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Abstract—To realize the intelligent of the distribution 
network, it is necessary to identify the fault type accurately. This 
paper presents the fault type identification method based on 
machine learning in active distribution networks. The process of 
machine learning is divided into four steps: data preparation, 
data preprocessing, feature extraction and model training. When 
preparing data, a method of generating fault scenarios in the 
batch of simulation experiments is presented. The IEEE34 Bus 
System is built in PSCAD to complete the data preparation for 
machine learning. Variation multiples of voltage and current are 
extracted as the features to describe the fault type. Various 
machine learning models are trained by cross-validation method 
to get the accuracy of identification. The application of decision 
tree in fault type identification is presented in the form of a tree 
diagram. The result of fault type identification is shown by the 
confusion matrix of the decision tree. All the test results show 
that the proposed fault identifiers can identify all kinds of fault 
types in the distribution network. 

Keywords—machine learning; fault type identification; active 
distribution network; batch simulation; feature extraction 

I. INTRODUCTION

In modern power grids, fast and accurate fault type 
identification is an essential operational requirement. Both 
relay protection and fault location require correct fault type 
information. There have been a large number of researches on 
fault classification in the power grid, mainly for the 
transmission network. Traditional fault type identification is 
achieved by setting threshold values and relying on logical 
relationships. The fault location and fault type are inferred 
based on the logic of the protection and the experience of the 
operator. This process is difficult to describe by traditional 
mathematical methods. Artificial intelligence technology has 
the characteristics of simulating human and has been widely 
used in this field. The main implementation methods include 
neural network approach[1], fuzzy neural network[2], expert 
systems[3], genetic algorithms[4], and Petri net[5]. 

More than 80% of the faults come from the distribution 
network in the power system. Fast and accurate fault 
classification in the distribution network is significant for fault 
analysis and power restoration, which can effectively improve 
power supply reliability. In [6], a method for fault type 
identification using decision trees is proposed. However, the 
identification of fault types does not involve a specific phase. 

In [7], a fuzzy logic-based fault-type identification scheme for 
an unbalanced radial power distribution system has been 
proposed, which can identify ten types of short circuit faults. 
The fault diagnosis of distribution network still has the 
following problems: (1) information source data is huge; (2) 
uncertainty of information[8, 9]; (3) the selection of intelligent 
identification methods[10]. This process is complicated to 
describe by using mathematical techniques, and the artificial 
intelligence approach plays a vital role in fault type 
identification. 

In this paper, machine learning models are used to realize 
the identification of fault types in the active distribution 
network. Firstly, the process of machine learning is introduced. 
In the fault data preparation, a method for generating fault data 
in batches in PSCAD is proposed[11], which avoids manual 
modification of parameters. In the PSCAD, the IEEE 34 Bus 
System of the distribution network is built to complete the data 
preparation for machine learning. In the data preprocessing 
process, the variation multiples of current and voltage are used 
to describe the fault feature. The extracted features are trained 
using various machine learning models. The results of fault 
type identification using decision trees are highlighted[12]. The 
digital electromagnetic transient simulations presented in this 
paper have been carried in PSCAD environment, and the 
machine learning models were done in the MATLAB 
environment. 

II. THE PROCESS OF MACHINE LEARNING

Fig.1 shows the process of machine learning. Machine 
learning requires a large amount of data to be input. PSCAD is 
used to build the model, and Python scripts are used to control 
PSCAD to generate fault simulation data. Because raw data 
are often not formatted and have too much information, the 
data need to be preprocessed to extract the required fault 
feature data. Multiple machine learning algorithms are used to 
train the data. A trade-off is made between model speed, 
accuracy, and complexity to select the appropriate model and 
optimize the model based on the identified results. 
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Fig. 1 the process of machine learning 

III. DATA PREPARATION- PSCAD BATCH SIMULATION

When using the machine learning method to identify fault 
types, a large amount of fault data is required. To generate 
multiple-fault simulation scenarios, it is necessary to 
repeatedly modify some component parameters such as fault 
types and transition resistance. The process of manually 
changing the simulation model is cumbersome, time-
consuming and error-prone. A batch generation method for 
fault simulation scenarios for PSCAD is proposed, and an 
IEEE34 Bus System is built to generate simulation data. 

A. Batch Generation Method for PSCAD  

Design Model 

Modify Parameters

Run Simulation

Output DataAutomation Library

Modifyff Parameters

Run Simulation

Output Data
Python Script

Fig. 2 the process of batch generation for PSCAD 
The PSCAD automation library is called by the Python 

script, and the components are abstracted to realize the control 
of the simulation model. Fig.2 shows the process of batch 
generation for PSCAD. Complete the design of the model, run 
the simulation after modifying the parameters through Python 
script, process the data and save it to the disk, cycle the above 
process, and generate the fault simulation scene in batches. 

Fig.3 shows the flow of control models by Python scripts. 
Import the configuration information of the PSCAD software, 
load the path of the model, get the component ID, and modify 

the component parameters. By controlling the layer enable, the 
fault location and the access of the distributed power supply 
are changed. After adjusting the model parameters, run the 
simulation. Copy the recorded files (CFG, DAT, HDR) from 
the default folder to the specified folder. The above process is 
executed cyclically until the fault simulation scenario is 
completed. 

Import configuration files and automation librariesImport configuration files and automation libraries

Configure the PSCAD and compiler version

Open the simulation model

Get the ID of the component

Modify component parameters
Control the transition resistance value, fault type

Modify the layer to enable
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Run Simulation
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Fig. 3 control models by Python scripts 

B. Simulation Model Information 
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Fig. 4 IEEE 34 Bus System with distributed power supply 
Fig.4 shows the IEEE 34 Bus System with distributed 

power supply. Phasor measurement units (PMU) are installed 
at nodes 832, 834, 836, 844, 848, and 858, respectively. The 
voltage and current signals are saved in the standard 
COMTRADE format. According to the location of the PMU, 
the IEEE 34 Bus System is divided into five sections. There are 
ten types of faults at six positions K1-K6, where K1-K5 
corresponds to 5 sections and K6 is outside the section. The 
transition resistance is set to 0.0001, 1, 10, 30, 50, 100, 300, 
500 ohm. Four hundred eighty sets of fault simulation 
scenarios are obtained in PSCAD by using the method of batch 
generation. Table 1 shows the details of the IEEE 34 Bus 
System. 
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TABLE I. DETAILS OF THE IEEE 34 BUS SYSTEM

No. Configuration Details
1 Transition resistance 0.0001, 1, 10, 30, 50, 100, 

300, 500 ohm
2 Fault type AG,BG, CG,AB, BC, CA, 

ABG, BCG, CAG, ABCG

3 Distributed
power supply

Total penetration rate 55%
DG1: Photovoltaic power 

generation 0.4MW
DG2: Wind power generation 

0.33MW
DG3: Wind power 0.25MW

4 Neutral grounding 
method

Not grounded

5 Fault location K1-K6
6 PMU installation 

location
Nodes 832, 834, 836, 844, 

848, and 858

IV. DATA PREPROCESSING-THE FAULT FEATURE 

EXTRACTION

It is necessary to select appropriate features to achieve data 
dimensionality reduction and reduce the difficulty of learning. 
The COMTRADE file needs to be parsed before the fault 
feature extraction. The magnitude/phase angle of the 
voltage/current are calculated by using the analog quantity to 
extract the fault characteristics. 

A. Processing of Recorded Data and Phasor Calculation 

The data is processed according to the COMTRADE data 
format to obtain three-phase voltage analog quantity and 
three-phase current analog quantity. As shown in Fig.5, the 
three-phase voltage and three-phase current analog quantities 
are calculated to get the amplitude/phase angle of the three-
phase voltage/current and the amplitude of the zero-sequence 
voltage in the MATLAB environment. 

Three-phase voltage waveform

Three-phase current waveform
PMU

Three-phase voltage amplitude

Three-phase voltage phase angle

Three-phase current amplitude

Three phase current phase angle

Zero sequence voltage amplitude

Fig. 5 the process of phasor calculation 

B. Feature Extraction 

Before feature extraction, it is necessary to observe the 
change in the electrical quantity at the time of the fault and to 
derive the factors associated with fault type. Fig.6 shows the 
three-phase current waveform, three-phase voltage waveform, 
and zero-sequence voltage amplitude for single-phase ground 
fault and two-phase short-circuit fault. It can be concluded 
from the observation that the fault characteristics of the 
distribution network can be expressed by the phase voltage 
amplitude, the phase current amplitude and the zero sequence 
voltage amplitude. Only the magnitude of the voltage and 
current values can’t reflect the fault condition, and the 

multiple of the voltage and current changes are often more 
intuitive and reliable. Therefore, in the data pre-processing, 
the multiplication factor of the phase current amplitude change, 
the multiple of the phase voltage amplitude change, the ratio 
of the zero-sequence voltage amplitude to the system voltage 
are extracted as features. 

Fig. 6 Three-phase voltage/current waveform, zero-sequence voltage 
amplitude 
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Where, aI , bI , cI are phase current after failure;
[0]

aI , [0]
bI , [0]

cI are phase current before failure; aRatioI

bRatioI cRatioI are ratio of phase current after and before 
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Where, aU , bU , cU are phase voltage after failure;
[0]

aU , [0]
bU , [0]

cU are phase voltage before failure;

aRatioU bRatioU cRatioU are ratio of phase voltage 

after and before failure. 

0
0

p

U
RatioU

U
�   (3) 

Where, 0U is zero-sequence voltage, pU is system 

voltage, 0RatioU is the ratio of the zero sequence voltage 

amplitude to the system voltage amplitude. 

V. MACHINE LEARNING MODEL

A. Model Selection 

There are a variety of algorithms to choose when solving 
the same problem. Therefore, when using machine learning 
algorithms to solve problems, model selection is required. 
Since the generalization error cannot be directly obtained and 
the training error is not suitable as a standard due to the over-
fitting phenomenon, it is necessary to evaluate the model and 
then select it. The test set is used to test the learner's ability to 
discriminate against new samples, and then the test error is 
used as an approximation of the generalization error. The 
dataset D needs to be appropriately processed to obtain the 
training set S and the test set T. Cross-validation is used to 
avoid over-fitting, and data set D is divided into mutually 

exclusive subsets of similar size, 1 2 ... kD D D D� � � � ,

( )i jD D i j�� 	I . Each subset maintains consistency in 

data distribution. The union of k-1 subsets is used as the 
training set, and the remaining subsets are used as the test sets. 
The k-group training set and test set are used to perform k 
training and testing and return the mean of all test results 
finally. Fig.7 shows the schematic of the 5-fold cross 
validation. 

D

The training set The test set
Result 1

Result 2

Result 3

Result 4

Result 5

t
Result 1

Result 2

Result 3

Result 4

Result 5

Result

Fig. 7 5-fold cross validation 
A variety of machine learning models are implemented in 

MATLAB, and the classification accuracy of each algorithm 

is shown in Table 2. When using machine learning for fault 
classification, use as few fault features as possible. When the 
multiple factors of the phase current amplitude change and the 
ratio of the zero-sequence voltage amplitude to the system 
voltage are selected, the accuracy rate one is obtained. When 
all seven feature quantities are selected, the accuracy rate two 
is achieved. It can be seen that in both cases, the accuracy of 
ensemble classifiers is the highest in all algorithms. In all of 
the individual algorithms, the decision tree has the highest 
accuracy of 98.2% when using four features. The next section 
will detail the application of decision trees in fault
classification. 

TABLE II. ACCURACY OF MACHINE LEARNING ALGORITHMS

No. Algorithm Accuracy 
rate 1

Accuracy 
rate 2

1 Decision Tree 98.5% 99.6%
2 Discriminant Analysis 97.5% 100%
3 Support Vector 

Classifiers
94.2% 98.3%

4 KNN 96.5% 99.4%
5 Ensemble Classifiers 99.6% 100%

B. Decision Tree 

The difference between decision trees is the method of 
attribute selection. The Gini index is used to select the 
partitioning attribute, and the purity of the dataset D can be 
measured by the Gini index. 
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The proportion of the k-th sample in the sample set D is 

( 1,2,..., )kp k y� . The smaller the value of ( )Gini D , the 

higher the purity of dataset D. Discrete attribute a  has V 

possible values 1 2{ , ,..., }Va a a , and the dataset D is divided 

using a  to generate V branch nodes. vD is the set of samples 

with value va  on attribute a. The branch nodes are given 

weights /vD D in consideration of the number of samples 

of different branch nodes. The Gini index of attribute a  is 
defined as: 

1

_ ( , ) ( )
vV

v

v

D
Gini index D a Gini D

D�

��   (5) 

In the candidate attribute set A, the attribute that 
minimizes the Gini index is selected as the optimal partition 
attribute. 

* arg min _ ( , )
a A

a Gini index D a
�

�   (6) 
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Attribute selection is performed using the methods 
mentioned in the previous section. Fig.8 is the decision-tree 
formed using training samples. 

Fig. 8 Decision-tree formed using training samples 
The confusion matrix of the decision tree is drawn in Fig.9. 

The error rate of the fault type ABCG is 2%, and the error rate 
of the fault type CA is 6%, and the error rate of the fault type 
CAG is 2%. The accuracy of the remaining fault types is 
100%. The identification of various fault types can be visually 
seen through the confusion matrix. 

Fig. 9 confusion matrix of decision tree 

VI. CONCLUSIONS

This paper uses machine learning models to complete the 
identification of fault types in the active distribution networks. 
The main conclusions of this work are as follows: 

1) A method for batch generation of fault scenarios in 
PSCAD is proposed, which provides data preparation for 
machine learning. This method avoids manual modification of 
parameters and improves the efficiency of data preparation. 

2) Fault features that can describe different fault types are 
selected. Variation multiples of voltage and current are 
extracted as the features to represent the fault type. 

3) Various machine learning models are used to identify 
fault types, and the identification results of the decision tree 
are analyzed. Tree graph and confusion matrix are used to 
show the classification results of decision tree intuitively. 

The test result shows that the method based on machine 
learning is able to classify faults under various fault conditions. 
It can be concluded that the proposed fault classification 
technique is simple and doesn’t require a specific threshold 
value. 

ACKNOWLEDGMENT

The paper is supported by National Key R&D Program of 
China (2017YFB0902800). 

REFERENCES

[1] W. Lin, C. Yang, J. Lin, and M. Tsay, "A fault classification method by 
RBF neural network with OLS learning procedure," IEEE Transactions 
on Power Delivery, vol. 16, pp. 473-477, 2001. 

[2] A. Ferrero, S. Sangiovanni and E. Zappitelli, "A fuzzy-set approach to 
fault-type identification in digital relaying," IEEE Transactions on 
Power Delivery, vol. 10, pp. 169-175, 1995. 

[3]  A. A. Girgis and M. B. Johns, "A hybrid expert system for faulted 
section identification, fault type classification and selection of fault 
location algorithms," IEEE Transactions on Power Delivery, vol. 4, pp. 
978-985, 1989. 

[4] F. S. Wen and C. S. Chang, "Probabilistic approach for fault-section 
estimation in power systems based on a refined genetic algorithm," IEE 
Proceedings-Generation, Transmission and Distribution, vol. 144, pp. 
160-168, 1997. 

[5] Y. Zhang, Y. Zhang, F. Wen, C. Y. Chung, C. Tseng, X. Zhang, F. 
Zeng, and Y. Yuan, "A fuzzy Petri net based approach for fault 
diagnosis in power systems considering temporal constraints," 
International Journal of Electrical Power & Energy Systems, vol. 78, pp. 
215-224, 2016. 

[6] M. Togami, N. Abe, T. Kitahashi, and H. Ogawa, "On the application of 
a machine learning technique to fault diagnosis of power distribution 
lines," IEEE transactions on power delivery, vol. 10, pp. 1927-1936, 
1995.

[7]  B. Das, "Fuzzy logic-based fault-type identification in unbalanced 
radial power distribution system," IEEE Transactions on Power Delivery, 
vol. 21, pp. 278-285, 2006. 

[8]  S. Hong-chun, S. Xiang-fei and S. I. Da-jun, "A study of fault diagnosis 
in distribution line based on rough set theory," PROCEEDINGS-
CHINESE SOCIETY OF ELECTRICAL ENGINEERING, vol. 21, pp. 
73-77, 2001. 

[9]  A. M. El-Zonkoly, "Fault diagnosis in distribution networks with 
distributed generation," Electric Power Systems Research, vol. 81, pp. 
1482-1490, 2011. 

[10] J. Korbicz, J. M. Koscielny, Z. Kowalczuk, and W. Cholewa, Fault 
diagnosis: models, artificial intelligence, applications: Springer Science 
& Business Media, 2012. 

[11] M. H. Center, "PSCAD/EMTDC User’s Manual," Manitoba HVDC 
Center, Winnipeg, Canada, 1998. 

[12] J. Upendar, C. P. Gupta and G. K. Singh, "Statistical decision-tree based 
fault classification scheme for protection of power transmission lines," 
International Journal of Electrical Power & Energy Systems, vol. 36, pp. 
1-12, 2012. 

1334


