 

All 𝑓𝑉𝑉,𝑖 of 𝑁𝑉𝑉 VV nodes can be expressed compactly by a 

vector function: 

𝑓𝑉𝑉 = 𝑄𝑘 + 𝑁𝑘⨀[(𝑉1𝑉𝑉⨀𝑉1𝑉𝑉
∗ )

1
2 − 𝑉𝑘] + 𝑗 (𝑆𝑉𝑉 − 𝑃𝑉𝑉) 

𝑉1𝑉𝑉 = [𝐴𝑉𝑉] 𝑉𝑉𝑉                                                                         
(19) 

where the block diagonal matrix [𝐴𝑉𝑉] is formed by 𝑁𝑉𝑉 

matrices 𝑎. The vector 𝑉𝑉𝑉 is the 𝑣𝑖 concatenation of all VV 

nodes. 

On-Load Tap Changer 

    The tap positions of an OLTC assume discrete values. 

Hence, the model employed does not use continuous values 

and is similar to the methodology already presented in [4], 

explained below for convenience. 

    Every time the load flow is solved, the tap positions of 

OLTCs (turns ratio matrix 𝑇) must be updated, returning to the 

load flow again, until the tap positions do not change. 

Typically, the regulator is used to increase or decrease the 

voltage up to 10%, and the range of tap positions is from -16 

to 16. Therefore, 𝑇 is calculated with: 

𝑇 = Ι + 0.1 16⁄ × diag(𝑡𝑎𝑝𝑎 𝑡𝑎𝑝𝑏 𝑡𝑎𝑝𝑐) (20) 

    The tap positions must be updated with the following steps: 

 Check if secondary voltages 𝑣𝑠 are within the lower and 

upper voltage bounds. 

 If 𝑣𝑠 is out of bounds, set 𝑣𝑠 to the limit, and calculate the 

continuous tap value to finally round it to the nearest 

allowed position. 

.   THE NEWTON’S METHOD AND WIRTINGER’S CALCULUS 

APPLIED TO LOAD FLOW PROBLEM 

    The load flow problem is solved when 𝑓 and 𝑓𝐺𝑉 are zero: 

[
     𝑓(𝑉𝑁, 𝑆𝐺𝑉)

𝑓𝐺𝑉(𝑉𝑁, 𝑆𝐺𝑉)
] = 0 (21) 

where 𝑓𝐺𝑉 = [𝑓𝑃𝑉 𝑓𝑉𝑉]𝑇 and 𝑆𝐺𝑉 = [𝑆𝑃𝑉 𝑆𝑉𝑉]𝑇. 

    Since the problem is nonlinear, an iterative method must be 

used. The Newton’s method can be applied to complex-valued 

problems using the Wirtinger’s calculus [19]. 

Wirtinger’s calculus 

    Given a vector function ℎ(𝑧), containing 𝑧 and 𝑧∗ as 

independent variables, it’s possible to write the Taylor’s 

expansion of ℎ(𝑧,𝑧∗) and its conjugate ℎ(𝑧,𝑧∗)
∗  [20], [21]. Hence, 

Newton’s method can be applied to the vector function 𝐹(𝑧,𝑧∗): 

𝐹(𝑧,𝑧∗) = [
ℎ(𝑧,𝑧∗)

ℎ(𝑧,𝑧∗)
∗ ]                                                     

𝐽 = [
𝑗𝐴 𝑗𝐵
𝑗𝐶 𝑗𝐷

] = [

𝜕ℎ(𝑧,𝑧∗)

𝜕𝑧

𝜕ℎ(𝑧,𝑧∗)

𝜕𝑧∗

𝑗𝐵
∗ 𝑗𝐴

∗
] 

(22) 

where  𝐽 is the Jacobian matrix of 𝐹(𝑧,𝑧∗). The equalities 𝑗𝐶 =

𝑗𝐵
∗  and 𝑗𝐷 = 𝑗𝐴

∗ [21] reduces the number of calculations. 

Reformulation of the load flow problem 

    In order to apply Newton’s method to (21), a new vector 

function is defined 𝐹(𝑉𝑁, 𝑆𝐺𝑉 ,𝑉𝑁 
∗ ,𝑆𝐺𝑉

∗ ), and the load flow 

problem is solved when: 
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𝐹(𝑉𝑁, 𝑆𝐺𝑉 ,𝑉𝑁 
∗ ,𝑆𝐺𝑉

∗ ) =

[
 
 
 
 
    𝑓(𝑉𝑁, 𝑆𝐺𝑉 ,𝑉𝑁 

∗ ,𝑆𝐺𝑉
∗ )

𝑓𝐺𝑉(𝑉𝑁, 𝑆𝐺𝑉 ,𝑉𝑁 
∗ ,𝑆𝐺𝑉

∗ )

     𝑓(𝑉𝑁, 𝑆𝐺𝑉 ,𝑉𝑁 
∗ ,𝑆𝐺𝑉

∗ )
∗

𝑓𝐺𝑉(𝑉𝑁, 𝑆𝐺𝑉 ,𝑉𝑁 
∗ ,𝑆𝐺𝑉

∗ )
∗

]
 
 
 
 

= 0 (23) 

    Although the sizes of the vector function and the vector of 

variables are doubled (remember that 𝑉𝑁 
∗  and 𝑆𝐺𝑉

∗  are 

considered as independent variables of 𝑉𝑁 and 𝑆𝐺𝑉 in 

Wirtinger’s calculus), in this way 𝐹(𝑉𝑁, 𝑆𝐺𝑉 ,𝑉𝑁 
∗ ,𝑆𝐺𝑉

∗ ) is an 

analytic function. This fact allows calculating the Jacobian 

matrix without the need to split the formulation into two real-

valued formulations. 

Jacobian and inverse Jacobian matrices 

    The Jacobian matrix of 𝐹(𝑉𝑁, 𝑆𝐺𝑉 ,𝑉𝑁 
∗ ,𝑆𝐺𝑉

∗ ) is formed by 

𝐽 = [
𝑗𝐴 𝑗𝐵
𝑗𝐵
∗ 𝑗𝐴

∗] 

(24) 

𝑗𝐴 =

[
 
 
 
 

𝜕𝑓(𝑉𝑁, 𝑆𝐺𝑉 ,𝑉𝑁 
∗ ,𝑆𝐺𝑉

∗ )

𝜕𝑉𝑁

𝜕𝑓(𝑉𝑁, 𝑆𝐺𝑉 ,𝑉𝑁 
∗ ,𝑆𝐺𝑉

∗ )

𝜕𝑆𝐺𝑉

𝜕𝑓𝐺𝑉(𝑉𝑁, 𝑆𝐺𝑉 ,𝑉𝑁 
∗ ,𝑆𝐺𝑉

∗ )

𝜕𝑉𝑁

𝜕𝑓𝐺𝑉(𝑉𝑁, 𝑆𝐺𝑉 ,𝑉𝑁 
∗ ,𝑆𝐺𝑉

∗ )

𝜕𝑆𝐺𝑉 ]
 
 
 
 

 

𝑗𝐵 =

[
 
 
 
 

𝜕𝑓(𝑉𝑁, 𝑆𝐺𝑉 ,𝑉𝑁 
∗ ,𝑆𝐺𝑉

∗ )

𝜕 𝑉𝑁
∗

𝜕𝑓(𝑉𝑁, 𝑆𝐺𝑉 ,𝑉𝑁 
∗ ,𝑆𝐺𝑉

∗ )

𝜕 𝑆𝐺𝑉
∗

𝜕𝑓𝐺𝑉(𝑉𝑁, 𝑆𝐺𝑉 ,𝑉𝑁 
∗ ,𝑆𝐺𝑉

∗ )

𝜕 𝑉𝑁
∗

𝜕𝑓𝐺𝑉(𝑉𝑁, 𝑆𝐺𝑉 ,𝑉𝑁 
∗ ,𝑆𝐺𝑉

∗ )

𝜕 𝑆𝐺𝑉
∗ ]

 
 
 
 

 

And the inverse Jacobian matrix 𝐽−1 by 

𝐽−1 = [
Γ𝐴 Γ𝐵

Γ𝐵
∗ Γ𝐴

∗] 

Γ𝐴 = [𝑗𝐴 − 𝑀 𝑗𝐵
∗ ]−1 

Γ𝐵 = −Γ𝐴𝑀               
𝑀 = 𝑗𝐵  𝑗𝐴

∗ −1            

(25) 

Each component of 𝑗𝐴 and 𝑗𝐵 are explained in Appendix A and 

𝐽−1 in Appendix B. 

Updating variables 

    In order to decrease the number of calculations, only ∆𝑧 =
[∆𝑉𝑁 ∆𝑆𝐺𝑉]𝑇 will be calculated, since [∆𝑉𝑁

∗ ∆𝑆𝐺𝑉
∗ ]𝑇 is the 

conjugate of ∆𝑧. Equation (26) is obtained from (25), see 

Appendix C for details. 

∆𝑧 = Γ𝐴(𝑀ℎ∗ − ℎ) 

ℎ = [
𝑓

𝑓𝐺𝑉
]             

(26) 

Load flow algorithm 

    Fig. 2 depicts the flowchart of the load flow algorithm. The 

operator |∙| is the Euclidean norm and 𝜀 a predefined 

mismatch tolerance. 

.   TRACING QV CURVES 

    The QV curve is traced by setting a PV node with different 

specified voltages 𝑉𝑠𝑝. It is convenient to use a predicted step 

∆𝑧 with respect to ∆𝑝, being 𝑧 = [𝑉𝑁 𝑆𝑃𝑉]𝑇 and 𝑝 = 𝑉𝑠𝑝
2. 

    From CPF technique, it is known that 

∆𝑧 = −𝐽−1  
𝜕𝐹

𝜕𝑝
 ∆𝑝 

where 
𝜕𝐹

𝜕𝑝
 is obtained by differentiating 𝐹(𝑉𝑁, 𝑆𝑃𝑉 ,𝑉𝑁 

∗ ,𝑆𝑃𝑉
∗ ), which 

gives a vector filled with zeros except in two positions that 

have the value -1. These positions are those corresponding to 

the specified voltage of the PV node in 𝑓𝑃𝑉: 

𝜕𝐹

𝜕𝑝
= [

𝜕𝑓

𝜕𝑝

𝜕𝑓𝑃𝑉

𝜕𝑝

𝜕𝑓∗

𝜕𝑝

𝜕𝑓𝑃𝑉
∗

𝜕𝑝
]
𝑇

= [

   0
−1
   0
−1

] 

.   RESULTS AND DISCUSSIONS 

    This section shows the robustness of the load flow method 

proposed (RCF, named homonymous to formulation). First, 

the computational performance of RCF is tested. Then, the 

ability to deal with low voltage solutions is explored by 

tracing QV curves.  

Performance tests 

    The algorithms were implemented in Matlab® and the 

processor used is Intel® Core™ i7-3770 @ 3.40GHz. The 

performance tests are carried out in IEEE 13, 34 and 123 node 

test feeders [22]. All tests start with flat node voltages; the 

power base is 3 MVA and the mismatch tolerance is 10-8 p.u. 

    Table I shows the errors with respect to results given by the 

IEEE’s official summaries; the maximum error was 52.5 ×
10−5 p.u. A computational performance comparison is carried 

out between RCF and one of the most efficient methods for 

radial networks, the BFS method [4]. Results show that the 

Fig. 2. Load flow algorithm 



0885-8950 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2019.2892014, IEEE
Transactions on Power Systems

 

 
6 

average ratio of runtimes is 10.35 and the average rate of the 

number of iterations 3.67. The RCF demonstrates much higher 

runtime performance with 13 and 34 nodes (~15 times faster); 

nevertheless, it shows a small decrease in performance with 

123 nodes (0.94). The latter may be due to increase in the size 

of the vector function and its Jacobian matrix. 

    Several combinations of average line R/X ratios and 

generator models were tested in the unbalanced IEEE-34 

nodes feeder to assess the RCF convergence. Average R/X 

value of the positive sequence impedances is used as R/X 

index; this value for the base case is 1.7949. Table II shows 

the number of iterations and the runtime by changing the R/X 

ratio on-diagonal elements of the three-phase impedance 

matrices, keeping their magnitudes constant. Note that without 

DG, R/X ratio does not affect the number of iterations, which 

is an advantage over the decoupled Newton’s method for real-

valued formulation. However, with one and two PV nodes, the 

number of iterations increases as R/X ratio increases, but it is 

not due to the RCF performance, this is because the system is 

close to voltage collapse (note that this is not a feasible 

solution analysis, just an explanation of the increases in the 

iterations of the method). The capability to control the voltage 

injecting reactive power decreases when R/X increases, which 

causes the system to collapse due to the large flow of reactive 

power through the lines. 

    Finally, DGs modeled as PV and VV nodes, injecting zero 

active power, were inserted on IEEE-34 nodes feeder. These 

models could represent modern devices such as smart 

inverters. The voltages of PV nodes are set in 1.05 p.u. Table 

III displays the volt-var function configuration points. 

The results in Table IV show that the load flow is solved in 3 

or 4 iterations for several numerical combinations of PV and 

VV nodes. Therefore, RCF performance is practically not 

sensitive to the number of generators, which is an advantage 

over some methods; for instance, BFS method is sensitive to 

VV nodes and a technique should be used to improve their 

convergence as shown in [18]. 

QV curves 

    Firstly, the QV curves (including the left side) are traced 

through RCF on unbalanced IEEE 13 and 123 node test 

feeders. In the second part, the IEEE-34 test is considered as 

balanced and two QV curves are traced in the same node in 

order to be compared; one traced by RCF and another by a 

well-known CPF technique for transmission (CPF-T) [1]. 

    1)  Unbalanced three-phase networks 

    Fig. 3(a) and (b) show QV curves of nodes 675 and 300, 

respectively. Both sides of the curves (unstable and stable) are 

plotted while that BFS would find points of the right side only. 

    2)  Balanced network 

    The IEEE-34 node test feeder is balanced modeling each 

load as a constant power of value equal at its three-phase 

average and modeling each line through its positive sequence 

impedance only. 

TABLE III 

Volt-var function configuration 

Point 1 2 3 4 

V 0.00 0.95   1.05   2.00 

Q 2.00 2.00 -2.00 -2.00 

 
TABLE IV 

No. of iterations for PV vs. VV nodes 

PV \ VV 0 1 2 3 4 5 

0 3 3 3 3 4 4 

1 3 3 4 4 4 4 

2 4 4 4 4 4 4 

3 4 4 4 4 4 4 

4 4 4 4 4 4 4 

5 4 4 4 4 4 4 

 

Fig. 3. QV curves in unbalanced networks 

(a)  Node 675 (IEEE-13 node test feeder) 

(b)  Node 300 (IEEE-123 node test feeder) 

TABLE I 

Base case of IEEE test feeders 

System 
Error (10-5 p.u.) Runtime (ms) No. of iterations 

Ph-1 Ph-2 Ph-3 RCF BFS Ratio RCF BFS Ratio 

IEEE-13 4.3 5.7 11.4 2 42 21.00 3 9 3.00 

IEEE-34 13.8 16.5 14.1 8 73   9.13 3 12 4.00 

IEEE-123 52.5 20.5 19.8 125 117   0.94 2 8 4.00 

Average           10.35     3.67 

 
TABLE II 

Convergence vs. R/X ratio 

R/X 

Without DG 1 PV node 2 PV nodes 

No. of 
iterations 

Runtime 
(ms) 

No. of 
iterations 

Runtime 
(ms) 

No. of 
iterations 

Runtime 
(ms) 

67.5724 3 8.2 - - - - 

6.9723 3 8.3 - - - - 

3.8859 3 8.3 5 15.0 6 16.5 

3.5673 3 8.3 4 11.0 5 14.5 

1.7949 3 8.0 3 8.1 4 11.0 

0.5937 3 7.9 3 8.2 4 11.0 

0.0003 3 8.2 3 8.1 4 11.2 
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    Fig. 4 shows the QV curve of node 828 traced via RCF and 

CPF-T. Both curves are identical. The runtime by RCF is just 

6 s while CPF-T uses 36 s. 

.   CONCLUSIONS 

    This paper has presented a load flow method based on a 

novel complex-valued formulation developed for unbalanced 

radial networks. 

    The formulation takes advantage of radial topologies, being 

solved the load flow in a few milliseconds. In tests performed 

on the IEEE test feeders with less than 100 nodes, the runtime 

was less than BFS runtime, but with more than 100 nodes, the 

computational performances become similar perhaps due to an 

increase in the size of matrices. The method could be 

improved in this regard. 

    The line R/X ratio does not affect the computational 

performance, an advantage over the decoupled Newton’s 

method for real-valued formulation. The number of PV or VV 

nodes at most increased one iteration the process, an 

advantage over the BFS method. 

    The method can find low voltage solutions, which is an 

essential feature in voltage stability analysis. This fact 

provides an important advantage over other methods 

developed for distribution networks such as BFS. 

APPENDIX A 

Differentiation of 𝑓(𝑉𝑁, 𝑆𝐺𝑉 ,𝑉𝑁 
∗ ,𝑆𝐺𝑉

∗ ) 

𝜕𝑓(𝑉𝑁, 𝑆G𝑉 ,𝑉𝑁 
∗ ,𝑆G𝑉

∗ )

𝜕𝑉𝑁

= 𝐿𝐶
𝐻 − [𝑍𝐵] 𝐿𝐶

−1  
𝜕𝐼𝑁
𝜕𝑉𝑁

 

𝜕𝐼𝑁
𝜕𝑉𝑁

=
𝜕𝐼𝑌
𝜕𝑉𝑁

+ [𝑌𝐷]𝑇
𝜕𝐼∆
𝜕𝑉∆

[𝑌𝐷] − [𝑌𝑠ℎ] 

𝜕𝐼𝑌
𝜕𝑉𝑁

= diag (−𝑆𝐿𝑍𝑌
∗ −

𝑆𝐿𝐼𝑌
∗

2
⨀

1

|𝑉𝑁|
)      

𝜕𝐼∆
𝜕𝑉∆

= diag (−𝑆𝐿𝑍∆
∗ −

𝑆𝐿𝐼∆
∗

2
⨀

1

|𝑉∆|
)      

 
𝜕𝑓(𝑉𝑁, 𝑆G𝑉 ,𝑉𝑁 

∗ ,𝑆G𝑉
∗ )

𝜕𝑉𝑁
∗ = − [𝑍𝐵] 𝐿𝐶

−1  
𝜕𝐼𝑁
𝜕𝑉𝑁

∗ 

𝜕𝐼𝑁
𝜕𝑉𝑁

∗ =
𝜕𝐼𝑌
𝜕𝑉𝑁

∗ + [𝑌𝐷]𝑇
𝜕𝐼∆
𝜕𝑉∆

∗ [𝑌𝐷]                                              

𝜕𝐼𝑌
𝜕𝑉𝑁

∗ = diag (
𝑆𝐿𝐼𝑌

∗

2
⨀𝑉𝑁

0.5⨀
1

𝑉𝑁
∗1.5 − (𝑆𝐺

∗ − 𝑆𝐿𝑃𝑌
∗ )⨀

1

𝑉𝑁
∗2) 

𝜕𝐼∆
𝜕𝑉∆

∗ = diag (
𝑆𝐿𝐼∆

∗

2
⨀𝑉∆

0.5⨀
1

𝑉∆
∗1.5 + 𝑆𝐿𝑃∆

∗ ⨀
1

𝑉∆
∗2)               

 
𝜕𝑓(𝑉𝑁, 𝑆G𝑉 ,𝑉𝑁 

∗ ,𝑆G𝑉
∗ )

𝜕𝑆𝐺𝑉

= 0                                               

𝜕𝑓(𝑉𝑁, 𝑆G𝑉 ,𝑉𝑁 
∗ ,𝑆G𝑉

∗ )

𝜕𝑆𝐺𝑉
∗ = − [𝑍𝐵𝐿𝐶

−1]
𝐺𝑉

diag (
1

𝑉𝐺𝑉 
∗ ) 

where [∙]𝐺𝑉 and ∙𝐺𝑉 denote the columns and components 

related to generation nodes, respectively. 

Differentiation of 𝑓𝑃𝑉(𝑉𝑁, 𝑆𝑃𝑉 ,𝑉𝑁 
∗ ,𝑆𝑃𝑉

∗ ) 

𝜕𝑓𝑃𝑉(𝑉𝑁, 𝑆𝑃𝑉 ,𝑉𝑁 
∗ ,𝑆𝑃𝑉

∗ )

𝜕𝑉𝑃𝑉

= diag(𝑉1𝑃𝑉 
∗ ) [𝐴𝑃𝑉] 

𝜕𝑓𝑃𝑉(𝑉𝑁, 𝑆𝑃𝑉 ,𝑉𝑁 
∗ ,𝑆𝑃𝑉

∗ )

𝜕𝑉~𝑃𝑉

= 0                               

𝜕𝑓𝑃𝑉(𝑉𝑁, 𝑆𝑃𝑉 ,𝑉𝑁 
∗ ,𝑆𝑃𝑉

∗ )

𝜕𝑉𝑃𝑉 
∗ = diag(𝑉1𝑃𝑉) [𝐴𝑃𝑉]∗ 

𝜕𝑓𝑃𝑉(𝑉𝑁, 𝑆𝑃𝑉 ,𝑉𝑁 
∗ ,𝑆𝑃𝑉

∗ )

𝜕𝑉~𝑃𝑉 
∗ = 0                               

𝜕𝑓𝑃𝑉(𝑉𝑁, 𝑆𝑃𝑉 ,𝑉𝑁 
∗ ,𝑆𝑃𝑉

∗ )

𝜕𝑆𝑃𝑉

=
𝑗

2
𝐼𝑁𝑃𝑉×𝑁𝑃𝑉

             

𝜕𝑓𝑃𝑉(𝑉𝑁, 𝑆𝑃𝑉 ,𝑉𝑁 
∗ ,𝑆𝑃𝑉

∗ )

𝜕𝑆𝑃𝑉
∗ =

𝑗

2
𝐼𝑁𝑃𝑉×𝑁𝑃𝑉

              

where 𝑉~𝑃𝑉 is the node voltages of all non-PV nodes. 

Differentiation of 𝑓𝑉𝑉(𝑉𝑁, 𝑆𝑉𝑉 ,𝑉𝑁 
∗ ,𝑆𝑉𝑉

∗ ) 

𝜕𝑓VV(VN, SVV ,VN 
∗ ,SVV

∗ )

𝜕𝑉𝑉𝑉

=
1

2
diag (𝑁𝑘⨀𝑉1𝑉𝑉

∗
1
2⨀𝑉1𝑉𝑉

−
1
2) [𝐴𝑉𝑉]  

𝜕𝑓VV(VN, SVV ,VN 
∗ ,SVV

∗ )

𝜕𝑉~𝑉𝑉

= 0                                                                

𝜕𝑓VV(VN, SVV ,VN 
∗ ,SVV

∗ )

𝜕𝑉𝑉𝑉 
∗ =

1

2
diag (𝑁𝑘⨀𝑉1𝑉𝑉

∗ −
1
2⨀𝑉1𝑉𝑉

1
2) [𝐴𝑉𝑉]∗ 

𝜕𝑓VV(VN, SVV ,VN 
∗ ,SVV

∗ )

𝜕𝑉~𝑉𝑉 
∗ = 0                                                                

𝜕𝑓𝑉𝑉(𝑉𝑁, 𝑆𝑉𝑉 ,𝑉𝑁 
∗ ,𝑆𝑉𝑉

∗ )

𝜕𝑆𝑉𝑉

= 𝑗𝐼𝑁𝑉𝑉×𝑁𝑉𝑉
                                                

𝜕𝑓𝑉𝑉(𝑉𝑁, 𝑆𝑉𝑉 ,𝑉𝑁 
∗ ,𝑆𝑉𝑉

∗ )

𝜕𝑆𝑉𝑉
∗ = 0                                                                

where 𝑉~𝑉𝑉 is the node voltages of all non-VV nodes. 

APPENDIX B 

    Expressing 𝐽−1 by submatrices Γ𝐴, Γ𝐵, Γ𝐶, and Γ𝐷, it’s 

known that 

[
Γ𝐴 Γ𝐵

Γ𝐶 Γ𝐷
] [

𝑗𝐴 𝑗𝐵
𝑗𝐵
∗ 𝑗𝐴

∗] = [
Ι 0
0 Ι

] 

By solving Γ𝐴 and Γ𝐵, one obtains 

Γ𝐴 = (𝑗𝐴 − 𝑀 𝑗𝐵
∗)−1 

Γ𝐵 = −Γ𝐴 𝑀               
𝑀 = 𝑗𝐵  𝑗𝐴

∗ −1             

And solving Γ𝐶 and Γ𝐷 

Γ𝐶 = −Γ𝐷 𝑀∗              
Γ𝐷 = (𝑗𝐴

∗ − 𝑀∗ 𝑗𝐵)−1 

Note that Γ𝐷 = Γ𝐴
∗ and Γ𝐶 = Γ𝐵

∗. 

Fig. 4. QV curve of node 828 (IEEE-34 node test feeder balanced) 
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APPENDIX C 

    The value ∆𝑧 is obtained by solving 

0 = 𝐽 [
∆𝑧
 ∆𝑧∗] + [

ℎ 
ℎ∗]           

⟹ [
∆𝑧
 ∆𝑧∗] = −𝐽−1 [

ℎ 
ℎ∗]                                   

[
∆𝑧
 ∆𝑧∗] = − [

Γ𝐴 −Γ𝐴𝑀
−Γ𝐴

∗𝑀∗ Γ𝐴
∗ ] [

ℎ 
ℎ∗] 

∆𝑧 = Γ𝐴(𝑀ℎ∗ − ℎ)                

APPENDIX D 

    It is considered that the transformer ratio 𝑇 provides the 

secondary voltages by left-multiplying 𝑇 to the primary 

voltages. The following Table shows 𝑇 for five usual 

connections in distribution networks. 

TRANSFORMER RATIO VS. CONNECTIONS 

2𝑟𝑦               
     1𝑟𝑦 

Delta Open Delta Grounded Wye 

Delta 𝑊 𝑇𝑊[𝑌𝐷] ----- 𝑇𝑊[𝑌𝐷] 

Ungrounded Wye 𝑊 𝑇𝑊 𝑈 ----- ----- 

Grounded Wye ----- ----- 𝑇𝑊 

Open Wye ----- 𝑊 𝑂∆ 𝑇𝑊 𝑂𝑌 ----- 

    The matrix 𝑊 provides the equivalent phase voltages as a 

function of line-to-line voltages [23]: 

𝑊 =
1

3
[
2 1  
 2 1
1  2

] 

    The matrix 𝑈 obtains line-to-neutral voltages from known 

phase voltages, for Ungrounded Wye connections. 𝑈 overrides 

the zero sequence-component of three phasors: 

𝑈 = [
1 1 1
1   𝑎2 𝑎
1 𝑎   𝑎2

]
1

3
[
0 0 0
1 𝑎   𝑎2

1   𝑎2 𝑎
] =

1

3
[
   2 −1 −1 
−1    2 −1
−1 −1    2

] 

    In Open Wye-Open Delta connections when phase 𝑝 is 

open, 𝑂𝑌,𝑝 obtains two line-to-neutral voltages from two 

known phase voltages on the Wye side. 𝑂𝑌,𝑝 overrides the zero 

sequence-component of two phasors (its size is 3x3 for 

convenience). The matrix 𝑂∆,𝑝 obtains three line-to-line 

voltages from two known line-to-line voltages on the Delta 

side: 

𝑂𝑌,1 =
1

2
[
0   
    1 −1
 −1    1

] 𝑂∆,1 = [
0 −1 −1
    1  
     1

] 

𝑂𝑌,2 =
1

2
[
   1  −1
 0  

−1     1
] 𝑂∆,2 = [

   1   
−1 0 −1
      1

] 

𝑂𝑌,3 =
1

2
[
   1 −1  
−1    1  
  0

] 𝑂∆,3 = [
   1   
    1  

−1 −1 0
] 

    𝑇𝑊 is the matrix of turns ratio. For a three-phase 

transformer bank integrated by three single-phase transformers 

with turns ratios 𝑡1, 𝑡2 ,and 𝑡3, the 𝑇𝑊 = diag([𝑡1 𝑡2 𝑡3]) 
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