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A B S T R A C T

We consider a two-level supply chain that consists of multiple suppliers and a manufacturing plant. Each supplier
produces semi-finished products needed for several types of (finished) products and delivers the semi-finished
products to the manufacturing plant, where the products are produced to satisfy dynamic demands. In each
supplier, production times of semi-finished products for different product types may be different, but processing
should be started at the same time if they are in the same production batch although they may be completed at
different times. The problem considered here is to determine production plans of the suppliers with the objective
of minimizing the sum of raw material purchasing costs, production costs, setup costs of the suppliers, trans-
portation costs, and costs for outsourcing semi-finished products. We present a mixed integer programming
model and develop a two-step heuristic algorithm in which the problem is decomposed into two subproblems
and these subproblems are solved sequentially. We also present solution-improvement procedures. Performance
of the algorithm is evaluated by comparing its solutions with optimal solutions and good solutions obtained from
a simulated annealing algorithm developed in this study, and results are reported.

1. Introduction

In this paper, we consider a production planning problem in a two-
level supply chain that consists of multiple suppliers and a manu-
facturing plant. Each supplier has a single processing line where can
produce all types of semi-finished products to be used to produce fin-
ished products at the manufacturing plant. Before starting production at
each supplier, a setup operation is needed. After being produced by the
suppliers, the semi-finished products are delivered to the manu-
facturing plant, where finished products are produced. In this two-level
supply chain, the decision maker makes a production plan to satisfy the
demand for the finished products in each period. That is, decision
maker determines suppliers to be used, quantities of each type of semi-
finished products produced in each selected supplier, and outsourcing
quantities of semi-finished products (if necessary) in each period with
the objective of minimizing total costs associated with the supply chain.

This paper focuses on a case in which several semi-finished product
types are produced through similar processes at the suppliers. Although
the processes are not exactly the same, semi-finished products are
produced in almost the same general processes except for the

production times, which may be different for different types of semi-
finished products. In this paper, it is assumed that processing of these
semi-finished products should be started at the same time if those semi-
finished products are to be produced simultaneously (in a batch) at
some point of time. In other words, different semi-finished product
types should be started at the same time, but they are completed at
different times depending on their production times. Note that products
with such characteristic are called production-time-dependent products.
Examples of systems producing such products can be found in the
poultry farming industry. There are a few types of chickens (semi-fin-
ished product types) produced in poultry farms and the chickens are
distinguished by the weights. The weights of the chickens usually de-
pend on the raising time (production time) in the farms. Therefore, the
(semi-finished) product types are distinguished by the production time.
We can also find the production-time-dependent products in other li-
vestock industries such as hog-raising and cattle-raising industries. If
we expand this problem into other areas, semiconductor manufacturing
and steel industry have similar characteristics. In CMP process in
semiconductor manufacturing, the depth of polishing depends on its
processing time. Also, the products in steel industry are distinguished
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by adding cold rolling process after pressing rolling process.
We consider a system in which all the suppliers as well as the

manufacturing plant are under the control of a managing unit (of a
company). Hence, decisions to be made in the problem are whether to
select suppliers to start production in each period, and production
quantities of the semi-finished product types at those suppliers in each
period. Moreover, the company can outsource semi-finished products, if
currently opened suppliers cannot produce the amount needed for the
manufacturing plant, or if production-related costs of producing the
semi-finished products at the supplier are higher than outsourcing cost.
In this paper, the problem under consideration is to be called a pro-
duction planning problem for production-time-dependent products (PP-
TDP). To the best of our knowledge, the PP-TDP is very rare except for
Han and Kim (2016), in which they consider a supply chain design to
establish suppliers among candidates at the beginning of the planning
horizon for operation during the planning horizon.

In our problem, PP-TDP, not all suppliers produce semi-finished
products and hence only the suppliers that produce products need the
setup operations. In other words, we have to determine not only the
quantity of products but also which suppliers are to be set up for op-
eration in each period. Therefore, in each period, our problem is similar
to a facility location problem (FLP). For each period, if the number of
product types is one, production cost of each product is zero, and ca-
pacities of all suppliers are infinite, PP-TDP is reduced to the un-
capacitated facility location problem (UFLP) (Han & Kim, 2016). Note
that since the UFLP is known to be NP-hard (Cornuejols, Nemhauser, &
Wolsey, 1997), PP-TDP is also NP-hard. However, there is difference
between the typical FLP and our study. In the typical FLP, decisions are
made on the openings of facilities at the beginning of the planning
horizon and these decisions are not changed throughout the planning
horizon, while in the PP-TDP, the decision on the setup operations of
suppliers may be changed during the planning horizon.

In the literature, there have been many studies related to FLPs.
Erlenkotter (1978) suggests a branch-and-bound algorithm for an un-
capacitated facility location problem (UFLP), while Neebe and Rao
(1983) and Yang, Chu, and Chen (2012) develop branch-and-bound
algorithms for capacitated facility location problems (CFLPs). Also, Jia,
Li, Shen, Wu, and Zhong (2012) and Zhang, Luo, and Huang (2013)
suggest a branch-and-price algorithm and a branch-and-cut algorithm
for the CFLP, respectively. In addition, there are many studies in which
heuristic algorithms are proposed for CFLPs including those based on
Lagrangian relaxation (Barcelo & Casanovas, 1984; Christofides &
Beasley, 1983; Geoffrion & McBride, 1978; Han & Kim, 2016;
Klincewocz & Luss, 1986; Li et al., 2013, 2014) and genetic algorithms
(Babaie-Kafaki, Ghanbari, & Mahdavi-Amiri, 2012; Drezner, Brimberg,
Mladenović, & Salhi, 2015; Fernandes et al., 2014; Wang, Sun, & Fang,
2008).

Our problem, PP-TDP, may look similar to the dynamic facility lo-
cation problem (DFLP), which is an FLP with multi-period dynamic
demands. However, like FLPs, the locations of the facilities, once de-
termined, are maintained throughout the planning horizon in DFLPs.
On the other hand, in the PP-TDP, the decisions of whether or not the
facilities are to be operated, i.e., the decisions related to the locations of
suppliers, may be changed during the planning horizon. Also, there may
be positive inventory in DFLPs, while inventory of the semi-finished
products is not allowed in the PP-TDP.

For DFLPs, Wesolowsky (1973), Wesolowsky and Truscott (1975)
and Sweeney and Tatham (1976) suggest dynamic programming algo-
rithms, while Van Roy and Erlenkotter (1982) suggest an optimal so-
lution algorithm using a dual problem of the original problem. In ad-
dition, Canel and Khumawala (1997) develop a branch-and-bound
algorithm for an extended version of the problem in which not only
setup, transportation, and production costs but also taxes between two
countries are considered. There also are various heuristics for DFLPs,
such as those of Chardaire, Sutter, and Costa (1996), Canel and
Khumawala (2001), Albareda-Sambola, Fernández, Hinojosa, and

Puerto (2009), Guerrero, Prodhon, Velasco, and Amaya (2013), and
Nadizadeh and Hosseini Nasab (2014). Differently from these studies,
Torress-Soto and Üster (2011) allow relocation of facilities during the
planning horizon in their model and develop heuristic algorithms based
on Lagrangian relaxation and Bender’s decomposition. They determine
the opening and closing of the facilities in each period but opening can
be done only one time in the planning horizon for each facility in their
model.

Since our problem, PP-TDP, focuses on production planning of two-
level supply chain with dynamic demands over the planning horizon,
PP-TDP is also related to the dynamic lot sizing problem (DLSP).
However, in PP-TDP, not only the lot sizing decisions but also the se-
lection of suppliers are made in each period and it may be different
period by period.

After the work of Wagner and Whitin (1958), there have been many
studies related to DLSP. Among them, Aggarwal and Park (1993),
Federgruen and Tzur (1991) and Wagelmans, Van Hoesel, and Kolen
(1992), Fleischhacker and Zhao (2011) suggest optimal solution algo-
rithms. There are also many heuristic algorithms for solving DLSPs and
multi-level lot-sizing problems. Among others, Yelle (1979) and Veral
and LaForge (1985) suggest heuristic algorithms for single-level lot-
sizing models. Also, various heuristic algorithms have been developed
for multi-level lot sizing problems, such as genetic algorithms (Alfares &
Turnadi, 2018; Dellaert & Jeunet, 2000; Dellaert, Jeunet, & Jonard,
2000; Homberger, 2008; Zegordi, Kamal Abadi, & Beheshti Nia, 2010)
and simulated annealing algorithms (Homberger, 2010; Tang, 2004).
On the other hand, recently, there are studies on lot sizing problems in
integrated supply chains with stochastic constraints (Gharaei and
Pasandideh, 2017a, 2017b; Gharaei et al., 2017, 2018, 2019;
Pasandideh, Niaki, & Gharaei, 2015; Shekarabi, Gharaei, & Karimi,
2018).

In this study, we consider a production planning problem in a two-
level supply chain for production-time-dependent products with dy-
namic demands. For the objective of minimizing total costs associated
with the supply chain, we develop a heuristic algorithm for not only
selection of suppliers to produce semi-finished products in each period
but also production quantities of the products in each period. In the
heuristic algorithm, the problem is decomposed into two subproblems
and solved with a two-step procedure: determining suppliers to be setup
for operation in each period, and determining the production quantities
for each semi-finished product type at the suppliers to be operated,
which are solved sequentially. Then, the solution obtained with this
two-step procedure is improved by solution-improve procedures.

The remainder of this paper is organized as follows. In Section 2, we
describe the problem in detail and give a mixed integer programming
formulation, and then we develop a heuristic algorithm and solution-
improvement procedures in Section 3. The algorithm is evaluated
through a series of computational experiments and results are reported
in Section 4. Finally, Section 5 concludes the paper with a short sum-
mary and discussions on possible extensions.

2. Problem description

We consider a problem of production planning in a two-level supply
chain that consists of multiple suppliers and a manufacturing plant. The
problem is to select suppliers to be operated in each period and to
determine production quantities of the semi-finished product types at
the selected suppliers in each period. In addition, we determine out-
sourcing quantities of semi-finished products in each period. For the
problem, several assumptions are made based on a real situation of the
poultry farming company in Korea. Herein, we use the concept of batch
of semi-finished products that can be processed at the same time in each
supplier. Each supplier has an upper limit on the quantity for a batch of
semi-finished products. However, the capacity of the manufacturing
plant is large enough to produce finished products to meet the demand
of the (external) customers. In addition, the locations of the
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manufacturing plant as well as the suppliers are given. Additional as-
sumptions are summarized in below.

(1) The supply chain consists of non-identical suppliers and one
manufacturing plant.

(2) Locations of the suppliers and the manufacturing plant are given,
and information associated with the suppliers such as production
capacity, setup cost, purchase cost of raw materials, production
costs, and transportation costs to the manufacturing plant for each
semi-finished product type is given.

(3) Each supplier can produce several types of semi-finished products.
(4) Different semi-finished product types may be produced at the

same supplier, but production times for different semi-finished
product types may be different.

(5) In each supplier, semi-finished product types should be started at
the same time if they are in the same production batch. (Different
types may be, or often are, completed at different times.)

(6) Setup operations are needed at the suppliers before they start
processing semi-finished products. Setup times are the same for all
types of semi-finished products and at all suppliers. In addition, it
is the same regardless of the size of a batch. Hence, setup time is
included in the processing time of each semi-finished product.

(7) In each supplier, when a supplier is processing a batch, another
batch cannot be started in the supplier (because of sanitary pro-
blems and for ease of management).

(8) Demand for each product type in each period is known but may
vary period by period.

(9) If necessary (to satisfy demands of the customers, or retailers),
semi-finished products can be outsourced with zero (or negligibly
short) lead time.

(10) The transportation time from each supplier to the manufacturing
plant is short enough (compared with production time) to be ig-
nored.

(11) There is no shortage of raw materials for the semi-finished pro-
ducts.

(12) We find a plan (to start production) throughout the planning
horizon based on information of demands for further periods.
(Note that demand data for a few periods after the end of the
planning horizon are needed to obtain production plan in the last
periods of the planning horizon.)

For a clearer description of the problem, we present a mixed integer
programming formulation for the production planning problem. This
formulation is also used to find an optimal solution of the problem with
a commercial integer program solver. First, we give notation used in the
formulation and throughout the paper.

Indices and parameters
i index for suppliers (i= 1,…, I)
l index for semi-finished product types (l= 1,…, L)
t, t' indices for time periods (t, t'= 1,…, T, …, T+ pL)
pl production time (in the number of periods) of semi-finished product type l at

the suppliers (p1 ≤ p2 ≤ … ≤ pL)
Si

U setup cost for each batch at supplier i
Ki capacity of supplier i
Dlt demand quantity (at the manufacturing plant) of semi-finished product type l

in period t
Mlt outsourcing cost of a semi-finished product of type l in period t
Cil

pro production cost of one unit of semi-finished product type l at supplier i

Ci
pur purchase cost of the raw material needed to produce a semi-finished product

at supplier i
Cil

tra transportation cost of one unit of semi-finished product type l from supplier i
to the manufacturing plant

B a very large (positive) number

Decision variables
Qilt processing quantity of semi-finished product type l, the quantity of which the

processing is started at supplier i in period t
Olt outsourcing quantity of a semi-finished product of type l in period t

Yilt =1 if semi-finished product type l is included in a production batch of which
the processing is started by supplier i in period t, and 0 otherwise

Zit =1 if supplier i starts processing of a batch of semi-finished products in
period t, and 0 otherwise

Now, we give a mixed integer programming formulation for the pro-
blem.

+ + + +P C C C Q M O S Z[ ] minimize ( )
t

T

l

L

i

I

il il i ilt
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T

l

L

lt lt
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T

i

I

i it
pro tra pur U

(1)

+ =+ +Q O D l tsubject to ,
i

ilt l t p l t p, ,l l (2)

Q K Z i l t· , ,
l

ilt i it
(3)

= +

+

Z B Y i l t·(1 ) , ,
t t

t p

it ilt
1

l
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Q B Y i l t· , ,ilt ilt (5)

Y L Z i t· ,
l

ilt it
(6)

Y Z i t, {0, 1} ,ilt it (7)

O Q i l t, 0 , ,lt ilt (8)

The objective function, which is to be minimized, represents pro-
duction cost, transportation cost, and raw material purchasing cost at
the suppliers, outsourcing cost for the semi-finished products, and setup
cost of suppliers. Constraint (2) ensures that demand is satisfied by
production and outsourcing, while (3) is a capacity constraint of the
suppliers, and (4) prevents a supplier from starting a new batch if the
supplier is processing a batch. Also, (5) and (6) show relationships of
the values of the binary variables, Yilt and Zit, and production quantities
(Qilt).

3. Heuristic algorithm

The mixed integer programming formulation, [P], given in the
previous section can be used to obtain an optimal solution with a
commercial integer programming (IP) solver. However, for large of
practical size problems, IP solvers may not give an optimal or even a
feasible solution within a reasonable amount of time. Note that PP-TDP
is NP-hard as stated in the first section. Thus, in this study, we present a
heuristic algorithm to solve problems within a reasonably short com-
putation time.

First, to simplify the problem, PP-TDP, we group the demands for
semi-finished products according to the starting time of the semi-fin-
ished products required to meet the demand. That is, a demand group
of period t is defined as the set of demands for all semi-finished product
types for which the processing at suppliers should be started in period t
to satisfy the demands on time. Before we describe the heuristic algo-
rithm, we give additional notation used in the description.

Dt demand quantity of demand group t, i.e., the sum of demand quantities of
semi-finished products for which the processing should be started in period
t to satisfy their demands

Vi profitability index of supplier i, =
+ + +

Vi
Ki

Si Ci Cil Cil KiU ( pur pro tra)·
, which is the

reciprocal cost per one unit of a semi-finished product at supplier i (if the
supplier is utilized up to its capacity)

r random number between [1, 2]
Et

av set of suppliers that are available (to start production) in period t, those that
are not processing a batch in period t

Et
st set of suppliers that are to start processing in period t

Uit =1 if supplier i is selected to start processing in period t, i.e., if i ∈ Et
st , and

0 otherwise

In the heuristic suggested in this paper, a complete solution is obtained
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through a two-step procedure. First, we determine suppliers that are to
start processing of semi-finished products in each period from the first
period to the end of the planning horizon, that is, we allocate suppliers
to each period. Then, we determine production quantities of each semi-
finished product type at the determined suppliers for the planning
horizon. The complete solution is improved through improvement
procedures. In the following, we give detailed descriptions of the two-
step procedure and solution-improvement procedures.

3.1. Obtaining an initial solution

At the first step of the proposed two-step procedure, we determine
the suppliers that are to start processing of semi-finished products in
each period. In the problem, it is not cost-effective if the selected sup-
pliers do not produce products fully up to their capacities since the
setup costs at the suppliers are generally large. Thus, it is assumed that
the selected suppliers use their capacities fully. Then, a knapsack pro-
blem can be considered if the demand quantity of demand group t, Dt,
and the profitability index of supplier i, Vi, are regarded as the capacity
of a knapsack and the value of an item, respectively. That is, after
solving this knapsack problem for t, t= 1, 2, …, T, we can find the best
combination of suppliers that will use their capacity fully. The for-
mulation for the knapsack problem for period t is given below.

V U[KP] maximize ·t
i E

i it
tav (9)

K U Dsubject to ·
i E

i it t
tav (10)

U i{0, 1}it (11)

In [KPt], the objective function is to maximize the sum of profit-
ability indices of selected suppliers. Constraint (10) ensures that the
sum of the capacities of selected suppliers is less than the demand
quantity of the demand group. Due to constraint (10), demand of the
demand group may not be satisfied. Thus, this study allows outsourcing
to satisfy demand that is not satisfied by the production at the suppliers.
Note that the total cost (setup cost, production and transportation cost)
for one unit of a semi-finished product type is generally less than the
outsourcing cost if the suppliers use their capacity fully. In this study,
the above knapsack problem is solved with a dynamic programming
recursion given by Horowitz and Sahni (1974).

The knapsack problems, [KPt], t= 1,…,T, are solved one by one
from period 1 through period T. In the knapsack problem for period 1,
[KP1], all suppliers can be considered for being selected, that is, all are
in the set of available suppliers (E1

av). If suppler i is selected in a certain
period, say in period t, in the solution of [KPt], it is included in the set of
selected suppliers (Et

st) and is not considered for being selected in the
subsequent periods until the end of production.

After determining suppliers to be operated at the first step, pro-
duction quantities to be produced at the selected suppliers are de-
termined at the second step to obtain a complete solution of PP-TDP.
Subproblems of determining production quantities of the selected
suppliers can be defined and formulated as the following linear pro-
gram. Note that Uit is the value of Uit which is determined in [KPt].

+ + +

+

C C C Q

M O S U

[LP] minimize ( )
t l i

il il i ilt

t l
lt lt

t i
i it

pro tra pur

U

(12)

+ =+ +Q O D l tsubject to ,
i E

ilt l t p l t p, ,
t

l l
st (13)

K U Q i E t,i it
l

ilt t
st

(14)

Q O i E l t, 0 , ,ilt lt t
st (15)

The value of the third term of the objective function is already given
from the solutions of the knapsack problems, and constraints (13), (14),
and (15) correspond to (2), (3), and (8), respectively. In our solution
procedure, [LP] is solved with a commercial software package for linear
programming. Solutions of [KPt], t= 1, …, T and [LP] give a complete
solution of our problem, PP-TDP.

3.2. Solution improvement

3.2.1. Iterative algorithm
In the PP-TDP, there may be cases in which demand quantity in the

middle of the planning horizon, say in period t*, is very large. In such
cases, there may not be enough suppliers that can be selected (to be
operated) in that period, i.e., in Et

av (because many suppliers are al-
ready selected in previous periods). In these cases, the outsourcing cost
of period t may become very large, and so may the total cost. Therefore,
it would be better to consider that period first when selecting suppliers.

In this study, we add the following iterative improvement proce-
dures. First, we select a period with the largest outsourcing cost, say
period t′, from the initial or current solution. Then, we solve the
knapsack problem for period t′, [KPt′]. In [KPt′], all suppliers are as-
sumed to be available in period t′. When suppliers are selected in period
t′, +Et 1

av is defined and we select suppliers to be operated in period t′+ 1
among +Et 1

av by solving [KPt′+1]. In the same way, we select suppliers
for period t′+ 2 through period T. After then, we select suppliers for
the remaining periods, i.e., from period 1 to period t′− 1. A complete
solution obtained with this procedure is compared with the best solu-
tion obtained so far. If the new solution is better, the current best so-
lution is replaced with this new solution. This improvement procedure
is performed iteratively until the solution cannot be improved within a
predetermined number of iterations.

The overall procedure of the iterative algorithm can be summarized
as follows. Here, g and G are iteration count and the maximum number
of iterations allowed without solution improvement, respectively.

Procedure 1. (Iterative Algorithm)

Step 0. Set g= 0, E0
av = {1, 2, …, I}, E1

st = ∅, and TC* = ∞.
Compute Dt for t= 1,…, T.
Step 1. Solve the knapsack problems, [KPt], for t= 1,…, T, with a
dynamic programming method, such as the one of Horowitz and
Sahni (1974).
Step 2. Solve the linear program, [LP], defined by the solution of the
knapsack problems (using a commercial solver). Let the optimal
solution value of [LP] be TC0, and let g← g+ 1. If TC0 < TC*, let
TC* ← TC0.
Step 3. Find a period with the largest outsourcing cost, say period t′.
Solve [KPt], for t= t′,…, T, and then, for t= 1,…, t′−1. Solve [LP]
defined by the solutions of these knapsack problems. Let the optimal
solution value of [LP] be TCg.
Step 4. IfTCg < TC*, let TC* ← TCg, g= 1 and go to Step 3.
Otherwise, let g← g+ 1 and if g=G, stop; otherwise, go back to
Step 3.

3.2.2. Repeated-perturbation algorithm
By the iterative algorithm described above, we can obtain a solution

for a given set of profitability indexes (Vi). If other sets of Vi values are
considered, we may obtain other solutions. That is, by changing the Vi
values, one can obtain other solutions, hopefully those that are better
than the solution of the iterative algorithm. Therefore, after obtaining
an initial solution from the iterative algorithm, we perturb Vi values for
a new set of Vi values by multiplying a random number r, 1 ≤ r < 2, to
the original Vi value of each supplier and obtain a complete solution
with the iterative algorithm. In the repeated-perturbation algorithm,
complete solutions are generated with N sets of Vi values, and the best
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solution is selected as the final solution of the heuristic.
The overall procedure of the repeated-perturbation algorithm is

summarized below. Here, n and N are the repetition count and the
maximum allowed number of repetitions. Also, g and G defined to
describe the iterative algorithm are also used here.

Procedure 2. (Repeated-Perturbation Algorithm)

Step 0. Set n= 0, g= 0, E0
av = {1, 2, …, I}, E1

st = ∅, and TC* = ∞.
Compute Dt for t= 1,…, T.
Step 1. Let n← n+ 1 and solve the knapsack problems, [KPt], t= 1,
…, T, with a dynamic programming method.
Step 2. Solve the linear program, [LP], defined by the solution of the
knapsack problems (using a commercial solver). Let the optimal
solution value of [LP] be TCn

0, and let g← g+ 1. IfTCn
0 < TC*, let

TC* ←TCn
0.

Step 3. Find a period with the largest outsourcing cost, say period t′.
Solve [KPt], for t= t′,…, T, and then, for t= 1,…, t′−1. Solve [LP]
defined by the solutions of these knapsack problems. Let the optimal
solution value of [LP] be TCn

g.
Step 4. IfTCn

g < TC*, let TC* ←TCn
g, reset g= 0 and go to Step 3.

Otherwise, let g← g+ 1 and if g=G, go to Step 5; otherwise, go
back to Step 3.
Step 5. If n=N, stop. Otherwise, reset Vi ← rVi for all i and g← 0. Go
back to Step 1.

4. Computational results

We performed computational experiments to evaluate the perfor-
mance of the heuristic algorithms proposed in this study. For the ex-
periments, the heuristics are evaluated in two ways. For small sized
problem instances, solutions obtained by the heuristics are compared
with optimal solutions obtained by a commercial software package for
linear and integer programs, CPLEX 12.1. For large sized instances, the
heuristics are compared with a simulated annealing (SA) algorithm,
which is a kind of meta-heuristic algorithm widely used in optimization
problems. Especially in production-related applications such as pro-
duction planning, SA is a common discipline (Bakar et al., 2016). Note
that in real-world systems, i.e., in the aforementioned poultry company,
production plans are determined by rule of thumb or based on man-
agers’ experience without any systematic method, so there is no (ex-
isting) rule or algorithm with which the suggested heuristics can be
compared.

In the SA algorithm used in the experiments, we generate an initial
solution by randomly selecting suppliers to be opened in each period,
and solve [LP] to determine production and outsourcing quantities. A
neighborhood solution, σ′, from the current solution, σ, is generated
using an insertion method, as suggested in Park and Kim (1997). In the
current solution, if there are suppliers more than necessary for demand
in a period, it may costs a lot to setup the suppliers. Thus, we select a
supplier randomly among those to be opened in a period with the lar-
gest number of opened suppliers in the current solution, and determine
when to open the selected supplier randomly from period 1 to period T.
If Δ = f(σ′) − f(σ) < 0, where f( ) is the solution value (total cost) of
solution , the neighborhood solution σ′ is accepted, that is, the current
solution, σ, is replaced by σ′. If Δ ≥ 0, σ′ is accepted with a specified
probability given with a function, e−Δ/t, where t is a parameter called
the temperature. The temperature is initially set to T0 and decreased by
multiplying c < 1, called the cooling ratio, if the solution cannot be
improved for Λ iterations. (Λ is called the epoch length.) The algorithm is
terminated when the computation time reaches 4800 s. Note that the
solution needs to be found within 4800 s in real situations in a poultry
farming company because 4800 s is the maximum time that they can
wait after preparing the data for production planning for a week in the
morning on Monday. After a series of preliminary tests on several
candidate values for each parameter, we set the values as (T0, c) = (1.0,
0.98) and Λ is set to the product of the number of suppliers and the

number of periods.
For the experiment, we generated two groups of instances with

different lengths of the planning horizon: short and long planning
horizons. For instances with shorter planning horizons, 180 instances
were generated, 10 instances for each of all combinations of three levels
(20, 40, and 60) for the number of suppliers, three levels (12, 16, and
20 periods) for the length of the planning horizon, and two levels (low
and high) for setup costs. For instances with longer planning horizons, a
total of 300 instances were generated, 10 instances for each of all
combinations of five levels (20, 30, 40, 50, and 60) for the number of
suppliers, three levels (24, 36, and 48 periods) for the length of the
planning horizon, and two levels (low and high) for setup costs. These
parameters used for generating instances were selected based on in-
formation of a real poultry company in Korea. In the poultry company,
they produce three types of products (and semi-finished products), and
the production times of the three semi-finished types are 3, 4, and
5 weeks. Also, demand per a period, raw material purchasing cost,
transportation cost, outsourcing cost were generated based on data of a
real poultry company, and the capacities of the suppliers and the setup
cost were generated from information of suppliers in the company.
These data were generated as follows. Here, DU(a, b) denotes the dis-
crete uniform distribution with range [a, b].

(1) Demand for each semi-finished product in each period was gener-
ated from DU(500, 800).

(2) The capacity of a supplier was generated from DU(200, 400).
(3) The raw material purchasing cost was generated from DU(300,

400).
(4) The unit production costs of semi-finished products of types 1, 2,

and 3 were generated from DU(75, 100), DU(100, 125), and DU
(125, 150), respectively.

(5) Transportation costs for each unit of semi-finished products of types
1, 2, and 3 from a supplier to the plant were generated from DU(25,
50), DU(50, 75), and DU(75, 100), respectively.

(6) The outsourcing costs of each outsourced semi-finished product of
types 1, 2, and 3 were generated from DU(500, 600), DU(600, 700),
and DU(700, 800), respectively.

(7) The setup costs for instances with low setup costs were generated
randomly from DU(2000, 2500), while those of high setup costs
were generated from DU(3000, 3500).

In the heuristic algorithms, G, the maximum number of iterations
allowed without solution improvement in the iterative algorithm (and
in the repeated-perturbation algorithm), and N, the maximum number
of repetitions made in the repeated-perturbation algorithm, were set to
10 and 100, respectively. The heuristics and the SA algorithm were
coded in Java and [LP] is solved with CPLEX 12.1, a commercial soft-
ware package for linear and integer programs. Also, optimal solutions
were obtained by CPLEX applied to the mixed integer programming
formulation given in Section 2. The tests were done on a personal
computer with an AMD 3.0-GHz processor and 3 GB RAM.

Results of the tests for instances with shorter planning horizons and
low-level setup costs are given in Table 1, which shows averages and
standard deviations of percentage errors (PEs) of heuristic solutions
from optimal solutions and computation times. The overall average PE
of the two-step procedure (TSP) for the initial solution, iterative algo-
rithm (IA), and repeated-perturbation algorithm (RPA) were 3.52%,
2.87%, and 1.88%, respectively. It means that the suggested improve-
ment algorithms are useful to improve solution qualities. Also, when
the planning horizon is longer, the percentage errors of all algorithms
are larger. The average PE of solutions from the best-working algo-
rithm, RPA, was less than 1.3% in the tests on instances with T= 12,
and the average PE is less than 2% in the tests on instances with T= 16
and T= 20.

As can be seen in Table 1, PEs decrease as the number of suppliers
increases. This may be due to outsourcing. We mentioned that the
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outsourcing cost is greater than the production cost at a supplier. Thus,
we may need to reduce outsourcing quantity in order to decrease the
total cost. When I= 20, the number of suppliers is not large enough for
the demands to be covered without outsourcing. In these cases, every
supplier may have to be operated to reduce outsourcing quantities, and
hence selecting suppliers in our heuristics is less important than those of
cases where there are more suppliers. However, if there are a large
number of suppliers (I= 40, 60) in the supply chain, a majority of
demand can be satisfied from production at selected suppliers. That is,
the selection of suppliers is more important for reducing the total cost.

CPU times for the heuristic algorithms and CPLEX (used for optimal
solutions) are also shown in Table 1. Even in instances with the shortest
planning horizon (T= 12), CPLEX required more than 30 min, al-
though RPA required less than 20 s. In general, companies need pro-
duction plans not only for short planning horizons (T= 12, 16) but also
for longer planning horizons (T > 20). For instances with T and I
larger than those in the instances used in the above test, it is hard to
find optimal solutions in a reasonable time. Thus, the suggested heur-
istic, RPA, may be considered as a viable tool in such longer-term
planning problems.

Results of tests on instances with high-level setup costs are given in
Table 2. These results are similar to those given in Table 1. The

suggested heuristics give good solutions regardless of levels of setup
costs. In this case too, IA improved the solution of TSP, and RPA im-
proved the solutions of IA significantly. Because of the aforementioned
reason, when the planning horizon is longer, the performance of the
heuristics is worse. The overall average PEs of TSP, IA, and RPA were
3.26%, 2.45%, and 1.63%, respectively. The suggested algorithms also
worked well for instances with the largest number of suppliers; PEs of
RPA were less than 2% in all instances with T= 20, I= 60, and the
average PE was less than 1%.

Computation time required for the heuristics to solve an instance
did not exceed 0.2 s, 18 s, and 25 s for TSP, IA, and RPA, respectively.
On the other hand, CPLEX required more than 1 h for the smallest in-
stances (T= 12, I= 20), and 5 h for the largest instances (T= 20,
I= 60). Among the heuristics, RPA required the longest computation
time. However, it required only 5 or 6 s more than IA, meaning that the
repeated-perturbation procedure improved solutions within a very
short time.

Results of tests on instances of larger sizes, i.e., those with longer
planning horizons are given in Tables 3 and 4. In these tables, results of
CPLEX are not given, since optimal solutions were not obtained by
CPEX in a reasonable amount of CPU time. Table 3 shows results of tests
on instances with low-level setup costs. Here, NB denotes the number of

Table 1
Results of tests on short-term instances for low-level setup cost.

T I PE (%)a CPU timeb

TSPc IAd RPAe TSP IA RPA CPLEX

12 20 3.01 (0.62) 2.41 (0.49) 1.46 (0.68) 0.06 3.89 7.37 3216.29
40 2.69 (0.97) 2.17 (0.90) 0.86 (0.67) 0.06 4.14 7.78 5578.54
60 2.47 (1.00) 1.97 (0.77) 1.54 (0.70) 0.09 5.84 15.21 4599.65
Average 2.72 (0.88) 2.18 (0.76) 1.29 (0.67) 0.07 4.62 10.12 4464.83

16 20 4.95 (2.24) 3.92 (1.71) 2.06 (1.15) 0.07 5.45 8.64 6063.40
40 4.12 (1.75) 3.06 (1.13) 1.28 (0.69) 0.10 4.89 13.13 8829.14
60 3.37 (1.46) 2.41 (1.04) 2.09 (1.06) 0.13 6.69 18.02 8343.99
Average 4.15 (1.82) 3.13 (1.26) 1.81 (0.97) 0.10 5.68 13.26 7745.51

20 20 6.10 (2.97) 5.94 (2.94) 4.66 (1.87) 0.08 4.42 9.66 8673.77
40 2.84 (1.69) 2.04 (0.86) 1.12 (0.54) 0.13 8.63 15.01 11786.71
60 2.20 (1.43) 1.98 (1.03) 1.82 (0.93) 0.15 9.15 19.13 15042.58
Average 3.71 (2.16) 3.32 (1.25) 2.53 (1.17) 0.12 7.41 14.60 11834.35

Overall 3.52 (1.54) 2.87 (1.45) 1.88 (0.99) 0.10 5.90 12.66 8014.90

a Average (and standard deviation in parenthesis) percentage error of the heuristic solutions from the optimal solution.
b Average CPU time required for an instance.
c Two-step procedure for the initial solution.
d Iterative algorithm.
e Repeated-perturbation algorithm.

Table 2
Results of tests on short-term instances for high-level setup cost.

T I PE (%)a CPU timeb

TSPc IAd RPAe TSP IA RPA CPLEX

12 20 2.71 (0.55) 2.24 (0.62) 1.24 (0.42) 0.07 3.88 8.44 3844.71
40 2.38 (0.64) 2.13 (0.48) 1.16 (0.41) 0.06 4.23 8.95 6435.19
60 2.47 (0.51) 1.96 (0.49) 1.04 (0.47) 0.10 5.61 14.16 7041.89
Average 2.52 (0.63) 2.11 (0.52) 1.15 (0.44) 0.08 4.57 10.52 5773.93

16 20 4.24 (1.87) 2.88 (1.53) 1.95 (0.97) 0.09 5.04 12.65 7236.45
40 3.99 (1.45) 2.36 (1.29) 1.63 (0.88) 0.11 6.17 15.77 9014.62
60 3.07 (1.24) 2.06 (0.84) 1.57 (0.62) 0.14 6.96 19.21 9908.14
Average 3.77 (1.48) 2.43 (1.32) 1.72 (0.90) 0.11 6.06 15.88 8719.74

20 20 5.30 (2.37) 4.73 (2.49) 3.46 (1.64) 0.08 5.08 9.30 10894.90
40 3.11 (1.20) 2.60 (0.84) 1.61 (0.41) 0.15 6.95 18.36 14874.16
60 2.09 (1.29) 1.47 (1.01) 0.97 (0.45) 0.16 10.14 19.04 18443.38
Average 3.50 (1.57) 2.93 (1.39) 2.01 (0.72) 0.13 7.39 15.57 14737.48

Overall 3.26 (1.06) 2.49 (1.28) 1.63 (0.53) 0.10 6.01 11.41 9743.72

a, b, c, d, e See the footnotes of Table 1.
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instances out of 10 (out of 50 for overall) for which the suggested
heuristics found better solutions than those of the SA algorithm, and
RPD denotes the relative percentage deviation of the heuristic solutions
from the solutions of the SA algorithm.

The overall RPDs were −0.81%, −1.26%, and −1.78% for TSP, IA,
and RPA, respectively. This means that the suggested heuristic algo-
rithms gave better solutions than the SA algorithm. Even TSP, without
improvement procedures, gave better solutions than the SA algorithm
in 76 among 150 instances. RPA, which gives the best solutions among
the heuristics, worked better than the SA algorithm in 101 instances

among 150. CPU time required to solve an instance did not exceed 1 s,
16 s, and 61 s for TSP, IA, and RPA, respectively, while the SA algorithm
required 4800 s, which is the time limit specified for the termination
criterion.

Similar results were obtained in the cases with high-level setup
costs, as shown in Table 4. The overall RPDs were −2.04%, −2.14%,
and −2.38% for TSP, IA, and RPA, respectively. In these cases too, the
suggested heuristics gave better solutions than the SA algorithm. The
overall RPDs were smaller and the heuristics found the best solutions in
more instances than those of the cases with low-level setup costs. CPU

Table 3
Results of tests on long-term instances for low-level setup cost.

T I Solutions CPU timef

NBa RPD(%)b

TSPc IAd RPAe TSP IA RPA TSP IA RPA

24 20 10 10 10 −4.37 −4.83 −5.23 0.09 4.61 26.92
30 9 9 10 −4.05 −4.29 −4.91 0.09 6.04 29.62
40 8 9 10 −0.26 −0.42 −0.75 0.12 6.12 35.86
50 2 3 4 1.83 1.51 1.04 0.13 7.17 37.22
60 0 0 0 2.87 2.42 1.96 0.15 8.04 39.92
Total/average 29 31 34 −0.80 −1.12 −1.58 0.12 6.40 33.80

36 20 9 10 10 −4.16 −4.94 −5.61 0.16 8.57 30.14
30 10 10 10 −3.94 −4.03 −4.98 0.16 9.60 40.05
40 5 7 9 −0.63 −1.20 −1.34 0.18 9.86 43.70
50 2 3 5 1.41 1.17 0.81 0.21 10.44 48.30
60 0 1 2 2.20 2.04 1.71 0.23 11.09 55.05
Total/average 26 31 36 −1.02 −1.40 −1.88 0.19 9.91 43.44

48 20 8 10 10 −4.56 −5.12 −5.90 0.29 12.03 35.14
30 7 9 10 −3.38 −4.40 −4.91 0.32 12.62 46.51
40 5 7 8 −0.47 −1.00 −1.72 0.36 13.47 49.15
50 1 2 3 1.64 1.08 0.66 0.38 13.36 57.36
60 0 0 0 3.73 3.05 2.41 0.47 15.96 60.55
Total/average 21 28 31 −0.61 −1.28 −1.89 0.36 13.49 49.74

Overall 76 90 101 −0.81 −1.26 −1.78 0.22 9.93 41.89

c, d, e See the footnote of Table 1.
a Number of instances (out of 10 instances, 150 instances for overall) for which the heuristic algorithm found better solutions than the SA algorithm.
b Average of percentage deviations of heuristic solutions from those of SA.
f Average CPU time required for an instance.

Table 4
Results of tests on long-term instances for high-level setup cost.

T I Solutions CPU timef

NBa RPD(%)b

TSPc IAd RPAe TSP IA RPA TSP IA RPA

24 20 10 10 10 −5.31 −5.41 −5.81 0.12 6.01 31.23
30 10 10 10 −4.81 −4.74 −5.36 0.13 6.07 32.37
40 9 9 10 −2.09 −1.96 −2.26 0.15 6.86 43.60
50 4 6 6 1.27 1.08 0.94 0.17 7.61 54.57
60 1 2 2 1.78 1.48 1.30 0.18 8.13 66.09
Total/average 34 37 38 −1.83 −1.91 −2.24 0.15 6.94 45.57

36 20 10 10 10 −6.24 −6.57 −6.74 0.17 8.11 30.14
30 10 10 10 −4.77 −4.93 −5.21 0.22 10.57 40.05
40 10 10 10 −1.37 −1.54 −1.75 0.23 11.13 53.70
50 4 4 4 0.38 0.36 0.33 0.24 11.61 68.33
60 0 1 1 2.10 1.94 1.69 0.27 13.10 85.05
Total/average 34 35 35 −1.98 −2.15 −2.34 0.23 10.90 55.45

48 20 10 10 10 −6.05 −6.14 −6.58 0.36 15.34 45.37
30 10 10 10 −5.33 −5.38 −5.76 0.44 16.12 57.76
40 8 8 10 −1.42 −1.56 −1.63 0.57 16.01 65.05
50 3 4 6 0.22 0.20 0.20 0.62 19.14 84.90
60 0 0 0 1.11 1.08 0.96 0.81 22.66 99.35
Total/average 31 32 36 −2.30 −2.36 −2.56 0.56 17.85 70.49

99 103 109 −2.04 −2.14 −2.38 0.31 11.90 57.17

a, b, c, d, e, f See the footnotes of Table 3.
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time required for the suggested heuristics were longer in the cases with
high-level setup costs. For example, in cases of the largest instances
(I= 60, T= 48), TSP, IA, and RPA required less than 1 s, 23 s, and
100 s, respectively. The average CPU time of RPA, which worked best,
was 57.17 s.

In the SA algorithm used in the above test, a random solution is used
as the initial solution. To evaluate the performance of the proposed
heuristics with better solutions for large-size instances (with T= 48), of
which the optimal solutions cannot be obtained with CPLEX, we use
another SA algorithm, in which the solution from RPA is used as the
initial solution. This new SA algorithm, denoted by SA2, was let to be
terminated when the temperature decreases down to Tf = 0.001 so that
sufficiently good, possibly near optimal, solutions can be obtained. Note
that SA2 is used to evaluate the performance of the suggested heuristics
comparing solutions with near optimal solutions. Results of the tests are
given in Table 5. Although SA2 improved the solutions of RPA by
1.44%, it required a very long computation time. The average CPU time
for SA2 was 16129.59 s, and this is too long for SA2 to be used in
practice for a poultry company.

In large-size instances tested in this study, which reflect practical
situations, optimal solutions could not be obtained within 24 h.
However, the company has to make a production plan within one hour,
and they modify their production plan every day or every week with
updated demand forecasts or production and outsourcing costs. Hence,
the optimal solution approach cannot be used in practice. On the other
hand, the proposed heuristic algorithms give a reasonably good solution
in 20 s. Thus, they can obtain good solutions very quickly even though
the parameters of the problem are changed. In addition, by using out-
sourcing quantity in the solution, one can adjust the number of sup-
pliers in their supply chain. For example, if the outsourcing quantity is
large, the company can establish more suppliers or increase the capa-
city of existing suppliers. Also, if there are suppliers that are never se-
lected for production or selected in only a few periods, the company
may completely shut down such suppliers.

5. Concluding remarks

In this paper, we considered a production planning problem for
production-time-dependent products with dynamic demands in a
supply chain composed of multiple suppliers and a single manu-
facturing plant. What need to be determined in the problem are whe-
ther each of the suppliers should be operated in each period and the
production quantities of each supplier as well as the outsourcing
quantities. We presented a mixed integer programming formulation and
suggested a heuristic algorithm to solve the problem in a reasonable

time. In the heuristic, the problem is decomposed into two sub-
problems, which have the forms of the knapsack problem and linear
program (LP), which are solved with a dynamic programming method
and a commercial LP solver, respectively. To improve the solution, we
presented an iterative algorithm and a repeated-perturbation algorithm.

This research can be extended in several ways. For example, we can
consider a supply chain with multiple manufacturing plants instead of a
single manufacturing plant. In such a case, transportation quantities
between suppliers and plants should be determined as well as the
production quantities at the suppliers. Also one may need to consider
cases involving design of the supply chain, such as a case in which
locations of the suppliers and the manufacturing plant(s) need to be
determined.
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RPA SA2
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50 2.64 57.36 19195.52
60 3.05 60.55 24463.41
Average 1.42 49.74 16138.98

High 20 0.34 45.37 7780.30
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40 1.02 65.05 15643.32
50 2.56 84.90 19443.94
60 2.95 99.35 24031.23
Average 1.46 70.49 16120.19

Overall 1.44 60.11 16129.59

a Average percentage deviations of solutions of RPA from those of SA2.
b Average CPU time required for an instance.
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