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H I G H L I G H T S

• Network wide impact of deploying hybrid combinations of renewables studied.

• Multi-period optimisation configures renewable capacity to maximise energy export.

• Combination of resources leads to more effective use of network capacity.

• Value of complementarity compounded by network topology, control and demand.

• Combined benefit of hybrid generation with active network management is identified.
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A B S T R A C T

Exploiting the diversity between different renewable resources is regarded as a significant tool to managing their
grid integration. Hybrid combinations of resources provide the potential to smooth output and so overcome
limits on the export of power, but their network wide impact is not well understood. This paper examines
whether combinations of renewable distributed generation can make more effective use of distribution network
capacity. A multi-period, multi-resource optimal power flow approach is used to optimally configure wind and
solar photovoltaic capacity to maximise energy production whilst complying with network physical limits. The
effectiveness of hybrid distributed generation and the optimization method was examined through comparison
with cases using single types of renewable distributed generation. This study demonstrates that by capturing the
complementarity between renewables through hybrid design, the network can host more renewable generation
capacity and increase total energy export. In addition, smart grid techniques, such as active network manage-
ment, further boosts the value of resource diversity by allowing connection of more generation capacity of all
considered renewables through isolating the infrequent co-occurrence of high outputs during periods of low
electricity demand.

1. Introduction

Renewable generation from wind, solar photovoltaics (PV) and
hydro is growing rapidly to meet ambitious targets for carbon emissions
reduction [1]. Connecting renewable generators into power grids ty-
pically occurs in the distribution network, as distributed generation
(DG). This can be a challenging exercise as these grids were generally
designed to supply power from the transmission network via a grid
supply point (GSP) to customers at medium and low voltages. Dis-
tribution network operators are concerned with a range of technical
criteria that can be affected by the connection of DG: voltage rise, re-
verse power flows, increased fault levels, power quality and system
stability [2]. The strict technical limits on these factors serve to limit

the capacity of DG that may be connected to the network or necessitates
expensive network reinforcement in order to raise capacity.

Reverse power flows and voltage rise are generally the major issue
[3]. These arise due to the changes in power flows following DG con-
nection. Without DG, power flows through lines and transformers to-
wards the load with flows following the pattern of demand. Voltage
reduces in the direction of power flows through the network and more
significant voltage drops are seen under high demand conditions. Once
DG is connected, lower levels of DG output may be sufficient to supply
local loads, reducing the power flows through the network. However,
larger output will exceed the local load and power is exported back
towards the transmission network; if these reverse flows are sufficiently
large they can exceed the power flow capability of lines and
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transformers [4]. By reducing flows, smaller DG output tends to reduce
the extent of voltage drop but the reversal in flow at high output means
voltage can be higher at the DG than the GSP. Should DG become too
large then voltage may rise above the allowed limits. The output of
renewable DG also varies and this sets an upper limit to the capacity of
DG that can be connected. This is normally the ‘firm’ capacity at which
maximum DG output can be exported at any time. This tends to occur
during maximum generation output and minimum demand levels as
this sees the highest reverse power flow and voltage rise. With renew-
able generation, these conditions tend to occur relatively infrequently,
meaning that firm capacity could limit the ability of a network for
connecting renewable generation based on conditions in a few hours a
year [5]. As such it is the combined variability of demand and renewable
generation that is important in defining capacity and ultimately the
energy produced.

One way to ease the shortcomings of variability is to exploit the
complementarity among different renewable sources through portfolio
effects. Many studies report mutual complementarity of multiple re-
newable resources across large geographic areas including Italy [6],
Britain [7], Canada [8] and China [9]. This can be captured by ‘hybrid’
renewable energy systems (HRES) which can be any combination of
generation from two or more renewable and/or conventional resources
[10], that work standalone or grid-connected. A considerable amount of
work has been carried out on HRES, demonstrating that they can im-
prove efficiency, reliability and facilitate greater energy production.

The design of HRES focusses on the optimization of the capacities of
different renewables along with storage and/or conventional genera-
tion as support. Studies have mainly focused on off-grid applications
employing different optimisation techniques including probabilistic
[11], iterative [12,13] and artificial intelligence approaches [14]; all
report reduced system costs and reliable supply. Recent studies include
improved particle swarm optimisation with strong computational per-
formance [15] and robust multi-objective optimization to handle re-
newable uncertainty [16]. With the development of smart grids, in-
creasing attention has been paid to grid-connected hybrid systems,
using grid supply as backup in case of deficiency while selling surpluses

to improve system economics. Grid-connected HRES is optimally sized
in [17] using a genetic algorithm coupled with sensitivity analysis.
Constraint-based iterative search algorithms are used in [18] to obtain
optimal sizes with both maximum reliability and minimum cost. The
effect on reducing carbon emissions from grid-connected hybrid sys-
tems is studied in [19] while the uncertainty of power exchanges be-
tween grid and HRES in optimal scheduling is tackled with stochastic
multi-objective programming in [20]. All of the studies above are either
off-grid or grid-connected at a single location. There is little work ex-
plicitly looking at the network-wide impact of deploying co-located
hybrid combinations of resources to multiple locations at distribution
level, and, more specifically, the value of integrating these from the
point of view of efficient use of network capacity. With DG a common
term in distribution network studies, grid-connected HRES will be
generally referred to in this paper as ‘hybrid DG’.

A second approach to handling variability is exploiting the potential
for smart grids with active Network Management (ANM) a particular
focus at distribution level [21]. The scope for ANM to make the best use
of existing network capacity for accommodating (or ‘hosting’) renew-
able generation and avoiding costly reinforcement is widely recognised
[22]. It does this by coordinating controls between network equipment
and DGs to enable greater overall output within the network opera-
tional limits. In doing so, it facilitates larger generators to be connected
than would otherwise be possible with traditional network practice.
ANM includes voltage control using transformer on-load tap changers
(OLTC) [23], active output control (i.e. power curtailment) [24], net-
work reconfiguration [25], and may involve energy storage [26] and
demand side management [27]. However, much of the ANM work has
been envisaged in networks with single, non-hybrid renewable types.
With ANM enhancing the network-side control while hybrid systems
smooth out variable production on the generation side, they appear to
be a good match for increasing renewable energy deployment. Never-
theless, the value of ANM and hybrid DG has not been explicitly ex-
amined in terms of the effective use of network capacity.

Examining how prospective connections of DGs with multiple re-
source types may influence effective use of network capacity is

Nomenclature

Acronyms

ACOPF Alternating current optimal power flow
ANM Active network management
DG Distributed generation
HRES Hybrid renewable energy systems
GSP Grid supply point
OLTC On-load tap changers
PV Photovoltaic
NLP Nonlinear program

Sets and indices

B, b Set/index of electrical buses
G, g Set/index of all DG
Gb Set of generators connected to bus b
L, l Set/index of power lines (and transformers)
M, m Set/index of time periods
R, r Set/index of renewable types
X, x Set/index of external connections
Xb Set of external supplies connected to bus b
βl

1, βl
2 Bus at each end of line ( ∈β Bl

1,2 )

Variables

fl m
P

,
1, , fl m

P
,
2, Active power injections at each end of line (MW)

fl m
Q

,
1, , fl m

Q
,
2, Reactive power injections at each end of line (Mvar)

pb m
l
, , qb m

l
, Active/reactive power injections into line l at b (MW,

Mvar)
pr g, Installed capacity of DG for renewable type r (MW)
pr g m

curt
, , Curtailment of power output for renewable type r (MW)

px m, ,qx m, Active/reactive power flow through external supply
source (MW, Mvar)

Vb m, Bus voltage magnitude (p.u.)
VOLTC,m Voltage at transformer secondary bus (p.u.)
δb m, Bus voltage angle (°)

Parameters

b0 Reference (slack) bus
db

P, db
Q Peak active/reactive bus demand (MW, Mvar)

+fl Apparent power flow limit of line (MVA)
Px+, Px– Active power flow limit at GSP (MW)
Qx

+, Qx
– Active power flow limit at GSP (Mvar)

+Vb ,
−Vb Max/min voltage limit of bus (p.u.)

+VOLTC,
−VOLTC Max/min voltage limit of transformer secondary bus
(p.u.)

τm Duration of time period (h)
ωm Potential generation level at time period m for renewable

type r
λr

curt Maximum curtailment level
ηm Demand level relative to its peak value in period m
ϕg m, Power factor angle of generator (°)
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complex. Identifying where opportunities exist within the distribution
network to connect hybrid DG is a nonlinear optimisation exercise that
requires detailed assessments of power flows to capture the key net-
work operational constraints such as bus voltages and the thermal
loading of feeders. These values depend on renewable availability at
each location, typically requiring a long study horizon to capture a wide
range of potential meteorological conditions that might occur, yet
employing relatively short time steps (e.g. hourly) to accurately capture
the renewable variability. The need to model the complementarity
between multiple renewables in detail, as well as, account for critical
nonlinear features such as network voltage profiles, makes such ana-
lysis challenging.

Given the research gap and challenges, this paper employs a multi-
period, multi-resource optimal power flow-based assessment metho-
dology to evaluate how hybrid DG with combinations of renewables
influence the effective use of the network: the ‘hosting capacity’. To our
knowledge, this is the first paper that quantifies the network-wide
benefit of hybrid DGs and the joint value with smart grid approaches.
Its primary contribution lies in highlighting that diversity between re-
newables has ‘value’ in terms of being able to better exploit network
capacity (i.e. ‘fill’ the network) and that this effect becomes more
pronounced when active network management is employed. A sec-
ondary aspect of the novelty lies in the technique for combining mul-
tiple renewable resource time series in order to make computation more
accessible.

The paper is organised as follows: Section 2 describes the metho-
dology for evaluating the value of hybrid distributed generation in
terms of maximizing energy production and effective use of network
capacity. In Section 3 results for planning hybrid wind and PV DGs in a
typical UK distribution network are presented and discussed. The re-
mainder of the paper discusses and concludes the work.

2. Modelling methodology

2.1. Assessing hybrid renewable DG for effective use of network capacity

The connection of renewable DG in electricity networks needs to
ensure that the network can physically handle power flows within de-
fined technical and equipment limits. Optimal power flow (OPF) is a
standard tool in electrical power systems and has traditionally been
used for economic dispatch and operational planning. OPF is an opti-
misation problem formulated and solved to obtain optimal control
settings such as the required power output of a given generator whilst
respecting important system limits such as power line ratings. The most
accurate OPF uses the full alternating current ‘AC’ formulation
(‘ACOPF’) which, by considering both active and reactive power flows,
accurately models the voltage profile throughout the network. This is
critical in distribution networks as voltage levels are driven by both
active (MW) and reactive (Mvar) power flows and voltage limits are
normally the most significant constraint on capacity. ACOPF is a com-
plex non-linear problem (NLP) with non-linear constraints.

ACOPF has also found application in a ‘planning’ setting including
in identifying where generation capacity may be located without the
need to reinforce the network (hosting capacity) [4,28]. Specifically,
this means identifying the capacities that are feasible at one or more
network buses (nodes). The time variability of renewable generation
makes identification of capacity more challenging, particularly with
multiple resources with different operational patterns. To handle this,
the standard ACOPF is extended to a multi-period multi-resource ap-
proach to optimise the configuration of generation capacities over
multiple renewable resources.

Mathematically, the objective of the optimisation is to maximise
overall energy production from hybrid renewable DG within the con-
straints imposed by the existing network. This objective is chosen as it
provides a measure of efficient use of overall network capacity but with
the view that the energy generation is the valuable product not capacity

per se. The maximum production is obtained by optimally siting and
sizing capacities for each resource r (R, set of renewable types), whilst
accounting for the time variability and coincidence of demand and
generation levels. The objective is given as:

∑ ∑ ∑
∈ ∈ ∈

p ωmax
m M r R g G

r g r m, ,
b (1)

where pr g, is the (active) power capacity of generator g for renewable
type r; Gb is the set of generators connected to bus b (B, set of buses);
ωr,m is the generator output level relative to its peak value as dictated by
the renewable resource r in period m (M, the set of time periods). At
each location a generator can be made up from one or more renewable
resource types. The problem then seeks to find a unique and optimal set
of capacities pr g, of hybrid DGs at all prospective connection buses,
which deliver the maximum energy over all periods in the study period
M. While based on the same broad framework as [24], the objective
function, application, use of multiple renewable resources and specific
details of the formulation are quite distinct. The specific technique used
to combine multiple renewable resource time series in order to make
computation more accessible is detailed in Section 2.4.

2.2. Network constraints

The objective of maximising energy production from multiple DGs is
subject to a set of constraints representing those that govern the phy-
sical operation of the networks (e.g. nodal power balance) and limits
imposed by statute and standards (e.g. voltage limits) as well as
equipment ratings (e.g. power flow limits).

(1) Active and reactive nodal power balance:
The physical nodal balance of electricity power flow is enforced by

Kirchhoff's current law for each bus in the network, which states that
current flowing into a node must match that flowing out. The nodal
power balance for active power is given by:

∑ ∑ ∑ ∑+ = + ∀

∈ ∀ ∈

∈ = ∈ ∈ ∈
p d η p ω p b

B m M,

l L β b
b m
L

b
P

m
g G r R

r g r m
x X

x m
|

, , , ,
l b b1,2

(2)

where pb m,
L is the total active power injection into lines (and transfor-

mers) at bus b, and ηm is the demand level in time period m relative to
bus peak active power demand db

P. The distribution network is ulti-
mately connected to external networks such as the transmission net-
work through a grid supply point substation. This acts to balance the
distribution network by allowing imports or exports of excess genera-
tion; px m, is the active power imported/exported from external con-
nections x (Xb, set of external supplies).

A similar relationship governs the reactive power nodal balance:

∑ ∑ ∑ ∑+ = + ∀

∈ ∀ ∈

∈ = ∈ ∈ ∈
q d η p ω ϕ q b

B m M

tan( )

,

l L β b
b m b

Q
m

g G r R
r g r m r g m

x X
x m

|
,

L
, , , , ,

l b b1,2

(3)

where qb m,
L are the total power reactive power injections into lines; db

Q

are the bus peak reactive demands; qx m, is the reactive power supplied
to/from external connections; and ϕg m, are the generator power factor
angles.

The power flow requires one bus to act as the reference in order to
ensure overall balance. The higher voltage side of the GSP substation is
taken as the reference bus b0 with the voltage angle set at zero,

=δ 0b m,0 . The constraints on import and export of active and reactive
power flow through the GSP are given by:

⩽ ⩽

⩽ ⩽
∀ ∈ ∀ ∈

− +

− +

P p P

Q q Q
x X m M,x x m x

x x m x

,

, (4)

where Px(+,–) and Qx
(+,–) are the active and reactive flow limits.

(2) Voltage level limits:
Voltage rise at or near renewable DG connection points is one of the
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major issues for network operators. Voltages at network bus b are
constrained by the maximum and minimum allowed levels Vb

(+,−):

⩽ ⩽ ∀ ∈ ∀ ∈− +V V V b B m M, ,b b m b, (5)

Voltages are typically described relative to their nominal voltage
level using the per unit scale (p.u.). For example, a voltage of 11,550 V
on an 11 kV line would be recorded as 1.05p.u. or +5% of nominal.
Voltage limits are defined on a percentage of nominal basis, e.g.± 6%.

(3) Power flow limits:
Equipment ratings constrain overall power flow through lines and

transformers, l (L, set of lines):

+ ⩽ ∀ ∈ ∀ ∈+f f f l L m M( ) ( ) ( ) , ,l m
P

l m
Q

l,
(1,2), 2

,
(1,2), 2 2 (6)

where +fl is the apparent (i.e. total active and reactive) power flow limit
of the lines. fl m

P
,
(1,2), and fl m

Q
,
(1,2), are the active and reactive power injec-

tions at each end of the line (denoted 1 and 2) as standard Kirchhoff
voltage law expressions. These provide the fundamental link between
power flows within lines and voltages at buses; further details can be
found in any good power systems textbook.

2.3. Boosting hybrid systems using active network management

The integration of hybrid combinations of resources may be able to
exploit the capability of ANM alongside potential advantages of pro-
duction diversity. A wide range of relevant ANM techniques are avail-
able and can be readily incorporated, but to illustrate this two ANM
schemes are modelled within the optimisation: adaptive voltage control
and active output control (i.e. production curtailment).

2.3.1. Adaptive voltage control
Active exploitation of the voltage regulation function provided by

the on-load tap changers on transformers is often proposed to mitigate
voltage rise. Traditional use of OLTC requires a defined setpoint voltage
to be specified for the secondary (low voltage) bus that the OLTC aims
to meet by adjusting the winding ratio on the transformer. The setpoint
value is normally specified for entire seasons or years. Adaptive voltage
control involves actively modifying the target voltage of the OLTC ac-
cording to the conditions at a particular point in time instead of using a
single predefined target voltage across all time periods.

In the modelling framework here, the secondary (low) voltage bus
at the substation transformer is dynamically controlled by the OLTC in
each period so as to ensure all the voltages along the feeders are within
allowable limits. It is treated as a variable, VOLTC,m maintained within a
range +VOLTC to −VOLTC, rather than as a fixed parameter. This is handled
as a constraint within the multi-period OPF formulation:

⩽ ⩽− +V V VOLTC OLTC m OLTC, (7)

In general, the optimisation will raise voltage VOLTC,m at the trans-
former when demand is high and DG production low to avoid under
voltages at the edges of the network, while lowering it when DG pro-
duction is high and demand low to avoid over voltages.

2.3.2. Active output control
Without ANM, most renewable generators are provided with a ‘firm’

connection at present, where DG can freely operate up to its rated
output albeit limited by the weather conditions. The limiting factor is
generally the worst-case scenario of low demand and high renewable
output. Due to the infrequent occurrence of these, firm connection ar-
rangements could unnecessarily limit the hosting capacity of a network
for connecting renewable generation. Active control of DG production
provides a general solution for connecting capacity above the firm ca-
pacity level by reducing (i.e. curtailing) generation output during low
demand periods ensuring that network parameters remain within
limits. While this may involve lost revenue for the DG, this may be
acceptable to the developer as it enables larger generators to be

connected, increasing the overall energy production and total revenue.
The curtailment scheme is formulated as a time-dependent variable

pr g m
curt
, , which defines the necessary curtailed generation for each re-

newable component r of generator g in period m. In the original power
balance Eqs. (2) and (3), delivered power generation matches the po-
tential generation ∑

∈
p ω

r R
r g r m, , . Here, actual delivered energy is reduced

by the amount curtailed, ∑ −
∈

p p ω( )
r R

r g r g m
curt

r m, , , , and the balance equa-

tions are changed to:

∑ ∑ ∑ ∑+ = − + ∀

∈ ∀ ∈

∈ = ∈ ∈ ∈
p d η p p ω p b

B m M

( )

,

l L β b
b m b

P
m

g G r R
r g r g m

curt
r m

x X
x m

| |
,

L
, , , , ,

l b b1,2

(8)

∑ ∑ ∑

∑

+ = −

+ ∀ ∈ ∀ ∈

∈ = ∈ ∈

∈

q d η p p ω ϕ

q b B m M

( ) tan( )

,

l L β b
b m b

Q
m

g G r R
r g r g m

curt
r m g m

x X
x m

|
,

L
, , , , ,

,

l b

b

1,2

(9)

By its physical meaning, the curtailment pr g m
curt
, , for each renewable

DG should not exceed the full potential output in the corresponding
period:

⩽ ∀ ∈ ∀ ∈ ∀ ∈p p ω r R g G m M, , ,r g m
curt

r g r m, , , , (10)

Economic considerations will ultimately limit the total amount of
curtailed energy that will be acceptable to the owner of renewable
generators. These are strongly dependent on the network connection
arrangements where different ‘principles of access’ govern the order
and extent of curtailment between DGs [29]. This is an evolving area
and complex in its own right so here a simplified approach is taken
which places an upper limit on the amount of curtailment that is al-
lowed. A curtailment factor λg

curt is applied as a constraint restricting
the proportion of the total potential energy at each location that could
have otherwise been delivered over the whole period:

∑ ∑ ∑ ∑⩽ ⎡

⎣
⎢

⎤

⎦
⎥ ∀ ∈

∈ ∈ ∈ ∈

p τ λ p ω τ g G,
m M r R

r g m
curt

m g
curt

m M r R
r g r m m, , , ,

(11)

The optimisation chooses the precise split in curtailment between
different resources at each location in relevant periods. There are al-
ternative ways of applying a constraint on curtailment and the effect of
these are considered in the Section 3.7.

2.4. Framework for handling variable renewables

Ideally, the nonlinear ACOPF formulation of (1)-(6) would directly
use a long time-series of renewable and demand data, so that the
analysis captures the full range of varying operational conditions. This
study period M should be a year (and preferably much longer), how-
ever, this introduces a significant number of time-varying variables and
correspondingly additional constraints into the nonlinear program. For
example, a set of half-hourly data for 1 year will generate 17,520 per-
iods of network operation to be considered simultaneously so as to find
a unique inter-temporal solution in the nonlinear optimization.
Therefore, an explicit long-term time-series study on even a relatively
small section of the distribution network results in a large computa-
tional burden which tends to be laborious or intractable. As such,
evaluating distribution network capacity requires a means of effectively
dealing with the problems of multi-dimensionality introduced by re-
newable variability, without unduly increasing the associated compu-
tational burden.

To mitigate the computational burden, a process is used to discretise
and then aggregate according to the characteristics of ‘similar’ periods.
In essence this reduces the number of discrete periods to be evaluated
whilst preserving the behaviour and inter-relationships between mul-
tiple resources and demand. Such treatment of long-term time-series
data is first proposed by Ochoa et al. [24] although only wind was
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considered. The further development of the multi-period approach in
this paper addresses the ‘coincidence’ of multiple renewable resources
with electrical demand.

The discretisation process allocates original data values for re-
sources and demand into a series of bins covering the range between
zero and overall peak value. To illustrate this, Fig. 1(a) presents a two
day-long snapshot of hourly demand and wind power data [30] with
values expressed as percentage of respective peak values. For each set of
data, the hourly values are compared with and assigned to one of 7 bin
ranges – {0}, (0,20%], (20%,40%],…, (80%,100%), {100%} – with the
mean value of the range characterising each hour (e.g., 30% for the
(20%,40%] range). Fig. 1(b) shows the resulting time series. The choice
of bin is flexible but the ranges shown here are deliberately wide and
much narrower ranges will allow values to be closer to original values.
The discretisation process can be carried out for any number of resource
and demand time series.

The aggregation process then groups hours in which the same
combination of demand and generation occur. In the optimisation
problem each combination will constitute a period m to be evaluated
along with other combinations M. The maximum number of periods to
be evaluated will be the product of the number of bins from each series.
The occurrence of each combination determines the overall duration τm
for which it applies – the ‘coincident hours’. For instance, in the wind-
demand case from Fig. 1(b), there are 49 possible combinations (7× 7
bins) and the orange blocks indicate hours where demand is 70% of
peak and wind is 10%; these conditions occur for a total of 6 h in this
case. The process goes through each possible combination and sums the
occurrences. Fig. 1(c) shows the resulting number of hourly occurrences
for the two-day window indicating some combinations where there are
more occurrences and a lot where there are no instances. When carried
out over a much longer time series, the process captures the full range
of generation-demand combinations. Discretisation does reduce the
accuracy of the analysis but only by a few percent, and small compared
to uncertainties associated with other planning stage factors (e.g. costs,

locations, and demand growth). Importantly, it does retain the extreme
cases (e.g. maximum generation, minimum demand and vice versa)
which are critical in driving network constraints.

Fig. 1(a)-(c) shows the case for a single resource and demand time
series, providing a bivariate distribution of occurrence. When an ad-
ditional resource is added, the process remains the same but three-way
combinations are defined for each resource and demand. For example,
as in this paper where there is wind and PV, the result is a tri-variate
distribution of occurrences. This is more challenging to illustrate, but
Fig. 1(d) shows how the combinations are handled – this effectively
results in a stack of wind-demand combinations arranged by PV output
level.

2.5. Implementation

The methods were implemented using the AIMMS optimization
modelling environment [31] using the CONOPT 4.0 NLP solver to solve
the nonlinear programming formulation of the multi-period multi-re-
source OPF. Analysis with a single renewable type took 5min and hy-
brid combinations around 30min. The generic problem formulation
given here can be coded in any optimisation software (e.g. General
Algebraic Modelling System, MATLAB) and there are open source NLP
solvers available, e.g. IPOPT. The modelling of renewable variability
through discretisation and aggregation to reduce computational com-
plexity (Section 2.4) is independent from the choice of software and
solver.

3. Case study

The case study considers the connections of multiple co-located
hybrid wind and PV generators across a representative distribution
network in order to identify the value of diverse resources and active
network management on the effective use of network capacity. The
network is representative of UK systems but the analysis process will be

Fig. 1. (a) Normalised hourly demand and wind power time series; (b) discretised wind and demand time series; (c) all aggregated wind-demand combinations
showing ‘coincident hours’; (d) visualisation of PV-wind-demand combinations.
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applicable elsewhere.

3.1. Distribution network

The EHV1 Network from the UK Generic Distribution System is used
as the study case (see Fig. 2). Full data for this 61-bus 33/11-kV weakly-
meshed rural network are available in [32]. Two identical 30-MVA
132/33-kV transformers connect to the transmission network and
supply the feeders with total peak demand of 38.2 MW. The upstream
GSP voltage is assumed to be nominal. In the traditional network case
that operates without active network management (termed the ‘passive’
network), the substation OLTC operates to maintain a target voltage of
1.045p.u. at the lower voltage bus (bus 302). The OLTCs on the 33/11-
kV distribution transformers and voltage regulators have a target vol-
tage of 1.03p.u. In line with UK regulations, all 11 and 33 kV voltages
are to be maintained within±6%.

Six example locations are selected to co-locate wind and PV con-
nections. They are considered sufficiently close geographically such
that the same wind and PV time series apply, although this can be ex-
tended to consider site specific series. Three different renewable mixes
are considered at each site: wind-only, PV-only and hybrid wind-PV. It
is important to point out that in the hybrid case, the optimisation may
opt to only build generation capacity of one renewable at some or all
locations. The analysis of available capacity is first analysed under firm
connections in a ‘passive’ network case to focus on the complementary
value of wind-PV. Following that, active network management is con-
sidered to investigate the combined benefits.

3.2. Electricity demand

Hourly demand data from Scotland is used in all simulations. The
load factor of this demand profile is 0.63. The whole year demand
variation is illustrated in Fig. 3 with load in summer relatively lower
than winter. Most of the demand occurs within a range of 60–80% of
peak demand with peak demand experienced for 83 h over the whole
year, similar to the lowest level of 110 h (around 40% of peak).

3.3. Wind and PV resource

The analysis uses information on wind and solar PV resource for a
location in Northeast Scotland (57°N and 3°W) to simulate the gen-
eration output. The same time period is used for wind, solar and de-
mand data (i.e. co-temporal) to ensure that the key hourly and seasonal
patterns and interrelationships between the data are appropriately
captured.

Simulated wind and solar radiation time series data is used for the
analysis as measured generation data is not always available due to
confidentiality, at the locations of interest or, available for both re-
source types at the same location. Both the wind and solar simulation
approaches are based on high quality datasets that have been well va-
lidated, and the general approaches are now well-established and in use
in academic, consulting and industry work. The approach means that
the location can be varied should the analysis need to be repeated
elsewhere.

The wind generation time series is created from the output of a high
resolution mesoscale meteorological modelling approach described in
[33]. This employed the Weather Research and Forecasting Model and

Fig. 2. UK GDS EHV1 Network and potential locations for hybrid generation.
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the UK national supercomputer to create a hindcast from the NCEP
Global Forecast System. The hourly data covered the whole of the UK
and Ireland at 3 km resolution for the years 2000–2010. It is validated
against measured data from many UK Met Office met stations, on– and
offshore wind mast data and offers wind speed estimates that offer low
bias and high correlation. The power production time series was gen-
erated using wind speed data from 80m height along with the power
curve of a 3MW Vestas V90 wind turbine. The resulting power time
series have been validated against individual wind farm and national
aggregate generation time series.

The solar PV time series is created from the Satellite Application
Facility on Climate Monitoring (CMSAF) dataset using the approach as
described in [34]. CMSAF employs EUMETSAT geostationary satellite
data to estimate key irradiance values and provides data on an hourly
basis on a 0.05° latitude and longitude grid (approximately 4 km) for
1983 to 2015. The global horizontal irradiance has been validated
against UK Met Office met station data, showing low bias and high
correlation. The PV generation data is modelled using well established
trigonometric and PV cell relationships. A typical mono-silicon PV
panel installation (∼16% standard efficiency, 35° tilt, southerly or-
ientation, and 96% inverter efficiency) is adopted to calculate the solar
PV output time series; these have been validated against available solar
PV output from a range of installations.

Data for the 2008 year are used for illustration. The resulting ca-
pacity factors are approximately 37% for wind and 12% for PV; these
are credible for a windy site in Scotland. While the PV resource is not as
good as wind in terms of overall capacity factor in this area, com-
plementarity still exists between wind and PV as the cross-correlation is
−0.13, indicating a relatively low and slightly negative correlation,
suggesting low likelihood of high production at the same time. In ad-
dition to the specific location used in the case study, several other lo-
cations in Scotland were examined prior to application to the electrical
modelling. These differed in terms of the specific level of wind and solar
resource as well as their coincidence, and while these effects would

have come through in the analysis, they were not regarded as large
enough to substantially change the overall picture.

To simplify the presentation and simulation, the levels of wind and
PV generation are normalised (per unit) against peak values. The sea-
sonal pattern is illustrated through monthly box plots shown in Fig. 4.
Sample time series of wind, PV and demand during a winter and
summer month is given in Fig. 5.

3.4. Coincidence of hybrid renewables and demand

The hosting capacity of hybrid DG is largely determined by the
‘coincidence’ between multiple types of renewable generation and de-
mand. When high levels of generation occur with low local demand, it
is most likely to impose constraints on the network as a result of the
export of power towards the GSP.

The coincidence of individual renewables and demand is analysed
first as the basis for comparison. Adopting the discretisation-aggrega-
tion process described in Section 2.4, the time-series of demand, wind
and PV generation levels are discretised into bins relative to maximum
values with bin values based on the upper values of the ranges: ten
ranges for demand ([0,10%], (10%,20%],…), and 11 each for wind and
PV (e.g.,{0}, (0,10%], (10%,20%], …).

Fig. 6 shows the coincident hours (i.e. the bivariate distribution) for
separate cases of wind and PV with demand. Of the 110 possible
combinations of wind and demand, only 69 have a non-zero number of
hours; similarly, of the 110 for PV and demand, 52 are non-zero. Many
of the combinations with no instances arise from demand always ex-
ceeding 40% of peak. There are relatively few instances where peak
generation occurs at high demand levels, particularly so for PV as in-
solation levels will be low in winter. Similarly generation levels are
weighted towards lower levels, specifically for PV. Of most importance
for hosting capacity is the occurrence of high generation availability
and low demand as this promotes energy export and voltage rise. In
both cases the occurrence of periods with high generation (80% to

Fig. 3. Hourly demand variation for
Scotland.

Fig. 4. Monthly boxplot of load, wind and PV output level (p.u.): extremes, median, interquartile range.
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100%) and low demand (40% to 60%) is relatively infrequent over the
whole year: 301 h for wind and demand and 33 h for PV and demand,
respectively (highlighted in red in Fig. 6). The much lower occurrence
of these conditions with PV is due to the minimum load occurring
during the night. The hosting capacity determined by such infrequent
worst-case scenarios will constrain the network more than is necessary.

The combined (trivariate) coincident hours between wind, PV and
demand together are also generated using the approach outlined in
Section 2.4. Following the three dimensional model outlined in Fig. 1
(d), the combinations can be visualised as a set of 11 layers of 110
wind-demand cases with a possible total of 1210 PV-wind-demand
combinations. However, due to the minimum demand levels and the
variability of wind and PV, only 401 cases contain a non-zero number of
hours. Fig. 7 illustrates a ‘slice’ through the distribution with combi-
nations of PV and demand when wind output is 60% of peak: almost
half of the potential operational scenarios do not occur. While the tri-
variate coincidence matrix of wind-PV-demand is obtained, it is chal-
lenging to identify the jointly binding worst-case scenario due to all
potential network interactions, without use of an optimisation approach
such as that proposed here.

3.5. Hybrid hosting capacity in a passive network

The initial hosting capacity evaluation considers that the distribu-
tion network operates with no use of active network management (i.e.
the ‘passive’ case). The only control actions in the network are from the
transformer tap changers in the GSP substation, voltage regulator and
33/11 kV distribution transformers to maintain their secondary (low)
voltage at fixed values ensuring supply on the 11 kV feeders is within
voltage limits. The capacity is evaluated for all energy mix cases with
the results presented in Table 1.

For individual renewable cases, it can be seen that hosting capacity
for the PV-only case is 24% higher than the wind-only case, but the
total energy production from PV is only 39% of wind. The difference is
partly due to wind’s better matching with demand variation than PV in
this area as well as the much higher wind capacity factor, requiring less
capacity to reach network limits. When PV and wind generation are
considered jointly (hybrid), the total annual energy production in-
creases: relative to wind-only the increase is 2% to 127 GWh but
compared to PV-only the increase is 162%. The changes in production
reflect the underlying changes in capacity: moving from the wind-only

to the hybrid case sees overall capacity increase by 10% with wind
capacity reducing slightly (0.5MW) but with a larger (4.3MW) amount
of additional PV. Moving from PV-only to hybrid sees overall capacity
fall by 11%, with PV dropping by over 90%, replaced by a slightly
smaller amount of wind. Wind dominates the capacity mix at all sites
(90%), mainly because the wind resource has better correlation with
demand and high capacity factor. However, it is important to note that
PV is part of the optimal result for every connection although in lower
amounts. This demonstrates that the complementarity between wind
and PV resources is captured by the evaluation approach as a ‘benefit’
in terms of additional generation.

The different capacities imply different levels of network usage
among the three cases. By inspecting the results, voltage rise is iden-
tified as the binding constraint in this passive network rather than line
overloading. The occurrence of voltages reaching the allowed upper
limits at any location in the network is summed for each month as
shown in Fig. 8. For the wind-only case, voltage is at the +6% upper
bound more frequently during the winter months when wind speeds are
higher. For PV-only, the occurrence of high voltages also follows its
resource pattern, peaking in July, but much less than wind overall. This
illustrates that, in this location, wind uses the network more effectively
and is able to generate more energy than PV alone. However, the hybrid
wind-PV case (black line in Fig. 8) shows that the occurrence of high
voltages is greater than the individual wind and PV cases, indicating
that the capacity of the network is being used more effectively by a
diverse portfolio. The exception is in June, when PV-only makes more
use of the network; the reduction in the hybrid case is as a result of
smaller PV capacity but is more than compensated by increases in the
rest of the year.

The optimal DG capacities exhibit substantial differences across the
six locations, as Fig. 9 shows. As these are voltage-limited, the capacity
is broadly distributed according to the electrical distance to the GSP
substation, with nearer sites having more capacity available. In cases
where the sites share a section of feeder, there is also a trade-off be-
tween these that favours closer connection. The effect is most apparent
with wind where the voltage constraints are more active. For the hybrid
case, the allocations between wind and PV also differ between loca-
tions, with PV capacity at bus 1115 twice that at bus 1106 despite their
wind capacity being nearly the same. This is due to the network to-
pology compounding the effect of diversity and is difficult to evaluate
without an approach such as that employed here. Overall, the results

Fig. 5. Time series of wind, PV output and load (p.u.) for winter (top) and summer (bottom) month.

W. Sun and G.P. Harrison Applied Energy 247 (2019) 89–101

96



from the ‘passive’ case show that network capacity analyses that ignore
the effect of resource diversity may be overly conservative, limiting the
ability of generators to be used to best effect.

3.6. Hybrid hosting capacity in an actively managed network

The network value of hybrid DG is analysed once more using active

Fig. 6. Coincident hours for (a) wind-demand and (b) PV-demand scenarios.

Fig. 7. Example of the coincident hours for PV and demand with wind output at
60% of peak.

Table 1
Hosting capacity for different energy mixes in a ‘passive’ network.

Wind only PV only Hybrid

Wind capacity (MW) 37.6 – 37.1
PV capacity (MW) – 46.7 4.3
Total hosting capacity (MW) 37.6 46.7 41.4
Total delivered generation (GWh/year) 124.1 48.6 127.2
Equivalent capacity factor (%) 37.7 11.9 35.1
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network management schemes to investigate the combined impact of
hybrid generation and ANM in improving network utilisation and re-
newable production.

For adaptive voltage control, the transformer tap changers and
voltage regulator are dynamically controlled, with the voltage on their
(low voltage) secondary side set optimally in each period within
a±6% range. For active output control, the simplified approach to
handling principles of access governing curtailment means it is assumed
that all DGs are available to be curtailed if necessary. In the hybrid case,
the amount of curtailment for each period is optimally defined for wind
and PV for each location individually. For illustration, curtailment for
each site was limited to 10% of its total potential energy generation
over the year, which is a function of its capacity. The effect of alter-
native assumptions about curtailment are considered in Section 3.7.

The resulting capacity and energy production are presented in
Table 2. Looking at the ANM case in isolation, capacity in the hybrid
case increases by 70% relative to wind-only and by 30% relative to PV-
only. The energy production benefits are 13% relative to wind-only but
183% relative to PV-only. These changes are considerably larger than
the equivalent for the passive network. Comparison with the passive
cases (Table 1), shows that both individual and hybrid renewable cases
see increased energy production and more available capacity: wind-
only sees growth of 74% in capacity and 56% in energy, PV-only sees an
additional 78% capacity and 60% energy and, most notably, the hybrid
case sees capacity increase by 162% with energy up 73%. The more
balanced capacity split between renewables in the hybrid case with
ANM is clear (PV is now ∼46% of the total, up from 10% in the passive
case) and shows the real value of active control in facilitating new
connections with more diverse resources. The capacity distribution
among different connection locations also shows significant differences
(Fig. 10). For single resources, capacity at individual buses increases by

between 64% and 85% for wind, and 76 to 80% for PV. The hybrid
cases see relative increases of between 144% and 163%. The large in-
creases in capacity are driven by selective use of curtailment with the
optimisation raising capacity until 10% reductions in total production
are seen for each location. This reduces the average capacity factors
across the sites to 34% for wind, 10.7% for PV and 23.2% for the hybrid
combination. The low capacity factor in the hybrid case is simply a
feature of a large proportion of PV in the mix.

With ANM, the voltage-rise issue that was apparent in the passive
network cases is largely solved by actively lowering the secondary
voltage of the transformers to reduce the voltage across the network. As
such, the binding network constraint for the ANM cases switches to the
power flow limits of lines and transformers. In many cases this is the
limit of the 33/11 kV transformers located close to the DG. The oc-
currence of high line-loading (any line or transformer with loading >
98%) in each month is shown in Fig. 11, indicating the utilisation of
network capacity. While all three renewable cases show increased usage
of the network to export energy than the passive case (where no line
reached 98% of limits), the hybrid case shows more utilisation of net-
work in almost every month. By isolating the infrequent periods of very
high joint output, more ‘balanced’ hybrid renewable generation allows
smoother output with less variability in other periods, and therefore
more effective use of network capacity.

3.7. Impact of curtailment rules

With ANM, levels of curtailment for a particular DG depend strongly
on the principles of access (as mentioned in Section 2.3.2), which
govern the sharing of curtailment according to predefined rules. The
analysis has simplified this aspect but the framework can be used to
examine the effect in broad terms by varying the assumptions under-
pinning allowable levels of curtailment.

The main analysis in Section 3.6 uses the assumption that a max-
imum 10% of total production from each site may be curtailed. The
analysis was repeated with two alternative settings for allowable cur-
tailment levels, in order to better understand how curtailment may be
shared:

• Alternative A applies a stricter limit on curtailment and restricts
curtailment to a maximum of 10% per renewable per site;

• Alternative B applies a looser constraint and restricts overall cur-
tailment to 10% across all sites, enabling the optimisation to choose
the most appropriate amount of capacity and curtailment between
wind and PV as well as among DGs.

The results from these analyses are given in Table 3 for the initial
case and the alternatives. These show the alternative cases have optimal
capacities and resource distributions that are very close to the initial
case. Alternative A is generally the same to one decimal place with
Alternative B has around 0.2MW greater overall capacity (< 0.2%
change) as a result of greater ‘freedom’ for the algorithm to choose
between sites. The primary reason for the similarity is that as the main
constraint is at the transformers close to the DG, there is limited scope
to trade-off between resources and sites. Other networks may behave
differently.

Fig. 8. Occurrence of high voltage hours per month for passive network.

Fig. 9. Hosting capacity allocation for different locations for passive network.

Table 2
Hosting capacity and energy production with active network scheme.

Wind PV Hybrid

Wind capacity (MW) 65.2 – 58.1
PV capacity (MW) – 83.0 50.1
Total hosting capacity (MW) 65.2 83.0 108.2
Total delivered energy (GWh) 193.9 77.7 219.8
Total curtailed energy (GWh) 21.5 8.6 24.4
Equivalent capacity factor (%) 34.0 10.7 23.2
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The most significant result is that while the overall change in cur-
tailment volume is virtually zero, there are notable differences in terms
of the relative amounts of curtailment of wind and PV. The main case
allows site level optimisation and tends to curtail wind on average by
6.5% over the sites but curtails PV by 23% on average. By contrast,
alternative A imposes a resource-level constraint with all sites con-
straining wind and PV to 10%, in effect reducing PV curtailment by at
least half but increasing wind curtailment by 50%. Alternative B has
more freedom and constrains wind on average by 6.8% and PV by
21.6%, slightly less extreme than the initial case. There is also some
variation between sites between the 3 cases: curtailment is uniform in
Alternative A; it varies by 5.6–7.9% for wind and 17.5–26% for PV in
the initial case; and by 6.2–8.2% for wind and 15.9–23.9% for PV for
Alternative B. The outcome of this analysis is that the level of curtail-
ment for individual sites and technologies is very sensitive to the un-
derlying assumptions. In particular, it suggests that despite no net gain
overall there could be substantial negative impacts on one technology
and suggests that equitable solutions are required to avoid dispropor-
tionate outcomes.

4. Discussion

This work examined the value of hybrid combinations of renewable
DGs in terms of being able to better use the capacity of the distribution
network for generating and exporting renewable energy, in this case
with wind and PV. This is understood to be the first analysis to speci-
fically link diversity of supply to use of network capacity in this
manner. The diversity in timing between solar and wind output is seen
to be useful in driving this. However, it is important to emphasise that
the network will still be constrained by critical periods of joint max-
imum production and low demand. Therefore, if renewable resources
reach their peak around the same time (e.g. strong wind during a
summer day), even for very few periods of the year, the benefit of
complementarity over the other periods is reduced. This explains the
limited ‘value’ of diversity from hybrid DG seen in the passive network
case. Implementation of advanced network control to actively manage
constraints during these critical periods was anticipated to add sig-
nificant value for the grid integration of hybrid DG. It was clear from
the case study that there were major increases in network capacity and
energy production arising from ANM across the single resource and
hybrid cases. In addition, it was seen that ANM significantly enhanced
the benefit of diversity between wind and PV, relative to the passive
cases.

The relatively high winds and low insolation in Scotland is likely to
have influenced the ‘value’ of diversity in supplies. It might be expected
that the value of hybrid DG in increasing network utilisation and total
energy export would be strengthened in areas where the wind and PV
resources are more comparable. In saying that, the insight gained from
the case study can be generally transferred to other networks and there
would be scope to expand the scope of the analysis to other areas and
alternative combinations of resources. The choice of most appropriate
ANM technology for different networks needs separate, detailed study,
but in general, adaptive voltage control is a useful option where the
voltage issue solely constrains the network, while curtailment can, at
least partially, solve both voltage rise and power flow issues.

There are two main applications of the approach. The first, as em-
ployed in this paper, compares ‘optimal’ combinations of resources at
particular sites and this would be directly applicable to developments in
undeveloped (or ‘greenfield’) networks where it can be used to identify
appropriate shares of capacity at specific locations to guide patterns of
development of different renewables. In practice, DG is rarely located
optimally so the second application would be in networks where there
is existing generation of a dominant technology type. There may be
additional capacity available for renewables that exhibit different
characteristics to the dominant resource. In this case, the approach can
be used by modelling pre-existing generation with fixed capacities but
variable production and the ‘spare’ capacity identified by optimising
the remaining capacity with the complementary technology. This is
especially valuable in areas, such as parts of the UK, where networks
are considered largely ‘full’ as a result of dominant connections from
single resource types.

The ability to exploit complementarity between resources is
strongly dependent not only on the technical feasibility but also the
economic feasibility. This is governed by the capital and operating costs
but also potential revenues which can be negatively influenced by
curtailment levels. With ANM, levels of curtailment for a particular DG
depend strongly on the principles of access. Ultimately these govern
how curtailment is to be shared between DGs and can take a number of
forms, including proportional sharing as well as those based on the
order of connection with earlier connections having priority over later
connections (termed ‘last-in-first-out’). For example, where such ar-
rangements are in force, PV aiming to connect to a wind-dominated
distribution network may be curtailed more severely than wind. The
analysis in Section 3.7 was useful in showing how changes in curtail-
ment ‘sharing’ drove how technologies were curtailed and where. The
analysis showed that there is scope for quite different outcomes for

Fig. 10. Hosting capacity allocation for different locations with active network.

Fig. 11. Occurrence of high line loading hours in each month with active
network.

Table 3
Hosting capacity with different curtailment rules for active network scheme.

Initial case Alternative A Alternative B

Wind capacity (MW) 58.1 58.1 58.0
PV capacity (MW) 50.1 50.1 50.4
Total hosting capacity (MW) 108.2 108.2 108.4
Total delivered energy (GWh) 219.8 219.7 219.6
Total curtailed energy (GWh) 24.4 24.4 24.4
Wind energy curtailed (%) 6.5 10.0 6.8
PV energy curtailed (%) 23.0 10.0 21.6
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individual DG, some of which were potentially detrimental. The eco-
nomics of the different technologies and potential subsidy regimes will
therefore play a big role in determining if such ‘spare’ capacity is ex-
ploitable.

The case study employed wind and PV generation time series based
on modelled data; the overall analysis would work equally well with
measured resource or generation data. The analysis can also be ex-
tended to other renewable resource types. The analysis shown here
employs a single year of wind and PV data which will tend to reduce the
variability in conditions that might be experienced in practice over the
life time of the DG. However, the coincidence technique is very well-
suited to extended lengths of time series as it will reduce the resulting
series to a small number of representative multi-periods. This is an
active area of research with a number of useful contributions in recent
years, e.g. [35].

Availability and use of storage and demand side management,
would also help hybrid DGs to exploit ‘spare room’ in the network by
time-shifting power away from conditions that result in binding con-
straints. While not examined in this paper, such analysis would be va-
luable but is more computationally challenging given the temporal
dependency introduced by storage, which precludes use of the re-
presentative periods technique employed in this paper.

5. Conclusions

Hybrid combinations of resources are recognized as a strategy for
handling the variability of renewables. This paper studies the grid in-
tegration of hybrid renewable generation from the point of view of
efficient use of network capacity. A multi-period, multi-resource AC
optimal power flow approach is used to optimally identify the network
value of hybrid distributed generation connections in maximising total
energy production whilst complying with network operational limits.
The effectiveness of hybrid distributed generation and the optimization
method was examined through comparison with single resource sys-
tems. This study demonstrates that by capturing the complementarity
between different renewables helps hybrid distributed generation to
better exploit available network capacity, enabling more renewable
generation capacity to connect and so raise energy output. In addition,
the efficient use of network from hybrid distributed generation becomes
more pronounced when active network management is involved, which
isolates the infrequent co-occurrence of high outputs.

The network value of hybrid distributed generation is complicated
by network topology, the degree of synergy between renewables and
correlation with local demand. The evaluation approach presented in
this paper allows rapid identification of network-wide benefit of hybrid
distributed generation and the combined value with smart grid con-
trols. It can facilitate the wide deployment of hybrid generation in the
electricity network to promote renewable generation, carbon reduction
and offers assistance in choosing the appropriate active network man-
agement technology to enhance hybrid generation in different net-
works.
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