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A B S T R A C T

The training of suppliers and inbound quality inspectors is a common strategy to increase the quality perfor-
mance of the supply chain but, under budget constraints, these actors compete for a limited amount of training
hours. The proposed model aims to allocate the available training hours so as to minimise a total quality cost
function composed of prevention, appraisal, and failure costs; it also sets the inspection rates defining the in-
spection policies assigned to suppliers. The relationship between decision variables and costs is expressed
through organisational and individual learning-forgetting curves, for suppliers and quality inspectors respec-
tively, and the effect of the training hours on quality improvement is measured in terms of failure rates. To the
best of our knowledge, a total quality cost model with such decision variables is new in the related literature, as
it is a model including both organisational and individual learning-forgetting phenomena.

A nonlinear optimisation approach was adopted to solve this complex problem. The experimental section
includes a decision trees analysis of simplified scenarios in order to interpret the model functioning, as well as a
complex numerical example to extrapolate managerial insights.

1. Introduction

The most recently released ISO 9001:2015 enforced the section
dedicated to the control of externally provided processes, products and
services (clause 8.4), with more rigorous requirements for managing
suppliers than in the previous ISO 9001:2008. A step-by-step supplier
management approach comprises supplier development in order to
improve continuously its capability and performance (Wagner, 2006,
2010), which relies on a multitude of manageable activities (Bai &
Sarkis, 2011) including training. For a review on supplier development,
see Glock, Grosse, and Ries (2017). Quality improvement in products
and processes, adaptation to quality standards or reengineering of new
components are common examples of goals requiring training activities
for suppliers, with the active involvement of the buyer’s management.
There are multi-echelon supply chains with suppliers all over the world,
often operating under different quality standards and thus requiring
periodic monitoring and training. Many firms plan training activities
for suppliers as a strategy to improve the suppliers' performance, to
such an extent that several consulting companies provide training on
behalf of third parties.

This type of supplier development is direct, whereas in indirect
approaches the management plans actions that influence the

environment in which the suppliers operate in order to create an in-
centive for them to improve their performance by themselves (Wagner,
2010).

In accordance with the systematic approach to human resources
contained within ISO 9001:2015 (e.g. clauses 4.1.2 and 7.1.2), training
activities should also be planned for internal employees, with a focus on
the quality inspectors operating within inbound inspection sites. After
receipt of the items, quality inspectors visually inspect and/or operate
different types of equipment, e.g. coordinate-measuring machines,
voltmeters, hardness testing tools and so on. These inspection processes
require specific skills which inspectors also acquire by training.

However, training suppliers and quality inspectors is costly because
it involves trainers, especially when long business trips are needed to
reach the suppliers. Moreover, trainers are specialized consultants who
charge high prices.

This proposal presented in this paper focuses on how many training
hours should be allocated and to whom on a single-period basis. Indeed,
very few decision support models have been proposed in the literature
to support resources allocation to development programs (Glock, 2016),
despite the aforementioned importance of this topic in real settings. To
the best of our knowledge, no studies also include the possibility of
choosing between different stakeholders, i.e. suppliers and quality
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inspectors, to be involved in the development programs.
The reasoning for the choice of suppliers and quality inspectors as

potential stakeholders of training is strictly quality cost-based. In fact,
in accordance with the well-known Prevention, Appraisal, and Failure
(PAF) taxonomy of quality costs (Feigenbaum, 1956), the supplier
training might be focused, among other supplier attributes, on the re-
plenishment quality, where the development measure used here to
monitor quality improvement is the failure rate, which directly affects
the failure costs (F). Conversely, the training of inspectors decreases
inspection times and thus the appraisal costs (A). At the same time,
training suppliers and inspectors increases the prevention costs (P). The
allocation of training hours to suppliers and quality inspectors is thus a
non-trivial problem from a continuous improvement viewpoint, and
this is the primary goal of our proposal.

To enrich our analytical setting further, the additional decision
variables included in the model are the inspection rates to assign to the
replenished items on a period by period basis. These variables de-
termine the inspection policies to apply to suppliers and affect both
failure and appraisal costs. The effect of the inspection rates on the
quality cost function can be revealed by considering that failure costs
are higher in downstream than in upstream stages. For instance, an
inspection policy with a unitary inspection rate maximises appraisal
costs and minimizes failure costs.

The relationship of the training hours as development resources
with the quality costs is highlighted by learning-forgetting curves that
capture the effects of training on failure and appraisal costs over time.
In other words, suppliers and inspectors are subject to organisational
and individual learning mechanisms, respectively, which depend on
training activities (i.e. induced learning) and repetitions (i.e. autono-
mous learning) and constitute the foundation of the optimal allocation
of the training hours. The need to interconnect continuous improve-
ment with learning curves has been investigated by (Zangwill & Kantor,
1998), and more recently by other authors (e.g. Wang, Plante, & Tang,
2013; Lolli et al., 2016).

Our contribution is two-fold: (i) to solve the problem of allocating
training hours both to suppliers and to quality inspectors by a single-
period decision support system based on learning-forgetting curves,
organizational and individual, respectively; (ii) to show the relationship
that inspection policies have with the optimal allocation solution.
Neither issues have been addressed jointly in the related literature by
means of mathematical programming approaches. In addition, to the
best of our knowledge, the coexistence of organisational and individual
learning-forgetting effects in a quality cost-based trade-off problem, i.e.
the allocation of training hours, is new in the literature related to
learning theory.

The paper is organised as follows. Section 2 provides a review of the
literature on supplier development and human learning. Section 3 de-
tails the operative environment for which our decision support system
has been designed, along with the notation adopted throughout the
manuscript. Section 4 focuses on the learning processes underlying the
model described in Section 5. Sections 6 and 7 detail the design of the
experiment and the results achieved, respectively, while Section 8
provides conclusions and ideas for further research.

2. Literature review

Supplier development is a broad topic in industrial engineering,
where three stages can be identified (Glock et al., 2017):

(i) Preparation of supplier development. This stage identifies the
suppliers that the buyer intends to develop.

(ii) Supplier development in the strictest sense, which is aimed at
defining the development initiatives that constitute either the di-
rect or the indirect development program.

(iii) Monitoring and evaluation of supplier development.

The resource allocation to development programmes represents a
step in stage (ii), and is also the core of our proposal. Wagner (2011),
Glock et al. (2017) and Meisel and Glock (2018) have already under-
lined that the majority of previous contributions have dealt with sup-
plier development either theoretically or empirically. Regarding stage
(ii), there are still only a few mathematical models available, especially
those dealing with the allocation of resources to development pro-
grams; some of them are overviewed in the following.

Kim (2000) investigated a single-buyer single-supplier supply chain
where the buyer must evaluate the need for a subsidy to lower the
production costs at the supplier via a learning curve modelling. The
development attribute under control is thus the production cost at the
supplier, and the development program is direct due to the active in-
volvement of the buyer. A lower production cost at the supplier leads in
turn to lowering the selling price on the market. In the case of a price-
sensitive demand, supplier development shows the greatest benefits. A
similar setting was analysed by Proch, Worthmann, and
Schlüchtermann (2017), who formulated a continuous time optimal
control model for the capital investments in supplier development.
They considered both direct and indirect development initiatives
through win-to-win perspective, where the buyer can intensify the
supplier’s participation by subsidizing a share of the investment costs.
The efficient level of subsidy over time is therefore the variable to
optimise in order to make development profitable. Zhu, Zhang, and
Tsung (2007) specifically focused on quality-based development pro-
grammes for suppliers undertaken by the buyer in order to reduce the
expected number of non-conforming units, whose related failure costs
fall both on the buyer and on the suppliers. They analytically derived
the optimal order (buyer) and production (supplier) quantities in ac-
cordance with the quality-based development actions undertaken.

A quality-based development of suppliers was explored by Lolli
et al. (2016) with the rate of non-conforming units as the development
attribute to reduce over time periods. They introduced a single-period
constrained nonlinear optimization approach for allocating training
hours to suppliers. In order to assess the relationship between the im-
provement in the rate of non-conforming units (dependent variable)
and training hours (i.e. induced learning source) and cumulative pro-
duction volume (i.e. autonomous learning source), a linear learning
curve with time-varying learning rates was modelled. Bhattacharyya
and Guiffrida (2015) adopted untimely deliveries by suppliers as the
development attribute, and introduced an optimization approach,
constrained by an upper bound of the available budget, to find the
optimal investment to spend in such a development program. Under-
taking a development program with suppliers was also investigated by
Marchi, Ries, Zanoni, and Glock (2016), where the buyer exploits a
lower interest rate than its supplier. This condition enables the buyer to
invest in increasing the supplier’s productivity with a certain amount of
risk. Cui, Deng, Liu, Zhang, and Xu (2017) dealt with the exactness of
the suppliers’ inventory status, since inventory inaccuracies have severe
consequences on the effectiveness of the supply chain. The development
program in their work is specifically focused on investments in RFID
technology. Capital allocation to suppliers for development pro-
grammes has also been studied by Mizgier, Pasia, and Talluri (2017),
where a buyer has to select the suppliers to develop while considering
the investment risks. The authors proposed a multi-objective optimi-
zation approach for such a selection problem. Bai and Sarkis (2016)
adopted various game theoretical models to evaluate different devel-
opment investment strategies, e.g. tangible actions such as capital re-
sources and sharing costs of capital resources as well as intangible ac-
tions such as knowledge investments. Different types of supplier
development (i.e. learning capabilities, knowledge transfer, and ex-
ternal acquisition of knowledge) have also been taken into account by
Glock (2016) and Glock, Jaber, and Guiffrida (2011), focused in par-
ticular on delegating workers as a source of supplier training, and
proposed a profit-based model to achieve their optimal number, as well
as the timing and duration of supplier training. They adopted a Cobb-
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Douglas type learning curve, based on Wright’s pioneering power curve
(Wright, 1936), for modelling unitary production costs, and obtained
the group learning rates directly by multiplying the individual learning
rates for the number of workers employed in the production process
(Glock & Jaber, 2014). Meisel and Glock (2018) proposed a profit-based
optimisation approach to support the buyer in selecting suppliers to
develop and choose the type of development to undertake. The authors
referred to self-induced performance improvement as the autonomous
learning mechanism arising by allocating additional production quan-
tities to suppliers, as opposed to direct project-based development
programmes. A learning curve similar to the Stanford-B model (Carlson,
1987) was adopted in their work.

As shown above, several papers used learning curves to model the
relationship between the development attribute (e.g. cost, quality, ca-
pacity, service level and so on) and the control variable (e.g. capital
investment, workers, training hours and so on). This is not surprising.
Learning curves – individual, group, and organizational – provide
progress functions with certain independent variables, including the
cumulative production volume which is the standard one in univariate
models, affecting the dependent variable, which is typically the unitary
production time subjected to experience. Consequently, human
learning modelling has several applications for supplier development.

From the early definition of the well-known power curve (Wright,
1936), where the unitary production time decreases due to the in-
creasing cumulative number of produced items (i.e. autonomous
learning), several papers have focused on specialising and diversifying
learning curves (e.g. Jaber & Guiffrida, 2004; Jaber & Guiffrida, 2008;
Jaber, Goyal, & Imran, 2008; Jaber & Glock, 2013). The reverse of
learning is forgetting, leading to poorer performance. Empirical find-
ings (e.g. Globerson, Levin, & Shtub, 1989) indicate that forgetting
depends both on the length of interruption and on the cumulative ex-
perience gained prior to the interruption: see Sikström (2002) and
Sikström & Jaber (2002, 2012). Jaber and Bonney (1996) composed
learning and forgetting into a single power law curve for the first time.
Jaber, Kher, and Davis (2003) investigated the effect of cross training
and deployment in order to reduce the effects of forgetting. Jaber, Givi,
and Neumann (2013) also incorporated fatigue and recovery into the
model, and Givi, Jaber, and Neumann (2015) used a learning-forgetting
model to estimate the human-related error rate.

It is worth highlighting how numerous contributions have focused
both on supplier development and on the definition and application of
learning curves. Nevertheless, there is currently no total quality cost-
oriented model with learning-forgetting effects that also evaluates the
quality inspectors as potential stakeholders of the training programmes.
It follows that organizational and individual learning-forgetting curves,
for suppliers and quality inspectors respectively, interact for the op-
timal allocation of resources for training programmes; which has never
been addressed in previous works. To highlight the novelty of this
proposal further, inspection rates have been considered as additional
variables to optimise. In fact, inspection rates have already been dealt
with in different optimisation approaches, for instance by game models
(e.g. Hsieh & Liu, 2010; Aust, Bräuer, & Buscher, 2014), however never
within an optimisation approach based on learning-forgetting effects
for the allocation of development resources.

3. The operative environment

In our method, a single-buyer multi-supplier supply chain is con-
sidered (Fig. 1). Time is discretized in learning cycles in line with the
continuous improvement concept proposed in Zangwill and Kantor
(1998). In each cycle, the suppliers replenish the buyer with determi-
nistic quantities of items with a certain rate of non-conforming units,
and each supplier is associated with a single item. The multi-item ma-
terial flow from suppliers passes through the inbound inspection site
where quality inspectors operate with an error-free inspection process,
i.e. without type-I and type-II errors, on the basis of different inspection

rates among suppliers, and each inspector is associated with a single
item. Suppliers, items and inspectors are thus in a one-to-one re-
lationship, but this does not limit the applicability of our proposal for
allocating training hours to suppliers and inspectors. In fact, it is rea-
sonable to refer to single items both for replenishment and for inspec-
tion requiring specific knowledge and equipment. Conforming units
after the inspection, along with the units that have not been inspected,
pass to the downstream production/assembly stages. A non-conforming
unit inspected within the inbound inspection site generates a lower
failure cost (rework or scrap) than the cost related to defects in unin-
spected units that are revealed in subsequent production/assembly
stages. Therefore, two levels of failure costs are considered.

The optimisation model for the allocation to training hours is single-
period, which means that at the beginning of a cycle, the buyer has to
allocate training hours for the incoming cycle both to suppliers and to
inspectors, as well as to establish the optimal inspection rate to be
adopted for each supplier. The learning processes governing the tem-
poral evolution of the suppliers’ and inspectors’ performance are de-
scribed in Section 4. The notation in Table 1 is adopted throughout the
manuscript. Although the proposed model is single-period, the sub-
script t is kept for several costs, total costs and parameters reported in
Table 1 in order to model their dynamics due to learning-forgetting
effects. In experiment 2 (see Section 6), the model is also launched over
consecutive cycles.

4. The underlying learning-forgetting processes

Autonomous and induced learning-forgetting phenomena affect two
dependent variables throughout the cycles, and when the autonomous
learning is not operating a forgetting process takes place decreasing the
overall efficiency of the system.

The first dependent variable is the failure rate (Section 4.1); sup-
pliers autonomously learn by supplying as well as by receiving training
hours (induced learning) and forget while not supplying. The number of
supplied items cannot be adjusted, while the training hours for each
supplier are controlled by management and act as independent vari-
ables.

The second dependent variable is the appraisal cost (Section 4.2),
which is linearly related to the unitary inspection time of the quality
inspectors. The unitary inspection time decreases both autonomously
and by means of the training hours allocated to the inspectors (induced
learning), while not inspecting leads to forgetting that subsequently
increases the appraisal cost.

To sum up, four processes have been identified:

(i) External autonomous learning-forgetting, involving suppliers due
to repetitions-disruption.

(ii) External induced learning-forgetting, involving suppliers due to
training-not training.

(iii) Internal autonomous learning-forgetting, involving quality in-
spectors due to repetitions-disruption.

(iv) Internal induced learning-forgetting, involving quality inspectors
due to training-not training.

4.1. The suppliers’ learning-forgetting

In this paper, the rate of non-conforming units NCj t, of supplier j at
the end of learning cycle t is adopted as the quality metric to control
rather than the more traditional process variance, while the supplied
quantity Qj t, and the number of external training hours hj t

sup
, are adopted

as independent variables of autonomous and induced learning, re-
spectively. The choice of the rate of non-conforming units as the quality
metric is justified in real settings, where the quality inspections operate
as stop-and-go filters.

A cycle is considered here either as a learning t or as a forgetting m
cycle. After a set of consecutive learning cycles, the first forgetting cycle
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starts with =m 1 while, after a set of consecutive forgetting cycles, the
first learning cycle starts with =t 1.

Non-linear models with fixed learning rates have been traditionally
used for individual learning from the pioneering contribution of Wright
(1936) and validated in several laboratory settings (e.g. Bailey, 1989).
We adopt the standard power form with different dependent (i.e. NCj t, )
and independent (i.e. Qj t, and hj t

sup
, ) variables as follows:

=NC NC Q( )j t j j t
a b h

, ,0 , j j j t
sup
, (1)

with < + <a b h0 1j j j t
sup
, , aj and bj being the autonomous and induced

learning rates of supplier j. NCj,0 is the initial rate of non-conforming
units, obtained after a single quantity of product is supplied ( =Q 1j,0 ),
and = +Q Q qj t j t j t, , 1 , is the cumulated supplied quantity at the end of
learning cycle t .

If NCj,0 is unknown, its value can be recovered from Eq. (1) as:

= +NC NC Q( )j j t j t
a b h

,0 , , j j j t
sup
, (2)

Eq. (1) can be rewritten in a one-period-ahead formulation as:

=
+

NC NC
Q
Qj t j t
j t

j t

a b h

, , 1
, 1

,

j j j t
sup
,

(3)

Under the assumption that hj t
sup
, is concentrated at the beginning of

the learning cycle, the number of non-conforming units from supplier j
during cycle t is given by:

= +nc
NC
a b h

Q Q Q
1

(( ) ( ) )j t
j t

j j j t
sup j t

a b h
j t

a b h
j t,

, 1

,
,

1
, 1 , 1j j j t

sup
j j j t

sup
, ,

(4)

Proofs for Eqs. (3) and (4) are provided in Appendix A.
The forgetting phenomenon arises as a mirror process of autono-

mous learning and takes place when the supply of item j is interrupted
( =q m0j m, ). The forgetting curve adopted here follows a power form
(Carlson & Rowe, 1976):

= +NC NC Q( 1)j m j j m
f

, ,0 , j
sup

(5)

where >f 0j
sup is the autonomous forgetting rate, NCj,0 is the initial rate

of non-conforming units ( =Q 0j,0 ), and = +Q Q qj m j m j m, , 1 , is the
amount of items j that would have been inspected during m forgetting

cycles, had the interruption not occurred.Qj m, is generally unknown but
can be hypothesized, especially in cases of supplied quantities sta-
tionary in mean.

Eq. (5) can be rewritten in a one-period-ahead formulation as:

=
+

+
NC NC

Q
Q

1
1

j m j m
j m

j m

f

, , 1
, 1

,

j
sup

(6)

The concept of total forgetting described in Jaber and Bonney
(1996) enables us to determine the forgetting rate f j

sup without any
other assumption. NCj m, is assumed to increase to NCj,0 after a certain
Qj m, , which is the number of ‘uninspected’ items annulling the effects of
the last learning cycles.

At the end of each learning cycle t , an equivalent learning rate leqj t,
is computed as:

=
( )

leq
ln

ln Q( )j t

NC
NC

j t
,

,

j t
j
,
,0

(7)

This is the fixed learning rate required to reach NCj t, from NCj,0 after
Qj t, inspected items.

After each forgetting cycle, the number of inspected items Qj t, is
recomputed as:

=Q
NC
NCj t

j

j t
,

,0

,

leqj t
1

,

(8)

The forgetting cycle virtually reduces the number of inspected
items, and in the extreme case of total forgetting ( =NC NCj m j, ,0) the
learning restarts from scratch with only one unit inspected.

4.2. The inspectors’ learning-forgetting

The unitary inspection time for supplier j during learning cycle t is
subject to learning, the appraisal costs due to the inbound quality in-
spections cj t

app
, are linearly related to it therefore such costs are treated as

the dependent variables of the internal learning-forgetting phenom-
enon.

As for the suppliers’ learning a power form is adopted for the

Supplier 

Supplier 1

Supplier 

Inspector 1

Inspector 

Inspector 

N
on-conform

ing units after being and not being inspected 

C
onform

ing units after being inspected and not inspected units

Inbound inspection site Production/assembly stages Rework/scrap

Fig. 1. Single-buyer multi-supplier supply chain.
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appraisal costs, with inspected quantity qj t
ins
, and the number of external

training hours hj t
ins
, . Such a power form is corrected by introducing the

plateau cj min
app
, , the lower bound of cj t

app
, below which there is no further

improvement:

= +c c Q c( )j t
app

j
app

j t
ins l h

j min
app

, ,0 , ,j
ins j j t

ins
, (9)

with < + <l h0 1j
ins

j j t
ins
, , lj

ins and j being the autonomous and induced
learning rates of supplier j. cj

app
,0 is the appraisal cost achieved after

inspecting one item ( =Q 1j
ins
,0 ) and = +Q Q qj t

ins
j t
ins

j t
ins

, , 1 , is the cumulated
number of inspected items at the end of cycle t . cj min

app
, is fixed at the

theoretical unitary cost due to the lowest unitary appraisal time, which
is the time spent by the maximally expert inspector for inspecting one
item j.

If cj
app
,0 is unknown its value can be recovered from Eq. (9) as:

= +c c c Q( )( )j
app

j t
app

j min
app

j t
ins l h

,0 , , , j
ins j j t

ins
, (10)

Eq. (9) can be rewritten in a one-period-ahead formulation as:

= +
+

c c c
Q
Q

c( )j t
app

j t
app

j min
app j t

ins

j t
ins

l h

j min
app

, , 1 ,
, 1

,
,

j
ins j j t

ins
,

(11)

The forgetting phenomenon takes place when the supply of item j is
interrupted ( =q m0j m, ):

= +c Qc ( 1)j m
app

j
app

j m
ins f

, ,0 , j
ins

(12)

where >f 0j
ins is the autonomous forgetting rate, c j

app
,0 is the initial

appraisal cost ( =Q 0j
ins
,0 ), and = +Q Q qj m

ins
j m
ins

j m
ins

, , 1 , is the amount of
items j that would have been inspected during m forgetting cycles, had
the interruption not occurred.

Eq. (12) can be rewritten in a one-period-ahead formulation as:

=
+

+
c

Q

Q
c

1

1
j m
app

j m
app j m

ins

j m
ins

f

, , 1
, 1

,

j
ins

(13)

At the end of each learning cycle t , an equivalent learning rate leqj t
ins
,

is computed as:

=leq
ln

ln Q( )j t
ins

c c

c

j t
ins,
,

j t
app

j min
app

j
app

, ,

,0

(14)

This is the fixed learning rate required to reach cj t
app
, from cj

app
,0 after

Qj t
ins
, inspected items.
After each forgetting cycle, the number of inspected items Qj t

ins
, is

recomputed as:

=Q
c

c cj t
ins j

app

j t
app

j min
app,

,0

, ,

leqj t
ins

1

,

(15)

The forgetting cycle virtually reduces the number of inspected
items, and in the extreme case of total forgetting = +c cc j m

app
j
app

j min
app

, ,0 , the
learning restarts from scratch with only one unit inspected.

Given the single-cycle formulation of total costs, c̄j t
app
, is the mean

value of the unitary appraisal cost within cycle t , i.e. betweenQj t
ins
, 1 and

Qj t
ins
, inspected items. Eq. (11) is integrated and divided by Q Qj t

ins
j t
ins

, , 1
leading to:

= +
+

c
c c

l h
Q Q Q

Q Q
c¯

1
·j t

app j t
app

j min
app

j
ins

j j t
ins

j t
ins

j t
ins

j t
ins

j t
ins

j t
ins j min

app
,

, 1 ,

,

, , 1 , 1

, , 1
,

lj
ins jhj t

ins lj
ins jhj t

ins1 , ,

(16)

Qj t
ins
, depends on the inspection policy applied to supplier j in learning

cycle t , = +Q Q q fj t
ins

j t
ins

j t j t, , 1 , , , the inspection ratio fj t, being a decision

Table 1
Notation.

Indexes and number of inputs

J Number of suppliers (i.e. types of items) involved in the training
program

j Supplier, with = …j J1, ,
t Consecutive learning cycles
m Consecutive forgetting cycles
Constraints
maxQinb Maximum number of items inspected
Hsup Maximum number of training hours assignable to the suppliers
maxhj

sup Maximum number of training hours assignable to supplier j

Hins Maximum number of training hours assignable to the inspectors

maxhj
ins Maximum number of training hours assignable to inspector j

Tmax
ins Maximum inspection time

Decision variables
hj t

sup
, Number of training hours assigned to supplier j in learning cycle t

hj t
ins
, Number of training hours assigned to inspector j in learning cycle t

f j t, Inspection sample rate for supplier j in learning cycle t
Costs
cj t

app
, Unitary appraisal cost for inspector j at the end of learning cycle t

cj min
app
, Minimum unitary appraisal cost for inspector j

c j
app
,0 Unitary appraisal cost for inspector j at the beginning of forgetting

cycle 1
c̄j t

app
, Mean unitary appraisal cost for inspector j at the end of learning cycle

t
cj

sup Unitary training cost for supplier j

cj
ins Unitary training cost for inspector j

cj
inb Unitary failure cost for supplier j when a non-conforming unit is

detected within the inbound inspection site
cj

st Unitary failure cost for supplier j when a non-conforming unit is
detected in the production/assembly stages

ch Hourly cost of an inspector
Total costs
EPCj t, Prevention cost for supplier j in learning cycle t
EACj t, Appraisal cost for supplier j in learning cycle t
EFCj t, Failure cost for supplier j in learning cycle t
Learning rates
aj Autonomous learning rate of supplier j
bj Induced learning rate of supplier j

lj
ins Autonomous learning rate of inspector j

j Induced learning rate of inspector j

f j
ins Autonomous forgetting rate of inspector j

f j
sup Autonomous forgetting rate for supplier j

leqj t
ins
,

Equivalent learning rate of inspector j at the end of learning cycle t

Parameters
NCj t, Rate of non-conforming units of supplier j at the end of learning cycle t

NCj,0 Unitary appraisal cost for supplier j at the beginning of forgetting
cycle 1

qj t, Number of items replenished by supplier j in learning cycle t
Qj t, Cumulated number of items replenished by supplier j in learning cycle

t
qj t

ins
,

Number of items replenished by supplier j and inspected in learning
cycle t

Qj t
ins
, Cumulated number of items replenished by supplier j and inspected

items at learning cycle t
qj m, Number of items that would have been replenished by supplier j in

forgetting cycle m, had the interruption not occurred
q j m

ins
,

Number of items that would have been replenished by supplier j and
inspected in forgetting cycle m, had the interruption not occurred

Qj m, Cumulated number of items that would have been replenished by
supplier j in forgetting cycle m, had the interruption not occurred

Q j m
ins
,

Cumulated number of items that would have been replenished by
supplier j and inspected in forgetting cycle m, had the interruption not
occurred

ncj t, Number of non-conforming units from supplier j in learning cycle t
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variable in the model:

=
+

+

+

c
c c

l h
Q q f Q Q

q f

c

¯
1

·
( )

j t
app j t

app
j min
app

j
ins

j j t
ins

j t
ins

j t j t
l h

j t
ins

j t
ins

j t j t

j min
app

,
, 1 ,

,

, 1 , ,
1

, 1 , 1

, ,

,

j
ins

j t
ins lj

ins jhj t
ins

, ,

(17)

5. The minimization cost model

Prevention, appraisal and failure costs are combined into a total cost
function to minimise in each learning cycle.

5.1. Prevention cost

To reduce the appraisal and failure costs, instead of generic induced
learning variables as in Wang et al. (2013), the training hours are made
explicit as the induced learning source, which does not limit the ap-
plicability of our proposal to other induced learning sources. The ex-
ternal and internal training activities generate in learning cycle t the
expected prevention cost EPCj t, due to item j:

= +EPC c h c hj t j
sup

j t
sup

j
ins

j t
ins

, , , (18)

The first and the second terms refer to the external and internal
training costs, respectively.

5.2. Appraisal cost

The cost incurred in cycle t due to the inspection of item j depends
on the number of inspected items f qj t j t, , and therefore on the inspection
policy adopted. From Eq. (16), the expected appraisal cost for item j in
cycle t is as follows:

=EAC c q f¯j t j t
app

j t j t, , , , (19)

5.3. Failure cost

The expected failure cost depends on when the failure is detected
leading to different unitary failure costs for the inbound inspection site
and the subsequent assembly/production stage:

= +EFC c f c f nc( (1 ))j t j
inb

j t j
st

j t j t, , , , (20)

5.4. Total cost

Combining Eqs. (18)–(20) for all the items, the total cost function to
minimize is:

+ +
=

min EPC EAC EFC( )
j

J

j t j t j t
1

, , ,
(21)

s. t.

= …h maxh j J1, ,j t
sup

j
sup

, (22)

=
h H

j

J

j t
sup sup

1
,

(23)

= …h maxh j J1, ,j t
ins

j
ins

, (24)

=
h H

j

J

j t
ins ins

1
,

(25)

=
q f maxQ

j

J

j t
j t

inb

1
,

, (26)

=

EAC
c

T
j

J
j t

h
max
ins

1

,

(27)

+ < = …a b h j J1 1, ,j j j t
sup
, (28)

+ < = …l h j J1 1, ,j
ins

j j t
ins
, (29)

= …f j J0 1 1, ,j t, (30)

= …h j J1, ,j t
sup
, (31)

= …h j J1, ,j t
ins
, (32)

= …f j J1, ,j t, (33)

The continuous non-linear problem above contains J3 decision
variables. Eqs. (22) and (23) constrain the number of training hours
allocated to the suppliers to not exceed their upper bounds, both on the
individual suppliers (maxh )j

sup and overall (Hsup). Similar constraints are
imposed in Eqs. (24) and (25) for the training hours allocated to the
quality inspectors. Eqs. (26) and (27) constrain the capacity of the in-
bound inspection site during a learning cycle. Eq. (26) imposes an
upper bound of the total number of inspected items maxQinb, a space
capacity constraint of the inbound inspection site, and the Eq. (27)
guarantees that the total inspection time does not exceed an upper
boundTmax

ins , with ch equal to the hourly cost of an inspector. The unitary
inspection time of item j in period t is a hidden variable dependent on
the learning process modelled in Section 4.2 in terms of appraisal costs;
which can be obtained as c c¯ /j t

app
h, . Eqs. (28) and (29) ensure that the

learning rates are always less than 1, even when training hours are
allocated.

6. Design of experiment

6.1. Data setup

The validation of the model was carried out in two experiments:

(i) A test of total cost minimization in a single learning cycle given
different inputs.

(ii) A test of the model during consecutive cycles to show the learning-
forgetting dynamics.

The first experiment captures the optimizer behaviour in different
circumstances by validating the single cycle coherence of the model,
while the second one captures the multi-cycle behaviour of the model
by validating its coherence and ability to describe real life scenarios.
Note that the model is again single-period in the second experiment and
is simply launched over consecutive cycles.

In the first experiment, 512 scenarios arise from all the combina-
tions of the variables’ values reported in Table 2. These fixed variables
are designed to loosen the constraints in Eqs. (22)–(27) and let the
optimizer train the supplier and inspector up to their maximum cost
effectiveness, outlining in each scenario the trade-off between f1,1, h sup

1,1
and h ins

1,1 . The design choice of implementing a single supplier and a
single inspector =J( 1) arises from the need for clarity, while one-di-
mensional inputs and outputs make the optimizer logic simpler and
thus the results easier to analyse.

In the second experiment, 100 consecutive cycles are generated.
Each cycle has either a replenishment of 500 items =q( 500)j t, or no
replenishment =q( 0)j m, , and a cycle with replenishment is equivalent
in the forgetting process to 250 items not inspected =q( 250)j m

ins
, . The

probability of generating a replenishment cycle is 0.9 and the cycle
takes place simultaneously for all three suppliers =J( 3). The values of
the variables are outlined in Table 3. If there is a replenishment, the
decision variables f t1 , h t

sup
1, and h t

ins
1, are optimized by minimizing the

total cost of the model in Eqs. (21)–(33). If there is no replenishment,
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forgetting takes place as in Eqs. (13)–(15).
In Tables 2 and 3, t0 refers to the last period before the simulation

takes place; it differs from zero since the cumulated number of items
replenished and inspected at the beginning of the first period, Q t1, 0 and
Q t

ins
1, 0 respectively, does not necessarily equal 1. Eqs. (2) and (10) are

used, with =h 0j t
sup
, 0 and =h 0j t

ins
, 0 , to evaluate NC1,0 and c app

1,0 . Note that
the ranges of the autonomous learning rates adopted in both experi-
ments conform, up to a scale parameter, to those reported in the

literature from many industries (e.g. Dar-EI, 2000). The induced
learning, in absence of reference values, represent the fraction of
learning hours impacting the learning process. These values are applied
in Eqs. (7), (8), (14) and (15) to find the equivalent learning rates and
adjust the amount of supplied and inspected items.

Eqs. (28) and (29) are implemented in both experiments as non-
strict inequalities:

+ = …a b h j J0.95 1, ,j j j t
sup
, (34)

+ = …l h j J0.95 1, ,j
ins

j j t
ins
, (35)

This implementation is required to solve the problem using a se-
quential quadratic programming algorithm.

6.2. Data analysis

In the first experiment, nine variables (NC t1, 0, a1, b1, c t
app

1, 0 , l ins
1 , 1, c sup

1 ,
c ins

1 , c st
1 ) are modified obtaining three results ( f1,1, NC1,1, c app

1,1 ). The
system described in Eqs. (21)–(33) is highly non-linear, thus a linear
regression analysis is unlikely to identify meaningful relations between
inputs and outputs. The aim of the constraint relaxation, embedded in
the first experiment, is to obtain results that are easier to analyse: the
optimizer is expected to concentrate either on the supplier, =f 01,1 , or
on the inspector, =f 11,1 , training only the most profitable stakeholder
and uncovering the implicit trade-offs in the system.

If the results present binary values for f1,1, a decision tree (Appendix
B) is implemented to identify under which conditions the optimizer
focuses on suppliers or on inspectors, the input variables are predictors
for the classification problem, and =f 01,1 and =f 11,1 are two classes.
If a linear regression analysis is performed after the classification step,
each leaf of the tree can be analysed independently. This is thus a
different scenario, and the variables used to split before such leaf can be
discarded. The obtained linear regressions are expected to be simpler
than the one performed using all the data and more meaningful since
they focus on specific scenarios.

7. Results and discussion

The inspection rate f1,1 obtained in first experiment is either 0 or 1.
In fact the optimizer, which is free of constraints, either inspects all the
replenished items or none of them depending on the scenario variables.
Fig. 2 depicts the decision tree obtained using the impurity gain as the
split criterion and not restricting the tree depth, the resulting leaves are
pure.

The optimizer first discriminates between =c 1st
1 and =c 20st

1 ; in the
first case the unitary outbound failure cost is low, thus inspections are
not needed =f( 0)1,1 , while in the second case inspections might be

Table 2
First experiment data.

Parameter Min value Max value

J 1
NC t1, 0 0.1 0.9
q1,1 100
Q t1, 0 100

Q t
ins
1, 0

100

maxQinb 120
Hsup 16
maxh sup

1 16

Hins 16

maxhins
1 16

Tmax
ins 1000

a1 0.1 0.9
b1 0.1 0.9
c t

app
1, 0

1 10

c min
app
1, 0

lins
1 0.1 0.9

1 0.1 0.9
csup
1 1 20

cins
1 1 20

cinb
1 0

cst
1 1 20

ch 10

Table 3
Second experiment data.

Parameter Value

J 3
NCj t, 0 0.9
Qj t, 0 1

Qj t
ins
, 0

1

maxQinb 750
Hsup 16
maxhj

sup 8

Hins 1.6

maxhj
ins 0.8

Tmax
ins 40

aj 0.00862 0.00468 0.00074
bj 0.01 0.01 0.01

cj t
app
, 0

16

cj min
app
, 2

lj
ins 0.862 0.468 0.074

j 0.1 0.1 0.1
f j

sup 0.0468 0.0468 0.0468

f j
ins 0.468 0.468 0.468

cj
sup 50

cj
ins 50

cj
inb 10

cj
st 100

ch 50

Fig. 2. Decision tree classifying the inspection rate in the first experiment.
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necessary. If =c 20st
1 , the optimizer discriminates between =c 1t

app
1, 0 and

=c 10t
app

1, 0 ; in the first case the unitary appraisal cost is low, thus the
optimizer leverages it by inspecting all the replenished items =f( 1)1,1 .
If =c 10t

app
1, 0 the optimizer discriminates between =NC 0.1t1, 0 and

=NC 0.9t1, 0 ; in the first case the initial rate of non-conforming units is
low, thus the optimizer does not schedule any inspection =f( 0)1,1 ,
while in the second case a significant number of non-conforming units
leads to the optimizer inspecting everything =f( 1)1,1 .

Table 4 outlines the fixed relations between f1,1, h sup
1,1 and h ins

1,1 . If no
replenished item is inspected =f( 0)1,1 , the inspectors are not trained, in
fact training the inspectors would only lead to costs with no added
benefits. If all the replenishment items are inspected =f( 1)1,1 , the
suppliers are not trained, inspections are carried out in any case and the
unitary failure cost for units detected inbound c inb

1 is zero, thus there is
no need to train the suppliers and decrease the rate of non-conforming
units NC1,1. It should be noted that the converse of these cases is not
necessarily true, no replenished items inspected =f( 0)1,1 does not ne-
cessarily lead to supplier’s training and full replenished item inspection

=f( 1)1,1 does not necessarily lead to inspector’s training. For instance,
a case with a high unitary outbound failure cost c st

1 and low initial

unitary appraisal cost c t
app

1, 0 could lead to full inspection =f( 1)1,1 without
any need for any further improvement in the inspector, as c t

app
1, 0 is al-

ready low.
Each leaf in Fig. 2 can be individually analysed with a linear re-

gression, whose objective is to obtain either the values of h ins
1,1 or h sup

1,1
using the variables as features. If a subset of variables can accurately
predict h ins

1,1 or h sup
1,1 , then those are the variables evaluated by the op-

timizer in that scenario. Conversely, the subset of variables that are
non-significant for the prediction are disregarded by the optimizer’s
logic.

The analysis is carried out for each leaf as follows:

1. Only the cases categorized in the leaf at hand are used for linear
regression.

2. An initial linear regression without interactions is carried out using
all the variables with more than one value as features. If there is no
inspection =f( 0)1,1 then h sup

1,1 is predicted, while if there is an in-
spection =f( 1)1,1 , the regression predicts h ins

1,1 .
3. A t-test is carried out for each variable to assess its significance, with

p-values higher than 0.05 leading to discarding.
4. A new regression is carried out with the remaining variables, in-

cluding the interactions among variables as features. The new re-
gression is preferred if an F-test between the two results in a p-value
lower than 0.05.

5. A new regression is carried out including more complex interactions
and executing an F-test at each stage. The analysis stops if no more
interactions can be included or the F-test reveals no significance;
this last case leads to the last significant model.

Table 5 contains the significant variables for each leaf, the predicted
variable, the mean squared error obtained, and the R-squared statistics.
In all cases the most significant model is always the one with all the
possible interactions included.

Table 5 shows the coherence in the optimizer’s decisions. In the
leaves with no inspection =f( 0)1,1 , the number of training hours for the
supplier h sup

1,1 is determined by accounting for the autonomous a1 and
induced b1 learning rate of the supplier as well as the unitary training
cost c sup

1 and the initial rate of nonconforming units NC t1, 0. In the leaves
with full inspection =f( 1)1,1 , the number of training hours for the in-
spectors h ins

1,1 is determined by accounting for the autonomous l ins
1 and

the induced 1 learning rate of the inspector as well as the unitary
training cost c ins

1 . It should also be noted that the variables used in the
nodes are evaluated in the node itself and thus do not appear in the
decision process used in the subsequent leaves.

The only regression that can be tri-dimensionally plotted in Fig. 3 is

Table 4
Fixed relations between output variables.

=f 01,1 =h 0ins
1,1

=f 11,1 =h 0sup
1,1

Table 5
Results of the regression at each leaf.

Fixed variables values Significant variables Predicted variable MSE R

=c 1st
1 a1

b1
csup
1

NC t1, 0

h sup
1,1 6.67·10 7 1

=c 20st
1

=c 1t
app
1, 0

lins
1
1

cins
1

hins
1,1 1.38·10 7 1

=c 20st
1

=c 10t
app
1, 0

=NC 0.1t1, 0

a1
b1
csup
1

h sup
1,1 6.38·10 8 1

=c 20st
1

=c 10t
app
1, 0

=NC 0.9t1, 0

lins
1
1

hins
1,1 8.71·10 8 1

Fig. 3. Linear regression predicting h ins
1,1 as a function of l ins

1 and 1.
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in the last row of Table 5, corresponding to the last leaf of the tree in
Fig. 2. In this case the number of training hours increases in a non-
linear fashion as the autonomous l ins

1 and the induced 1 rate of the
inspector decreases. The optimizer allocates the maximum number of
training hours while satisfying Eq. (35).

The results of the second experiment are shown in Figs. 3–5, where
a dotted line represents the supplier or inspector 1, a dashed line re-
presents the supplier or inspector 2, and a solid line, the supplier or
inspector 3. Fig. 4 presents cj t

app
, and shows that inspectors 1 and 2 are

trained reaching very low c t
app

1, and c t
app
2, while inspector 3 is never

trained and, as a result, no unit from supplier 3 is ever inspected
( =f t0t3, ). Fig. 5 depicts NCj t, , and indicates that most of the training
is allocated to suppliers 2 and 3, thus supplier 1 presents a much higher
NC t1, overall. Fig. 6 depicts the total cost for each: Given a set of con-
secutive learning cycles, the total cost decreases rapidly reaching a
plateau and, if a forgetting cycle takes place, it increases sharply un-
doing most of the past learning. There is no steady-state as learning and
forgetting push in turn the total cost in different directions.

From an optimization standpoint, Figs. 3–5 reveal an overall pre-
ference for suppliers and inspectors 1 and 2 over supplier and inspector

Fig. 4. Unitary appraisal cost for each learning cycle.

Fig. 5. Rate of non-conforming units for each learning cycle.
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3. In fact, the presence of multiple stakeholders generates trade-off
scenarios where choices are made not only between NCj t, and cj t

app
,

within the same supplier/inspector couple, but also between different
stakeholders competing for a limited amount of resources (e.g. hj t

sup
, and

hj t
ins
, ).
Figs. 6–10 show these trade-offs by analysing how each decision

variable (e.g. h t
sup

1, ) in a period t is affected by both the previous state of
the system (c jj t

app
, 1 , NC jj t, 1 , q jj t, 1 , q jj t

ins
, 1 ) and the other de-

cision variables (e.g. h t
sup

2, , h t
sup

3, , h t
ins
1, , h t

ins
2, and h t

ins
3, ). In Fig. 7, h t

sup
1, does

not depend on other suppliers or inspectors, and a low f t1, coupled with
a high rate of NC t1, 1 is what triggers the training. In Fig. 8, h t

sup
2, de-

pends not only on supplier and inspector 2 but also on supplier and
inspector 1. For instance, from the second branch of the decision tree, if
f t1, is low then the training hours are assigned to supplier 1 instead. To
simplify the classification, the single case with =h 3.92t

sup
2, is not fed to

the decision tree. Overall h t
sup

2, follows a more complex logic than h t
sup

1, ,
factoring in not only f t2, and NC t2, 1 but also c t

app
2, 1: a low c t

app
2, 1 results in

=h 0t
sup

2, as inspector 2 takes care of the non-conforming units.
In Fig. 9, h t

sup
3, depends only on inspector 1 through c t

app
1, 1. If c t

app
1, 1 is

low, supplier 3 is not trained. There is no relation between h t
sup

3, and the
other features of inspector or supplier 3. In Fig. 10, h t

ins
1, depends only

both on supplier and inspector 1, similarly to h t
sup

1, : training takes place
in cases of high NC t1, 1 and h t

sup
1, , when it is the most impactful. In

Fig. 11, h t
ins
2, behaves similarly to h t

sup
3, given that h t

ins
2, does not depend on

inspector or supplier 2 features but only on NC t3, 1.

8. Conclusions and further research agenda

Supplier training is receiving increasing attention as a part of a
broad supplier development strategy. However, there are still few
mathematical models and decision support systems designed to allocate
budget-constrained resources to training activities. In this paper have
addressed this allocation problem. Starting with a total quality cost
function composed of prevention, appraisal, and failure costs, a further

Fig. 6. Total cost for each learning cycle.

Fig. 7. Number of training hours assigned to supplier 1 for each learning cycle. Fig. 8. Number of training hours assigned to supplier 2 for each learning cycle.
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training stakeholder was identified, that is the quality inspectors op-
erating within the inbound inspection site. Finally, the inspection rates
applied to suppliers were considered as the third type of decision
variables.

The analytical interaction between suppliers, quality inspectors, and
inspection policies has never been tackled before but, in our work, it

was made possible by a total quality function. In fact, every develop-
ment activity, such as training, is strictly related to learning-forgetting
curves, where the improvement achieved (the decrease in failure rate,
in our case) is the effect of manageable control variables. Training
hours are control variables leading to induced learning-forgetting,
along with the production/inspection volume as autonomous learning-
forgetting sources. Suppliers and quality inspectors are subjected to
organisational and individual learning-forgetting mechanisms, respec-
tively, which have never been undertaken jointly in a total cost func-
tion. In our opinion, this is a further contribution of our proposal.

A single-period non-linear optimisation model is proposed and va-
lidated by two experiments: the first considers 512 different single-
period mono-supplier scenarios and gauges the optimizer logic; the
second computes a multi-period multi-supplier case in order to assess
the system capability of managing longer time frames and trade-offs
between the control variables.

From a methodological viewpoint with regards to the results ana-
lysis, an approach based on decision trees was applied in order to im-
prove the interpretability of the achieved results. This is a new idea
with future potential when too many decision variables prevent stan-
dard statistics from being applied. In fact, the results obtained are case-
sensitive, but the decision trees showed that the presence of multiple
stakeholders generates trade-off scenarios where choices are made not
only within the same supplier/inspector couple but also between dif-
ferent stakeholders competing for a limited amount of resources.

Our proposal has some limitations however, which we plan to ad-
dress in future research. First, the failure costs due to non-conforming
units increase from the inbound inspection site to the downstream
stages, but they are not affected by experience. Hence, learning-for-
getting effects in the reworking could be added to the model. Moreover,
the inspection process was considered as error-free, thus type-I and
type-II errors could be added to the model. Finally, the learning-for-
getting process induced by the training was modelled by means of the
standard power law curve. A cognitive model of memory decay could
thus be adopted and might help solve the problem of allocating massed
vs spaced training hours.
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Appendix A

At the end of cycle t 1 the parameters NCj t, 1 andQj t, 1 are available while, using a one-period-ahead formulation, NCj,0 is unknown. A value for
NCj,0 can be obtained from Eq. (1) assuming NCj t, 1 and Qj t, 1 are generated using the same learning rate as NCj t, :

= +NC NC Q( )j j t j t
a b h

,0 , 1 , 1 j j j t
sup
, (36)

Eqs. (1) and (36) lead to:

= +NC NC Q Q( ) ( )j t j t j t
a b h

j t
a b h

, , 1 , 1 ,j j j t
sup

j j j t
sup

, , (37)

This simplifies into Eq. (3).
The integral of Eq. (3) is the number of non-conforming units from supplier j during cycle t :

=
+

nc NC
Q

Q
dQj t Q

Q
j t

j t
a b h

, , 1
, 1

j t

j t j j j t
sup

, 1

, ,

(38)

which can be simplified to:

= +nc NC Q Q dQ( ) ( )j t j t j t
a b h

Q

Q a b h
, , 1 , 1 j j j t

sup

j t

j t j j j t
sup

,
, 1

,
,

(39)

And is solved as:

Fig. 9. Number of training hours assigned to supplier 3 for each learning cycle.

Fig. 11. Number of training hours assigned to inspector 2 for each learning
cycle.

Fig. 10. Number of training hours assigned to inspector 1 for each learning
cycle.
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= +nc NC Q Q
a b h

( ) ( )
1j t j t j t

a b h
a b h

j j j t
sup

Q

Q

, , 1 , 1
1

,

j j j t
sup j j j t

sup

j t

j t

,
,

, 1

,

(40)

= +nc
NC
a b h

Q Q Q
1

( ) (( ) ( ) )j t
j t

j j j t
sup j t

a b h
j t

a b h
j t

a b h
,

, 1

,
, 1 ,

1
, 1

1j j j t
sup

j j j t
sup

j j j t
sup

, , ,

(41)

That simplifies in Eq. (4).

Appendix B

Given a dataset with m datapoints, =x y i m{ , } 1, ..,i i , each input vector being n-dimensional, x R ii
n , and each output being binary,

y i{0, 1}i , the aim of a decision tree is to predict yi given xi.
A decision tree (e.g. Fig. 12) is composed of splits, branches and leaves. Each split sk sends an input vector xi requiring prediction through one of

two branches, bk,1 and bk,2, based on its value along one input variable j. If <x ci j k, xi is sent to branch bk,1otherwise it is sent to bk,2 where ck is a cut
point associated with the split sk . A branch can lead to a split, where xi is sorted again, or to a leaf lh where a prediction over yi is made and the
process stops.

A decision tree is constructed (trained) using a dataset and starting from the first branch, if all the outputs are equal, the branch becomes a leaf
predicting such output regardless of the input, otherwise a cut point is created. Following the cut point logic, the dataset is divided into two branches
leading to other splits. At this stage each branch contains a subset of the original dataset, if the outputs of a subset are all equal the branch becomes a
leaf node predicting such an output, otherwise a cut point is created, and the training continues. Each cut point is generated by selecting the variable
and the value maximizing the impurity gain:

= +I nI n I n I1 1 2 2 (42)

where I is the Gini impurity in the cut point, I1 is the Gini impurity in the first branch, and I2 is the Gini impurity in the second branch. n is the
number of datapoints in the cut point, n1 is the number of datapoints that will end in the first branch, and n2 is the number of datapoints that will end
in the second branch.

The Gini impurity in a cut point or in a branch is:

= +I p p p p(1 ) (1 )0 0 1 1 (43)

where p0 is the probability that a datapoint in the cut point or branch has =y 0i , and p1 is the probability a data point in the cut point or branch has
=y 1i . This probability is computed as:

=
=

p
y

1
| 0|i

0 (44)

=
=

p
y

1
| 1|i

1 (45)

where =y| 0|i is the number of data points, in the cut point or branch with =y 0i , and =y| 1|i is the number of data points in the cut point or branch
with =y 1i .
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