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A B S T R A C T

Similarity measure of fuzzy numbers plays an important role in the risk analysis problem. Generally, it is tool,
which gives lingustic term to the risk obtained. In recent times, a vast numbers of literature are evident on
application of similarity measure in risk analysis. It has been observed that the existing similarity measure on
fuzzy numbers have numerous drawbacks and limitations. Hence, a robust method of similarity measure is
necessary. With this point of view, a new method to measure the degree of similarity between fuzzy numbers has
been proposed. The method has been discussed based on the concept of value, ambiguity, radius of gyration
point, geometric distance and the height of fuzzy numbers. The concept of value and ambiguity have never been
used in similarity measure of fuzzy numbers. However, the inclusion of these concepts value and ambiguity
contributed in many ways in overcoming the limitations and drawbacks of the existing similarity measures. The
out-performance of the proposed method is illustrated by comparing with existing methods of similarity mea-
sure. Further the proposed method is effectively applied in risk analysis of poultry farming.

1. Introduction

Fuzzy risk analysis has become very popular in recent times as the
knowledge of expressing imprecise quantity in terms of fuzzy numbers
has emerged. Most of the time similarity measure between fuzzy
numbers is used in the risk analysis problem and other decision making
problem. The similarity measures are defined on the different char-
acteristic of the fuzzy number such as geometric distance, center of
gravity (COG), area, radius of gyration (ROG) etc. Further, these mea-
sures are being generalized for use in different types of fuzzy numbers.
It has been observed that the existing similarity measures on fuzzy
numbers bear various limitations and drawbacks.

A review of some of the existing methods to measure the degree of
similarity reveals various limitations and drawbacks. Chen (1996) de-
fined a similarity measure based on the geometric distance. This defi-
nition does not carry the information about the shape of the fuzzy
numbers such as triangular, trapezoidal, etc. Hence, in many circum-
stances this method fails to give a proper degree of similarity between
fuzzy numbers. Hsieh and Chen (1999) proposed a similarity measure
between two fuzzy numbers using graded mean integration re-
presentation distance. This method has no contribution from heights
and shapes of the fuzzy numbers. Hence, the method is confined to
normal fuzzy numbers. As like Hsieh and Chen’s method Lee’s (2002)

method is just confined to normal fuzzy numbers. As such, it is not
going to give correct similarity between fuzzy numbers having different
heights and shapes. So far, the information about the heights is missing
in the similarity measures. Hence, Chen and Chen (2001) developed a
similarity measure for generalized fuzzy number (GFN) using the con-
cept of the COG. Although this method seems to outperform in many
situations, yet drawbacks are obtained in some situations as discussed
in the Section 3. Replacing Chen and Chen’s COG by ROG, Yong,
Wenkang, Feng, and Qi (2004) proposed a new similarity measure and
applied in pattern recognition problems. The method seems very pro-
mising. However, it fails to give proper similarity between crisp-valued
fuzzy numbers. Wei and Chen (2009) proposed a measure based on the
geometric distance and the perimeter of the fuzzy numbers. However,
the method fails to give proper similarity between fuzzy numbers de-
picting similar shape located at different positions. Xu, Shang, Qian,
and Shu (2010) again used the COG and the geometric distance in
measuring the degree of similarity between GFNs. Although the method
is based on GFNs yet it fails to measure similarity between fuzzy
numbers depicting similar shape with different heights. Hejazi,
Doostparast, and Hosseini (2011) used the concept of geometric dis-
tance, perimeter, area and height to discuss the degree of similarity.
However, the drawbacks are pointed out by Patra and Mondal (2015).
Recent study of similarity based on area, geometric distance and height
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was done by Patra and Mondal. In many situations, its drawbacks are
obtained as discussed in Section 3. Moreover, a very recent study by
Khorshidi and Nikfalazar (2017) clearly criticized the study by Patra
and Mondal pointing out its drawbacks. Khorshidi and Nikfalazar
(2017) in 2017 developed a modified method to measure the degree of
similarity. This method is based on the existing concepts such as geo-
metric distance, COG, areas, perimeters and heights of the GFNs. This
method seems to outperform in many situations. Eventually, its draw-
back has been obtained as discussed in Section 3.

As mentioned earlier, similarity measure is often used in the risk
analysis problem. Schmucke (1984) first introduced the fuzzy risk
analysis in production system using the parameters probability of
failure and severity of loss. Different researchers have proposed dif-
ferent methods at different times for the risk analysis problem. Most of
the times, due to its nature the parameters involved in those risk ana-
lysis problems are expressed as linguistic terms. Kangari and Riggs
(1989) proposed a method of risk analysis using linguistic terms. Some
of the studies involving risk analysis are Chen (1996), Chen and Chen
(2001, 2003, 2007), Tang and Chi (2005), Wang and Elhag (2006) etc.
Even in recent years some study focused the idea on risk analysis ex-
pressing the linguistic terms in terms of interval-valued fuzzy numbers
(Gorzalczany, 1987; Guijun & Xiaoping, 1998; Hong & Lee, 2002; Wang
& Li, 1999).

This study conveys that a proper and efficient method to measure
the degree of similarity is lacking. Hence, a robust method of similarity
measure of GFNs has been proposed. The proposed method is based on
the concepts of geometric distance, value, ambiguity, area and heights
of the GFN. The proposed method seems to outperform in all situations
as discussed by the numerical examples in the comparative study in
Section 5. The method has been discussed using the concept of GFN
with different left heights and right heights. The method is not just
confined to GFN with different left heights and right heights, but also
can handle all types of fuzzy numbers. Further, effort has been made to
apply the proposed similarity measure in the risk analysis problem. A
real-life problem of risk analysis in poultry farming has been demon-
strated. The parameters probability of failure and severity of loss are
expressed by linguistic terms. Under the assumed parameters the total
risk of probability of failure using the proposed similarity measure turn
out to be ‘Fairly low’. Hence, under such circumstances a farmer can
successfully establish a poultry farm for self-employment.

The rest of the paper is organized as follows. Section 2 introduces
the basic definitions of GFN and also related definitions to the discus-
sions. Section 3 refers to a brief review of the existing method of si-
milarity measure and also the limitations and drawbacks are pointed
out. Section 4 proposes a new similarity measure of GFN. Also, its
properties and main characteristic are discussed. In Section 5 a com-
parative study through numerical examples to highlight the advantages
of the proposed similarity measure has been performed. In Section 6 a
risk analysis on real-life problem on poultry farming has been per-
formed. Finally, in Section 7 conclusions and main features of the
proposed method are highlighted.

2. Definitions and notations

In this section, brief review of some concepts of GFN with different

left height and right height are put forwarded.

Definition 2.1. If X is a collection of objects, then a fuzzy set A in X is a
set of ordered pairs:

= ∈ →A x μ x x X μ X{( , ( )): , : [0,1]}.A A (1)

Definition 2.2 (Basu, 2005). A null set is denoted by Φ, and is that
fuzzy set for which the membership grade for each element is zero.
Thus,

= ∈ =x μ x x X μ xΦ {( , ( )): , ( ) 0}.A A (2)

Definition 2.3. A fuzzy number Aω is an ordered pair A r A r( ( ), ( ))ω ω of
functions A r( )ω and ⩽ ⩽A r r ω( ),0ω , satisfying the following
properties:

(1) A r( )ω is a bounded monotonic increasing left continuous function
over the interval ω[0, ],

(2) A r( )ω is a bounded monotonic decreasing left continuous function
over the interval ω[0, ],

where ⩽ ⩽ω0 1 is the height.

Consider a trapezoidal fuzzy number =A a a a a ω( , , , ; )ω 1 2 3 4 with
height ω, then the membership function is defined as

=

⎧

⎨
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⎩
⎪
⎪

⩽ ⩽

⩽ ⩽

⩽ ⩽

−
−

−
−

μ x

a x a
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a x a
( )

, if ,

, if ,

, if ,

0, otherwise,

A

ω x a
a a

ω a x
a a

( )
1 2

2 3
( )

3 4
ω

1
2 1

4
4 3

(3)

where ω is the height of the fuzzy number. Then, the functions A r( )ω
and A r( )ω are defined as

= + − = − −A r a r
ω

a a A r a r
ω

a a( ) ( ), ( ) ( ).ω ω1 2 1 4 4 3 (4)

respectively. If =ω 1, then the fuzzy number Aω is called as normal
fuzzy number otherwise non-normal fuzzy number. If =a a2 3, then it is
non-normal triangular fuzzy number.

Chen, Munif, Chen, Liu, and Kuo (2012) first proposed the concept
of GFN with different left heights and right heights. Later its parametric
form has been defined by Chutia and Chutia (2017). Let Aω ω,1 2 is re-
presented by =A a a a a ω ω( , , , ; , )ω ω, 1 2 3 4 1 21 2 on the real line � is called a
GFN with different left heights and right heights, where a a a, ,1 2 3 and a4
are real values, ω1 is called the left height and ω2 is called the right
height of it where ∈ω [0,1]1 and ∈ω [0,1]2 . If = =ω ω 11 2 , then the
GFN Aω ω,1 2 reduces to a normal trapezoidal fuzzy number. If
⩽ = ⩽ω ω0 11 2 , then the fuzzy number Aω ω,1 2 is simply a GFN proposed

by Chen (1985).

Definition 2.4. A GFN Aω ω,1 2 with different heights ω1 and ω2 for
⩽ ⩽r ω ω0 max( , )1 2 is represented as follows:

(1) if <ω ω1 2, then

= ⎧
⎨⎩

⩽ ⩽

⩽ ⩽∼p r
A r A r r ω

A r A r ω r ω
( )

[ ( ), ( )], if 0 ,

[ ( ), ( )], if ,
ω ω ω ω

ω ω ω ω

, , 1

, , 1 2

1 2 1 2

1 2 1 2 (5)

Nomenclature

Aω fuzzy number with height ω
Aω ω,1 2 fuzzy number with left height ω1 and right height ω2
μA membership function fuzzy number A

Aar( ) area of the fuzzy number A
AAmb( ) ambiguity of the fuzzy number A

AVal( ) value of the fuzzy number A

Ix moment of inertia with respect to x-axis
Iy moment of inertia with respect to y-axis
rx radius of gyration point with respect to x-axis
ry radius of gyration point with respect to y-axis
∗ ∗x y( , )A A center of gravity point of the fuzzy number A

P A( ) perimeter of the fuzzy number A
r r( , )x

A
y
A radius of gyration point of the fuzzy number A

S A B( , ) similarity measure between fuzzy numbers A and B
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(2) if >ω ω1 2, then

= ⎧
⎨⎩

⩽ ⩽

⩽ ⩽∼p r
A r A r r ω

A r A r ω r ω
( )

[ ( ), ( )], if 0 ,

[ ( ), ( )], if ,
ω ω ω ω

ω ω ω ω

, , 2

, , 2 1

1 2 1 2

1 2 1 2 (6)

where ⩽ ⩽ω ω0 max( , ) 11 2 and the functions A r A r( ), ( )ω ω ω ω, ,1 2 1 2 and
∼A r( )ω ω,1 2 satisfies the following properties:

(a) A r( )ω ω,1 2 is a bounded monotonic increasing (non-decreasing) left
continuous function over ω[0, ]1 ,

(b) A r( )ω ω,1 2 is a bounded monotonic decreasing (non-increasing) left
continuous function over ω[0, ]2 ,

(c) ∼A r( )ω ω,1 2 is a bounded and monotonic increasing or decreasing left
continuous function over .

This definition is an generalized one on which proper substitution of
= =ω ω ω1 2 (say) will reduce to GFN Aω (Eqs. (4)) with equal heights.

Consider a GFN =A a a a a ω ω( , , , ; , )ω ω, 1 2 3 4 1 21 2 with unequal heights, then
the membership function as shown in Fig. 1 is given by

=
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(7)

where ⩽ ⩽ ⩽ ⩽ω ω0 1,0 11 2 and ω1 may not be equal to ω2. If =ω ω1 2,
then the fuzzy number reduces to non-normal fuzzy number. Thus the
parametric form of the GFN Aω ω,1 2 with different left height and right
height for ⩽ ⩽r0 1 is defined as follows:

(1) If <ω ω1 2, then

=
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(2) If >ω ω1 2, then
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Definition 2.5. Area under the membership function of a GFN
=A a a a a ω ω( , , , ; , )ω ω, 1 2 3 4 1 21 2 , described by the membership function (7)

with different left heights and right heights, is defined as the cardinality
of it. It is given by the integral

∫= = − + −A μ x dx ω a a ω a aar( ) ( ) 1
2

{ ( ) ( )}ω ω a

a
A, 2 4 2 1 3 1ω ω1 2

1

4

1, 2 (10)

Definition 2.6 (Delgado, Vila, and Voxman, 1998). Let a fuzzy number
Aω denoted by the ordered pair A r A r( ( ), ( ))ω ω and →s: [0,1] [0,1] be a
reducing function. Then, the ambiguity of Aω with respect to s is
defined as

∫= −A s r A r A r drAmb( ) ( )( ( ) ( )) .ω ω ω0

1

(11)

Definition 2.7 (Delgado et al., 1998). Let a fuzzy number Aω denoted by
the ordered pair A r A r( ( ), ( ))ω ω and →s: [0,1] [0,1] be a reducing
function. Then, the value of Aω with respect to s is defined as

∫= +A s r A r A r drVal( ) ( )( ( ) ( )) .ω ω ω0

1

(12)

Hence, the definition of the value and the ambiguity of an arbitrary
fuzzy number with different heights with respect to the parametric
forms given in Eqs. (5) and (6) are as follows:

Definition 2.8. Let Aω ω,1 2 be an arbitrary fuzzy number with different
heights ω1 and ω2, then the value with respect to the reducing function s
is defined as

(1) If <ω ω1 2, then

∫ ∫= + +

+ ∼
A s r A r A r dr s r A r

A r dr

Val( ) ( )( ( ) ( )) ( )( ( )

( )) .

ω ω
ω

ω ω ω ω ω

ω
ω ω

ω ω

, 0 , , ,

,

1 2
1

1 2 1 2
1

2
1 2

1 2 (13)

(2) If >ω ω1 2, then

∫ ∫= + +

+

∼A s r A r A r dr s r A r

A r dr

Val( ) ( )( ( ) ( )) ( )( ( )

( )) .

ω ω
ω

ω ω ω ω ω

ω
ω ω

ω ω

, 0 , , ,

,

1 2
2

1 2 1 2
2

1
1 2

1 2 (14)

(3) If = =ω ω ω1 2 , then Aω ω,1 2 would reduce to Aω; hence,

∫= +A s r A r A r drVal( ) ( )( ( ) ( )) .ω
ω

ω ω0 (15)

Definition 2.9. Let Aω ω,1 2 be an arbitrary fuzzy number with different
heights ω1 and ω2, then the ambiguity with respect to the reducing
function s is defined as

(1) If <ω ω1 2, then

∫ ∫= − +

− ∼
A s r A r A r dr s r A r

A r dr

Amb( ) ( )( ( ) ( )) ( )( ( )

( )) .

ω ω
ω

ω ω ω ω ω

ω
ω ω

ω ω

, 0 , , ,

,

1 2
1

1 2 1 2
1

2
1 2

1 2 (16)

(2) If >ω ω1 2, then

∫ ∫= − +

−

∼A s r A r A r dr s r A r

A r dr

Amb( ) ( )( ( ) ( )) ( )( ( )

( )) .

ω ω
ω

ω ω ω ω ω

ω
ω ω

ω ω

, 0 , , ,

,

1 2
2

1 2 1 2
2

1
1 2

1 2 (17)

(3) If = =ω ω ω1 2 , then Aω ω,1 2 would reduce to Aω; hence,

∫= −A s r A r A r drAmb( ) ( )( ( ) ( ))ω
ω

ω ω0 (18)

Definition 2.10. Assume that =A a a a a ω ω( , , , ; , )ω ω, 1 2 3 4 1 21 2 and
= ′ ′′ ′B b b b b ω ω( , , , ; , )ω ω, 1 2 3 4 1 21 2 are two GFNs where =a b i, , 1,2,3,4i i are real

values and ⩽ ⩽ ⩽ ′ ′ ⩽ω ω ω ω0 , 1,0 , 11 2 1 2 . The arithmetic operation for
these GFNs are defined as below:

(1) Addition of fuzzy numbers ⊕:

a1 a4

ω 1

a2 a3

ω 2

Fig. 1. Graphical representation of GFN with different left height and right height.
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⊕ = ⊕ ′ ′

= + + + + ′ ′
′ ′A B a a a a ω ω b b b b ω ω

a b a b a b a b ω ω ω ω

( , , , ; , ) ( , , , ; , ),

( , , , ;min( , ),min( , )),

ω ω ω ω, , 1 2 3 4 1 2 1 2 3 4 1 2

1 1 2 2 3 3 4 4 1 2 1 2

1 2 1 2

where ai and bi for =i 1,2,3,4 are any real numbers.
(2) Subtraction of fuzzy numbers ⊖:

⊖ = ⊖ ′ ′

= − − − − ′ ′
′ ′A B a a a a ω ω b b b b ω ω

a b a b a b a b ω ω ω ω

( , , , ; , ) ( , , , ; , ),

( , , , ;min( , ),min( , )),

ω ω ω ω, , 1 2 3 4 1 2 1 2 3 4 1 2

1 4 2 3 3 2 4 1 1 2 1 2

1 2 1 2

where ai and bi for =i 1,2,3,4 are any real numbers.
(3) Multiplication of fuzzy numbers ⊗:

⊗ = ⊗ ′ ′

= ′ ′
′ ′A B a a a a ω ω b b b b ω ω

a b a b a b a b ω ω ω ω

( , , , ; , ) ( , , , ; , ),

( , , , ;min( , ),min( , )),

ω ω ω ω, , 1 2 3 4 1 2 1 2 3 4 1 2

1 1 2 2 3 3 4 4 1 2 1 2

1 2 1 2

where ai and bi for =i 1,2,3,4 are any real numbers.
(4) Division of fuzzy numbers ø:

= ′ ′

= ÷ ÷ ÷ ÷ ′ ′
′ ′A B a a a a ω ω b b b b ω ω

a b a b a b a b ω ω ω ω

ø ( , , , ; , )ø( , , , ; , ),

( , , , ;min( , ),min( , )),

ω ω ω ω, , 1 2 3 4 1 2 1 2 3 4 1 2

1 4 2 3 3 2 4 1 1 2 1 2

1 2 1 2

where ai for =i 1,2,3,4 are any positive real numbers and bi for
=i 1,2,3,4 are any non-zero positive real numbers.

Definition 2.11 (Yong et al., 2004). Consider an element dR of
coordinates x and y of an area R located in the xy-plane as shown in
Fig. 2. Then, the moment of inertia of the area R with respect to the x
and y axis are defined, respectively, as

∫=I y dRx R
2

(19)

and

∫=I x dR.y R
2

(20)

Definition 2.12 (Yong et al., 2004). The ROG point of an area R with
respect to x and y axis rx and ry are given by the relations =I r Rx x

2 and
=I r Ry y

2 respectively. Then, rx and ry are defined, respectively, as

=r I
R

,x
x

(21)

and

=r
I
R

.y
y

(22)

Note 1. Hereafter, the heights of fuzzy number will not be denoted as
suffices in the fuzzy number. Hence, it will be represented just by the
notation =A a a a a ω ω( , , , ; , )1 2 3 4 1 2 which will be well understood as fuzzy
number with left height ω1 and right height ω2. Also GFN
=A a a a a ω( , , , ; )1 2 3 4 will be understood as fuzzy number with height ω.

3. Review of some existing similarity measures between fuzzy
numbers and its limitations

In this section, a brief review some of the existing similarity mea-
sures of fuzzy numbers have been forwarded. It has been observed that

the similarity measures available in the literature have some drawbacks
and limitations. Hence, the drawbacks and limitations of different
methods are also discussed through numerical examples.

3.1. Chen’s similarity measures between fuzzy numbers

Consider two GFNs given by =A a a a a ω ω( , , , ; , )1 2 3 4 1 2 and
= ′ ′B b b b b ω ω( , , , ; , )1 2 3 4 1 2 , then Chen (1996) defined the degree of simi-

larity S A B( , ) between the fuzzy numbers A and B as follows:

= −
∣ − ∣=S A B
a b

( , ) 1
Σ

4
.i i i1

4

(23)

where ⩽ ⩽S A B0 ( , ) 1.
Consider the fuzzy numbers = =A B(0.2,0.3,0.4,0.5;1.0,1.0),

(0.5,0.65,0.65,0.8;1.0,1.0) and =C (0.5,0.6,0.7,0.8;1.0,1.0) as shown in
Fig. 3(a) and (b). Then, the similarity measures are given as below.

= − + + + =

= − + + + =

( )
( )

S A B

S A C

( , ) 1 (0.30 0.35 0.25 0.30) 0.7

( , ) 1 (0.30 0.30 0.30 0.30) 0.7

1
4

1
4

Now, the similarity measure for the sets A B( , ) and A C( , ) are the
same, but one can see from Fig. 3(a) and (b) that the similarity mea-
sures between these two sets cannot be same. Hence, there are draw-
backs in the method proposed by Chen (1996). This drawback might
have been overcome by the inclusion of the area difference between the
fuzzy numbers in the sets. This will be further discussed in the later
section in comparison to the proposed method.

3.2. Hsieh and Chen’s similarity measures between fuzzy numbers

Consider the GFNs given by =A a a a a ω ω( , , , ; , )1 2 3 4 1 2 and
= ′ ′B b b b b ω ω( , , , ; , )1 2 3 4 1 2 , then the similarity measure of these GFNs using

graded mean integration representation distance was forwarded by
Hsieh and Chen (1999). This measure follows as

=
+

S A B
d A B

( , ) 1
1 ( , )

,
(24)

where = ∣ − ∣d A B R A R B( , ) ( ) ( ) and

x

y

r

dR
R

x

y

Fig. 2. The moment of inertia of an area R.

Fig. 3. Graphical representation of different sets of GFNs
A B, and C.
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= + + +R A a a a a( ) 2( )
6

,1 2 3 4
(25)

= + + +R B b b b b( ) 2( )
6

.1 2 3 4
(26)

Consider the sets of GFNs A B( , ) and A C( , ) shown in Fig. 3(a) and (b).
Then, =S A B( , ) 0.769 and =S A C( , ) 0.769 which are again same. As
discussed earlier similarity measure between these two sets cannot be
same which is evident from the graphical representation in Fig. 3(a)
and (b). Hence, there are drawbacks in this method.

3.3. Lee’s similarity measures between fuzzy numbers

Lee (2002) proposed a similarity measure between two GFNs
=A a a a a ω ω( , , , ; , )1 2 3 4 1 2 and = ′ ′B b b b b ω ω( , , , ; , )1 2 3 4 1 2 as

= −
∥ − ∥

∥ ∥
× −S A B

A B
U

( , ) 1 4 ,
l

p
1p

(27)

where

∑∥ − ∥ = ⎛

⎝
⎜ ∣ − ∣ ⎞

⎠
⎟

=

A B a b( )l
i

i i
p

p

1

4
1

p
(28)

and ∥ ∥ = −U U Umax( ) min( ), and U is the universe of discourse.
Consider the sets of GFNs A B( , ) and A C( , ) as shown in Fig. 3(a) and

(b). As discussed earlier the similarity measure between these sets
cannot be same, but by Lee’s method (Lee, 2002) =S A B( , ) 0.50 and

=S A C( , ) 0.50. Consider another set of GFN
= =P Q (1.0,1.0,1.0,1.0;1.0,1.0) as shown in Fig. 4 which are two iden-

tical real numbers, infact crisp-valued fuzzy numbers. According to
Lee’s method (Lee, 2002) = ∞S P Q( , ) . Hence, it can be seen that this
method cannot properly describe the similarity degree between two
identical crisp-valued fuzzy numbers. Intuitively, the similarity mea-
sure between P and Q should be 1.

In the above discussed method it is being observed that the formula
S A B( , ) is independent of the heights of the fuzzy numbers. Hence, those
limitations arises. To overcome such limitations following are the
methods that had been developed.

3.4. Chen and Chen’s similarity measures between fuzzy numbers

Chen and Chen (2001) developed a similarity measure between GFN
with different heights through the concept of COG. If
=A a a a a ω( , , , ; )A1 2 3 4 is a GFN with height ⩽ ⩽ω0 1A , then COG point
∗ ∗x y( , )A A is defined as follows:

=
⎧

⎨
⎪

⎩⎪

≠ < ⩽

= < ⩽

∗
× ⎛
⎝
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, if and 0 1,
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(29)

=
× + + + −∗
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x
y a a a a ω y

ω
( ) ( )( )

2
.A

A A A

A

3 2 4 1

(30)

Then, the degree of similarity measure S A B( , ) between the GFNs
=A a a a a ω( , , , ; )A1 2 3 4 and =B b b b b ω( , , , ; )B1 2 3 4 and with different heights ωA

and ωB is defined as

∑= ⎛

⎝
⎜ − ∣ − ∣⎞

⎠
⎟ − ∣ − ∣ ×

=

∗ ∗
∗ ∗

∗ ∗S A B a b x x
y y
y y

( , ) 1 1
4

(1 )
min( , )
max( , )

,
i

i i A B
B s s A B

A B1

4
( , )A B

(31)

where = − = −s a a s b b,A B4 1 4 1 and

= ⎧
⎨⎩

+ >
+ =

B s s
s s
s s

( , )
1, if 0;
0, if 0.A B

A B

A B (32)

Consider the sets A A( , )1 2 and A A( , )1 3 defined by the GFNs
= =A A(0.000,0.225,0.225,0.450;0.225,0.225), (0.450,0.675,0.675,0.900;0.255,0.255)1 2

and =A3 , , , ; ,(0.675 0.675 0.675 0.675 0.150 0.150) as shown in Fig. 5(a) and (b).
Now by Chen and Chen =S A A( , ) 0.30451 2 and =S A A( , ) 0.30451 3 , but the
respective figures depicts that these are different sets of GFNs. Hence, there
are some drawbacks in Chen and Chen’s method.

3.5. Yong et al.’s similarity measures between fuzzy numbers

In 2004, Yong et al. (2004) proposed another similarity measure of
GFNs with different heights by replacing Chen and Chen’s COG by ROG.
If =A a a a a ω( , , , ; )A1 2 3 4 is a GFN with height ⩽ ⩽ω0 1A , then ROG point
r r( , )A

x
A
y using the Eqs. (21) and (22) in Definition 2.12 are obtained as

=
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= = =
+ +
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r
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where
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Then, the degree of similarity measure S A B( , ) between GFNs
=A a a a a ω( , , , ; )A1 2 3 4 and =B b b b b ω( , , , ; )B1 2 3 4 and with different heights ωA

and ωB is defined as
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where = − = −s a a s b b,A B4 1 4 1 and

= ⎧
⎨⎩

+ >
+ =

B s s
s s
s s

( , )
1, if 0;
0, if 0.A B

A B

A B (40)

Consider the sets A B( , ) and A C( , ) of GFNs
where = =A B(0.5,0.5,0.5;1.0,1.0), (0.0,0.0,0.0,0.0;1.0,1.0) and =C
(1.0,1.0,1.0,1.0;1.0,1.0) shown in Fig. 6(a) and (b). The sets A B( , ) and A C( , )
are non-identical crisp-valued fuzzy numbers, but Yong et al.’s degree of
similarity is 0.5 for each. This signifies that the A B( , ) and A C( , ) are
identical. However, the graphical representations depict that similarity
should not be same. Hence, there are drawbacks in this method.

3.6. Wei and Chen’s similarity measures between fuzzy numbers

The similarity measure by Wei and Chen (2009) between the GFNs

1.0

1.0

P = (1.0, 1.0, 1.0, 1.0;1.0, 1.0)
Q = ( 1.0, 1.0, 1.0, 1.0;1.0, 1.0)

Fig. 4. Graphical representation of different sets of the GFNs P and Q.
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=A a a a a ω( , , , ; )A1 2 3 4 and =B b b b b ω( , , , ; )B1 2 3 4 is defined as
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⎝
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⎟ ×

+
+=

S A B a b P A P B ω ω
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where

= − + − + − + + − +P A a a a a a a ω a a ω( ) ( ) ( ) ( ) ( ) ,A A3 2 4 1 1 2
2 2

3 4
2 2

(42)

= − + − + − + + − +P B b b b b b b ω b b ω( ) ( ) ( ) ( ) ( ) .B B3 2 4 1 1 2
2 2

3 4
2 2

(43)

are the perimeters of the GFNs A and B respectively.
Consider the sets of GFNs P P( , )1 2 and P P( , )1 3 , shown in Fig. 7(a) and

(b) where P P,1 2 and P3 are defined as
= =P P(0.3,0.4,0.6,0.7;1.0,1.0), (0.3,0.4,0.4,0.5;1.0,1.0)1 2 and =P3

(0.4,0.5,0.5,0.6;1.0,1.0) respectively. According to Wei and Chen
= =S P P S P P( , ) ( , ) 0.80031 2 1 3 , but these are different sets of GFNs. This

shows that the method bears some drawbacks.

3.7. Xu et al.’s similarity measures between fuzzy numbers

Xu et al. (2010) proposed a new method based on the COG to cal-
culate the similarity measure between GFNs. For the GFN
=A a a a a w( , , , ; )A1 2 3 4 , the COG point ∗ ∗x y( , )A A is defined as follows:
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(45)

Then, the similarity measure between the GFNs =A a a a a ω( , , , ; )A1 2 3 4

and =B b b b b ω( , , , ; )B1 2 3 4 is defined as

∑= − ∣ − ∣ −
=

S A B a b d A B( , ) 1 1
8

1
2

( , )
i

i i
1

4

(46)

where

=
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d A B
x x y y

( , )
( ) ( )

1.25
.A B A B

2 2

(47)

Consider the sets of GFNs A A( , )1 2 and A A( , )1 3 shown in Fig. 5(a) and

(b). These sets of GFNs are different but similarity measure by Xu et al.
are = =S A A S A A( , ) ( , ) 0.57371 2 1 3 . Hence, Xu et al.’s method bear some
drawbacks.

3.8. Hejazi et al.’s similarity measures between fuzzy numbers

In 2011, Hejazi et al. (2011) proposed another similarity measure
between the GFNs =A a a a a ω( , , , ; )A1 2 3 4 and =B b b b b ω( , , , ; )B1 2 3 4 which is
defined as

∑= ⎛

⎝
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⎟ ×

× +
+

=
S A B a b P A P B
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i
i i

A B
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1

4

(48)

where P A( ) and P B( ) are as defined in Eqs. (42) and (43) respectively
and Aar( ) and Bar( ) are defined as

= + − −A ω a a a aar( ) ( )
2

A 4 3 2 1
(49)

and

= + − −B ω b b b bar( ) ( )
2

B 4 3 2 1
(50)

respectively.
Consider the sets of GFNs P P( , )1 2 and P P( , )1 3 shown in Fig. 7(a) and

(b). The similarity degree are = =S P P S P P( , ) ( , ) 0.64481 2 1 3 . It can be seen
that the different sets of GFNs have same similarity degree which reflect
the drawbacks of the method.

3.9. Patra and Mondal’s similarity measures between fuzzy numbers

Recently, Patra and Mondal (2015) formulated a new similarity
measure between GFNs based on three parameters geometric distance,
areas and heights. Let =A a a a a ω( , , , ; )A1 2 3 4 and =B b b b b ω( , , , ; )B1 2 3 4 be two
GFNs, then the similarity measure is defined as

∑= ⎛

⎝
⎜ − ∣ − ∣⎞

⎠
⎟ × ⎛

⎝
− ∣ − ∣ + ∣ − ∣ ⎞
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S A B a b A B ω ω( , ) 1 1
4

1 1
2

{ ar( ) ar( ) }
i

i i A B
1

4

(51)

where A A( ) and A B( ) are the areas of the GFNs A and B as defined in
Eqs. (49) and (50) respectively.

Consider the sets of GFNs B B( , )1 2 and shown in Fig. 8(a) and (b).
These sets are different sets of GFNs. However, Patra and Mondal’s

(a)

0.0 0.45 0.90

0.225

0.225 0.65

A1 = (0.0, 0.225, 0.225, 0.45;0.225, 0.225)
A2 = ( 0.45, 0.675, 0.675, 0.9;0.225, 0.225)

(b)

0.0 0.45

0.225
0.15

0.225 0.65

A1 = (0.0, 0.225, 0.225, 0.45;0.225, 0.225)
A3 = ( 0.675, 0.675, 0.675, 0.675;0.15, 0.15)

Fig. 5. Graphical representation of different sets of fuzzy
numbers constructed from A A,1 2, and A3.

(a)

0.5

1.0

A = (0.5, 0.5, 0.5, 0.5;1.0, 1.0)
B = ( 0.0, 0.0, 0.0, 0.0;1.0, 1.0)

(b)

0.5 1.0

1.0

A = (0.5, 0.5, 0.5, 0.5;1.0, 1.0)
C = ( 1.0, 1.0, 1.0, 1.0;1.0, 1.0)

Fig. 6. Graphical representation of different sets A B( , ) and
A C( , ) of GFNs.

R. Chutia, M.K. Gogoi Computers & Industrial Engineering 115 (2018) 543–558

548



similarity measures are = =S B B S B B( , ) ( , ) 0.881 2 1 3 . Thus there are some
drawbacks in this method.

Consider another sets of GFNs P P( , )1 2 and P P( , )1 3 as shown in Fig. 7(a)
and (b). Then, according to Patra and Mondal

= − + + +

− − + − =

= − + + +

− − + − =

( )(
)

( )(
)

S P P

S P P

( , ) 1 (0.0 0.0 0.2 0.2) 1

((0.3 0.1) (1.0 1.0)) 0.81

( , ) 1 (0.1 0.1 0.1 0.1) 1

((0.3 0.1) (1.0 1.0)) 0.81.

1 2
1
4

1
2

1 3
1
4

1
2

This shows that the =S P P S P P( , ) ( , )1 2 1 3 . But these two are different
sets of GFNs. Hence, there are some drawbacks in this method.

3.10. Khorshidi and Nikfalazar’s similarity measures between fuzzy
numbers

Very recently in 2017, Khorshidi and Nikfalazar (2017) proposed a
modified method on similarity measure using the existing concepts
geometric distance, area, height and perimeter of GFNs. Consider the
GFNs =A a a a a ω( , , , ; )A1 2 3 4 and =B b b b b ω( , , , ; )B1 2 3 4 , then the similarity
measure is defined as

∑
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i i
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(52)

where d A B( , ) is given by the Eq. (47) of Xu et al. (2010), Aar( ) and
Bar( ) are the areas of the GFNs A and B as defined in Eqs. (49) and (50)

respectively, and P A( ) and P B( ) are the perimeters of GFNs A and B as
defined in (42) and (43) respectively of Wei and Chen (2009).

Consider the sets A B( , ) and A C( , ) of GFNs where
= =A B(0.5,0.5,0.5,0.5;1.0,1.0), (0.0,0.0,0.0,0.0;1.0,1.0) and =C

(1.0,1.0,1.0,1.0;1.0,1.0) shown in Fig. 6(a) and (b). The sets A B( , ) and
A C( , ) are non-identical crisp-valued fuzzy numbers, but Yong et al.’s
degree of similarity is 0.7764 for each. This signifies that the A B( , ) and
A C( , ) are identical. However, the graphical representations depict that
similarity should not be same. Hence, there are drawbacks in this

method.
These counter examples are evident that the existing methods of

similarity measure cannot properly give the correct result. Thus, it is
utmost necessary to develop a new and complete method to determine
the degree of similarity between GFNs. Hence, an effort has been made
to develop a method so that such drawbacks and limitations are
eliminated. In the next section the definition of the proposed similarity
measure and some related properties are described.

4. Proposed similarity measure between GFNs with different left
heights and right heights

For now, it is understood that existing methods of similarity mea-
sure between GFNs often encounter with limitations and drawbacks.
Hence, a new similarity measure is being proposed. The proposed
method is based on ambiguity, value, area, left height and right height
of GFN.

Definition 4.1. If =A a a a a ω ω( , , , ; , )1 2 3 4 1 2 and = ′ ′B b b b b ω ω( , , , ; , )1 2 3 4 1 2 are
two non-empty GFNs with different left heights and right heights. Then,
the degree of similarity between these two GFNs, denoted as S A B( , ), is
defined as
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(53)

where A B A BAmb( ),Amb( ),Val( ),Val( ) are the values and the ambiguity
of GFNs A and B which are obtained using Definitions 2.8 and 2.9
respectively as

= − + − + −
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(a)

0.3 0.4 0.6 0.7

1.0

0.5

P1 = (0.3, 0.4, 0.6, 0.7;1.0, 1.0)
P2 = ( 0.3, 0.4, 0.4, 0.5;1.0, 1.0)

(b)

0.3 0.4 0.6 0.7

1.0

0.5 0.6

P1 = (0.3, 0.4, 0.6, 0.7;1.0, 1.0)
P3 = ( 0.4, 0.5, 0.5, 0.6;1.0, 1.0)

Fig. 7. Graphical representation of different sets P P( , )1 2

and P P( , )1 3 of GFNs.

(a)

0.1 0.4

0.8

0.2 0.3

1.0

B1 = (0.1, 0.2, 0.3, 0.4;1.0, 1.0)
B2 = ( 0.1, 0.2, 0.3, 0.4;0.8, 0.8)

(b)

0.1 0.4

0.8

0.2 0.3

0.6

B3 = (0.1, 0.2, 0.3, 0.4;0.6, 0.6)
B2 = ( 0.1, 0.2, 0.3, 0.4;0.8, 0.8)

Fig. 8. Graphical representation of the GFNs B B,1 2 and B3.
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and the r r r, ,x
A

x
B

y
A and ry

B are the elements of the ROG points of the GFNs
A and B as defined in Eqs. (68) and (69) respectively. The detail
derivations of the ROG points for the GFN are available in the appendix.

The proposed similarity measure can overcome all the mentioned
drawbacks and limitations of the above discussed methods. These will
be discussed through numerical examples in a later section. Further,
this method can measure the degree of similarity between any type of
GFNs. Also the larger the value of S A B( , ) gives the more similarity
between the GFNs. Here are some of the properties of the proposed
definition of similarity measure of GFNs.

Property 4.1. If A and B are two GFNs, then =S A B( , ) 1 if and only if
GFNs A and B are identical.

Proof. Consider two GFNs =A a a a a ω ω( , , , ; , )1 2 3 4 1 2 and
= ′ ′B b b b b ω ω( , , , ; , )1 2 3 4 1 2 with different left height and right heights.

Assume that A and B are identical, then =a bi i for
= = = = ′ = ′ =i A B A B ω ω ω ω r r1,2,3,4,Amb( ) Amb( ),Val( ) Val( ), , , x

A
x
B

1 1 2 2
and =r ry

A
y
B. Hence, by the definition of the proposed similarity

measure,
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Conversely, let =S A B( , ) 1, then
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= ′ω ω2 2. Thus A and B are identical. □
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Proof. Since A and B are real numbers; hence,
= = =A B A aAmb( ) 0.0,Amb( ) 0.0,Val( ) and =B bVal( ) . Also,

= = =r r a r, ,x
A

y
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x
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and =r by
B . Hence, by the definition of the

proposed similarity measure
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Property 4.3. =S A B S B A( , ) ( , ).

Proof. Let =A a a a a ω ω( , , , ; , )1 2 3 4 1 2 and = ′ ′B b b b b ω ω( , , , ; , )1 2 3 4 1 2 be two
GFNs. Then, by the definition of the proposed similarity measure
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Property 4.4. If A B, and C are GFNs such that ⊂ ⊂A B C, then
>S A B S A C( , ) ( , ) and >S B C S A C( , ) ( , ).

Proof. Consider the GFNs = = ′ ′A a a a a ω ω B b b b b ω ω( , , , ; , ), ( , , , ; , )1 2 3 4 1 2 1 2 3 4 1 2
and = ″ ″C c c c c ω ω( , , , ; , )1 2 3 4 1 2 such that ⊂ ⊂A B C. Hence, the relations
⩽ ⩽ ⩽ ⩽ ⩽ ⩽ ⩽ ⩽ ⩽ ′ ⩽ ″ ⩽c b a c b a a b c a b c ω ω ω ω, , , , ,1 1 1 2 2 2 3 3 3 4 4 4 1 1 1 2
′ ⩽ ″ ⩽ ⩽ω ω r r r, x

A
x
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2 2 and ⩽ ⩽r r ry
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y
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y
C are obtained and valid. The

similarity measures S A B( , ) and S A C( , ) are defined as
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Now the following relations are valid:
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Thus it can be concluded that >S A B S A C( , ) ( , ). Similarly it can be
proved that >S B C S A C( , ) ( , ). □

Property 4.5. Let A B, and C are GFNs such that =S A B S A C( , ) ( , ), then
=S B C( , ) 1.

Proof. Let ≠S B C( , ) 1, then B and C are non-identical. Trivially,
≠S A B S A C( , ) ( , ). Hence, by the proof of contrapositive if
=S A B S A C( , ) ( , ), then =S B C( , ) 1. □

Property 4.6. If =A a a a a ω ω( , , , ; , ) and = ′ ′B b b b b ω ω( , , , ; , ), then
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Proof. The proof is very trivial. □

Property 4.7. If =A ω ω(0,0,0,0; , ) and = ′ ′B ω ω(0,0,0,0; , ), then

′

′
=
⎧
⎨
⎩

− ∣ − ′∣ > ′

− ∣ − ′∣ < ′
S A B

ω ω ω ω

ω ω ω ω
( , )

(1 ) , if ;

(1 ) , if ;

ω
ω
ω
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Proof. The proof is very trivial. □

Property 4.8. If =A a b c d ω ω( , , , ; , )1 2 and = ′ ′B a b c d ω ω( , , , ; , )1 2 , then

Set 1

0.1 0.4

1.0

0.2 0.3

A = (0.1, 0.2, 0.3, 0.4;1.0, 1.0)
B = ( 0.1, 0.2, 0.3, 0.4;1.0, 1.0)

Set 2

0.5

1.0

A = (0.5, 0.5, 0.5, 0.5;1.0, 1.0)
B = ( 0.0, 0.0, 0.0, 0.0;1.0, 1.0)

Set 3

0.5 1.0

1.0

A = (0.5, 0.5, 0.5, 0.5;1.0, 1.0)
B = ( 1.0, 1.0, 1.0, 1.0;1.0, 1.0)

Set 4

0.1 0.4 0.6

1.0

0.2 0.3

A = (0.1, 0.2, 0.3, 0.4;1.0, 1.0)
B = ( 0.3, 0.45, 0.45, 0.6;1.0, 1.0)

Set 5

0.1 0.4 0.7

1.0

0.2 0.3 0.55

A = (0.1, 0.2, 0.3, 0.4;1.0, 1.0)
B = ( 0.4, 0.55, 0.55, 0.7;1.0, 1.0)

Set 6

0.1 0.4 0.5 0.8

1.0

0.2 0.3 0.65

A = (0.1, 0.2, 0.3, 0.4;1.0, 1.0)
B = ( 0.5, 0.65, 0.65, 0.8;1.0, 1.0)

Set 7

0.1 0.4 0.6

1.0

0.2 0.3 0.5

A = (0.1, 0.2, 0.3, 0.4;1.0, 1.0)
B = ( 0.3, 0.4, 0.5, 0.6;1.0, 1.0)

Set 8

0.1 0.4 0.7

1.0

0.2 0.3 0.5 0.6

A = (0.1, 0.2, 0.3, 0.4;1.0, 1.0)
B = ( 0.4, 0.5, 0.6, 0.7;1.0, 1.0)

Set 9

0.1 0.4 0.5 0.8

1.0

0.2 0.3 0.70.6

A = (0.1, 0.2, 0.3, 0.4;1.0, 1.0)
B = ( 0.5, 0.6, 0.7, 0.8;1.0, 1.0)

Set 10

0.1 0.7

1.0

0.3 0.50.4

A = (0.1, 0.4, 0.4, 0.7;1.0, 1.0)
B = ( 0.3, 0.4, 0.4, 0.5;1.0, 1.0)

Set 11

1.0

1.0

0.5

A = (1.0, 1.0, 1.0, 1.0;1.0, 1.0)
B = ( 1.0, 1.0, 1.0, 1.0;0.5, 0.5)

Set 12

0.2 0.3

1.0

A = (0.2, 0.2, 0.2, 0.2;1.0, 1.0)
B = ( 0.3, 0.3, 0.3, 0.3;1.0, 1.0)

Set 13

0.2 0.3 0.5 0.6

1.0

0.4 0.5

A = (0.2, 0.3, 0.5, 0.6;1.0, 1.0)
B = ( 0.3, 0.4, 0.4, 0.5;1.0, 1.0)

Set 14

0.2 0.3 0.5 0.6

1.0

0.4

A = (0.2, 0.3, 0.5, 0.6;1.0, 1.0)
B = ( 0.2, 0.3, 0.3, 0.4;1.0, 1.0)

Set 15

0.4 0.5 0.6 0.9

1.0

A = (0.4, 0.4, 0.5, 0.5;1.0, 1.0)
B = ( 0.6, 0.6, 0.9, 0.9;1.0, 1.0)

Fig. 9. Different sets of GFNs for comparative study in Section 5.
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Proof. The proof is very trivial. □

Property 4.9. ⩽ ⩽S A B0 ( , ) 1.

Proof. Let =A a a a a ω ω( , , , ; , )1 2 3 4 1 2 and = ′ ′B b b b b ω ω( , , , ; , )1 2 3 4 1 2 be two GFNs
such that ⩽ ⩽ ⩽ ⩽ ⩽a a a a0 11 2 3 4 and ⩽ ⩽ ⩽ ⩽ ⩽b b b b0 11 2 3 4 .

Then, by the definition of the proposed similarity measure
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1
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1 1 2 2

As ∣ − ∣ ⩾ ∣ − ∣ ⩾A B A BAmb( ) Amb( ) 0, Val( ) Val( ) 0 and ⩽0

Set 16

0.4 0.5 0.7 0.8

1.0

A = (0.4, 0.4, 0.5, 0.5;1.0, 1.0)
B = ( 0.7, 0.7, 0.8, 0.8;1.0, 1.0)

Set 17

0.1 0.2

1.0

A = (0.1, 0.2, 0.2, 0.2;1.0, 1.0)
B = ( 0.1, 0.1, 0.1, 0.2;1.0, 1.0)

Set 18

0.1 0.20.15 0.25

1.0

A = (0.1, 0.2, 0.2, 0.2;1.0, 1.0)
B = ( 0.15, 0.25, 0.25, 0.25;1.0, 1.0)

Set 19

0.1 0.70.2 0.60.3 0.4 0.5

1.0

A = (0.2, 0.3, 0.5, 0.6;1.0, 1.0)
B = ( 0.1, 0.4, 0.4, 0.7;1.0, 1.0)

Set 20

0.80.2 0.60.3 0.4 0.70.5

1.0

A = (0.2, 0.3, 0.5, 0.6;1.0, 1.0)
B = ( 0.2, 0.5, 0.5, 0.8;1.0, 1.0)

Set 21

0.1 0.40.25

1.0
0.8

A = (0.1, 0.25, 0.25, 0.4;1.0, 1.0)
B = ( 0.1, 0.25, 0.25, 0.4;0.8, 0.8)

Set 22

0.1 0.40.25

0.8
0.6

A = (0.1, 0.25, 0.25, 0.4;0.6, 0.6)
B = ( 0.1, 0.25, 0.25, 0.4;0.8, 0.8)

Set 23

0.6

1.0

A = (0.0, 0.0, 0.0, 0.0;1.0, 1.0)
B = ( 0.0, 0.0, 0.0, 0.0;0.6, 0.6)

Set 24

0.6

1.0

A = (0.0, 0.0, 0.0, 0.0;1.0, 1.0)
B = ( 0.6, 0.6, 0.6, 0.6;1.0, 1.0)

Set 25

0.1 0.4

0.8

0.2 0.3

1.0

A = (0.1, 0.2, 0.3, 0.4;1.0, 1.0)
B = ( 0.1, 0.2, 0.3, 0.4;0.8, 0.8)

Set 26

0.1 0.4

0.8

0.2 0.3

0.6

A = (0.1, 0.2, 0.3, 0.4;0.6, 0.6)
B = ( 0.1, 0.2, 0.3, 0.4;0.8, 0.8)

Set 27

1.0

0.5

0.5

A = (0.5, 0.5, 0.5, 0.5;1.0, 1.0)
B = ( 0.0, 0.0, 0.0, 0.0;0.5, 0.5)

Set 28

0.0 0.45 0.90

0.225

0.225 0.65

A = (0.0, 0.225, 0.225, 0.45;0.225, 0.225)
B = ( 0.45, 0.675, 0.675, 0.9;0.225, 0.225)

Set 29

0.0 0.45

0.225
0.15

0.225 0.675

A = (0.0, 0.225, 0.225, 0.45;0.225, 0.225)
B = ( 0.675, 0.675, 0.675, 0.675;0.15, 0.15)

Set 30

1.0

1.0

A = (0.0, 0.0, 0.0, 0.0;1.0, 1.0)
B = ( 1.0, 1.0, 1.0, 1.0;1.0, 1.0)

Set 31

1.00.1

0.4

1.0

0.4 0.6 0.9

A = (0.1, 0.4, 0.6, 0.9;0.4, 0.4)
B = ( 1.0, 1.0, 1.0, 1.0;1.0, 1.0)

Set 32

0.1

0.4

1.0

0.4 0.6 0.9

A = (0.1, 0.4, 0.6, 0.9;0.4, 0.4)
B = ( 0.0, 0.0, 0.0, 0.0;1.0, 1.0)

Set 33

0.1 0.2

0.6
0.8

0.3 0.4

A = (0.1, 0.2, 0.3, 0.4;0.6, 0.8)
B = ( 0.1, 0.2, 0.3, 0.4;0.8, 0.6)

Fig. 10. Different sets of GFNs for comparative study in Section 5.
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Therefore, ⩽S A B( , ) 1.
Again as ⩽ ⩽ ⩽ ⩽ ⩽a a a a0 11 2 3 4 and ⩽ ⩽ ⩽ ⩽ ⩽b b b b0 11 2 3 4 ,
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⎛
⎝
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Therefore, ⩾S A B( , ) 0. Hence, the property ⩽ ⩽S A B0 ( , ) 1. □

Property 4.10. If =A (0,0,0,0;1,1) and =B (1,1,1,1;1,1), then
=S A B( , ) 0.

Proof. The proof is very trivial. □

5. Comparative analysis

Different sets of GFNs have been considered for the comparative
study of the proposed method with other methods by Chen (1996),
Hsieh and Chen (1999), Lee (2002), Chen and Chen (2001), Wei and
Chen (2009), Xu et al. (2010), Hejazi et al. (2011) and Patra and
Mondal (2015). The sets of fuzzy numbers are shown in Fig. 9 and 10.
The similarity measure by various methods and the proposed method
are displayed in Table 1. Some of the similarity measures are high-
lighted in Table 1 to show that the measures are these measures are
incorrect.

(1) In Fig. 9 (Set 1), A and B are two identical GFNs. Hence, =S A B( , ) 1.
The proposed method and all the other methods give an equal de-
gree of similarity which is logical.

(2) Similarity measure, according to Chen’s (1996) method for the sets
11, 21, 22, 23, 25, 26 and 33 is 1 although the fuzzy numbers in the
sets are non-identical. Thus, limitations and drawbacks are ob-
served in this method. However, the proposed method overcomes
such drawbacks and give non-identical and non-unity similarity
measures which are admissible from the graphical representations
in Figs. 9 and 10. Similarity measure by Chen’s method for the Sets
4 and 7 is same, which is illogical. In these sets one of the members
in one set is identical to one of the members in other set and the
other members are non-identical. Thus, the similarity measure of
these sets need not be same, which is also clear from their graphical
representations. However, the proposed method overcomes such
limitations and gives different similarity measure for each of the
sets, which is acceptable from the graphical representations in
Fig. 9. A similar justification can be laid for the pairs of sets (2, 3),
(5, 8), (6, 9), (10, 13), (13, 14), (15, 16), (17, 18), (19, 20), (14, 20),
(25, 26), (28, 29) and (31, 32). However, the proposed method

Table 1
A comparison of similarity measure obtained from proposed method with existing methods.

Chen
(1996)

Hsieh and
Chen (1999)

Lee (2002) Chen and
Chen (2001)

Yong et al.
(2004)

Wei and
Chen (2009)

Xu et al.
(2010)

Hejazi et al.
(2011)

Patra and
Mondal (2015)

Khorshidi and
Nikfalazar (2017)

The proposed
method

Set 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Set 2 0.5000 0.6666 0.0000 0.5000 0.5000 0.5000 0.5264 0.5000 0.5000 0.7764 0.2009
Set 3 0.5000 0.6666 0.0000 0.5000 0.5000 0.5000 0.5264 0.5000 0.5000 0.7764 0.2561
Set 4 0.8000 0.8333 0.6000 0.5485 0.5252 0.7794 0.8071 0.7387 0.7800 0.9352 0.4936
Set 5 0.7000 0.7692 0.5000 0.4200 0.4028 0.6820 0.7135 0.6464 0.6825 0.8917 0.3691
Set 6 0.6000 0.7142 0.4285 0.3085 0.2965 0.5845 0.6193 0.5540 0.5850 0.8309 0.2717
Set 7 0.8000 0.8333 0.6000 0.6400 0.6429 0.8000 0.8105 0.8000 0.8000 0.9642 0.5719
Set 8 0.7000 0.7692 0.5000 0.4900 0.4931 0.7000 0.7158 0.7000 0.7000 0.9195 0.4281
Set 9 0.6000 0.7142 0.4285 0.3600 0.3630 0.6000 0.6211 0.6000 0.6000 0.8569 0.3156
Set 10 0.9000 1.0000 0.8333 0.9000 0.8854 0.7833 0.9500 0.6260 0.8100 0.8740 0.8529
Set 11 1.0000 1.0000 ∗∗ 0.5000 0.5000 0.5000 0.8881 0.2500 0.7500 0.6666 0.2553
Set 12 0.9000 0.9090 0.0000 0.9000 0.9000 0.9000 0.9052 0.9000 0.9000 0.9911 0.7575
Set 13 0.9000 1.0000 0.7500 0.7200 0.6914 0.8002 0.9127 0.6448 0.8100 0.8757 0.7392
Set 14 0.9000 0.9090 0.7500 0.6480 0.6222 0.8002 0.8917 0.6448 0.8100 0.8719 0.6144
Set 15 0.7000 0.7692 0.4000 0.4900 0.4872 0.6222 0.7158 0.5011 0.6300 0.8110 0.4322
Set 16 0.7000 0.7692 0.2500 0.4900 0.4903 0.7000 0.7158 0.7000 0.7000 0.9195 0.4607
Set 17 0.9500 0.9375 0.5000 0.9183 0.9187 0.9500 0.9600 0.9500 0.9500 0.9985 0.8659
Set 18 0.9500 0.9523 0.6666 0.9025 0.9029 0.9500 0.9526 0.9500 0.9500 0.9978 0.8529
Set 19 0.9000 1.0000 0.8333 0.7200 0.6915 0.8809 0.9127 0.8738 0.9000 0.9829 0.7663
Set 20 0.9000 0.9090 0.8333 0.6480 0.6243 0.8809 0.8917 0.8738 0.9000 0.9788 0.6599
Set 21 1.0000 1.0000 1.0000 0.8000 0.8000 0.8211 0.9701 0.6641 0.8850 0.8667 0.6639
Set 22 1.0000 1.0000 1.0000 0.7500 0.7500 0.7833 0.9701 0.5979 0.8850 0.8557 0.6592
Set 23 1.0000 1.0000 ∗∗ 0.6000 0.6000 0.6000 0.9105 0.3600 0.8000 0.7333 0.3600
Set 24 0.4000 0.6250 0.0000 0.4000 0.4000 0.4000 0.4316 0.4000 0.4000 0.6780 0.1373
Set 25 1.0000 1.0000 1.0000 0.8000 0.8000 0.8247 0.9652 0.6680 0.8800 0.8650 0.6528
Set 26 1.0000 1.0000 1.0000 0.7500 0.7500 0.7881 0.9652 0.7500 0.8800 0.8544 0.6468
Set 27 0.5000 0.6666 0.0000 0.2500 0.2500 0.2500 0.5000 0.1250 0.3750 0.5000 0.0502
Set 28 0.5500 0.6896 0.5000 0.3025 0.3089 0.5500 0.5737 0.5500 0.5500 0.8189 0.2355
Set 29 0.5500 0.6896 0.3333 0.3025 0.2945 0.1887 0.5737 0.0826 0.5154 0.5870 0.2179
Set 30 0.0000 0.5000 0.0000 0.0000 0.0000 0.0000 0.0527 0.0000 0.0000 0.1056 0.0000
Set 31 0.5000 0.6666 0.4444 0.0750 0.0883 0.4000 0.4771 0.1666 0.3000 0.5332 0.0479
Set 32 0.5000 0.6666 0.4444 0.0750 0.0791 0.4000 0.4771 0.1666 0.3000 0.5332 0.0331
Set 33 1.0000 1.0000 1.0000 – – – – – – – 0.7456
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gives different similarity measure for these sets. Hence, there are
drawbacks in Chen’s method. Nevertheless, no such drawbacks are
observed in the proposed method. Hence, the proposed method is
far superior to Chen’s method.

(3) Hsieh and Chen (1999) gives identical similarity measure for the
non-identical pairs of sets (2, 3), (4, 7), (5, 8), (6, 9), (14, 20), (15,
16), (28, 29) and (31, 32). However, the proposed method gives
non-identical, admissible and logical similarity measure. Also, the
similarity measure for the sets 3, 10, 11, 13, 19, 21, 22, 23, 25, 26
and 33 is 1, which implies that members in these sets are identical.
However, the graphical representations do not admit such simi-
larity. Nevertheless, the proposed method gives non-unity similarity
measure. Thus, the superiority of the proposed method to Hsieh and
Chen’s method is evident. The graphical representations of the sets
discussed may be found in Figs. 9 and 10.

(4) Lee’s (2002) similarity measure either fails or gives non-similar
measure when the fuzzy numbers are crisp-valued fuzzy numbers
(Sets 11, 12, 23, 24). However, under such circumstances the pro-
posed method gives admissible similarity measures. Moreover, Lee’s
method also fails when the fuzzy numbers are of types non-normal
GFN and normal GFN (Sets 21, 22, 25 and 26). As like Chen’s and
Hsieh and Chen’s methods, Lee’s method also gives an identical
similarity measure for the pairs of sets (2, 3), (4, 7), (5, 8), (6, 9),
(13, 14), (19, 20) and (31, 32) where one member in each pair are
identical and other members are non-identical. Similarity measure
by the proposed method coincides with the graphical representa-
tions. This signifies the superiority of the proposed method over
Lee’s method. The graphical representations of the sets discussed
may be found in Figs. 9 and 10.

(5) Chen and Chen’s (2001) similarity measure also retains the draw-
backs of Chen’s and Hsieh’s, Chen’s and Lee’s method where one
member is identical and the other are non-identical (sets (2, 3), (15,
16), (28, 29) and (31, 32)). As always, no such drawbacks and
limitations are observed in the proposed method. Thus, the super-
iority of the proposed method over Chen and Chen’s method is
established. The graphical representations of the sets discussed may
be found in Figs. 9 and 10.

(6) Yong et al. (2004) proposed a very promising similarity measure.
However, it fails to give a correct similarity for crisp-valued fuzzy
numbers (sets 2 and 3 in Fig. 9) as discussed in subSection 3.5.
However, the proposed method overcome such drawback and gives
a justified similarity measure for these sets of fuzzy numbers.
Hence, the out-performance of the proposed method is evident.

(7) Limitations of similar types like the one in Chen and Chen’s has
been seen in the method by Wei and Chen (2009) (namely, the pairs
of sets (2, 3), (13, 14), (17, 18), (19, 20) and (31, 32)). Also, such
types of limitations are observed in Xu et al. (2010) (namely, the
pairs of sets (2, 3), (15, 16), (21, 22), (25, 26), (28, 29) and (31,
32)) and Hejazi et al. (2011) (namely, the pairs of sets (2, 3), (13,
14), (17, 18), (19, 20) and (31, 32)). The most recent method by
Patra and Mondal (2015) also bears such types of anomalies
(namely, the pairs of sets (2, 3), (10, 13), (13, 14), (17, 18), (19,

20), (21, 22), (25, 26) and (31, 32)). However, no such drawbacks
are seen in the proposed method which signifies the superiority of
the proposed method. The graphical representations of the sets
discussed may be found in Figs. 9 and10.

(8) Moreover, a very recent study by Khorshidi and Nikfalazar (2017) also
fails to overcome the Yong et al.’s drawback. Also, the drawback is
seen in the sets 31 and 32 as an incorrect similarity measure is given
for the non-identical fuzzy numbers in those sets. As like the other
methods for the sets 2 and 3 Khorshidi and Nikfalazar also fails to give
a correct similarity. However, the proposed method overcomes the
limitations and drawbacks of the recent study as well.

(9) Property 4.9 makes it clear that for any two arbitrary fuzzy numbers
A and ⩽ ⩽B S A B,0 ( , ) 1. Thus, S A B( , )=0 signifies complete dis-
similarity between A and B. Gradually, as S A B( , ) increases simi-
larity increases. And, =S A B( , ) 1 leads to complete similarity be-
tween A and B. Eventually, it can be concluded by intuition as well
as the proposed method that if A and B are crisp-valued fuzzy
numbers such that =A (0,0,0,0;1,1) and =B (1,1,1,1;1,1) (Set 30,
Fig. 10), then =S A B( , ) 0. However, the methods by Hsieh and
Chen (1999), Xu et al. (2010) and Khorshidi and Nikfalazar (2017),

≠S A B( , ) 0 is completely unreasonable.

These numerical examples are evident that the existing methods of
similarity measure bear many drawbacks and limitations. However, the
proposed method can overcome all the limitations and shortcomings
and outperform in all situations. Further, the proposed method can
properly deal with GFN with different left heights and right heights (Set
33). Thus, it is claimed that the proposed method is much better than
existing methods.

6. Application of the proposed method in risk analysis

In this section, a real-life problem of risk analysis in poultry farming
has been discussed by using the proposed fuzzy similarity measure.
Schmucke (1984) first discussed the risk analysis problem under fuzzy
environment using the parameters probability of failure and severity of
loss. A thorough overview of computing with words and risk assessment
is forwarded by Liu, Martínez, Wang, Rodríguez, and Novozhilov
(2010). Generally, the probabilistic values of these parameters are not
precise due to its nature. Thus, these parameters are more precisely
expressed as linguistic terms such as high, low, medium, etc. Further,
these parameters are generally expressed as fuzzy numbers. A lot of
literature are available that describes risk analysis problem using these
parameters. Some of the studies in risk analysis problem using linguistic
terms as fuzzy numbers are Zhang (1986), Chen (1996), Chen and Chen
(2008, 2009), Wei and Chen (2009), Chen et al. (2012), Zhu and Xu
(2012) and Patra and Mondal (2015).

6.1. Fuzzy risk analysis

Assume a production system C consisting of n sub-components
= ⋯A i n, 1,2, ,i . Each sub-components is assessed by two parameters

Fig. 11. Graphical representation of fuzzy risk analysis
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probability of failure = ⋯R i n, 1,2, ,i and severity of loss = ⋯W i n, 1,2, ,i
which are linguistic terms. The structure of risk analysis under fuzzy
environment is shown in Fig. 11 (Schmucke, 1984). The algorithm of
fuzzy risk analysis is expressed as the following steps.

Step (1) Consider probability of failure Ri and severity of loss Wi for
each sub-component = ⋯A i n, 1,2, ,i , in linguistic terms such as
low, medium, high, etc where n is the number of sub-compo-
nents in the production system.

Step (2) Use the fuzzy weighted mean method and the GFN arithmetic
operation to get the total risk R of the production system C
integrating Ri and Wi of each sub-component Ai as follows

=
∑ ⊗
∑
=

=
R

W R
W

i
n

i i

i
n

i

1

1 (55)

= r r r r ω ω( , , , ; , ).1 2 3 4 1 2 (56)

Step (3) Standardize the GFN of total risk R into ∗R where

= ⎛
⎝

⎞
⎠

∗R r
k

r
k

r
k

r
k

ω ω, , , ; ,1 2 3 4
1 2 (57)

= ∗ ∗ ∗ ∗r r r r ω ω( , , , ; , )1 2 3 4 1 2 (58)

= ⌈∣ ∣⌉ =k r imax( ,1) 1,2,3,4.
i

i (59)

where ∣ ∣ri denotes the absolute value of ⌈∣ ∣⌉r r,i i denotes taking
the upper bound of ∣ ∣ ⩽ ⩽r i,1 4i .

Step (4) Similarity measure of total risk ∗R with all given linguistic
terms are measured using the proposed method.

Step (5) The largest similarity between the total risk ∗R and the lin-
guistic terms is considered as a risk value of the system in
linguistic term.

6.2. A case study

Poultry farming plays a major role in contributing towards addres-
sing key national development goals and improving the standard of
living of people through poverty alleviation and creating employment
opportunities. India has made tremendous progress in poultry produc-
tion during the last decades. Assam is a state in North-Eastern region of
India, where not much industrialization has happened so far. Hence,
unemployment is a major issue in recent times, mostly in the rural
Assam. A case study has been done on the fuzzy risk analysis on poultry
farming in rural Assam.

The key to successful poultry production depends on following sub-
components = ⋯A i, 1,2, ,8i where A1: availability of land, A2: avail-
ability of expert labor, A3: financial support, A4: availability of clean
water, A5: transportation, A6: availability of electricity, A7: food supply
and A8: good poultry baby (Chutia, 2017). As the probabilistic values of
the sub-components ⋯A A A, , ,1 2 8 are not precise therefore such types of
values are more used in linguistic terms. Generally these linguistic
terms are expressed as fuzzy numbers. The linguistic terms to the sub-
components are assigned based on intuition and on basis of discussion
with some experienced poultry farmers in rural Assam. The linguistic
terms to the sub-components are depicted in Table 3 and are discussed
below which are assigned from Table 2.

A1: Probability of failure R1 due to insufficient land is ‘Very low’ as
there exist lots of unused land in rural Assam. Thus, the severity of
loss W1 is ‘Absolutely low’.

A2: Probability of failure R2 is ‘Very low’ as expert labor is shortage in
rural area. However, one can hire well-trained labor, but well-
trained labor has more demand; hence, to minimize the labor
wages the farmer has to hire inexpert labor in which case it might
lead to greater risk. So, probability in severity of loss W2 is a ‘Fairly
high’.

A3: Probability of failure R3 due to capital is ‘High’ as the farmer might
not have enough capital in hand. However, nowadays Government
take a lot of steps to provide financial support to the farmers who
wanted to start such mini-projects for self-employment. So, the
severity of loss W3 due to insufficient capital is ‘Fairly low’.

A4: Probability of failure R4 due to insufficient water is ‘Very low’ as
rural area has enough availability of water from different sources.
However, the river and pond water might be infected. So, severity
of loss W4 is ‘Fairly low’.

A5: Probability of failure R5 due to transpiration is ‘Low’ as there are
various means of transportation. However, due to bad road con-
dition transportation cost might be higher; hence, severity of loss
W5 will be ‘Fairly low’.

A6: In case of rural Assam electricity supply is very irregular. However,
during power-cut one can use solar and generators. Therefore,
there is a ‘Fairly low’ probability of failure R6 due to irregularity of
electricity. Hence, the severity of loss W6 will be ‘Very low’.

A7: Probability of failure R7 due to insufficient food is ‘Fairly low’ as
poultry feed is easily available in both rural and urban areas.
Hence, severity of loss W7 due to insufficient poultry feed is ‘Low’.

A8: Mostly, good quality of poultry baby is available in the market;
hence, probability of failure R8 due to bad quality poultry baby is
‘Low’. However, in case of inexpert farmer it is difficult to re-
cognize the best quality of poultry baby. As most of the farmers are
ignorant of good quality of poultry baby; hence, severity of loss W8
is ‘Fairly high’.

Now the question comes, what is the risk for a rural farmer in terms
of linguistic variables that exists in the systems to produce the max-
imum amount of good quality of poultry under these circumstances.
And this question is generally answered by the similarity measure of
fuzzy numbers. The proposed method of similarity measure plays an
important role in determining the risk in terms of linguistic variable.

Table 2
A 9-member linguistic term set (Schmucke, 1984).

Linguistic term GFN

Absolutely-low (0.00, 0.00, 0.00, 0.00; 1.0, 1.0)
Very-low (0.00, 0.00, 0.02, 0.07; 1.0, 1.0)
Low (0.04, 0.10, 0.18, 0.23; 1.0, 1.0)
Fairly-low (0.17, 0.22, 0.36, 0.42; 1.0, 1.0)
Medium (0.32, 0.41, 0.58, 0.65; 1.0, 1.0)
Fairly-high (0.58, 0.63, 0.80, 0.86; 1.0, 1.0)
High (0.72, 0.78, 0.92, 0.97; 1.0, 1.0)
Very-high (0.93, 0.98, 1.00, 1.00; 1.0, 1.0)
Absolutely-high (1.00, 1.00, 1.00, 1.00; 1.0, 1.0)

Table 3
Linguistic values of Ri and Wi for eight sub-components ⋯A A A, , ,1 2 8.

Sub-component Ai Linguistic value of Ri Linguistic value of Wi

A1 Very low Absolutely low
A2 Very low Fairly high
A3 High Fairly low
A4 Very low Fairly low
A5 Low Fairly low
A6 Fairly low Very low
A7 Fairly low Low
A8 Low Fairly high
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The risk of probability of failure using Eq. (56) and taking the
parameters from Table 3 is given by

=
∑ ⊗

∑
==

=

R
W R

W
(0.04850.09670.31450.5365;1.0,1.0).i i i

i i

1
8

1
8

The degree of similarity between the total risk R and the linguistic
terms in Table 2 using the proposed similarity measure are depicted in
Table 4. The largest similarity value degree is 0.8046, which is between
the total risk of failure R and the linguistic term ‘Fairly low’. Hence, the
probability of failure under such circumstance is fairly low. Hence, it
can be concluded that under such circumstances, one can take up the
poultry farming as a self-employment project. For the purpose of vali-
dation, the result of the proposed method is compared with the other
existing methods. It is evident that risk of failure by the proposed
method is the same as that of the existing method as shown in Table 4
(marked in gray). The case study does not involve fuzzy numbers de-
picting drawbacks and limitations of the existing methods. Hence, the
results of the existing methods are justifiable. Therefore, comparison of
the results of the existing method with the proposed method is also
justifiable.

7. Conclusions

Owing to the limitations and drawbacks of the existing method of
similarity measure. A new similarity measure based on ambiguity,
value, area, heights and geometric distance of GFN has been proposed.
The proposed method is much more generalized than the method de-
scribed as it can deal with any type of GFNs. This measure has been
discussed on GFN with different left heights and right heights. This
measure is not just confined to GFNs with different left heights and
right heights, but also can deal with arbitrary fuzzy numbers.

Different sets of GFNs are considered to see the out-performance of

the method through comparison with other method. The out-perfor-
mance of the current method is evident from the discussed numerical
examples. It has been observed that most of the method gives an equal
similarity for the sets where one of the members in one set is identical
to one of the members in other set and the other members are non-
identical (namely, (2, 3), (5, 8), (6, 9), (10, 13), (13, 14), (15, 16), (17,
18), (19, 20), (14, 20), (25, 26), (28, 29) and (31, 32) in Figs. 9 and 10).
Nevertheless, the proposed method gives justified similarity for these
sets. Further, the proposed method can handle GFN with different left
height and right height. It has been evident that all the drawbacks and
limitations of the existing methods of similarity measure is being
overcome by the proposed method.

Further, the proposed method of similarity measure has been ap-
plied to the risk analysis problem on poultry farming. As the final risk so
obtained is a fuzzy number which is sometimes called as generalized
interval. Hence, a linguistic variable has to be given to the obtained
risk, which is possible by the proposed similarity measure. The para-
meters used the risk analysis problem are probability of failure and
severity of loss. Due to the nature, these parameters are expressed in
terms of linguistic terms which are basically fuzzy numbers. Under the
current study the probability of failure obtained using the proposed
method is ‘Fairly low’. Hence, rural farmers can take up such project.

Generally risk analysis problems may be studied under the Z-
number (Bakar & Gegov, 2015; Zadeh, 2011) as it discusses about re-
striction and reliability. Hence, this concept can be further im-
plemented in similarity measure and risk analysis problem.
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Appendix A

Consider a GFN A= a b c d ω ω( , , , ; , )1 2 given by the membership function

Table 4
A comparison of similarity measure R and linguistic terms = ⋯F i, 1,2, ,9i by different methods.

Linguistics
terms Fi

Chen
(1996)

Hsieh and
Chen
(1999)

Lee (2002) Chen and
Chen
(2001)

Yong et al.
(2004)

Wei and
Chen
(2009)

Xu et al.
(2010)

Hejazi
et al.
(2011)

Patra and
Mondal
(2015)

Khorshidi and
Nikfalazar (2017)

The proposed
method

Absolutely low 0.7509 0.8100 0.5357 0.4549 0.4875 0.6037 0.7533 0.4064 0.6184 0.7448 0.3672
Very low 0.7735 0.8222 0.5777 0.5553 0.5494 0.6407 0.7824 0.4574 0.6543 0.7805 0.4160
Low 0.8868 0.9122 0.7720 0.7722 0.7615 0.7778 0.8964 0.6191 0.7901 0.8608 0.6624
Fairly low 0.8982 0.9459 0.7915 0.8276 0.8537 0.8168 0.9310 0.6951 0.8273 0.9027 0.8046
Medium 0.7590 0.7954 0.5994 0.5669 0.5829 0.7133 0.7755 0.6435 0.7199 0.8912 0.5023
Fairly high 0.5315 0.6747 0.4227 0.2689 0.2742 0.4919 0.5593 0.4322 0.4975 0.7448 0.2464
High 0.4015 0.6196 0.3505 0.1572 0.1670 0.3651 0.4367 0.3107 0.3698 0.6197 0.1527
Very high 0.2715 0.5723 0.2344 0.0716 0.0776 0.2249 0.3146 0.1605 0.2297 0.4360 0.0780
Absolutely high 0.2490 0.5664 0.2107 0.0522 0.0622 0.2002 0.2897 0.1348 0.2051 0.3943 0.0680

Fig. 12. Graphical representation of GFN A with different
left heights and right heights.
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The graphical representations of the GFNs A is shown in Fig. 12 depending on the heights ω1 and ω2.
The ROG points of the GFN A is denote as r r( , )x

A
y
A whose value can be obtained by using the Eqs. (21) and (22) in Definition 2.12. To evaluate the

moment of inertia the GFN A is divided into regions R R R, ,1 2 3 and R4. Hence, the moment of inertia of the areas R R R, ,1 2 3 and R4 about the x and y axis
can be calculated, according to Eqs. (19) and (20) in Definition 2.11, as
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Hence, the ROG point of the GFN A can be obtained using the above equations as
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where Aar( ) is the area of the GFN A as defined in Definition 2.5.
If the GFN is such that a= b=c= d and ω1=ω2=ω, then the ROG point is given by =rx

A ω
3
and =r ay

A . For the detail derivation one may refer to
Yong et al. (2004).
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